mbuf: Factor function to set mbuf hash.
[dragonfly.git] / sys / dev / netif / emx / if_emx.c
blob41f95d9adca7bae98f31a7afe7a20d15b59cfff1
1 /*
2 * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>. All rights reserved.
4 * Copyright (c) 2001-2008, Intel Corporation
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived from
19 * this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
34 * Copyright (c) 2005 The DragonFly Project. All rights reserved.
36 * This code is derived from software contributed to The DragonFly Project
37 * by Matthew Dillon <dillon@backplane.com>
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in
47 * the documentation and/or other materials provided with the
48 * distribution.
49 * 3. Neither the name of The DragonFly Project nor the names of its
50 * contributors may be used to endorse or promote products derived
51 * from this software without specific, prior written permission.
53 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
57 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
67 #include "opt_ifpoll.h"
68 #include "opt_emx.h"
70 #include <sys/param.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/interrupt.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>
79 #include <sys/rman.h>
80 #include <sys/serialize.h>
81 #include <sys/serialize2.h>
82 #include <sys/socket.h>
83 #include <sys/sockio.h>
84 #include <sys/sysctl.h>
85 #include <sys/systm.h>
87 #include <net/bpf.h>
88 #include <net/ethernet.h>
89 #include <net/if.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94 #include <net/toeplitz.h>
95 #include <net/toeplitz2.h>
96 #include <net/vlan/if_vlan_var.h>
97 #include <net/vlan/if_vlan_ether.h>
98 #include <net/if_poll.h>
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 #include <netinet/tcp.h>
104 #include <netinet/udp.h>
106 #include <bus/pci/pcivar.h>
107 #include <bus/pci/pcireg.h>
109 #include <dev/netif/ig_hal/e1000_api.h>
110 #include <dev/netif/ig_hal/e1000_82571.h>
111 #include <dev/netif/ig_hal/e1000_dragonfly.h>
112 #include <dev/netif/emx/if_emx.h>
114 #define DEBUG_HW 0
116 #ifdef EMX_RSS_DEBUG
117 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
118 do { \
119 if (sc->rss_debug >= lvl) \
120 if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
121 } while (0)
122 #else /* !EMX_RSS_DEBUG */
123 #define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) ((void)0)
124 #endif /* EMX_RSS_DEBUG */
126 #define EMX_NAME "Intel(R) PRO/1000 "
128 #define EMX_DEVICE(id) \
129 { EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
130 #define EMX_DEVICE_NULL { 0, 0, NULL }
132 static const struct emx_device {
133 uint16_t vid;
134 uint16_t did;
135 const char *desc;
136 } emx_devices[] = {
137 EMX_DEVICE(82571EB_COPPER),
138 EMX_DEVICE(82571EB_FIBER),
139 EMX_DEVICE(82571EB_SERDES),
140 EMX_DEVICE(82571EB_SERDES_DUAL),
141 EMX_DEVICE(82571EB_SERDES_QUAD),
142 EMX_DEVICE(82571EB_QUAD_COPPER),
143 EMX_DEVICE(82571EB_QUAD_COPPER_BP),
144 EMX_DEVICE(82571EB_QUAD_COPPER_LP),
145 EMX_DEVICE(82571EB_QUAD_FIBER),
146 EMX_DEVICE(82571PT_QUAD_COPPER),
148 EMX_DEVICE(82572EI_COPPER),
149 EMX_DEVICE(82572EI_FIBER),
150 EMX_DEVICE(82572EI_SERDES),
151 EMX_DEVICE(82572EI),
153 EMX_DEVICE(82573E),
154 EMX_DEVICE(82573E_IAMT),
155 EMX_DEVICE(82573L),
157 EMX_DEVICE(80003ES2LAN_COPPER_SPT),
158 EMX_DEVICE(80003ES2LAN_SERDES_SPT),
159 EMX_DEVICE(80003ES2LAN_COPPER_DPT),
160 EMX_DEVICE(80003ES2LAN_SERDES_DPT),
162 EMX_DEVICE(82574L),
163 EMX_DEVICE(82574LA),
165 EMX_DEVICE(PCH_LPT_I217_LM),
166 EMX_DEVICE(PCH_LPT_I217_V),
167 EMX_DEVICE(PCH_LPTLP_I218_LM),
168 EMX_DEVICE(PCH_LPTLP_I218_V),
169 EMX_DEVICE(PCH_I218_LM2),
170 EMX_DEVICE(PCH_I218_V2),
171 EMX_DEVICE(PCH_I218_LM3),
172 EMX_DEVICE(PCH_I218_V3),
173 EMX_DEVICE(PCH_SPT_I219_LM),
174 EMX_DEVICE(PCH_SPT_I219_V),
175 EMX_DEVICE(PCH_SPT_I219_LM2),
176 EMX_DEVICE(PCH_SPT_I219_V2),
178 /* required last entry */
179 EMX_DEVICE_NULL
182 static int emx_probe(device_t);
183 static int emx_attach(device_t);
184 static int emx_detach(device_t);
185 static int emx_shutdown(device_t);
186 static int emx_suspend(device_t);
187 static int emx_resume(device_t);
189 static void emx_init(void *);
190 static void emx_stop(struct emx_softc *);
191 static int emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
192 static void emx_start(struct ifnet *, struct ifaltq_subque *);
193 #ifdef IFPOLL_ENABLE
194 static void emx_npoll(struct ifnet *, struct ifpoll_info *);
195 static void emx_npoll_status(struct ifnet *);
196 static void emx_npoll_tx(struct ifnet *, void *, int);
197 static void emx_npoll_rx(struct ifnet *, void *, int);
198 #endif
199 static void emx_watchdog(struct ifaltq_subque *);
200 static void emx_media_status(struct ifnet *, struct ifmediareq *);
201 static int emx_media_change(struct ifnet *);
202 static void emx_timer(void *);
203 static void emx_serialize(struct ifnet *, enum ifnet_serialize);
204 static void emx_deserialize(struct ifnet *, enum ifnet_serialize);
205 static int emx_tryserialize(struct ifnet *, enum ifnet_serialize);
206 #ifdef INVARIANTS
207 static void emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
208 boolean_t);
209 #endif
211 static void emx_intr(void *);
212 static void emx_intr_mask(void *);
213 static void emx_intr_body(struct emx_softc *, boolean_t);
214 static void emx_rxeof(struct emx_rxdata *, int);
215 static void emx_txeof(struct emx_txdata *);
216 static void emx_tx_collect(struct emx_txdata *);
217 static void emx_tx_purge(struct emx_softc *);
218 static void emx_enable_intr(struct emx_softc *);
219 static void emx_disable_intr(struct emx_softc *);
221 static int emx_dma_alloc(struct emx_softc *);
222 static void emx_dma_free(struct emx_softc *);
223 static void emx_init_tx_ring(struct emx_txdata *);
224 static int emx_init_rx_ring(struct emx_rxdata *);
225 static void emx_free_tx_ring(struct emx_txdata *);
226 static void emx_free_rx_ring(struct emx_rxdata *);
227 static int emx_create_tx_ring(struct emx_txdata *);
228 static int emx_create_rx_ring(struct emx_rxdata *);
229 static void emx_destroy_tx_ring(struct emx_txdata *, int);
230 static void emx_destroy_rx_ring(struct emx_rxdata *, int);
231 static int emx_newbuf(struct emx_rxdata *, int, int);
232 static int emx_encap(struct emx_txdata *, struct mbuf **, int *, int *);
233 static int emx_txcsum(struct emx_txdata *, struct mbuf *,
234 uint32_t *, uint32_t *);
235 static int emx_tso_pullup(struct emx_txdata *, struct mbuf **);
236 static int emx_tso_setup(struct emx_txdata *, struct mbuf *,
237 uint32_t *, uint32_t *);
238 static int emx_get_txring_inuse(const struct emx_softc *, boolean_t);
240 static int emx_is_valid_eaddr(const uint8_t *);
241 static int emx_reset(struct emx_softc *);
242 static void emx_setup_ifp(struct emx_softc *);
243 static void emx_init_tx_unit(struct emx_softc *);
244 static void emx_init_rx_unit(struct emx_softc *);
245 static void emx_update_stats(struct emx_softc *);
246 static void emx_set_promisc(struct emx_softc *);
247 static void emx_disable_promisc(struct emx_softc *);
248 static void emx_set_multi(struct emx_softc *);
249 static void emx_update_link_status(struct emx_softc *);
250 static void emx_smartspeed(struct emx_softc *);
251 static void emx_set_itr(struct emx_softc *, uint32_t);
252 static void emx_disable_aspm(struct emx_softc *);
254 static void emx_print_debug_info(struct emx_softc *);
255 static void emx_print_nvm_info(struct emx_softc *);
256 static void emx_print_hw_stats(struct emx_softc *);
258 static int emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
259 static int emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
260 static int emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
261 static int emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
262 static int emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
263 #ifdef IFPOLL_ENABLE
264 static int emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
265 static int emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
266 #endif
267 static void emx_add_sysctl(struct emx_softc *);
269 static void emx_serialize_skipmain(struct emx_softc *);
270 static void emx_deserialize_skipmain(struct emx_softc *);
272 /* Management and WOL Support */
273 static void emx_get_mgmt(struct emx_softc *);
274 static void emx_rel_mgmt(struct emx_softc *);
275 static void emx_get_hw_control(struct emx_softc *);
276 static void emx_rel_hw_control(struct emx_softc *);
277 static void emx_enable_wol(device_t);
279 static device_method_t emx_methods[] = {
280 /* Device interface */
281 DEVMETHOD(device_probe, emx_probe),
282 DEVMETHOD(device_attach, emx_attach),
283 DEVMETHOD(device_detach, emx_detach),
284 DEVMETHOD(device_shutdown, emx_shutdown),
285 DEVMETHOD(device_suspend, emx_suspend),
286 DEVMETHOD(device_resume, emx_resume),
287 DEVMETHOD_END
290 static driver_t emx_driver = {
291 "emx",
292 emx_methods,
293 sizeof(struct emx_softc),
296 static devclass_t emx_devclass;
298 DECLARE_DUMMY_MODULE(if_emx);
299 MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
300 DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
303 * Tunables
305 static int emx_int_throttle_ceil = EMX_DEFAULT_ITR;
306 static int emx_rxd = EMX_DEFAULT_RXD;
307 static int emx_txd = EMX_DEFAULT_TXD;
308 static int emx_smart_pwr_down = 0;
309 static int emx_rxr = 0;
310 static int emx_txr = 1;
312 /* Controls whether promiscuous also shows bad packets */
313 static int emx_debug_sbp = 0;
315 static int emx_82573_workaround = 1;
316 static int emx_msi_enable = 1;
318 static char emx_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_RXPAUSE;
320 TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
321 TUNABLE_INT("hw.emx.rxd", &emx_rxd);
322 TUNABLE_INT("hw.emx.rxr", &emx_rxr);
323 TUNABLE_INT("hw.emx.txd", &emx_txd);
324 TUNABLE_INT("hw.emx.txr", &emx_txr);
325 TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
326 TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
327 TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
328 TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
329 TUNABLE_STR("hw.emx.flow_ctrl", emx_flowctrl, sizeof(emx_flowctrl));
331 /* Global used in WOL setup with multiport cards */
332 static int emx_global_quad_port_a = 0;
334 /* Set this to one to display debug statistics */
