kern - Add D_MEM flag to /dev/mem and /dev/kmem character devices.
[dragonfly.git] / sys / kern / kern_memio.c
blob0b1e3e2baaf73b51496903a84ff5bbc1aff212aa
1 /*-
2 * Copyright (c) 1988 University of Utah.
3 * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4 * All rights reserved.
6 * This code is derived from software contributed to Berkeley by
7 * the Systems Programming Group of the University of Utah Computer
8 * Science Department, and code derived from software contributed to
9 * Berkeley by William Jolitz.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
35 * from: Utah $Hdr: mem.c 1.13 89/10/08$
36 * from: @(#)mem.c 7.2 (Berkeley) 5/9/91
37 * $FreeBSD: src/sys/i386/i386/mem.c,v 1.79.2.9 2003/01/04 22:58:01 njl Exp $
41 * Memory special file
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/buf.h>
47 #include <sys/conf.h>
48 #include <sys/fcntl.h>
49 #include <sys/filio.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/memrange.h>
53 #include <sys/proc.h>
54 #include <sys/priv.h>
55 #include <sys/random.h>
56 #include <sys/signalvar.h>
57 #include <sys/uio.h>
58 #include <sys/vnode.h>
59 #include <sys/sysctl.h>
61 #include <sys/signal2.h>
63 #include <vm/vm.h>
64 #include <vm/pmap.h>
65 #include <vm/vm_extern.h>
68 static d_open_t mmopen;
69 static d_close_t mmclose;
70 static d_read_t mmread;
71 static d_write_t mmwrite;
72 static d_ioctl_t mmioctl;
73 #if 0
74 static d_mmap_t memmmap;
75 #endif
76 static d_kqfilter_t mmkqfilter;
77 static int memuksmap(cdev_t dev, vm_page_t fake);
79 #define CDEV_MAJOR 2
80 static struct dev_ops mem_ops = {
81 { "mem", 0, D_MPSAFE | D_QUICK },
82 .d_open = mmopen,
83 .d_close = mmclose,
84 .d_read = mmread,
85 .d_write = mmwrite,
86 .d_ioctl = mmioctl,
87 .d_kqfilter = mmkqfilter,
88 #if 0
89 .d_mmap = memmmap,
90 #endif
91 .d_uksmap = memuksmap
94 static struct dev_ops mem_ops_mem = {
95 { "mem", 0, D_MEM | D_MPSAFE | D_QUICK },
96 .d_open = mmopen,
97 .d_close = mmclose,
98 .d_read = mmread,
99 .d_write = mmwrite,
100 .d_ioctl = mmioctl,
101 .d_kqfilter = mmkqfilter,
102 #if 0
103 .d_mmap = memmmap,
104 #endif
105 .d_uksmap = memuksmap
108 static struct dev_ops mem_ops_noq = {
109 { "mem", 0, D_MPSAFE },
110 .d_open = mmopen,
111 .d_close = mmclose,
112 .d_read = mmread,
113 .d_write = mmwrite,
114 .d_ioctl = mmioctl,
115 .d_kqfilter = mmkqfilter,
116 #if 0
117 .d_mmap = memmmap,
118 #endif
119 .d_uksmap = memuksmap
122 static int rand_bolt;
123 static caddr_t zbuf;
124 static cdev_t zerodev = NULL;
125 static struct lock mem_lock = LOCK_INITIALIZER("memlk", 0, 0);
127 MALLOC_DEFINE(M_MEMDESC, "memdesc", "memory range descriptors");
128 static int mem_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
129 static int random_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
131 struct mem_range_softc mem_range_softc;
133 static int seedenable;
134 SYSCTL_INT(_kern, OID_AUTO, seedenable, CTLFLAG_RW, &seedenable, 0, "");
136 static int
137 mmopen(struct dev_open_args *ap)
139 cdev_t dev = ap->a_head.a_dev;
140 int error;
142 switch (minor(dev)) {
143 case 0:
144 case 1:
146 * /dev/mem and /dev/kmem
148 if (ap->a_oflags & FWRITE) {
149 if (securelevel > 0 || kernel_mem_readonly)
150 return (EPERM);
152 error = 0;
153 break;
154 case 6:
156 * /dev/kpmap can only be opened for reading.
