s/NO_MAN/NOMAN/ in various Makefiles.
[dragonfly.git] / sys / net / radix.c
blob5236d9e7dd61b49c30d57904253edfc9ad962928
1 /*
2 * Copyright (c) 1988, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)radix.c 8.4 (Berkeley) 11/2/94
30 * $FreeBSD: src/sys/net/radix.c,v 1.20.2.3 2002/04/28 05:40:25 suz Exp $
34 * Routines to build and maintain radix trees for routing lookups.
36 #include <sys/param.h>
37 #ifdef _KERNEL
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/domain.h>
41 #include <sys/globaldata.h>
42 #include <sys/thread.h>
43 #else
44 #include <stdlib.h>
45 #endif
46 #include <sys/syslog.h>
48 #include <net/radix.h>
49 #include <net/netmsg2.h>
50 #include <net/netisr2.h>
53 * The arguments to the radix functions are really counted byte arrays with
54 * the length in the first byte. struct sockaddr's fit this type structurally.
56 #define clen(c) (*(u_char *)(c))
58 static int rn_walktree_from(struct radix_node_head *h, char *a, char *m,
59 walktree_f_t *f, void *w);
60 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
61 static int rn_walktree_at(struct radix_node_head *h, const char *a,
62 const char *m, walktree_f_t *f, void *w);
64 static struct radix_node
65 *rn_insert(char *, struct radix_node_head *, boolean_t *,
66 struct radix_node [2]),
67 *rn_newpair(char *, int, struct radix_node[2]),
68 *rn_search(const char *, struct radix_node *),
69 *rn_search_m(const char *, struct radix_node *, const char *);
71 static struct radix_mask *rn_mkfreelist[MAXCPU];
72 static struct radix_node_head *mask_rnheads[MAXCPU];
74 static char rn_zeros[RN_MAXKEYLEN];
75 static char rn_ones[RN_MAXKEYLEN] = RN_MAXKEYONES;
77 static boolean_t rn_lexobetter(char *m, char *n);
78 static struct radix_mask *
79 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask);
80 static boolean_t
81 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip);
83 static __inline struct radix_mask *
84 MKGet(struct radix_mask **l)
86 struct radix_mask *m;
88 if (*l != NULL) {
89 m = *l;
90 *l = m->rm_next;
91 } else {
92 R_Malloc(m, struct radix_mask *, sizeof *m);
94 return m;
97 static __inline void
98 MKFree(struct radix_mask **l, struct radix_mask *m)
100 m->rm_next = *l;
101 *l = m;
105 * The data structure for the keys is a radix tree with one way
106 * branching removed. The index rn_bit at an internal node n represents a bit
107 * position to be tested. The tree is arranged so that all descendants
108 * of a node n have keys whose bits all agree up to position rn_bit - 1.
109 * (We say the index of n is rn_bit.)
111 * There is at least one descendant which has a one bit at position rn_bit,
112 * and at least one with a zero there.
114 * A route is determined by a pair of key and mask. We require that the
115 * bit-wise logical and of the key and mask to be the key.
116 * We define the index of a route to associated with the mask to be
117 * the first bit number in the mask where 0 occurs (with bit number 0
118 * representing the highest order bit).
120 * We say a mask is normal if every bit is 0, past the index of the mask.
121 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
122 * and m is a normal mask, then the route applies to every descendant of n.
123 * If the index(m) < rn_bit, this implies the trailing last few bits of k
124 * before bit b are all 0, (and hence consequently true of every descendant
125 * of n), so the route applies to all descendants of the node as well.
127 * Similar logic shows that a non-normal mask m such that
128 * index(m) <= index(n) could potentially apply to many children of n.
129 * Thus, for each non-host route, we attach its mask to a list at an internal
130 * node as high in the tree as we can go.
132 * The present version of the code makes use of normal routes in short-
133 * circuiting an explict mask and compare operation when testing whether
134 * a key satisfies a normal route, and also in remembering the unique leaf
135 * that governs a subtree.