335 static int emx_display_debug_stats = 0;
337 #if !defined(KTR_IF_EMX)
338 #define KTR_IF_EMX KTR_ALL
339 #endif
340 KTR_INFO_MASTER(if_emx);
341 KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
342 KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
343 KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
344 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
345 KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
346 #define logif(name) KTR_LOG(if_emx_ ## name)
348 static __inline void
349 emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
351 rxd->rxd_bufaddr = htole64(rxbuf->paddr);
352 /* DD bit must be cleared */
353 rxd->rxd_staterr = 0;
356 static __inline void
357 emx_rxcsum(uint32_t staterr, struct mbuf *mp)
359 /* Ignore Checksum bit is set */
360 if (staterr & E1000_RXD_STAT_IXSM)
361 return;
363 if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
364 E1000_RXD_STAT_IPCS)
365 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
367 if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
368 E1000_RXD_STAT_TCPCS) {
369 mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
370 CSUM_PSEUDO_HDR |
371 CSUM_FRAG_NOT_CHECKED;
372 mp->m_pkthdr.csum_data = htons(0xffff);
376 static __inline struct pktinfo *
377 emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
378 uint32_t mrq, uint32_t hash, uint32_t staterr)
380 switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
381 case EMX_RXDMRQ_IPV4_TCP:
382 pi->pi_netisr = NETISR_IP;
383 pi->pi_flags = 0;
384 pi->pi_l3proto = IPPROTO_TCP;
385 break;
387 case EMX_RXDMRQ_IPV6_TCP:
388 pi->pi_netisr = NETISR_IPV6;
389 pi->pi_flags = 0;
390 pi->pi_l3proto = IPPROTO_TCP;
391 break;
393 case EMX_RXDMRQ_IPV4:
394 if (staterr & E1000_RXD_STAT_IXSM)
395 return NULL;
397 if ((staterr &
398 (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
399 E1000_RXD_STAT_TCPCS) {
400 pi->pi_netisr = NETISR_IP;
401 pi->pi_flags = 0;
402 pi->pi_l3proto = IPPROTO_UDP;
403 break;
405 /* FALL THROUGH */
406 default:
407 return NULL;
410 m_sethash(m, toeplitz_hash(hash));
411 return pi;
414 static int
415 emx_probe(device_t dev)
417 const struct emx_device *d;
418 uint16_t vid, did;
420 vid = pci_get_vendor(dev);
421 did = pci_get_device(dev);
423 for (d = emx_devices; d->desc != NULL; ++d) {
424 if (vid == d->vid && did == d->did) {
425 device_set_desc(dev, d->desc);
426 device_set_async_attach(dev, TRUE);
427 return 0;
430 return ENXIO;
433 static int
434 emx_attach(device_t dev)
436 struct emx_softc *sc = device_get_softc(dev);
437 int error = 0, i, throttle, msi_enable, tx_ring_max;
438 u_int intr_flags;
439 uint16_t eeprom_data, device_id, apme_mask;
440 driver_intr_t *intr_func;
441 char flowctrl[IFM_ETH_FC_STRLEN];
442 #ifdef IFPOLL_ENABLE
443 int offset, offset_def;
444 #endif
447 * Setup RX rings
449 for (i = 0; i < EMX_NRX_RING; ++i) {
450 sc->rx_data[i].sc = sc;
451 sc->rx_data[i].idx = i;
455 * Setup TX ring
457 for (i = 0; i < EMX_NTX_RING; ++i) {
458 sc->tx_data[i].sc = sc;
459 sc->tx_data[i].idx = i;
463 * Initialize serializers
465 lwkt_serialize_init(&sc->main_serialize);
466 for (i = 0; i < EMX_NTX_RING; ++i)
467 lwkt_serialize_init(&sc->tx_data[i].tx_serialize);
468 for (i = 0; i < EMX_NRX_RING; ++i)
469 lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
472 * Initialize serializer array
474 i = 0;
476 KKASSERT(i < EMX_NSERIALIZE);
477 sc->serializes[i++] = &sc->main_serialize;
479 KKASSERT(i < EMX_NSERIALIZE);
480 sc->serializes[i++] = &sc->tx_data[0].tx_serialize;
481 KKASSERT(i < EMX_NSERIALIZE);
482 sc->serializes[i++] = &sc->tx_data[1].tx_serialize;
484 KKASSERT(i < EMX_NSERIALIZE);
485 sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
486 KKASSERT(i < EMX_NSERIALIZE);
487 sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
489 KKASSERT(i == EMX_NSERIALIZE);
491 ifmedia_init(&sc->media, IFM_IMASK | IFM_ETH_FCMASK,
492 emx_media_change, emx_media_status);
493 callout_init_mp(&sc->timer);
495 sc->dev = sc->osdep.dev = dev;
498 * Determine hardware and mac type
500 sc->hw.vendor_id = pci_get_vendor(dev);
501 sc->hw.device_id = pci_get_device(dev);
502 sc->hw.revision_id = pci_get_revid(dev);
503 sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
504 sc->hw.subsystem_device_id = pci_get_subdevice(dev);
506 if (e1000_set_mac_type(&sc->hw))
507 return ENXIO;
509 /* Enable bus mastering */
510 pci_enable_busmaster(dev);
513 * Allocate IO memory
515 sc->memory_rid = EMX_BAR_MEM;
516 sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
517 &sc->memory_rid, RF_ACTIVE);
518 if (sc->memory == NULL) {
519 device_printf(dev, "Unable to allocate bus resource: memory\n");
520 error = ENXIO;
521 goto fail;
523 sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
524 sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
526 /* XXX This is quite goofy, it is not actually used */
527 sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
530 * Don't enable MSI-X on 82574, see:
531 * 82574 specification update errata #15
533 * Don't enable MSI on 82571/82572, see:
534 * 82571/82572 specification update errata #63
536 msi_enable = emx_msi_enable;
537 if (msi_enable &&
538 (sc->hw.mac.type == e1000_82571 ||
539 sc->hw.mac.type == e1000_82572))
540 msi_enable = 0;
543 * Allocate interrupt
545 sc->intr_type = pci_alloc_1intr(dev, msi_enable,
546 &sc->intr_rid, &intr_flags);
548 if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
549 int unshared;
551 unshared = device_getenv_int(dev, "irq.unshared", 0);
552 if (!unshared) {
553 sc->flags |= EMX_FLAG_SHARED_INTR;
554 if (bootverbose)
555 device_printf(dev, "IRQ shared\n");
556 } else {
557 intr_flags &= ~RF_SHAREABLE;
558 if (bootverbose)
559 device_printf(dev, "IRQ unshared\n");
563 sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
564 intr_flags);
565 if (sc->intr_res == NULL) {
566 device_printf(dev, "Unable to allocate bus resource: "
567 "interrupt\n");
568 error = ENXIO;
569 goto fail;
572 /* Save PCI command register for Shared Code */
573 sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
574 sc->hw.back = &sc->osdep;
577 * For I217/I218, we need to map the flash memory and this
578 * must happen after the MAC is identified.
580 if (sc->hw.mac.type == e1000_pch_lpt) {
581 sc->flash_rid = EMX_BAR_FLASH;
583 sc->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
584 &sc->flash_rid, RF_ACTIVE);
585 if (sc->flash == NULL) {
586 device_printf(dev, "Mapping of Flash failed\n");
587 error = ENXIO;
588 goto fail;
590 sc->osdep.flash_bus_space_tag = rman_get_bustag(sc->flash);
591 sc->osdep.flash_bus_space_handle =
592 rman_get_bushandle(sc->flash);
595 * This is used in the shared code
596 * XXX this goof is actually not used.
598 sc->hw.flash_address = (uint8_t *)sc->flash;
601 /* Do Shared Code initialization */
602 if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
603 device_printf(dev, "Setup of Shared code failed\n");
604 error = ENXIO;
605 goto fail;
607 e1000_get_bus_info(&sc->hw);
609 sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
610 sc->hw.phy.autoneg_wait_to_complete = FALSE;
611 sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
614 * Interrupt throttle rate
616 throttle = device_getenv_int(dev, "int_throttle_ceil",
617 emx_int_throttle_ceil);
618 if (throttle == 0) {
619 sc->int_throttle_ceil = 0;
620 } else {
621 if (throttle < 0)
622 throttle = EMX_DEFAULT_ITR;
624 /* Recalculate the tunable value to get the exact frequency. */
625 throttle = 1000000000 / 256 / throttle;
627 /* Upper 16bits of ITR is reserved and should be zero */
628 if (throttle & 0xffff0000)
629 throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
631 sc->int_throttle_ceil = 1000000000 / 256 / throttle;
634 e1000_init_script_state_82541(&sc->hw, TRUE);
635 e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
637 /* Copper options */
638 if (sc->hw.phy.media_type == e1000_media_type_copper) {
639 sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
640 sc->hw.phy.disable_polarity_correction = FALSE;
641 sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
644 /* Set the frame limits assuming standard ethernet sized frames. */
645 sc->hw.mac.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
647 /* This controls when hardware reports transmit completion status. */
648 sc->hw.mac.report_tx_early = 1;
650 /* Calculate # of RX rings */
651 sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
652 sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
655 * Calculate # of TX rings
657 * XXX
658 * I217/I218 claims to have 2 TX queues
660 * NOTE:
661 * Don't enable multiple TX queues on 82574; it always gives
662 * watchdog timeout on TX queue0, when multiple TCP streams are
663 * received. It was originally suspected that the hardware TX
664 * checksum offloading caused this watchdog timeout, since only
665 * TCP ACKs are sent during TCP receiving tests. However, even
666 * if the hardware TX checksum offloading is disable, TX queue0
667 * still will give watchdog.
669 tx_ring_max = 1;
670 if (sc->hw.mac.type == e1000_82571 ||
671 sc->hw.mac.type == e1000_82572 ||
672 sc->hw.mac.type == e1000_80003es2lan ||
673 sc->hw.mac.type == e1000_pch_lpt ||
674 sc->hw.mac.type == e1000_pch_spt ||
675 sc->hw.mac.type == e1000_82574)
676 tx_ring_max = EMX_NTX_RING;
677 sc->tx_ring_cnt = device_getenv_int(dev, "txr", emx_txr);
678 sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, tx_ring_max);
680 /* Allocate RX/TX rings' busdma(9) stuffs */
681 error = emx_dma_alloc(sc);
682 if (error)
683 goto fail;
685 /* Allocate multicast array memory. */
686 sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
687 M_DEVBUF, M_WAITOK);
689 /* Indicate SOL/IDER usage */
690 if (e1000_check_reset_block(&sc->hw)) {
691 device_printf(dev,
692 "PHY reset is blocked due to SOL/IDER session.\n");
695 /* Disable EEE on I217/I218 */
696 sc->hw.dev_spec.ich8lan.eee_disable = 1;
699 * Start from a known state, this is important in reading the
700 * nvm and mac from that.
702 e1000_reset_hw(&sc->hw);
704 /* Make sure we have a good EEPROM before we read from it */
705 if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
707 * Some PCI-E parts fail the first check due to
708 * the link being in sleep state, call it again,
709 * if it fails a second time its a real issue.