158 if (ap->a_oflags & FWRITE)
159 return (EPERM);
160 error = 0;
161 break;
162 case 14:
163 error = priv_check_cred(ap->a_cred, PRIV_ROOT, 0);
164 if (error != 0)
165 break;
166 if (securelevel > 0 || kernel_mem_readonly) {
167 error = EPERM;
168 break;
170 error = cpu_set_iopl();
171 break;
172 default:
173 error = 0;
174 break;
176 return (error);
179 static int
180 mmclose(struct dev_close_args *ap)
182 cdev_t dev = ap->a_head.a_dev;
183 int error;
185 switch (minor(dev)) {
186 case 14:
187 error = cpu_clr_iopl();
188 break;
189 default:
190 error = 0;
191 break;
193 return (error);
197 static int
198 mmrw(cdev_t dev, struct uio *uio, int flags)
200 int o;
201 u_int c;
202 u_int poolsize;
203 u_long v;
204 struct iovec *iov;
205 int error = 0;
206 caddr_t buf = NULL;
208 while (uio->uio_resid > 0 && error == 0) {
209 iov = uio->uio_iov;
210 if (iov->iov_len == 0) {
211 uio->uio_iov++;
212 uio->uio_iovcnt--;
213 if (uio->uio_iovcnt < 0)
214 panic("mmrw");
215 continue;
217 switch (minor(dev)) {
218 case 0:
220 * minor device 0 is physical memory, /dev/mem
222 v = uio->uio_offset;
223 v &= ~(long)PAGE_MASK;
224 pmap_kenter((vm_offset_t)ptvmmap, v);
225 o = (int)uio->uio_offset & PAGE_MASK;
226 c = (u_int)(PAGE_SIZE - ((uintptr_t)iov->iov_base & PAGE_MASK));
227 c = min(c, (u_int)(PAGE_SIZE - o));
228 c = min(c, (u_int)iov->iov_len);
229 error = uiomove((caddr_t)&ptvmmap[o], (int)c, uio);
230 pmap_kremove((vm_offset_t)ptvmmap);
231 continue;
233 case 1: {
235 * minor device 1 is kernel memory, /dev/kmem
237 vm_offset_t saddr, eaddr;
238 int prot;
240 c = iov->iov_len;
243 * Make sure that all of the pages are currently
244 * resident so that we don't create any zero-fill
245 * pages.
247 saddr = trunc_page(uio->uio_offset);
248 eaddr = round_page(uio->uio_offset + c);
249 if (saddr > eaddr)
250 return EFAULT;
253 * Make sure the kernel addresses are mapped.
254 * platform_direct_mapped() can be used to bypass
255 * default mapping via the page table (virtual kernels
256 * contain a lot of out-of-band data).
258 prot = VM_PROT_READ;
259 if (uio->uio_rw != UIO_READ)
260 prot |= VM_PROT_WRITE;
261 error = kvm_access_check(saddr, eaddr, prot);
262 if (error)
263 return (error);
264 error = uiomove((caddr_t)(vm_offset_t)uio->uio_offset,
265 (int)c, uio);
266 continue;
268 case 2:
270 * minor device 2 (/dev/null) is EOF/RATHOLE
272 if (uio->uio_rw == UIO_READ)
273 return (0);
274 c = iov->iov_len;
275 break;
276 case 3:
278 * minor device 3 (/dev/random) is source of filth
279 * on read, seeder on write
281 if (buf == NULL)
282 buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
283 c = min(iov->iov_len, PAGE_SIZE);
284 if (uio->uio_rw == UIO_WRITE) {
285 error = uiomove(buf, (int)c, uio);
286 if (error == 0 &&
287 seedenable &&
288 securelevel <= 0) {
289 error = add_buffer_randomness_src(buf, c, RAND_SRC_SEEDING);
290 } else if (error == 0) {
291 error = EPERM;
293 } else {
294 poolsize = read_random(buf, c);
295 if (poolsize == 0) {
296 if (buf)
297 kfree(buf, M_TEMP);
298 if ((flags & IO_NDELAY) != 0)
299 return (EWOULDBLOCK);
300 return (0);
302 c = min(c, poolsize);
303 error = uiomove(buf, (int)c, uio);
305 continue;
306 case 4:
308 * minor device 4 (/dev/urandom) is source of muck
309 * on read, writes are disallowed.
311 c = min(iov->iov_len, PAGE_SIZE);
312 if (uio->uio_rw == UIO_WRITE) {
313 error = EPERM;
314 break;
316 if (CURSIG(curthread->td_lwp) != 0) {
318 * Use tsleep() to get the error code right.