138 static struct radix_node *
139 rn_search(const char *v, struct radix_node *head)
141 struct radix_node *x;
143 x = head;
144 while (x->rn_bit >= 0) {
145 if (x->rn_bmask & v[x->rn_offset])
146 x = x->rn_right;
147 else
148 x = x->rn_left;
150 return (x);
153 static struct radix_node *
154 rn_search_m(const char *v, struct radix_node *head, const char *m)
156 struct radix_node *x;
158 for (x = head; x->rn_bit >= 0;) {
159 if ((x->rn_bmask & m[x->rn_offset]) &&
160 (x->rn_bmask & v[x->rn_offset]))
161 x = x->rn_right;
162 else
163 x = x->rn_left;
165 return x;
168 boolean_t
169 rn_refines(char *m, char *n)
171 char *lim, *lim2;
172 int longer = clen(n++) - clen(m++);
173 boolean_t masks_are_equal = TRUE;
175 lim2 = lim = n + clen(n);
176 if (longer > 0)
177 lim -= longer;
178 while (n < lim) {
179 if (*n & ~(*m))
180 return FALSE;
181 if (*n++ != *m++)
182 masks_are_equal = FALSE;
184 while (n < lim2)
185 if (*n++)
186 return FALSE;
187 if (masks_are_equal && (longer < 0))
188 for (lim2 = m - longer; m < lim2; )
189 if (*m++)
190 return TRUE;
191 return (!masks_are_equal);
194 struct radix_node *
195 rn_lookup(char *key, char *mask, struct radix_node_head *head)
197 struct radix_node *x;
198 char *netmask = NULL;
200 if (mask != NULL) {
201 x = rn_addmask(mask, TRUE, head->rnh_treetop->rn_offset,
202 head->rnh_maskhead);
203 if (x == NULL)
204 return (NULL);
205 netmask = x->rn_key;
207 x = rn_match(key, head);
208 if (x != NULL && netmask != NULL) {
209 while (x != NULL && x->rn_mask != netmask)
210 x = x->rn_dupedkey;
212 return x;
215 static boolean_t
216 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
218 char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
219 char *cplim;
220 int length = min(clen(cp), clen(cp2));
222 if (cp3 == NULL)
223 cp3 = rn_ones;
224 else
225 length = min(length, clen(cp3));
226 cplim = cp + length;
227 cp3 += skip;
228 cp2 += skip;
229 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
230 if ((*cp ^ *cp2) & *cp3)
231 return FALSE;
232 return TRUE;
235 struct radix_node *
236 rn_match(char *key, struct radix_node_head *head)
238 struct radix_node *t, *x;
239 char *cp = key, *cp2;
240 char *cplim;
241 struct radix_node *saved_t, *top = head->rnh_treetop;
242 int off = top->rn_offset, klen, matched_off;
243 int test, b, rn_bit;
245 t = rn_search(key, top);
247 * See if we match exactly as a host destination
248 * or at least learn how many bits match, for normal mask finesse.
250 * It doesn't hurt us to limit how many bytes to check
251 * to the length of the mask, since if it matches we had a genuine
252 * match and the leaf we have is the most specific one anyway;
253 * if it didn't match with a shorter length it would fail
254 * with a long one. This wins big for class B&C netmasks which
255 * are probably the most common case...
257 if (t->rn_mask != NULL)
258 klen = clen(t->rn_mask);
259 else
260 klen = clen(key);
261 cp += off; cp2 = t->rn_key + off; cplim = key + klen;
262 for (; cp < cplim; cp++, cp2++)
263 if (*cp != *cp2)
264 goto on1;
266 * This extra grot is in case we are explicitly asked
267 * to look up the default. Ugh!
269 * Never return the root node itself, it seems to cause a
270 * lot of confusion.
272 if (t->rn_flags & RNF_ROOT)
273 t = t->rn_dupedkey;
274 return t;
275 on1:
276 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
277 for (b = 7; (test >>= 1) > 0;)
278 b--;
279 matched_off = cp - key;
280 b += matched_off << 3;
281 rn_bit = -1 - b;
283 * If there is a host route in a duped-key chain, it will be first.
285 if ((saved_t = t)->rn_mask == NULL)
286 t = t->rn_dupedkey;
287 for (; t; t = t->rn_dupedkey) {
289 * Even if we don't match exactly as a host,
290 * we may match if the leaf we wound up at is
291 * a route to a net.