711 if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
712 device_printf(dev,
713 "The EEPROM Checksum Is Not Valid\n");
714 error = EIO;
715 goto fail;
719 /* Copy the permanent MAC address out of the EEPROM */
720 if (e1000_read_mac_addr(&sc->hw) < 0) {
721 device_printf(dev, "EEPROM read error while reading MAC"
722 " address\n");
723 error = EIO;
724 goto fail;
726 if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
727 device_printf(dev, "Invalid MAC address\n");
728 error = EIO;
729 goto fail;
732 /* Disable ULP support */
733 e1000_disable_ulp_lpt_lp(&sc->hw, TRUE);
735 /* Determine if we have to control management hardware */
736 if (e1000_enable_mng_pass_thru(&sc->hw))
737 sc->flags |= EMX_FLAG_HAS_MGMT;
740 * Setup Wake-on-Lan
742 apme_mask = EMX_EEPROM_APME;
743 eeprom_data = 0;
744 switch (sc->hw.mac.type) {
745 case e1000_82573:
746 sc->flags |= EMX_FLAG_HAS_AMT;
747 /* FALL THROUGH */
749 case e1000_82571:
750 case e1000_82572:
751 case e1000_80003es2lan:
752 if (sc->hw.bus.func == 1) {
753 e1000_read_nvm(&sc->hw,
754 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
755 } else {
756 e1000_read_nvm(&sc->hw,
757 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
759 break;
761 default:
762 e1000_read_nvm(&sc->hw,
763 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
764 break;
766 if (eeprom_data & apme_mask)
767 sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
770 * We have the eeprom settings, now apply the special cases
771 * where the eeprom may be wrong or the board won't support
772 * wake on lan on a particular port
774 device_id = pci_get_device(dev);
775 switch (device_id) {
776 case E1000_DEV_ID_82571EB_FIBER:
778 * Wake events only supported on port A for dual fiber
779 * regardless of eeprom setting
781 if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
782 E1000_STATUS_FUNC_1)
783 sc->wol = 0;
784 break;
786 case E1000_DEV_ID_82571EB_QUAD_COPPER:
787 case E1000_DEV_ID_82571EB_QUAD_FIBER:
788 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
789 /* if quad port sc, disable WoL on all but port A */
790 if (emx_global_quad_port_a != 0)
791 sc->wol = 0;
792 /* Reset for multiple quad port adapters */
793 if (++emx_global_quad_port_a == 4)
794 emx_global_quad_port_a = 0;
795 break;
798 /* XXX disable wol */
799 sc->wol = 0;
801 #ifdef IFPOLL_ENABLE
803 * NPOLLING RX CPU offset
805 if (sc->rx_ring_cnt == ncpus2) {
806 offset = 0;
807 } else {
808 offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
809 offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
810 if (offset >= ncpus2 ||
811 offset % sc->rx_ring_cnt != 0) {
812 device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
813 offset, offset_def);
814 offset = offset_def;
817 sc->rx_npoll_off = offset;
820 * NPOLLING TX CPU offset
822 if (sc->tx_ring_cnt == ncpus2) {
823 offset = 0;
824 } else {
825 offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
826 offset = device_getenv_int(dev, "npoll.txoff", offset_def);
827 if (offset >= ncpus2 ||
828 offset % sc->tx_ring_cnt != 0) {
829 device_printf(dev, "invalid npoll.txoff %d, use %d\n",
830 offset, offset_def);
831 offset = offset_def;
834 sc->tx_npoll_off = offset;
835 #endif
836 sc->tx_ring_inuse = emx_get_txring_inuse(sc, FALSE);
838 /* Setup flow control. */
839 device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
840 emx_flowctrl);
841 sc->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
843 /* Setup OS specific network interface */
844 emx_setup_ifp(sc);
846 /* Add sysctl tree, must after em_setup_ifp() */
847 emx_add_sysctl(sc);
849 /* Reset the hardware */
850 error = emx_reset(sc);
851 if (error) {
853 * Some 82573 parts fail the first reset, call it again,
854 * if it fails a second time its a real issue.
856 error = emx_reset(sc);
857 if (error) {
858 device_printf(dev, "Unable to reset the hardware\n");
859 ether_ifdetach(&sc->arpcom.ac_if);
860 goto fail;
864 /* Initialize statistics */
865 emx_update_stats(sc);
867 sc->hw.mac.get_link_status = 1;
868 emx_update_link_status(sc);
870 /* Non-AMT based hardware can now take control from firmware */
871 if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
872 EMX_FLAG_HAS_MGMT)
873 emx_get_hw_control(sc);
876 * Missing Interrupt Following ICR read:
878 * 82571/82572 specification update errata #76
879 * 82573 specification update errata #31
880 * 82574 specification update errata #12
882 intr_func = emx_intr;
883 if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
884 (sc->hw.mac.type == e1000_82571 ||
885 sc->hw.mac.type == e1000_82572 ||
886 sc->hw.mac.type == e1000_82573 ||
887 sc->hw.mac.type == e1000_82574))
888 intr_func = emx_intr_mask;
890 error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
891 &sc->intr_tag, &sc->main_serialize);
892 if (error) {
893 device_printf(dev, "Failed to register interrupt handler");
894 ether_ifdetach(&sc->arpcom.ac_if);
895 goto fail;
897 return (0);
898 fail:
899 emx_detach(dev);
900 return (error);
903 static int
904 emx_detach(device_t dev)
906 struct emx_softc *sc = device_get_softc(dev);
908 if (device_is_attached(dev)) {
909 struct ifnet *ifp = &sc->arpcom.ac_if;
911 ifnet_serialize_all(ifp);
913 emx_stop(sc);
915 e1000_phy_hw_reset(&sc->hw);
917 emx_rel_mgmt(sc);
918 emx_rel_hw_control(sc);
920 if (sc->wol) {
921 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
922 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
923 emx_enable_wol(dev);
926 bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
928 ifnet_deserialize_all(ifp);
930 ether_ifdetach(ifp);
931 } else if (sc->memory != NULL) {
932 emx_rel_hw_control(sc);
935 ifmedia_removeall(&sc->media);
936 bus_generic_detach(dev);
938 if (sc->intr_res != NULL) {
939 bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
940 sc->intr_res);
943 if (sc->intr_type == PCI_INTR_TYPE_MSI)
944 pci_release_msi(dev);
946 if (sc->memory != NULL) {
947 bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
948 sc->memory);
951 if (sc->flash != NULL) {
952 bus_release_resource(dev, SYS_RES_MEMORY, sc->flash_rid,
953 sc->flash);
956 emx_dma_free(sc);
958 if (sc->mta != NULL)
959 kfree(sc->mta, M_DEVBUF);
961 return (0);
964 static int
965 emx_shutdown(device_t dev)
967 return emx_suspend(dev);
970 static int
971 emx_suspend(device_t dev)
973 struct emx_softc *sc = device_get_softc(dev);
974 struct ifnet *ifp = &sc->arpcom.ac_if;
976 ifnet_serialize_all(ifp);
978 emx_stop(sc);
980 emx_rel_mgmt(sc);
981 emx_rel_hw_control(sc);
983 if (sc->wol) {
984 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
985 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
986 emx_enable_wol(dev);
989 ifnet_deserialize_all(ifp);
991 return bus_generic_suspend(dev);
994 static int
995 emx_resume(device_t dev)
997 struct emx_softc *sc = device_get_softc(dev);
998 struct ifnet *ifp = &sc->arpcom.ac_if;
999 int i;
1001 ifnet_serialize_all(ifp);
1003 emx_init(sc);
1004 emx_get_mgmt(sc);
1005 for (i = 0; i < sc->tx_ring_inuse; ++i)
1006 ifsq_devstart_sched(sc->tx_data[i].ifsq);
1008 ifnet_deserialize_all(ifp);
1010 return bus_generic_resume(dev);
1013 static void
1014 emx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1016 struct emx_softc *sc = ifp->if_softc;
1017 struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1018 struct mbuf *m_head;
1019 int idx = -1, nsegs = 0;
1021 KKASSERT(tdata->ifsq == ifsq);
1022 ASSERT_SERIALIZED(&tdata->tx_serialize);
1024 if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
1025 return;
1027 if (!sc->link_active || (tdata->tx_flags & EMX_TXFLAG_ENABLED) == 0) {
1028 ifsq_purge(ifsq);
1029 return;
1032 while (!ifsq_is_empty(ifsq)) {
1033 /* Now do we at least have a minimal? */
1034 if (EMX_IS_OACTIVE(tdata)) {
1035 emx_tx_collect(tdata);
1036 if (EMX_IS_OACTIVE(tdata)) {
1037 ifsq_set_oactive(ifsq);
1038 break;
1042 logif(pkt_txqueue);
1043 m_head = ifsq_dequeue(ifsq);
1044 if (m_head == NULL)
1045 break;
1047 if (emx_encap(tdata, &m_head, &nsegs, &idx)) {
1048 IFNET_STAT_INC(ifp, oerrors, 1);
1049 emx_tx_collect(tdata);
1050 continue;
1054 * TX interrupt are aggressively aggregated, so increasing
1055 * opackets at TX interrupt time will make the opackets
1056 * statistics vastly inaccurate; we do the opackets increment
1057 * now.
1059 IFNET_STAT_INC(ifp, opackets, 1);
1061 if (nsegs >= tdata->tx_wreg_nsegs) {
1062 E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1063 nsegs = 0;
1064 idx = -1;
1067 /* Send a copy of the frame to the BPF listener */
1068 ETHER_BPF_MTAP(ifp, m_head);
1070 /* Set timeout in case hardware has problems transmitting. */
1071 tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1073 if (idx >= 0)
1074 E1000_WRITE_REG(&sc->hw, E1000_TDT(tdata->idx), idx);
1077 static int
1078 emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1080 struct emx_softc *sc = ifp->if_softc;
1081 struct ifreq *ifr = (struct ifreq *)data;
1082 uint16_t eeprom_data = 0;
1083 int max_frame_size, mask, reinit;
1084 int error = 0;
1086 ASSERT_IFNET_SERIALIZED_ALL(ifp);
1088 switch (command) {
1089 case SIOCSIFMTU:
1090 switch (sc->hw.mac.type) {
1091 case e1000_82573:
1093 * 82573 only supports jumbo frames
1094 * if ASPM is disabled.