319 * It should return immediately.
321 error = tsleep(&rand_bolt, PCATCH, "urand", 1);
322 if (error != 0 && error != EWOULDBLOCK)
323 continue;
325 if (buf == NULL)
326 buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
327 poolsize = read_random_unlimited(buf, c);
328 c = min(c, poolsize);
329 error = uiomove(buf, (int)c, uio);
330 continue;
331 /* case 5: read/write not supported, mmap only */
332 /* case 6: read/write not supported, mmap only */
333 case 12:
335 * minor device 12 (/dev/zero) is source of nulls
336 * on read, write are disallowed.
338 if (uio->uio_rw == UIO_WRITE) {
339 c = iov->iov_len;
340 break;
342 if (zbuf == NULL) {
343 zbuf = (caddr_t)kmalloc(PAGE_SIZE, M_TEMP,
344 M_WAITOK | M_ZERO);
346 c = min(iov->iov_len, PAGE_SIZE);
347 error = uiomove(zbuf, (int)c, uio);
348 continue;
349 default:
350 return (ENODEV);
352 if (error)
353 break;
354 iov->iov_base = (char *)iov->iov_base + c;
355 iov->iov_len -= c;
356 uio->uio_offset += c;
357 uio->uio_resid -= c;
359 if (buf)
360 kfree(buf, M_TEMP);
361 return (error);
364 static int
365 mmread(struct dev_read_args *ap)
367 return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
370 static int
371 mmwrite(struct dev_write_args *ap)
373 return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
376 /*******************************************************\
377 * allow user processes to MMAP some memory sections *
378 * instead of going through read/write *
379 \*******************************************************/
381 static int user_kernel_mapping(int num, vm_ooffset_t offset,
382 vm_ooffset_t *resultp);
384 #if 0
386 static int
387 memmmap(struct dev_mmap_args *ap)
389 cdev_t dev = ap->a_head.a_dev;
390 vm_ooffset_t result;
391 int error;
393 switch (minor(dev)) {
394 case 0:
396 * minor device 0 is physical memory
398 ap->a_result = atop(ap->a_offset);
399 error = 0;
400 break;
401 case 1:
403 * minor device 1 is kernel memory
405 ap->a_result = atop(vtophys(ap->a_offset));
406 error = 0;
407 break;
408 case 5:
409 case 6:
411 * minor device 5 is /dev/upmap (see sys/upmap.h)
412 * minor device 6 is /dev/kpmap (see sys/upmap.h)
414 result = 0;
415 error = user_kernel_mapping(minor(dev), ap->a_offset, &result);
416 ap->a_result = atop(result);
417 break;
418 default:
419 error = EINVAL;
420 break;
422 return error;
425 #endif
427 static int
428 memuksmap(cdev_t dev, vm_page_t fake)
430 vm_ooffset_t result;
431 int error;
433 switch (minor(dev)) {
434 case 0:
436 * minor device 0 is physical memory
438 fake->phys_addr = ptoa(fake->pindex);
439 error = 0;
440 break;
441 case 1:
443 * minor device 1 is kernel memory
445 fake->phys_addr = vtophys(ptoa(fake->pindex));
446 error = 0;
447 break;
448 case 5:
449 case 6:
451 * minor device 5 is /dev/upmap (see sys/upmap.h)
452 * minor device 6 is /dev/kpmap (see sys/upmap.h)
454 result = 0;
455 error = user_kernel_mapping(minor(dev),
456 ptoa(fake->pindex), &result);
457 fake->phys_addr = result;
458 break;
459 default:
460 error = EINVAL;
461 break;
463 return error;
466 static int
467 mmioctl(struct dev_ioctl_args *ap)
469 cdev_t dev = ap->a_head.a_dev;
470 int error;
472 lockmgr(&mem_lock, LK_EXCLUSIVE);
474 switch (minor(dev)) {
475 case 0:
476 error = mem_ioctl(dev, ap->a_cmd, ap->a_data,
477 ap->a_fflag, ap->a_cred);
478 break;
479 case 3:
480 case 4:
481 error = random_ioctl(dev, ap->a_cmd, ap->a_data,
482 ap->a_fflag, ap->a_cred);
483 break;
484 default:
485 error = ENODEV;
486 break;
489 lockmgr(&mem_lock, LK_RELEASE);
491 return (error);
495 * Operations for changing memory attributes.