293 if (t->rn_flags & RNF_NORMAL) {
294 if (rn_bit <= t->rn_bit)
295 return t;
296 } else if (rn_satisfies_leaf(key, t, matched_off))
297 return t;
299 t = saved_t;
300 /* start searching up the tree */
301 do {
302 struct radix_mask *m;
304 t = t->rn_parent;
306 * If non-contiguous masks ever become important
307 * we can restore the masking and open coding of
308 * the search and satisfaction test and put the
309 * calculation of "off" back before the "do".
311 m = t->rn_mklist;
312 while (m != NULL) {
313 if (m->rm_flags & RNF_NORMAL) {
314 if (rn_bit <= m->rm_bit)
315 return (m->rm_leaf);
316 } else {
317 off = min(t->rn_offset, matched_off);
318 x = rn_search_m(key, t, m->rm_mask);
319 while (x != NULL && x->rn_mask != m->rm_mask)
320 x = x->rn_dupedkey;
321 if (x && rn_satisfies_leaf(key, x, off))
322 return x;
324 m = m->rm_next;
326 } while (t != top);
327 return NULL;
330 #ifdef RN_DEBUG
331 int rn_nodenum;
332 struct radix_node *rn_clist;
333 int rn_saveinfo;
334 boolean_t rn_debug = TRUE;
335 #endif
337 static struct radix_node *
338 rn_newpair(char *key, int indexbit, struct radix_node nodes[2])
340 struct radix_node *leaf = &nodes[0], *interior = &nodes[1];
342 interior->rn_bit = indexbit;
343 interior->rn_bmask = 0x80 >> (indexbit & 0x7);
344 interior->rn_offset = indexbit >> 3;
345 interior->rn_left = leaf;
346 interior->rn_mklist = NULL;
348 leaf->rn_bit = -1;
349 leaf->rn_key = key;
350 leaf->rn_parent = interior;
351 leaf->rn_flags = interior->rn_flags = RNF_ACTIVE;
352 leaf->rn_mklist = NULL;
354 #ifdef RN_DEBUG
355 leaf->rn_info = rn_nodenum++;
356 interior->rn_info = rn_nodenum++;
357 leaf->rn_twin = interior;
358 leaf->rn_ybro = rn_clist;
359 rn_clist = leaf;
360 #endif
361 return interior;
364 static struct radix_node *
365 rn_insert(char *key, struct radix_node_head *head, boolean_t *dupentry,
366 struct radix_node nodes[2])
368 struct radix_node *top = head->rnh_treetop;
369 int head_off = top->rn_offset, klen = clen(key);
370 struct radix_node *t = rn_search(key, top);
371 char *cp = key + head_off;
372 int b;
373 struct radix_node *tt;
376 * Find first bit at which the key and t->rn_key differ
379 char *cp2 = t->rn_key + head_off;
380 int cmp_res;
381 char *cplim = key + klen;
383 while (cp < cplim)
384 if (*cp2++ != *cp++)
385 goto on1;
386 *dupentry = TRUE;
387 return t;
388 on1:
389 *dupentry = FALSE;
390 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
391 for (b = (cp - key) << 3; cmp_res; b--)
392 cmp_res >>= 1;
395 struct radix_node *p, *x = top;
397 cp = key;
398 do {
399 p = x;
400 if (cp[x->rn_offset] & x->rn_bmask)
401 x = x->rn_right;
402 else
403 x = x->rn_left;
404 } while (b > (unsigned) x->rn_bit);
405 /* x->rn_bit < b && x->rn_bit >= 0 */
406 #ifdef RN_DEBUG
407 if (rn_debug)
408 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
409 #endif
410 t = rn_newpair(key, b, nodes);
411 tt = t->rn_left;
412 if ((cp[p->rn_offset] & p->rn_bmask) == 0)
413 p->rn_left = t;
414 else
415 p->rn_right = t;
416 x->rn_parent = t;
417 t->rn_parent = p; /* frees x, p as temp vars below */
418 if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
419 t->rn_right = x;
420 } else {
421 t->rn_right = tt;
422 t->rn_left = x;
424 #ifdef RN_DEBUG
425 if (rn_debug)
426 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
427 #endif
429 return (tt);
432 struct radix_node *
433 rn_addmask(char *netmask, boolean_t search, int skip,
434 struct radix_node_head *mask_rnh)
436 struct radix_node *x, *saved_x;
437 char *cp, *cplim;
438 int b = 0, mlen, m0, j;
439 boolean_t maskduplicated, isnormal;
440 char *addmask_key;
442 if ((mlen = clen(netmask)) > RN_MAXKEYLEN)
443 mlen = RN_MAXKEYLEN;
444 if (skip == 0)
445 skip = 1;
446 if (mlen <= skip)
447 return (mask_rnh->rnh_nodes);
448 R_Malloc(addmask_key, char *, RN_MAXKEYLEN);
449 if (addmask_key == NULL)
450 return NULL;
451 if (skip > 1)
452 bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
453 if ((m0 = mlen) > skip)
454 bcopy(netmask + skip, addmask_key + skip, mlen - skip);
456 * Trim trailing zeroes.