1096 e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
1097 &eeprom_data);
1098 if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1099 max_frame_size = ETHER_MAX_LEN;
1100 break;
1102 /* FALL THROUGH */
1104 /* Limit Jumbo Frame size */
1105 case e1000_82571:
1106 case e1000_82572:
1107 case e1000_82574:
1108 case e1000_pch_lpt:
1109 case e1000_pch_spt:
1110 case e1000_80003es2lan:
1111 max_frame_size = 9234;
1112 break;
1114 default:
1115 max_frame_size = MAX_JUMBO_FRAME_SIZE;
1116 break;
1118 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1119 ETHER_CRC_LEN) {
1120 error = EINVAL;
1121 break;
1124 ifp->if_mtu = ifr->ifr_mtu;
1125 sc->hw.mac.max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
1126 ETHER_CRC_LEN;
1128 if (ifp->if_flags & IFF_RUNNING)
1129 emx_init(sc);
1130 break;
1132 case SIOCSIFFLAGS:
1133 if (ifp->if_flags & IFF_UP) {
1134 if ((ifp->if_flags & IFF_RUNNING)) {
1135 if ((ifp->if_flags ^ sc->if_flags) &
1136 (IFF_PROMISC | IFF_ALLMULTI)) {
1137 emx_disable_promisc(sc);
1138 emx_set_promisc(sc);
1140 } else {
1141 emx_init(sc);
1143 } else if (ifp->if_flags & IFF_RUNNING) {
1144 emx_stop(sc);
1146 sc->if_flags = ifp->if_flags;
1147 break;
1149 case SIOCADDMULTI:
1150 case SIOCDELMULTI:
1151 if (ifp->if_flags & IFF_RUNNING) {
1152 emx_disable_intr(sc);
1153 emx_set_multi(sc);
1154 #ifdef IFPOLL_ENABLE
1155 if (!(ifp->if_flags & IFF_NPOLLING))
1156 #endif
1157 emx_enable_intr(sc);
1159 break;
1161 case SIOCSIFMEDIA:
1162 /* Check SOL/IDER usage */
1163 if (e1000_check_reset_block(&sc->hw)) {
1164 device_printf(sc->dev, "Media change is"
1165 " blocked due to SOL/IDER session.\n");
1166 break;
1168 /* FALL THROUGH */
1170 case SIOCGIFMEDIA:
1171 error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1172 break;
1174 case SIOCSIFCAP:
1175 reinit = 0;
1176 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1177 if (mask & IFCAP_RXCSUM) {
1178 ifp->if_capenable ^= IFCAP_RXCSUM;
1179 reinit = 1;
1181 if (mask & IFCAP_VLAN_HWTAGGING) {
1182 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1183 reinit = 1;
1185 if (mask & IFCAP_TXCSUM) {
1186 ifp->if_capenable ^= IFCAP_TXCSUM;
1187 if (ifp->if_capenable & IFCAP_TXCSUM)
1188 ifp->if_hwassist |= EMX_CSUM_FEATURES;
1189 else
1190 ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1192 if (mask & IFCAP_TSO) {
1193 ifp->if_capenable ^= IFCAP_TSO;
1194 if (ifp->if_capenable & IFCAP_TSO)
1195 ifp->if_hwassist |= CSUM_TSO;
1196 else
1197 ifp->if_hwassist &= ~CSUM_TSO;
1199 if (mask & IFCAP_RSS)
1200 ifp->if_capenable ^= IFCAP_RSS;
1201 if (reinit && (ifp->if_flags & IFF_RUNNING))
1202 emx_init(sc);
1203 break;
1205 default:
1206 error = ether_ioctl(ifp, command, data);
1207 break;
1209 return (error);
1212 static void
1213 emx_watchdog(struct ifaltq_subque *ifsq)
1215 struct emx_txdata *tdata = ifsq_get_priv(ifsq);
1216 struct ifnet *ifp = ifsq_get_ifp(ifsq);
1217 struct emx_softc *sc = ifp->if_softc;
1218 int i;
1220 ASSERT_IFNET_SERIALIZED_ALL(ifp);
1223 * The timer is set to 5 every time start queues a packet.
1224 * Then txeof keeps resetting it as long as it cleans at
1225 * least one descriptor.
1226 * Finally, anytime all descriptors are clean the timer is
1227 * set to 0.
1230 if (E1000_READ_REG(&sc->hw, E1000_TDT(tdata->idx)) ==
1231 E1000_READ_REG(&sc->hw, E1000_TDH(tdata->idx))) {
1233 * If we reach here, all TX jobs are completed and
1234 * the TX engine should have been idled for some time.
1235 * We don't need to call ifsq_devstart_sched() here.
1237 ifsq_clr_oactive(ifsq);
1238 tdata->tx_watchdog.wd_timer = 0;
1239 return;
1243 * If we are in this routine because of pause frames, then
1244 * don't reset the hardware.
1246 if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1247 tdata->tx_watchdog.wd_timer = EMX_TX_TIMEOUT;
1248 return;
1251 if_printf(ifp, "TX %d watchdog timeout -- resetting\n", tdata->idx);
1253 IFNET_STAT_INC(ifp, oerrors, 1);
1255 emx_init(sc);
1256 for (i = 0; i < sc->tx_ring_inuse; ++i)
1257 ifsq_devstart_sched(sc->tx_data[i].ifsq);
1260 static void
1261 emx_init(void *xsc)
1263 struct emx_softc *sc = xsc;
1264 struct ifnet *ifp = &sc->arpcom.ac_if;
1265 device_t dev = sc->dev;
1266 boolean_t polling;
1267 int i;
1269 ASSERT_IFNET_SERIALIZED_ALL(ifp);
1271 emx_stop(sc);
1273 /* Get the latest mac address, User can use a LAA */
1274 bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1276 /* Put the address into the Receive Address Array */
1277 e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1280 * With the 82571 sc, RAR[0] may be overwritten
1281 * when the other port is reset, we make a duplicate
1282 * in RAR[14] for that eventuality, this assures
1283 * the interface continues to function.
1285 if (sc->hw.mac.type == e1000_82571) {
1286 e1000_set_laa_state_82571(&sc->hw, TRUE);
1287 e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1288 E1000_RAR_ENTRIES - 1);
1291 /* Initialize the hardware */
1292 if (emx_reset(sc)) {
1293 device_printf(dev, "Unable to reset the hardware\n");
1294 /* XXX emx_stop()? */
1295 return;
1297 emx_update_link_status(sc);
1299 /* Setup VLAN support, basic and offload if available */
1300 E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1302 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1303 uint32_t ctrl;
1305 ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1306 ctrl |= E1000_CTRL_VME;
1307 E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1310 /* Configure for OS presence */
1311 emx_get_mgmt(sc);
1313 polling = FALSE;
1314 #ifdef IFPOLL_ENABLE
1315 if (ifp->if_flags & IFF_NPOLLING)
1316 polling = TRUE;
1317 #endif
1318 sc->tx_ring_inuse = emx_get_txring_inuse(sc, polling);
1319 ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
1321 /* Prepare transmit descriptors and buffers */
1322 for (i = 0; i < sc->tx_ring_inuse; ++i)
1323 emx_init_tx_ring(&sc->tx_data[i]);
1324 emx_init_tx_unit(sc);
1326 /* Setup Multicast table */
1327 emx_set_multi(sc);
1329 /* Prepare receive descriptors and buffers */
1330 for (i = 0; i < sc->rx_ring_cnt; ++i) {
1331 if (emx_init_rx_ring(&sc->rx_data[i])) {
1332 device_printf(dev,
1333 "Could not setup receive structures\n");
1334 emx_stop(sc);
1335 return;
1338 emx_init_rx_unit(sc);
1340 /* Don't lose promiscuous settings */
1341 emx_set_promisc(sc);
1343 ifp->if_flags |= IFF_RUNNING;
1344 for (i = 0; i < sc->tx_ring_inuse; ++i) {
1345 ifsq_clr_oactive(sc->tx_data[i].ifsq);
1346 ifsq_watchdog_start(&sc->tx_data[i].tx_watchdog);
1349 callout_reset(&sc->timer, hz, emx_timer, sc);
1350 e1000_clear_hw_cntrs_base_generic(&sc->hw);
1352 /* MSI/X configuration for 82574 */
1353 if (sc->hw.mac.type == e1000_82574) {
1354 int tmp;
1356 tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1357 tmp |= E1000_CTRL_EXT_PBA_CLR;
1358 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1360 * XXX MSIX
1361 * Set the IVAR - interrupt vector routing.
1362 * Each nibble represents a vector, high bit
1363 * is enable, other 3 bits are the MSIX table
1364 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1365 * Link (other) to 2, hence the magic number.
1367 E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1371 * Only enable interrupts if we are not polling, make sure
1372 * they are off otherwise.
1374 if (polling)
1375 emx_disable_intr(sc);
1376 else
1377 emx_enable_intr(sc);
1379 /* AMT based hardware can now take control from firmware */
1380 if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1381 (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1382 emx_get_hw_control(sc);
1385 static void
1386 emx_intr(void *xsc)
1388 emx_intr_body(xsc, TRUE);
1391 static void
1392 emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1394 struct ifnet *ifp = &sc->arpcom.ac_if;
1395 uint32_t reg_icr;
1397 logif(intr_beg);
1398 ASSERT_SERIALIZED(&sc->main_serialize);
1400 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1402 if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1403 logif(intr_end);
1404 return;
1408 * XXX: some laptops trigger several spurious interrupts
1409 * on emx(4) when in the resume cycle. The ICR register
1410 * reports all-ones value in this case. Processing such
1411 * interrupts would lead to a freeze. I don't know why.
1413 if (reg_icr == 0xffffffff) {
1414 logif(intr_end);
1415 return;
1418 if (ifp->if_flags & IFF_RUNNING) {
1419 if (reg_icr &
1420 (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1421 int i;
1423 for (i = 0; i < sc->rx_ring_cnt; ++i) {
1424 lwkt_serialize_enter(
1425 &sc->rx_data[i].rx_serialize);
1426 emx_rxeof(&sc->rx_data[i], -1);
1427 lwkt_serialize_exit(
1428 &sc->rx_data[i].rx_serialize);
1431 if (reg_icr & E1000_ICR_TXDW) {
1432 struct emx_txdata *tdata = &sc->tx_data[0];
1434 lwkt_serialize_enter(&tdata->tx_serialize);
1435 emx_txeof(tdata);
1436 if (!ifsq_is_empty(tdata->ifsq))
1437 ifsq_devstart(tdata->ifsq);
1438 lwkt_serialize_exit(&tdata->tx_serialize);
1442 /* Link status change */
1443 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1444 emx_serialize_skipmain(sc);
1446 callout_stop(&sc->timer);
1447 sc->hw.mac.get_link_status = 1;
1448 emx_update_link_status(sc);
1450 /* Deal with TX cruft when link lost */
1451 emx_tx_purge(sc);
1453 callout_reset(&sc->timer, hz, emx_timer, sc);
1455 emx_deserialize_skipmain(sc);
1458 if (reg_icr & E1000_ICR_RXO)
1459 sc->rx_overruns++;
1461 logif(intr_end);
1464 static void
1465 emx_intr_mask(void *xsc)
1467 struct emx_softc *sc = xsc;
1469 E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1471 * NOTE:
1472 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1473 * so don't check it.