497 * This is basically just an ioctl shim for mem_range_attr_get
498 * and mem_range_attr_set.
500 static int
501 mem_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
503 int nd, error = 0;
504 struct mem_range_op *mo = (struct mem_range_op *)data;
505 struct mem_range_desc *md;
507 /* is this for us? */
508 if ((cmd != MEMRANGE_GET) &&
509 (cmd != MEMRANGE_SET))
510 return (ENOTTY);
512 /* any chance we can handle this? */
513 if (mem_range_softc.mr_op == NULL)
514 return (EOPNOTSUPP);
516 /* do we have any descriptors? */
517 if (mem_range_softc.mr_ndesc == 0)
518 return (ENXIO);
520 switch (cmd) {
521 case MEMRANGE_GET:
522 nd = imin(mo->mo_arg[0], mem_range_softc.mr_ndesc);
523 if (nd > 0) {
524 md = (struct mem_range_desc *)
525 kmalloc(nd * sizeof(struct mem_range_desc),
526 M_MEMDESC, M_WAITOK);
527 error = mem_range_attr_get(md, &nd);
528 if (!error)
529 error = copyout(md, mo->mo_desc,
530 nd * sizeof(struct mem_range_desc));
531 kfree(md, M_MEMDESC);
532 } else {
533 nd = mem_range_softc.mr_ndesc;
535 mo->mo_arg[0] = nd;
536 break;
538 case MEMRANGE_SET:
539 md = (struct mem_range_desc *)kmalloc(sizeof(struct mem_range_desc),
540 M_MEMDESC, M_WAITOK);
541 error = copyin(mo->mo_desc, md, sizeof(struct mem_range_desc));
542 /* clamp description string */
543 md->mr_owner[sizeof(md->mr_owner) - 1] = 0;
544 if (error == 0)
545 error = mem_range_attr_set(md, &mo->mo_arg[0]);
546 kfree(md, M_MEMDESC);
547 break;
549 return (error);
553 * Implementation-neutral, kernel-callable functions for manipulating
554 * memory range attributes.
557 mem_range_attr_get(struct mem_range_desc *mrd, int *arg)
559 /* can we handle this? */
560 if (mem_range_softc.mr_op == NULL)
561 return (EOPNOTSUPP);
563 if (*arg == 0) {
564 *arg = mem_range_softc.mr_ndesc;
565 } else {
566 bcopy(mem_range_softc.mr_desc, mrd, (*arg) * sizeof(struct mem_range_desc));
568 return (0);
572 mem_range_attr_set(struct mem_range_desc *mrd, int *arg)
574 /* can we handle this? */
575 if (mem_range_softc.mr_op == NULL)
576 return (EOPNOTSUPP);
578 return (mem_range_softc.mr_op->set(&mem_range_softc, mrd, arg));
581 void
582 mem_range_AP_init(void)
584 if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
585 mem_range_softc.mr_op->initAP(&mem_range_softc);
588 static int
589 random_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
591 int error;
592 int intr;
595 * Even inspecting the state is privileged, since it gives a hint
596 * about how easily the randomness might be guessed.