458 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
459 cp--;
460 mlen = cp - addmask_key;
461 if (mlen <= skip) {
462 if (m0 >= mask_rnh->rnh_last_zeroed)
463 mask_rnh->rnh_last_zeroed = mlen;
464 Free(addmask_key);
465 return (mask_rnh->rnh_nodes);
467 if (m0 < mask_rnh->rnh_last_zeroed)
468 bzero(addmask_key + m0, mask_rnh->rnh_last_zeroed - m0);
469 *addmask_key = mask_rnh->rnh_last_zeroed = mlen;
470 x = rn_search(addmask_key, mask_rnh->rnh_treetop);
471 if (x->rn_key == NULL) {
472 kprintf("WARNING: radix_node->rn_key is NULL rn=%p\n", x);
473 print_backtrace(-1);
474 x = NULL;
475 } else if (bcmp(addmask_key, x->rn_key, mlen) != 0) {
476 x = NULL;
478 if (x != NULL || search)
479 goto out;
480 R_Malloc(x, struct radix_node *, RN_MAXKEYLEN + 2 * (sizeof *x));
481 if ((saved_x = x) == NULL)
482 goto out;
483 bzero(x, RN_MAXKEYLEN + 2 * (sizeof *x));
484 netmask = cp = (char *)(x + 2);
485 bcopy(addmask_key, cp, mlen);
486 x = rn_insert(cp, mask_rnh, &maskduplicated, x);
487 if (maskduplicated) {
488 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
489 Free(saved_x);
490 goto out;
493 * Calculate index of mask, and check for normalcy.
495 isnormal = TRUE;
496 cplim = netmask + mlen;
497 for (cp = netmask + skip; cp < cplim && clen(cp) == 0xff;)
498 cp++;
499 if (cp != cplim) {
500 static const char normal_chars[] = {
501 0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1
504 for (j = 0x80; (j & *cp) != 0; j >>= 1)
505 b++;
506 if (*cp != normal_chars[b] || cp != (cplim - 1))
507 isnormal = FALSE;
509 b += (cp - netmask) << 3;
510 x->rn_bit = -1 - b;
511 if (isnormal)
512 x->rn_flags |= RNF_NORMAL;
513 out:
514 Free(addmask_key);
515 return (x);
518 /* XXX: arbitrary ordering for non-contiguous masks */
519 static boolean_t
520 rn_lexobetter(char *mp, char *np)
522 char *lim;
524 if ((unsigned) *mp > (unsigned) *np)
525 return TRUE;/* not really, but need to check longer one first */
526 if (*mp == *np)
527 for (lim = mp + clen(mp); mp < lim;)
528 if (*mp++ > *np++)
529 return TRUE;
530 return FALSE;
533 static struct radix_mask *
534 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask)
536 struct radix_mask *m;
538 m = MKGet(&rn_mkfreelist[mycpuid]);
539 if (m == NULL) {
540 log(LOG_ERR, "Mask for route not entered\n");
541 return (NULL);
543 bzero(m, sizeof *m);
544 m->rm_bit = tt->rn_bit;
545 m->rm_flags = tt->rn_flags;
546 if (tt->rn_flags & RNF_NORMAL)
547 m->rm_leaf = tt;
548 else
549 m->rm_mask = tt->rn_mask;
550 m->rm_next = nextmask;
551 tt->rn_mklist = m;
552 return m;
555 struct radix_node *
556 rn_addroute(char *key, char *netmask, struct radix_node_head *head,
557 struct radix_node treenodes[2])
559 struct radix_node *t, *x = NULL, *tt;
560 struct radix_node *saved_tt, *top = head->rnh_treetop;
561 short b = 0, b_leaf = 0;
562 boolean_t keyduplicated;
563 char *mmask;
564 struct radix_mask *m, **mp;
567 * In dealing with non-contiguous masks, there may be
568 * many different routes which have the same mask.