1475 emx_intr_body(sc, FALSE);
1476 E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1479 static void
1480 emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1482 struct emx_softc *sc = ifp->if_softc;
1484 ASSERT_IFNET_SERIALIZED_ALL(ifp);
1486 emx_update_link_status(sc);
1488 ifmr->ifm_status = IFM_AVALID;
1489 ifmr->ifm_active = IFM_ETHER;
1491 if (!sc->link_active) {
1492 if (sc->hw.mac.autoneg)
1493 ifmr->ifm_active |= IFM_NONE;
1494 else
1495 ifmr->ifm_active |= sc->media.ifm_media;
1496 return;
1499 ifmr->ifm_status |= IFM_ACTIVE;
1500 if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1501 ifmr->ifm_active |= sc->ifm_flowctrl;
1503 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1504 sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1505 ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1506 } else {
1507 switch (sc->link_speed) {
1508 case 10:
1509 ifmr->ifm_active |= IFM_10_T;
1510 break;
1511 case 100:
1512 ifmr->ifm_active |= IFM_100_TX;
1513 break;
1515 case 1000:
1516 ifmr->ifm_active |= IFM_1000_T;
1517 break;
1519 if (sc->link_duplex == FULL_DUPLEX)
1520 ifmr->ifm_active |= IFM_FDX;
1521 else
1522 ifmr->ifm_active |= IFM_HDX;
1524 if (ifmr->ifm_active & IFM_FDX)
1525 ifmr->ifm_active |= e1000_fc2ifmedia(sc->hw.fc.current_mode);
1528 static int
1529 emx_media_change(struct ifnet *ifp)
1531 struct emx_softc *sc = ifp->if_softc;
1532 struct ifmedia *ifm = &sc->media;
1534 ASSERT_IFNET_SERIALIZED_ALL(ifp);
1536 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1537 return (EINVAL);
1539 switch (IFM_SUBTYPE(ifm->ifm_media)) {
1540 case IFM_AUTO:
1541 sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1542 sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1543 break;
1545 case IFM_1000_SX:
1546 case IFM_1000_T:
1547 sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1548 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1549 break;
1551 case IFM_100_TX:
1552 if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1553 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1554 } else {
1555 if (IFM_OPTIONS(ifm->ifm_media) &
1556 (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1557 if (bootverbose) {
1558 if_printf(ifp, "Flow control is not "
1559 "allowed for half-duplex\n");
1561 return EINVAL;
1563 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1565 sc->hw.mac.autoneg = FALSE;
1566 sc->hw.phy.autoneg_advertised = 0;
1567 break;
1569 case IFM_10_T:
1570 if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1571 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1572 } else {
1573 if (IFM_OPTIONS(ifm->ifm_media) &
1574 (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1575 if (bootverbose) {
1576 if_printf(ifp, "Flow control is not "
1577 "allowed for half-duplex\n");
1579 return EINVAL;
1581 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1583 sc->hw.mac.autoneg = FALSE;
1584 sc->hw.phy.autoneg_advertised = 0;
1585 break;
1587 default:
1588 if (bootverbose) {
1589 if_printf(ifp, "Unsupported media type %d\n",
1590 IFM_SUBTYPE(ifm->ifm_media));
1592 return EINVAL;
1594 sc->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1596 if (ifp->if_flags & IFF_RUNNING)
1597 emx_init(sc);
1599 return (0);
1602 static int
1603 emx_encap(struct emx_txdata *tdata, struct mbuf **m_headp,
1604 int *segs_used, int *idx)
1606 bus_dma_segment_t segs[EMX_MAX_SCATTER];
1607 bus_dmamap_t map;
1608 struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1609 struct e1000_tx_desc *ctxd = NULL;
1610 struct mbuf *m_head = *m_headp;
1611 uint32_t txd_upper, txd_lower, cmd = 0;
1612 int maxsegs, nsegs, i, j, first, last = 0, error;
1614 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1615 error = emx_tso_pullup(tdata, m_headp);
1616 if (error)
1617 return error;
1618 m_head = *m_headp;
1621 txd_upper = txd_lower = 0;
1624 * Capture the first descriptor index, this descriptor
1625 * will have the index of the EOP which is the only one
1626 * that now gets a DONE bit writeback.
1628 first = tdata->next_avail_tx_desc;
1629 tx_buffer = &tdata->tx_buf[first];
1630 tx_buffer_mapped = tx_buffer;
1631 map = tx_buffer->map;
1633 maxsegs = tdata->num_tx_desc_avail - EMX_TX_RESERVED;
1634 KASSERT(maxsegs >= tdata->spare_tx_desc, ("not enough spare TX desc"));
1635 if (maxsegs > EMX_MAX_SCATTER)
1636 maxsegs = EMX_MAX_SCATTER;
1638 error = bus_dmamap_load_mbuf_defrag(tdata->txtag, map, m_headp,
1639 segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1640 if (error) {
1641 m_freem(*m_headp);
1642 *m_headp = NULL;
1643 return error;
1645 bus_dmamap_sync(tdata->txtag, map, BUS_DMASYNC_PREWRITE);
1647 m_head = *m_headp;
1648 tdata->tx_nsegs += nsegs;
1649 *segs_used += nsegs;
1651 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1652 /* TSO will consume one TX desc */
1653 i = emx_tso_setup(tdata, m_head, &txd_upper, &txd_lower);
1654 tdata->tx_nsegs += i;
1655 *segs_used += i;
1656 } else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1657 /* TX csum offloading will consume one TX desc */
1658 i = emx_txcsum(tdata, m_head, &txd_upper, &txd_lower);
1659 tdata->tx_nsegs += i;
1660 *segs_used += i;
1663 /* Handle VLAN tag */
1664 if (m_head->m_flags & M_VLANTAG) {
1665 /* Set the vlan id. */
1666 txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1667 /* Tell hardware to add tag */
1668 txd_lower |= htole32(E1000_TXD_CMD_VLE);
1671 i = tdata->next_avail_tx_desc;
1673 /* Set up our transmit descriptors */
1674 for (j = 0; j < nsegs; j++) {
1675 tx_buffer = &tdata->tx_buf[i];
1676 ctxd = &tdata->tx_desc_base[i];
1678 ctxd->buffer_addr = htole64(segs[j].ds_addr);
1679 ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1680 txd_lower | segs[j].ds_len);
1681 ctxd->upper.data = htole32(txd_upper);
1683 last = i;
1684 if (++i == tdata->num_tx_desc)
1685 i = 0;
1688 tdata->next_avail_tx_desc = i;
1690 KKASSERT(tdata->num_tx_desc_avail > nsegs);
1691 tdata->num_tx_desc_avail -= nsegs;
1693 tx_buffer->m_head = m_head;
1694 tx_buffer_mapped->map = tx_buffer->map;
1695 tx_buffer->map = map;
1697 if (tdata->tx_nsegs >= tdata->tx_intr_nsegs) {
1698 tdata->tx_nsegs = 0;
1701 * Report Status (RS) is turned on
1702 * every tx_intr_nsegs descriptors.
1704 cmd = E1000_TXD_CMD_RS;
1707 * Keep track of the descriptor, which will
1708 * be written back by hardware.
1710 tdata->tx_dd[tdata->tx_dd_tail] = last;
1711 EMX_INC_TXDD_IDX(tdata->tx_dd_tail);
1712 KKASSERT(tdata->tx_dd_tail != tdata->tx_dd_head);
1716 * Last Descriptor of Packet needs End Of Packet (EOP)
1718 ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1721 * Defer TDT updating, until enough descriptors are setup
1723 *idx = i;
1725 #ifdef EMX_TSS_DEBUG
1726 tdata->tx_pkts++;
1727 #endif
1729 return (0);
1732 static void
1733 emx_set_promisc(struct emx_softc *sc)
1735 struct ifnet *ifp = &sc->arpcom.ac_if;
1736 uint32_t reg_rctl;
1738 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1740 if (ifp->if_flags & IFF_PROMISC) {
1741 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1742 /* Turn this on if you want to see bad packets */
1743 if (emx_debug_sbp)
1744 reg_rctl |= E1000_RCTL_SBP;
1745 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1746 } else if (ifp->if_flags & IFF_ALLMULTI) {
1747 reg_rctl |= E1000_RCTL_MPE;
1748 reg_rctl &= ~E1000_RCTL_UPE;
1749 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1753 static void
1754 emx_disable_promisc(struct emx_softc *sc)
1756 uint32_t reg_rctl;
1758 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1760 reg_rctl &= ~E1000_RCTL_UPE;
1761 reg_rctl &= ~E1000_RCTL_MPE;
1762 reg_rctl &= ~E1000_RCTL_SBP;
1763 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1766 static void
1767 emx_set_multi(struct emx_softc *sc)
1769 struct ifnet *ifp = &sc->arpcom.ac_if;
1770 struct ifmultiaddr *ifma;
1771 uint32_t reg_rctl = 0;
1772 uint8_t *mta;
1773 int mcnt = 0;
1775 mta = sc->mta;
1776 bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1778 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1779 if (ifma->ifma_addr->sa_family != AF_LINK)
1780 continue;
1782 if (mcnt == EMX_MCAST_ADDR_MAX)
1783 break;
1785 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1786 &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1787 mcnt++;
1790 if (mcnt >= EMX_MCAST_ADDR_MAX) {
1791 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1792 reg_rctl |= E1000_RCTL_MPE;
1793 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1794 } else {
1795 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1800 * This routine checks for link status and updates statistics.
1802 static void
1803 emx_timer(void *xsc)
1805 struct emx_softc *sc = xsc;
1806 struct ifnet *ifp = &sc->arpcom.ac_if;
1808 lwkt_serialize_enter(&sc->main_serialize);
1810 emx_update_link_status(sc);
1811 emx_update_stats(sc);
1813 /* Reset LAA into RAR[0] on 82571 */
1814 if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1815 e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1817 if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1818 emx_print_hw_stats(sc);
1820 emx_smartspeed(sc);
1822 callout_reset(&sc->timer, hz, emx_timer, sc);
1824 lwkt_serialize_exit(&sc->main_serialize);
1827 static void
1828 emx_update_link_status(struct emx_softc *sc)
1830 struct e1000_hw *hw = &sc->hw;
1831 struct ifnet *ifp = &sc->arpcom.ac_if;
1832 device_t dev = sc->dev;
1833 uint32_t link_check = 0;
1835 /* Get the cached link value or read phy for real */
1836 switch (hw->phy.media_type) {
1837 case e1000_media_type_copper:
1838 if (hw->mac.get_link_status) {
1839 /* Do the work to read phy */
1840 e1000_check_for_link(hw);
1841 link_check = !hw->mac.get_link_status;
1842 if (link_check) /* ESB2 fix */
1843 e1000_cfg_on_link_up(hw);
1844 } else {
1845 link_check = TRUE;
1847 break;
1849 case e1000_media_type_fiber:
1850 e1000_check_for_link(hw);
1851 link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1852 break;
1854 case e1000_media_type_internal_serdes:
1855 e1000_check_for_link(hw);
1856 link_check = sc->hw.mac.serdes_has_link;
1857 break;
1859 case e1000_media_type_unknown:
1860 default:
1861 break;
1864 /* Now check for a transition */
1865 if (link_check && sc->link_active == 0) {
1866 e1000_get_speed_and_duplex(hw, &sc->link_speed,
1867 &sc->link_duplex);
1870 * Check if we should enable/disable SPEED_MODE bit on
1871 * 82571EB/82572EI
1873 if (sc->link_speed != SPEED_1000 &&
1874 (hw->mac.type == e1000_82571 ||
1875 hw->mac.type == e1000_82572)) {
1876 int tarc0;
1878 tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1879 tarc0 &= ~EMX_TARC_SPEED_MODE;
1880 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1882 if (bootverbose) {
1883 char flowctrl[IFM_ETH_FC_STRLEN];
1885 e1000_fc2str(hw->fc.current_mode, flowctrl,
1886 sizeof(flowctrl));
1887 device_printf(dev, "Link is up %d Mbps %s, "
1888 "Flow control: %s\n",
1889 sc->link_speed,
1890 (sc->link_duplex == FULL_DUPLEX) ?