598 error = 0;
600 switch (cmd) {
601 /* Really handled in upper layer */
602 case FIOASYNC:
603 break;
604 case MEM_SETIRQ:
605 intr = *(int16_t *)data;
606 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
607 break;
608 if (intr < 0 || intr >= MAX_INTS)
609 return (EINVAL);
610 register_randintr(intr);
611 break;
612 case MEM_CLEARIRQ:
613 intr = *(int16_t *)data;
614 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
615 break;
616 if (intr < 0 || intr >= MAX_INTS)
617 return (EINVAL);
618 unregister_randintr(intr);
619 break;
620 case MEM_RETURNIRQ:
621 error = ENOTSUP;
622 break;
623 case MEM_FINDIRQ:
624 intr = *(int16_t *)data;
625 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
626 break;
627 if (intr < 0 || intr >= MAX_INTS)
628 return (EINVAL);
629 intr = next_registered_randintr(intr);
630 if (intr == MAX_INTS)
631 return (ENOENT);
632 *(u_int16_t *)data = intr;
633 break;
634 default:
635 error = ENOTSUP;
636 break;
638 return (error);
641 static int
642 mm_filter_read(struct knote *kn, long hint)
644 return (1);
647 static int
648 mm_filter_write(struct knote *kn, long hint)
650 return (1);
653 static void
654 dummy_filter_detach(struct knote *kn) {}
656 /* Implemented in kern_nrandom.c */
657 static struct filterops random_read_filtops =
658 { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, random_filter_read };
660 static struct filterops mm_read_filtops =
661 { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_read };
663 static struct filterops mm_write_filtops =
664 { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_write };
666 static int
667 mmkqfilter(struct dev_kqfilter_args *ap)
669 struct knote *kn = ap->a_kn;
670 cdev_t dev = ap->a_head.a_dev;
672 ap->a_result = 0;
673 switch (kn->kn_filter) {
674 case EVFILT_READ:
675 switch (minor(dev)) {
676 case 3:
677 kn->kn_fop = &random_read_filtops;
678 break;
679 default:
680 kn->kn_fop = &mm_read_filtops;
681 break;
683 break;
684 case EVFILT_WRITE:
685 kn->kn_fop = &mm_write_filtops;
686 break;
687 default:
688 ap->a_result = EOPNOTSUPP;
689 return (0);
692 return (0);
696 iszerodev(cdev_t dev)
698 return (zerodev == dev);
702 * /dev/upmap and /dev/kpmap.
704 static int
705 user_kernel_mapping(int num, vm_ooffset_t offset, vm_ooffset_t *resultp)
707 struct proc *p;
708 int error;
709 int invfork;
711 if ((p = curproc) == NULL)
712 return (EINVAL);
715 * If this is a child currently in vfork the pmap is shared with
716 * the parent! We need to actually set-up the parent's p_upmap,
717 * not the child's, and we need to set the invfork flag. Userland
718 * will probably adjust its static state so it must be consistent
719 * with the parent or userland will be really badly confused.
721 * (this situation can happen when user code in vfork() calls
722 * libc's getpid() or some other function which then decides
723 * it wants the upmap).
725 if (p->p_flags & P_PPWAIT) {
726 p = p->p_pptr;
727 if (p == NULL)
728 return (EINVAL);
729 invfork = 1;
730 } else {
731 invfork = 0;
734 error = EINVAL;
736 switch(num) {
737 case 5:
739 * /dev/upmap - maps RW per-process shared user-kernel area.
741 if (p->p_upmap == NULL)
742 proc_usermap(p, invfork);
743 else if (invfork)
744 p->p_upmap->invfork = invfork;
746 if (p->p_upmap &&
747 offset < roundup2(sizeof(*p->p_upmap), PAGE_SIZE)) {
748 /* only good for current process */
749 *resultp = pmap_kextract((vm_offset_t)p->p_upmap +
750 offset);
751 error = 0;
753 break;
754 case 6:
756 * /dev/kpmap - maps RO shared kernel global page
758 if (kpmap &&
759 offset < roundup2(sizeof(*kpmap), PAGE_SIZE)) {
760 *resultp = pmap_kextract((vm_offset_t)kpmap +
761 offset);
762 error = 0;
764 break;
765 default:
766 break;
768 return error;
771 static void
772 mem_drvinit(void *unused)
775 /* Initialise memory range handling */
776 if (mem_range_softc.mr_op != NULL)
777 mem_range_softc.mr_op->init(&mem_range_softc);
779 make_dev(&mem_ops_mem, 0, UID_ROOT, GID_KMEM, 0640, "mem");
780 make_dev(&mem_ops_mem, 1, UID_ROOT, GID_KMEM, 0640, "kmem");
781 make_dev(&mem_ops, 2, UID_ROOT, GID_WHEEL, 0666, "null");
782 make_dev(&mem_ops, 3, UID_ROOT, GID_WHEEL, 0644, "random");
783 make_dev(&mem_ops, 4, UID_ROOT, GID_WHEEL, 0644, "urandom");
784 make_dev(&mem_ops, 5, UID_ROOT, GID_WHEEL, 0666, "upmap");
785 make_dev(&mem_ops, 6, UID_ROOT, GID_WHEEL, 0444, "kpmap");
786 zerodev = make_dev(&mem_ops, 12, UID_ROOT, GID_WHEEL, 0666, "zero");
787 make_dev(&mem_ops_noq, 14, UID_ROOT, GID_WHEEL, 0600, "io");
790 SYSINIT(memdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE + CDEV_MAJOR, mem_drvinit,
791 NULL);