569 * We will find it useful to have a unique pointer to
570 * the mask to speed avoiding duplicate references at
571 * nodes and possibly save time in calculating indices.
573 if (netmask != NULL) {
574 if ((x = rn_addmask(netmask, FALSE, top->rn_offset,
575 head->rnh_maskhead)) == NULL)
576 return (NULL);
577 b_leaf = x->rn_bit;
578 b = -1 - x->rn_bit;
579 netmask = x->rn_key;
582 * Deal with duplicated keys: attach node to previous instance
584 saved_tt = tt = rn_insert(key, head, &keyduplicated, treenodes);
585 if (keyduplicated) {
586 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
587 if (tt->rn_mask == netmask)
588 return (NULL);
589 if (netmask == NULL ||
590 (tt->rn_mask &&
591 ((b_leaf < tt->rn_bit) /* index(netmask) > node */
592 || rn_refines(netmask, tt->rn_mask)
593 || rn_lexobetter(netmask, tt->rn_mask))))
594 break;
597 * If the mask is not duplicated, we wouldn't
598 * find it among possible duplicate key entries
599 * anyway, so the above test doesn't hurt.
601 * We sort the masks for a duplicated key the same way as
602 * in a masklist -- most specific to least specific.
603 * This may require the unfortunate nuisance of relocating
604 * the head of the list.
606 if (tt == saved_tt) {
607 struct radix_node *xx = x;
608 /* link in at head of list */
609 (tt = treenodes)->rn_dupedkey = t;
610 tt->rn_flags = t->rn_flags;
611 tt->rn_parent = x = t->rn_parent;
612 t->rn_parent = tt; /* parent */
613 if (x->rn_left == t)
614 x->rn_left = tt;
615 else
616 x->rn_right = tt;
617 saved_tt = tt; x = xx;
618 } else {
619 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
620 t->rn_dupedkey = tt;
621 tt->rn_parent = t; /* parent */
622 if (tt->rn_dupedkey != NULL) /* parent */
623 tt->rn_dupedkey->rn_parent = tt; /* parent */
625 #ifdef RN_DEBUG
626 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
627 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
628 #endif
629 tt->rn_key = key;
630 tt->rn_bit = -1;
631 tt->rn_flags = RNF_ACTIVE;
634 * Put mask in tree.
636 if (netmask != NULL) {
637 tt->rn_mask = netmask;
638 tt->rn_bit = x->rn_bit;
639 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
641 t = saved_tt->rn_parent;
642 if (keyduplicated)
643 goto on2;
644 b_leaf = -1 - t->rn_bit;
645 if (t->rn_right == saved_tt)
646 x = t->rn_left;
647 else
648 x = t->rn_right;
649 /* Promote general routes from below */
650 if (x->rn_bit < 0) {
651 mp = &t->rn_mklist;
652 while (x != NULL) {
653 if (x->rn_mask != NULL &&
654 x->rn_bit >= b_leaf &&
655 x->rn_mklist == NULL) {
656 *mp = m = rn_new_radix_mask(x, NULL);
657 if (m != NULL)
658 mp = &m->rm_next;
660 x = x->rn_dupedkey;
662 } else if (x->rn_mklist != NULL) {
664 * Skip over masks whose index is > that of new node
666 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
667 if (m->rm_bit >= b_leaf)
668 break;
669 t->rn_mklist = m;
670 *mp = NULL;
672 on2:
673 /* Add new route to highest possible ancestor's list */
674 if ((netmask == NULL) || (b > t->rn_bit ))
675 return tt; /* can't lift at all */
676 b_leaf = tt->rn_bit;
677 do {
678 x = t;
679 t = t->rn_parent;
680 } while (b <= t->rn_bit && x != top);
682 * Search through routes associated with node to
683 * insert new route according to index.
684 * Need same criteria as when sorting dupedkeys to avoid
685 * double loop on deletion.