1891 "Full Duplex" : "Half Duplex",
1892 flowctrl);
1894 if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1895 e1000_force_flowctrl(hw, sc->ifm_flowctrl);
1896 sc->link_active = 1;
1897 sc->smartspeed = 0;
1898 ifp->if_baudrate = sc->link_speed * 1000000;
1899 ifp->if_link_state = LINK_STATE_UP;
1900 if_link_state_change(ifp);
1901 } else if (!link_check && sc->link_active == 1) {
1902 ifp->if_baudrate = sc->link_speed = 0;
1903 sc->link_duplex = 0;
1904 if (bootverbose)
1905 device_printf(dev, "Link is Down\n");
1906 sc->link_active = 0;
1907 ifp->if_link_state = LINK_STATE_DOWN;
1908 if_link_state_change(ifp);
1912 static void
1913 emx_stop(struct emx_softc *sc)
1915 struct ifnet *ifp = &sc->arpcom.ac_if;
1916 int i;
1918 ASSERT_IFNET_SERIALIZED_ALL(ifp);
1920 emx_disable_intr(sc);
1922 callout_stop(&sc->timer);
1924 ifp->if_flags &= ~IFF_RUNNING;
1925 for (i = 0; i < sc->tx_ring_cnt; ++i) {
1926 struct emx_txdata *tdata = &sc->tx_data[i];
1928 ifsq_clr_oactive(tdata->ifsq);
1929 ifsq_watchdog_stop(&tdata->tx_watchdog);
1930 tdata->tx_flags &= ~EMX_TXFLAG_ENABLED;
1934 * Disable multiple receive queues.
1936 * NOTE:
1937 * We should disable multiple receive queues before
1938 * resetting the hardware.
1940 E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1942 e1000_reset_hw(&sc->hw);
1943 E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1945 for (i = 0; i < sc->tx_ring_cnt; ++i)
1946 emx_free_tx_ring(&sc->tx_data[i]);
1947 for (i = 0; i < sc->rx_ring_cnt; ++i)
1948 emx_free_rx_ring(&sc->rx_data[i]);
1951 static int
1952 emx_reset(struct emx_softc *sc)
1954 device_t dev = sc->dev;
1955 uint16_t rx_buffer_size;
1956 uint32_t pba;
1958 /* Set up smart power down as default off on newer adapters. */
1959 if (!emx_smart_pwr_down &&
1960 (sc->hw.mac.type == e1000_82571 ||
1961 sc->hw.mac.type == e1000_82572)) {
1962 uint16_t phy_tmp = 0;
1964 /* Speed up time to link by disabling smart power down. */
1965 e1000_read_phy_reg(&sc->hw,
1966 IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1967 phy_tmp &= ~IGP02E1000_PM_SPD;
1968 e1000_write_phy_reg(&sc->hw,
1969 IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1973 * Packet Buffer Allocation (PBA)
1974 * Writing PBA sets the receive portion of the buffer
1975 * the remainder is used for the transmit buffer.
1977 switch (sc->hw.mac.type) {
1978 /* Total Packet Buffer on these is 48K */
1979 case e1000_82571:
1980 case e1000_82572:
1981 case e1000_80003es2lan:
1982 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1983 break;
1985 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1986 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1987 break;
1989 case e1000_82574:
1990 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1991 break;
1993 case e1000_pch_lpt:
1994 case e1000_pch_spt:
1995 pba = E1000_PBA_26K;
1996 break;
1998 default:
1999 /* Devices before 82547 had a Packet Buffer of 64K. */
2000 if (sc->hw.mac.max_frame_size > 8192)
2001 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2002 else
2003 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2005 E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
2008 * These parameters control the automatic generation (Tx) and
2009 * response (Rx) to Ethernet PAUSE frames.
2010 * - High water mark should allow for at least two frames to be
2011 * received after sending an XOFF.
2012 * - Low water mark works best when it is very near the high water mark.
2013 * This allows the receiver to restart by sending XON when it has
2014 * drained a bit. Here we use an arbitary value of 1500 which will
2015 * restart after one full frame is pulled from the buffer. There
2016 * could be several smaller frames in the buffer and if so they will
2017 * not trigger the XON until their total number reduces the buffer
2018 * by 1500.
2019 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2021 rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
2023 sc->hw.fc.high_water = rx_buffer_size -
2024 roundup2(sc->hw.mac.max_frame_size, 1024);
2025 sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
2027 sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
2028 sc->hw.fc.send_xon = TRUE;
2029 sc->hw.fc.requested_mode = e1000_ifmedia2fc(sc->ifm_flowctrl);
2032 * Device specific overrides/settings
2034 if (sc->hw.mac.type == e1000_pch_lpt ||
2035 sc->hw.mac.type == e1000_pch_spt) {
2036 sc->hw.fc.high_water = 0x5C20;
2037 sc->hw.fc.low_water = 0x5048;
2038 sc->hw.fc.pause_time = 0x0650;
2039 sc->hw.fc.refresh_time = 0x0400;
2040 /* Jumbos need adjusted PBA */
2041 if (sc->arpcom.ac_if.if_mtu > ETHERMTU)
2042 E1000_WRITE_REG(&sc->hw, E1000_PBA, 12);
2043 else
2044 E1000_WRITE_REG(&sc->hw, E1000_PBA, 26);
2045 } else if (sc->hw.mac.type == e1000_80003es2lan) {
2046 sc->hw.fc.pause_time = 0xFFFF;
2049 /* Issue a global reset */
2050 e1000_reset_hw(&sc->hw);
2051 E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
2052 emx_disable_aspm(sc);
2054 if (e1000_init_hw(&sc->hw) < 0) {
2055 device_printf(dev, "Hardware Initialization Failed\n");
2056 return (EIO);
2059 E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
2060 e1000_get_phy_info(&sc->hw);
2061 e1000_check_for_link(&sc->hw);
2063 return (0);
2066 static void
2067 emx_setup_ifp(struct emx_softc *sc)
2069 struct ifnet *ifp = &sc->arpcom.ac_if;
2070 int i;
2072 if_initname(ifp, device_get_name(sc->dev),
2073 device_get_unit(sc->dev));
2074 ifp->if_softc = sc;
2075 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2076 ifp->if_init = emx_init;
2077 ifp->if_ioctl = emx_ioctl;
2078 ifp->if_start = emx_start;
2079 #ifdef IFPOLL_ENABLE
2080 ifp->if_npoll = emx_npoll;
2081 #endif
2082 ifp->if_serialize = emx_serialize;
2083 ifp->if_deserialize = emx_deserialize;
2084 ifp->if_tryserialize = emx_tryserialize;
2085 #ifdef INVARIANTS
2086 ifp->if_serialize_assert = emx_serialize_assert;
2087 #endif
2089 ifp->if_nmbclusters = sc->rx_ring_cnt * sc->rx_data[0].num_rx_desc;
2091 ifq_set_maxlen(&ifp->if_snd, sc->tx_data[0].num_tx_desc - 1);
2092 ifq_set_ready(&ifp->if_snd);
2093 ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
2095 ifp->if_mapsubq = ifq_mapsubq_mask;
2096 ifq_set_subq_mask(&ifp->if_snd, 0);
2098 ether_ifattach(ifp, sc->hw.mac.addr, NULL);
2100 ifp->if_capabilities = IFCAP_HWCSUM |
2101 IFCAP_VLAN_HWTAGGING |
2102 IFCAP_VLAN_MTU |
2103 IFCAP_TSO;
2104 if (sc->rx_ring_cnt > 1)
2105 ifp->if_capabilities |= IFCAP_RSS;
2106 ifp->if_capenable = ifp->if_capabilities;
2107 ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
2110 * Tell the upper layer(s) we support long frames.
2112 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2114 for (i = 0; i < sc->tx_ring_cnt; ++i) {
2115 struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
2116 struct emx_txdata *tdata = &sc->tx_data[i];
2118 ifsq_set_cpuid(ifsq, rman_get_cpuid(sc->intr_res));
2119 ifsq_set_priv(ifsq, tdata);
2120 ifsq_set_hw_serialize(ifsq, &tdata->tx_serialize);
2121 tdata->ifsq = ifsq;
2123 ifsq_watchdog_init(&tdata->tx_watchdog, ifsq, emx_watchdog);
2127 * Specify the media types supported by this sc and register
2128 * callbacks to update media and link information
2130 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2131 sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
2132 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2133 0, NULL);
2134 } else {
2135 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
2136 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2137 0, NULL);
2138 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2139 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2140 0, NULL);
2141 if (sc->hw.phy.type != e1000_phy_ife) {
2142 ifmedia_add(&sc->media,
2143 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2146 ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2147 ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO | sc->ifm_flowctrl);
2151 * Workaround for SmartSpeed on 82541 and 82547 controllers
2153 static void
2154 emx_smartspeed(struct emx_softc *sc)
2156 uint16_t phy_tmp;
2158 if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
2159 sc->hw.mac.autoneg == 0 ||
2160 (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2161 return;
2163 if (sc->smartspeed == 0) {
2165 * If Master/Slave config fault is asserted twice,
2166 * we assume back-to-back
2168 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2169 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2170 return;
2171 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2172 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2173 e1000_read_phy_reg(&sc->hw,
2174 PHY_1000T_CTRL, &phy_tmp);
2175 if (phy_tmp & CR_1000T_MS_ENABLE) {
2176 phy_tmp &= ~CR_1000T_MS_ENABLE;
2177 e1000_write_phy_reg(&sc->hw,
2178 PHY_1000T_CTRL, phy_tmp);
2179 sc->smartspeed++;
2180 if (sc->hw.mac.autoneg &&
2181 !e1000_phy_setup_autoneg(&sc->hw) &&
2182 !e1000_read_phy_reg(&sc->hw,
2183 PHY_CONTROL, &phy_tmp)) {
2184 phy_tmp |= MII_CR_AUTO_NEG_EN |
2185 MII_CR_RESTART_AUTO_NEG;
2186 e1000_write_phy_reg(&sc->hw,
2187 PHY_CONTROL, phy_tmp);
2191 return;
2192 } else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
2193 /* If still no link, perhaps using 2/3 pair cable */
2194 e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2195 phy_tmp |= CR_1000T_MS_ENABLE;
2196 e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2197 if (sc->hw.mac.autoneg &&
2198 !e1000_phy_setup_autoneg(&sc->hw) &&
2199 !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2200 phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2201 e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2205 /* Restart process after EMX_SMARTSPEED_MAX iterations */
2206 if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
2207 sc->smartspeed = 0;
2210 static int
2211 emx_create_tx_ring(struct emx_txdata *tdata)
2213 device_t dev = tdata->sc->dev;
2214 struct emx_txbuf *tx_buffer;
2215 int error, i, tsize, ntxd;
2218 * Validate number of transmit descriptors. It must not exceed
2219 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2221 ntxd = device_getenv_int(dev, "txd", emx_txd);
2222 if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
2223 ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
2224 device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2225 EMX_DEFAULT_TXD, ntxd);
2226 tdata->num_tx_desc = EMX_DEFAULT_TXD;
2227 } else {
2228 tdata->num_tx_desc = ntxd;
2232 * Allocate Transmit Descriptor ring
2234 tsize = roundup2(tdata->num_tx_desc * sizeof(struct e1000_tx_desc),
2235 EMX_DBA_ALIGN);
2236 tdata->tx_desc_base = bus_dmamem_coherent_any(tdata->sc->parent_dtag,
2237 EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2238 &tdata->tx_desc_dtag, &tdata->tx_desc_dmap,
2239 &tdata->tx_desc_paddr);
2240 if (tdata->tx_desc_base == NULL) {
2241 device_printf(dev, "Unable to allocate tx_desc memory\n");
2242 return ENOMEM;
2245 tsize = __VM_CACHELINE_ALIGN(
2246 sizeof(struct emx_txbuf) * tdata->num_tx_desc);
2247 tdata->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
2250 * Create DMA tags for tx buffers
2252 error = bus_dma_tag_create(tdata->sc->parent_dtag, /* parent */
2253 1, 0, /* alignment, bounds */
2254 BUS_SPACE_MAXADDR, /* lowaddr */
2255 BUS_SPACE_MAXADDR, /* highaddr */
2256 NULL, NULL, /* filter, filterarg */
2257 EMX_TSO_SIZE, /* maxsize */
2258 EMX_MAX_SCATTER, /* nsegments */
2259 EMX_MAX_SEGSIZE, /* maxsegsize */
2260 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2261 BUS_DMA_ONEBPAGE, /* flags */
2262 &tdata->txtag);
2263 if (error) {
2264 device_printf(dev, "Unable to allocate TX DMA tag\n");
2265 kfree(tdata->tx_buf, M_DEVBUF);
2266 tdata->tx_buf = NULL;
2267 return error;
2271 * Create DMA maps for tx buffers
2273 for (i = 0; i < tdata->num_tx_desc; i++) {
2274 tx_buffer = &tdata->tx_buf[i];
2276 error = bus_dmamap_create(tdata->txtag,
2277 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2278 &tx_buffer->map);
2279 if (error) {
2280 device_printf(dev, "Unable to create TX DMA map\n");
2281 emx_destroy_tx_ring(tdata, i);
2282 return error;
2287 * Setup TX parameters
2289 tdata->spare_tx_desc = EMX_TX_SPARE;
2290 tdata->tx_wreg_nsegs = EMX_DEFAULT_TXWREG;
2293 * Keep following relationship between spare_tx_desc, oact_tx_desc
2294 * and tx_intr_nsegs:
2295 * (spare_tx_desc + EMX_TX_RESERVED) <=
2296 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_intr_nsegs
2298 tdata->oact_tx_desc = tdata->num_tx_desc / 8;
2299 if (tdata->oact_tx_desc > EMX_TX_OACTIVE_MAX)
2300 tdata->oact_tx_desc = EMX_TX_OACTIVE_MAX;
2301 if (tdata->oact_tx_desc < tdata->spare_tx_desc + EMX_TX_RESERVED)
2302 tdata->oact_tx_desc = tdata->spare_tx_desc + EMX_TX_RESERVED;
2304 tdata->tx_intr_nsegs = tdata->num_tx_desc / 16;
2305 if (tdata->tx_intr_nsegs < tdata->oact_tx_desc)
2306 tdata->tx_intr_nsegs = tdata->oact_tx_desc;
2309 * Pullup extra 4bytes into the first data segment for TSO, see:
2310 * 82571/82572 specification update errata #7
2312 * Same applies to I217 (and maybe I218 and I219).