687 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next) {
688 if (m->rm_bit < b_leaf)
689 continue;
690 if (m->rm_bit > b_leaf)
691 break;
692 if (m->rm_flags & RNF_NORMAL) {
693 mmask = m->rm_leaf->rn_mask;
694 if (tt->rn_flags & RNF_NORMAL) {
695 log(LOG_ERR,
696 "Non-unique normal route, mask not entered\n");
697 return tt;
699 } else
700 mmask = m->rm_mask;
701 if (mmask == netmask) {
702 m->rm_refs++;
703 tt->rn_mklist = m;
704 return tt;
706 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
707 break;
709 *mp = rn_new_radix_mask(tt, *mp);
710 return tt;
713 struct radix_node *
714 rn_delete(char *key, char *netmask, struct radix_node_head *head)
716 struct radix_node *t, *p, *x, *tt;
717 struct radix_mask *m, *saved_m, **mp;
718 struct radix_node *dupedkey, *saved_tt, *top;
719 int b, head_off, klen;
720 int cpu = mycpuid;
722 x = head->rnh_treetop;
723 tt = rn_search(key, x);
724 head_off = x->rn_offset;
725 klen = clen(key);
726 saved_tt = tt;
727 top = x;
728 if (tt == NULL ||
729 bcmp(key + head_off, tt->rn_key + head_off, klen - head_off))
730 return (NULL);
732 * Delete our route from mask lists.
734 if (netmask != NULL) {
735 if ((x = rn_addmask(netmask, TRUE, head_off,
736 head->rnh_maskhead)) == NULL)
737 return (NULL);
738 netmask = x->rn_key;
739 while (tt->rn_mask != netmask)
740 if ((tt = tt->rn_dupedkey) == NULL)
741 return (NULL);
743 if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
744 goto on1;
745 if (tt->rn_flags & RNF_NORMAL) {
746 if (m->rm_leaf != tt || m->rm_refs > 0) {
747 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
748 return (NULL); /* dangling ref could cause disaster */
750 } else {
751 if (m->rm_mask != tt->rn_mask) {
752 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
753 goto on1;
755 if (--m->rm_refs >= 0)
756 goto on1;
758 b = -1 - tt->rn_bit;
759 t = saved_tt->rn_parent;
760 if (b > t->rn_bit)
761 goto on1; /* Wasn't lifted at all */
762 do {
763 x = t;
764 t = t->rn_parent;
765 } while (b <= t->rn_bit && x != top);
766 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
767 if (m == saved_m) {
768 *mp = m->rm_next;
769 MKFree(&rn_mkfreelist[cpu], m);
770 break;
772 if (m == NULL) {
773 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
774 if (tt->rn_flags & RNF_NORMAL)
775 return (NULL); /* Dangling ref to us */
777 on1:
779 * Eliminate us from tree
781 if (tt->rn_flags & RNF_ROOT)
782 return (NULL);
783 #ifdef RN_DEBUG
784 /* Get us out of the creation list */
785 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
786 if (t) t->rn_ybro = tt->rn_ybro;
787 #endif
788 t = tt->rn_parent;
789 dupedkey = saved_tt->rn_dupedkey;
790 if (dupedkey != NULL) {
792 * at this point, tt is the deletion target and saved_tt
793 * is the head of the dupekey chain
795 if (tt == saved_tt) {
796 /* remove from head of chain */
797 x = dupedkey; x->rn_parent = t;
798 if (t->rn_left == tt)
799 t->rn_left = x;
800 else
801 t->rn_right = x;
802 } else {
803 /* find node in front of tt on the chain */
804 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
805 p = p->rn_dupedkey;
806 if (p) {
807 p->rn_dupedkey = tt->rn_dupedkey;
808 if (tt->rn_dupedkey) /* parent */
809 tt->rn_dupedkey->rn_parent = p;
810 /* parent */
811 } else log(LOG_ERR, "rn_delete: couldn't find us\n");
813 t = tt + 1;
814 if (t->rn_flags & RNF_ACTIVE) {
815 #ifndef RN_DEBUG
816 *++x = *t;
817 p = t->rn_parent;
818 #else
819 b = t->rn_info;
820 *++x = *t;
821 t->rn_info = b;
822 p = t->rn_parent;
823 #endif
824 if (p->rn_left == t)
825 p->rn_left = x;
826 else
827 p->rn_right = x;
828 x->rn_left->rn_parent = x;
829 x->rn_right->rn_parent = x;
831 goto out;
833 if (t->rn_left == tt)
834 x = t->rn_right;
835 else
836 x = t->rn_left;
837 p = t->rn_parent;
838 if (p->rn_right == t)
839 p->rn_right = x;
840 else
841 p->rn_left = x;
842 x->rn_parent = p;
844 * Demote routes attached to us.
846 if (t->rn_mklist != NULL) {
847 if (x->rn_bit >= 0) {
848 for (mp = &x->rn_mklist; (m = *mp);)
849 mp = &m->rm_next;
850 *mp = t->rn_mklist;
851 } else {
853 * If there are any (key, mask) pairs in a sibling
854 * duped-key chain, some subset will appear sorted
855 * in the same order attached to our mklist.
857 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
858 if (m == x->rn_mklist) {
859 struct radix_mask *mm = m->rm_next;
861 x->rn_mklist = NULL;
862 if (--(m->rm_refs) < 0)
863 MKFree(&rn_mkfreelist[cpu], m);
864 m = mm;
866 if (m)
867 log(LOG_ERR,
868 "rn_delete: Orphaned Mask %p at %p\n",
869 (void *)m, (void *)x);
873 * We may be holding an active internal node in the tree.
875 x = tt + 1;
876 if (t != x) {
877 #ifndef RN_DEBUG
878 *t = *x;
879 #else
880 b = t->rn_info;
881 *t = *x;
882 t->rn_info = b;
883 #endif
884 t->rn_left->rn_parent = t;
885 t->rn_right->rn_parent = t;
886 p = x->rn_parent;
887 if (p->rn_left == x)
888 p->rn_left = t;
889 else
890 p->rn_right = t;
892 out:
893 tt->rn_flags &= ~RNF_ACTIVE;
894 tt[1].rn_flags &= ~RNF_ACTIVE;
895 return (tt);
899 * This is the same as rn_walktree() except for the parameters and the
900 * exit.
902 static int
903 rn_walktree_from(struct radix_node_head *h, char *xa, char *xm,
904 walktree_f_t *f, void *w)
906 struct radix_node *base, *next;
907 struct radix_node *rn, *last = NULL /* shut up gcc */;
908 boolean_t stopping = FALSE;
909 int lastb, error;
912 * rn_search_m is sort-of-open-coded here.
914 /* kprintf("about to search\n"); */
915 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
916 last = rn;
917 /* kprintf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
918 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
919 if (!(rn->rn_bmask & xm[rn->rn_offset])) {
920 break;
922 if (rn->rn_bmask & xa[rn->rn_offset]) {
923 rn = rn->rn_right;
924 } else {
925 rn = rn->rn_left;
928 /* kprintf("done searching\n"); */
931 * Two cases: either we stepped off the end of our mask,
932 * in which case last == rn, or we reached a leaf, in which
933 * case we want to start from the last node we looked at.
934 * Either way, last is the node we want to start from.
936 rn = last;
937 lastb = rn->rn_bit;
939 /* kprintf("rn %p, lastb %d\n", rn, lastb);*/
942 * This gets complicated because we may delete the node
943 * while applying the function f to it, so we need to calculate
944 * the successor node in advance.
946 while (rn->rn_bit >= 0)
947 rn = rn->rn_left;
949 while (!stopping) {
950 /* kprintf("node %p (%d)\n", rn, rn->rn_bit); */
951 base = rn;
952 /* If at right child go back up, otherwise, go right */
953 while (rn->rn_parent->rn_right == rn &&
954 !(rn->rn_flags & RNF_ROOT)) {
955 rn = rn->rn_parent;
957 /* if went up beyond last, stop */
958 if (rn->rn_bit < lastb) {
959 stopping = TRUE;
960 /* kprintf("up too far\n"); */
964 /* Find the next *leaf* since next node might vanish, too */
965 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
966 rn = rn->rn_left;
967 next = rn;
968 /* Process leaves */
969 while ((rn = base) != NULL) {
970 base = rn->rn_dupedkey;
971 /* kprintf("leaf %p\n", rn); */
972 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
973 return (error);
975 rn = next;
977 if (rn->rn_flags & RNF_ROOT) {
978 /* kprintf("root, stopping"); */
979 stopping = TRUE;
983 return 0;
986 static int
987 rn_walktree_at(struct radix_node_head *h, const char *a, const char *m,
988 walktree_f_t *f, void *w)
990 struct radix_node *base, *next;
991 struct radix_node *rn = h->rnh_treetop;
992 int error;
995 * This gets complicated because we may delete the node
996 * while applying the function f to it, so we need to calculate
997 * the successor node in advance.