2314 * NOTE:
2315 * 4bytes instead of 2bytes, which are mentioned in the errata,
2316 * are pulled; mainly to keep rest of the data properly aligned.
2318 if (tdata->sc->hw.mac.type == e1000_82571 ||
2319 tdata->sc->hw.mac.type == e1000_82572 ||
2320 tdata->sc->hw.mac.type == e1000_pch_lpt ||
2321 tdata->sc->hw.mac.type == e1000_pch_spt)
2322 tdata->tx_flags |= EMX_TXFLAG_TSO_PULLEX;
2324 return (0);
2327 static void
2328 emx_init_tx_ring(struct emx_txdata *tdata)
2330 /* Clear the old ring contents */
2331 bzero(tdata->tx_desc_base,
2332 sizeof(struct e1000_tx_desc) * tdata->num_tx_desc);
2334 /* Reset state */
2335 tdata->next_avail_tx_desc = 0;
2336 tdata->next_tx_to_clean = 0;
2337 tdata->num_tx_desc_avail = tdata->num_tx_desc;
2339 tdata->tx_flags |= EMX_TXFLAG_ENABLED;
2340 if (tdata->sc->tx_ring_inuse > 1) {
2341 tdata->tx_flags |= EMX_TXFLAG_FORCECTX;
2342 if (bootverbose) {
2343 if_printf(&tdata->sc->arpcom.ac_if,
2344 "TX %d force ctx setup\n", tdata->idx);
2349 static void
2350 emx_init_tx_unit(struct emx_softc *sc)
2352 uint32_t tctl, tarc, tipg = 0, txdctl;
2353 int i;
2355 for (i = 0; i < sc->tx_ring_inuse; ++i) {
2356 struct emx_txdata *tdata = &sc->tx_data[i];
2357 uint64_t bus_addr;
2359 /* Setup the Base and Length of the Tx Descriptor Ring */
2360 bus_addr = tdata->tx_desc_paddr;
2361 E1000_WRITE_REG(&sc->hw, E1000_TDLEN(i),
2362 tdata->num_tx_desc * sizeof(struct e1000_tx_desc));
2363 E1000_WRITE_REG(&sc->hw, E1000_TDBAH(i),
2364 (uint32_t)(bus_addr >> 32));
2365 E1000_WRITE_REG(&sc->hw, E1000_TDBAL(i),
2366 (uint32_t)bus_addr);
2367 /* Setup the HW Tx Head and Tail descriptor pointers */
2368 E1000_WRITE_REG(&sc->hw, E1000_TDT(i), 0);
2369 E1000_WRITE_REG(&sc->hw, E1000_TDH(i), 0);
2372 /* Set the default values for the Tx Inter Packet Gap timer */
2373 switch (sc->hw.mac.type) {
2374 case e1000_80003es2lan:
2375 tipg = DEFAULT_82543_TIPG_IPGR1;
2376 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2377 E1000_TIPG_IPGR2_SHIFT;
2378 break;
2380 default:
2381 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2382 sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2383 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2384 else
2385 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2386 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2387 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2388 break;
2391 E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2393 /* NOTE: 0 is not allowed for TIDV */
2394 E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2395 E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2398 * Errata workaround (obtained from Linux). This is necessary
2399 * to make multiple TX queues work on 82574.
2400 * XXX can't find it in any published errata though.
2402 txdctl = E1000_READ_REG(&sc->hw, E1000_TXDCTL(0));
2403 E1000_WRITE_REG(&sc->hw, E1000_TXDCTL(1), txdctl);
2405 if (sc->hw.mac.type == e1000_82571 ||
2406 sc->hw.mac.type == e1000_82572) {
2407 tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2408 tarc |= EMX_TARC_SPEED_MODE;
2409 E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2410 } else if (sc->hw.mac.type == e1000_80003es2lan) {
2411 tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2412 tarc |= 1;
2413 E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2414 tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2415 tarc |= 1;
2416 E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2419 /* Program the Transmit Control Register */
2420 tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2421 tctl &= ~E1000_TCTL_CT;
2422 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2423 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2424 tctl |= E1000_TCTL_MULR;
2426 /* This write will effectively turn on the transmit unit. */
2427 E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2429 if (sc->hw.mac.type == e1000_82571 ||
2430 sc->hw.mac.type == e1000_82572 ||
2431 sc->hw.mac.type == e1000_80003es2lan) {
2432 /* Bit 28 of TARC1 must be cleared when MULR is enabled */
2433 tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2434 tarc &= ~(1 << 28);
2435 E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2438 if (sc->tx_ring_inuse > 1) {
2439 tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2440 tarc &= ~EMX_TARC_COUNT_MASK;
2441 tarc |= 1;
2442 E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2444 tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2445 tarc &= ~EMX_TARC_COUNT_MASK;
2446 tarc |= 1;
2447 E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2451 static void
2452 emx_destroy_tx_ring(struct emx_txdata *tdata, int ndesc)
2454 struct emx_txbuf *tx_buffer;
2455 int i;
2457 /* Free Transmit Descriptor ring */
2458 if (tdata->tx_desc_base) {
2459 bus_dmamap_unload(tdata->tx_desc_dtag, tdata->tx_desc_dmap);
2460 bus_dmamem_free(tdata->tx_desc_dtag, tdata->tx_desc_base,
2461 tdata->tx_desc_dmap);
2462 bus_dma_tag_destroy(tdata->tx_desc_dtag);
2464 tdata->tx_desc_base = NULL;
2467 if (tdata->tx_buf == NULL)
2468 return;
2470 for (i = 0; i < ndesc; i++) {
2471 tx_buffer = &tdata->tx_buf[i];
2473 KKASSERT(tx_buffer->m_head == NULL);
2474 bus_dmamap_destroy(tdata->txtag, tx_buffer->map);
2476 bus_dma_tag_destroy(tdata->txtag);
2478 kfree(tdata->tx_buf, M_DEVBUF);
2479 tdata->tx_buf = NULL;
2483 * The offload context needs to be set when we transfer the first
2484 * packet of a particular protocol (TCP/UDP). This routine has been
2485 * enhanced to deal with inserted VLAN headers.
2487 * If the new packet's ether header length, ip header length and
2488 * csum offloading type are same as the previous packet, we should
2489 * avoid allocating a new csum context descriptor; mainly to take
2490 * advantage of the pipeline effect of the TX data read request.
2492 * This function returns number of TX descrptors allocated for
2493 * csum context.
2495 static int
2496 emx_txcsum(struct emx_txdata *tdata, struct mbuf *mp,
2497 uint32_t *txd_upper, uint32_t *txd_lower)
2499 struct e1000_context_desc *TXD;
2500 int curr_txd, ehdrlen, csum_flags;
2501 uint32_t cmd, hdr_len, ip_hlen;
2503 csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2504 ip_hlen = mp->m_pkthdr.csum_iphlen;
2505 ehdrlen = mp->m_pkthdr.csum_lhlen;
2507 if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
2508 tdata->csum_lhlen == ehdrlen && tdata->csum_iphlen == ip_hlen &&
2509 tdata->csum_flags == csum_flags) {
2511 * Same csum offload context as the previous packets;
2512 * just return.
2514 *txd_upper = tdata->csum_txd_upper;
2515 *txd_lower = tdata->csum_txd_lower;
2516 return 0;
2520 * Setup a new csum offload context.
2523 curr_txd = tdata->next_avail_tx_desc;
2524 TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
2526 cmd = 0;
2528 /* Setup of IP header checksum. */
2529 if (csum_flags & CSUM_IP) {
2531 * Start offset for header checksum calculation.
2532 * End offset for header checksum calculation.
2533 * Offset of place to put the checksum.
2535 TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2536 TXD->lower_setup.ip_fields.ipcse =
2537 htole16(ehdrlen + ip_hlen - 1);
2538 TXD->lower_setup.ip_fields.ipcso =
2539 ehdrlen + offsetof(struct ip, ip_sum);
2540 cmd |= E1000_TXD_CMD_IP;
2541 *txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2543 hdr_len = ehdrlen + ip_hlen;
2545 if (csum_flags & CSUM_TCP) {
2547 * Start offset for payload checksum calculation.
2548 * End offset for payload checksum calculation.
2549 * Offset of place to put the checksum.
2551 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2552 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2553 TXD->upper_setup.tcp_fields.tucso =
2554 hdr_len + offsetof(struct tcphdr, th_sum);
2555 cmd |= E1000_TXD_CMD_TCP;
2556 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2557 } else if (csum_flags & CSUM_UDP) {
2559 * Start offset for header checksum calculation.