999 if (a == NULL) {
1000 /* First time through node, go left */
1001 while (rn->rn_bit >= 0)
1002 rn = rn->rn_left;
1003 } else {
1004 if (m != NULL)
1005 rn = rn_search_m(a, rn, m);
1006 else
1007 rn = rn_search(a, rn);
1009 for (;;) {
1010 base = rn;
1011 /* If at right child go back up, otherwise, go right */
1012 while (rn->rn_parent->rn_right == rn &&
1013 !(rn->rn_flags & RNF_ROOT))
1014 rn = rn->rn_parent;
1015 /* Find the next *leaf* since next node might vanish, too */
1016 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1017 rn = rn->rn_left;
1018 next = rn;
1019 /* Process leaves */
1020 while ((rn = base)) {
1021 base = rn->rn_dupedkey;
1022 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
1023 return (error);
1025 rn = next;
1026 if (rn->rn_flags & RNF_ROOT)
1027 return (0);
1029 /* NOTREACHED */
1032 static int
1033 rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
1035 return rn_walktree_at(h, NULL, NULL, f, w);
1039 rn_inithead(void **head, struct radix_node_head *maskhead, int off)
1041 struct radix_node_head *rnh;
1042 struct radix_node *root, *left, *right;
1044 if (*head != NULL) /* already initialized */
1045 return (1);
1047 R_Malloc(rnh, struct radix_node_head *, sizeof *rnh);
1048 if (rnh == NULL)
1049 return (0);
1050 bzero(rnh, sizeof *rnh);
1051 *head = rnh;
1053 root = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1054 right = &rnh->rnh_nodes[2];
1055 root->rn_parent = root;
1056 root->rn_flags = RNF_ROOT | RNF_ACTIVE;
1057 root->rn_right = right;
1059 left = root->rn_left;
1060 left->rn_bit = -1 - off;
1061 left->rn_flags = RNF_ROOT | RNF_ACTIVE;
1063 *right = *left;
1064 right->rn_key = rn_ones;
1066 rnh->rnh_treetop = root;
1067 rnh->rnh_maskhead = maskhead;
1069 rnh->rnh_addaddr = rn_addroute;
1070 rnh->rnh_deladdr = rn_delete;
1071 rnh->rnh_matchaddr = rn_match;
1072 rnh->rnh_lookup = rn_lookup;
1073 rnh->rnh_walktree = rn_walktree;
1074 rnh->rnh_walktree_from = rn_walktree_from;
1075 rnh->rnh_walktree_at = rn_walktree_at;
1077 return (1);
1080 static void
1081 rn_init_handler(netmsg_t msg)
1083 int cpu = mycpuid;
1085 ASSERT_NETISR_NCPUS(cpu);
1086 if (rn_inithead((void **)&mask_rnheads[cpu], NULL, 0) == 0)
1087 panic("rn_init 2");
1089 netisr_forwardmsg(&msg->base, cpu + 1);
1092 void
1093 rn_init(void)
1095 struct netmsg_base msg;
1096 #ifdef _KERNEL
1097 struct domain *dom;
1099 SLIST_FOREACH(dom, &domains, dom_next) {
1100 if (dom->dom_maxrtkey > RN_MAXKEYLEN) {
1101 panic("domain %s maxkey too big %d/%d",
1102 dom->dom_name, dom->dom_maxrtkey, RN_MAXKEYLEN);
1105 #endif
1106 netmsg_init(&msg, NULL, &curthread->td_msgport, 0, rn_init_handler);
1107 netisr_domsg_global(&msg);
1110 struct radix_node_head *
1111 rn_cpumaskhead(int cpu)
1114 ASSERT_NETISR_NCPUS(cpu);
1115 KKASSERT(mask_rnheads[cpu] != NULL);
1116 return mask_rnheads[cpu];