2560 * End offset for header checksum calculation.
2561 * Offset of place to put the checksum.
2563 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2564 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2565 TXD->upper_setup.tcp_fields.tucso =
2566 hdr_len + offsetof(struct udphdr, uh_sum);
2567 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2570 *txd_lower = E1000_TXD_CMD_DEXT | /* Extended descr type */
2571 E1000_TXD_DTYP_D; /* Data descr */
2573 /* Save the information for this csum offloading context */
2574 tdata->csum_lhlen = ehdrlen;
2575 tdata->csum_iphlen = ip_hlen;
2576 tdata->csum_flags = csum_flags;
2577 tdata->csum_txd_upper = *txd_upper;
2578 tdata->csum_txd_lower = *txd_lower;
2580 TXD->tcp_seg_setup.data = htole32(0);
2581 TXD->cmd_and_length =
2582 htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2584 if (++curr_txd == tdata->num_tx_desc)
2585 curr_txd = 0;
2587 KKASSERT(tdata->num_tx_desc_avail > 0);
2588 tdata->num_tx_desc_avail--;
2590 tdata->next_avail_tx_desc = curr_txd;
2591 return 1;
2594 static void
2595 emx_txeof(struct emx_txdata *tdata)
2597 struct emx_txbuf *tx_buffer;
2598 int first, num_avail;
2600 if (tdata->tx_dd_head == tdata->tx_dd_tail)
2601 return;
2603 if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2604 return;
2606 num_avail = tdata->num_tx_desc_avail;
2607 first = tdata->next_tx_to_clean;
2609 while (tdata->tx_dd_head != tdata->tx_dd_tail) {
2610 int dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2611 struct e1000_tx_desc *tx_desc;
2613 tx_desc = &tdata->tx_desc_base[dd_idx];
2614 if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2615 EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2617 if (++dd_idx == tdata->num_tx_desc)
2618 dd_idx = 0;
2620 while (first != dd_idx) {
2621 logif(pkt_txclean);
2623 num_avail++;
2625 tx_buffer = &tdata->tx_buf[first];
2626 if (tx_buffer->m_head) {
2627 bus_dmamap_unload(tdata->txtag,
2628 tx_buffer->map);
2629 m_freem(tx_buffer->m_head);
2630 tx_buffer->m_head = NULL;
2633 if (++first == tdata->num_tx_desc)
2634 first = 0;
2636 } else {
2637 break;
2640 tdata->next_tx_to_clean = first;
2641 tdata->num_tx_desc_avail = num_avail;
2643 if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2644 tdata->tx_dd_head = 0;
2645 tdata->tx_dd_tail = 0;
2648 if (!EMX_IS_OACTIVE(tdata)) {
2649 ifsq_clr_oactive(tdata->ifsq);
2651 /* All clean, turn off the timer */
2652 if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2653 tdata->tx_watchdog.wd_timer = 0;
2657 static void
2658 emx_tx_collect(struct emx_txdata *tdata)
2660 struct emx_txbuf *tx_buffer;
2661 int tdh, first, num_avail, dd_idx = -1;
2663 if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2664 return;
2666 tdh = E1000_READ_REG(&tdata->sc->hw, E1000_TDH(tdata->idx));
2667 if (tdh == tdata->next_tx_to_clean)
2668 return;
2670 if (tdata->tx_dd_head != tdata->tx_dd_tail)
2671 dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2673 num_avail = tdata->num_tx_desc_avail;
2674 first = tdata->next_tx_to_clean;
2676 while (first != tdh) {
2677 logif(pkt_txclean);
2679 num_avail++;
2681 tx_buffer = &tdata->tx_buf[first];
2682 if (tx_buffer->m_head) {
2683 bus_dmamap_unload(tdata->txtag,
2684 tx_buffer->map);
2685 m_freem(tx_buffer->m_head);
2686 tx_buffer->m_head = NULL;
2689 if (first == dd_idx) {
2690 EMX_INC_TXDD_IDX(tdata->tx_dd_head);
2691 if (tdata->tx_dd_head == tdata->tx_dd_tail) {
2692 tdata->tx_dd_head = 0;
2693 tdata->tx_dd_tail = 0;
2694 dd_idx = -1;
2695 } else {
2696 dd_idx = tdata->tx_dd[tdata->tx_dd_head];
2700 if (++first == tdata->num_tx_desc)
2701 first = 0;
2703 tdata->next_tx_to_clean = first;
2704 tdata->num_tx_desc_avail = num_avail;
2706 if (!EMX_IS_OACTIVE(tdata)) {
2707 ifsq_clr_oactive(tdata->ifsq);
2709 /* All clean, turn off the timer */
2710 if (tdata->num_tx_desc_avail == tdata->num_tx_desc)
2711 tdata->tx_watchdog.wd_timer = 0;
2716 * When Link is lost sometimes there is work still in the TX ring
2717 * which will result in a watchdog, rather than allow that do an
2718 * attempted cleanup and then reinit here. Note that this has been
2719 * seens mostly with fiber adapters.
2721 static void
2722 emx_tx_purge(struct emx_softc *sc)
2724 int i;
2726 if (sc->link_active)
2727 return;
2729 for (i = 0; i < sc->tx_ring_inuse; ++i) {
2730 struct emx_txdata *tdata = &sc->tx_data[i];
2732 if (tdata->tx_watchdog.wd_timer) {
2733 emx_tx_collect(tdata);
2734 if (tdata->tx_watchdog.wd_timer) {
2735 if_printf(&sc->arpcom.ac_if,
2736 "Link lost, TX pending, reinit\n");
2737 emx_init(sc);
2738 return;
2744 static int
2745 emx_newbuf(struct emx_rxdata *rdata, int i, int init)
2747 struct mbuf *m;
2748 bus_dma_segment_t seg;
2749 bus_dmamap_t map;
2750 struct emx_rxbuf *rx_buffer;
2751 int error, nseg;
2753 m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
2754 if (m == NULL) {
2755 if (init) {
2756 if_printf(&rdata->sc->arpcom.ac_if,
2757 "Unable to allocate RX mbuf\n");
2759 return (ENOBUFS);
2761 m->m_len = m->m_pkthdr.len = MCLBYTES;
2763 if (rdata->sc->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
2764 m_adj(m, ETHER_ALIGN);
2766 error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2767 rdata->rx_sparemap, m,
2768 &seg, 1, &nseg, BUS_DMA_NOWAIT);
2769 if (error) {
2770 m_freem(m);
2771 if (init) {
2772 if_printf(&rdata->sc->arpcom.ac_if,
2773 "Unable to load RX mbuf\n");
2775 return (error);
2778 rx_buffer = &rdata->rx_buf[i];
2779 if (rx_buffer->m_head != NULL)
2780 bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2782 map = rx_buffer->map;
2783 rx_buffer->map = rdata->rx_sparemap;
2784 rdata->rx_sparemap = map;
2786 rx_buffer->m_head = m;
2787 rx_buffer->paddr = seg.ds_addr;
2789 emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2790 return (0);
2793 static int
2794 emx_create_rx_ring(struct emx_rxdata *rdata)
2796 device_t dev = rdata->sc->dev;
2797 struct emx_rxbuf *rx_buffer;
2798 int i, error, rsize, nrxd;
2801 * Validate number of receive descriptors. It must not exceed
2802 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2804 nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2805 if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2806 nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2807 device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2808 EMX_DEFAULT_RXD, nrxd);
2809 rdata->num_rx_desc = EMX_DEFAULT_RXD;
2810 } else {
2811 rdata->num_rx_desc = nrxd;
2815 * Allocate Receive Descriptor ring
2817 rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2818 EMX_DBA_ALIGN);
2819 rdata->rx_desc = bus_dmamem_coherent_any(rdata->sc->parent_dtag,
2820 EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2821 &rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2822 &rdata->rx_desc_paddr);
2823 if (rdata->rx_desc == NULL) {
2824 device_printf(dev, "Unable to allocate rx_desc memory\n");
2825 return ENOMEM;
2828 rsize = __VM_CACHELINE_ALIGN(
2829 sizeof(struct emx_rxbuf) * rdata->num_rx_desc);
2830 rdata->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2833 * Create DMA tag for rx buffers
2835 error = bus_dma_tag_create(rdata->sc->parent_dtag, /* parent */
2836 1, 0, /* alignment, bounds */
2837 BUS_SPACE_MAXADDR, /* lowaddr */
2838 BUS_SPACE_MAXADDR, /* highaddr */
2839 NULL, NULL, /* filter, filterarg */
2840 MCLBYTES, /* maxsize */
2841 1, /* nsegments */
2842 MCLBYTES, /* maxsegsize */
2843 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2844 &rdata->rxtag);
2845 if (error) {
2846 device_printf(dev, "Unable to allocate RX DMA tag\n");
2847 kfree(rdata->rx_buf, M_DEVBUF);
2848 rdata->rx_buf = NULL;
2849 return error;
2853 * Create spare DMA map for rx buffers
2855 error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2856 &rdata->rx_sparemap);
2857 if (error) {
2858 device_printf(dev, "Unable to create spare RX DMA map\n");
2859 bus_dma_tag_destroy(rdata->rxtag);
2860 kfree(rdata->rx_buf, M_DEVBUF);
2861 rdata->rx_buf = NULL;
2862 return error;
2866 * Create DMA maps for rx buffers
2868 for (i = 0; i < rdata->num_rx_desc; i++) {
2869 rx_buffer = &rdata->rx_buf[i];
2871 error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2872 &rx_buffer->map);
2873 if (error) {
2874 device_printf(dev, "Unable to create RX DMA map\n");
2875 emx_destroy_rx_ring(rdata, i);
2876 return error;
2879 return (0);
2882 static void
2883 emx_free_rx_ring(struct emx_rxdata *rdata)
2885 int i;
2887 for (i = 0; i < rdata->num_rx_desc; i++) {
2888 struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2890 if (rx_buffer->m_head != NULL) {
2891 bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2892 m_freem(rx_buffer->m_head);
2893 rx_buffer->m_head = NULL;
2897 if (rdata->fmp != NULL)
2898 m_freem(rdata->fmp);
2899 rdata->fmp = NULL;
2900 rdata->lmp = NULL;
2903 static void
2904 emx_free_tx_ring(struct emx_txdata *tdata)
2906 int i;
2908 for (i = 0; i < tdata->num_tx_desc; i++) {
2909 struct emx_txbuf *tx_buffer = &tdata->tx_buf[i];
2911 if (tx_buffer->m_head != NULL) {
2912 bus_dmamap_unload(tdata->txtag, tx_buffer->map);
2913 m_freem(tx_buffer->m_head);
2914 tx_buffer->m_head = NULL;
2918 tdata->tx_flags &= ~EMX_TXFLAG_FORCECTX;
2920 tdata->csum_flags = 0;
2921 tdata->csum_lhlen = 0;
2922 tdata->csum_iphlen = 0;
2923 tdata->csum_thlen = 0;
2924 tdata->csum_mss = 0;
2925 tdata->csum_pktlen = 0;
2927 tdata->tx_dd_head = 0;
2928 tdata->tx_dd_tail = 0;
2929 tdata->tx_nsegs = 0;
2932 static int
2933 emx_init_rx_ring(struct emx_rxdata *rdata)
2935 int i, error;
2937 /* Reset descriptor ring */
2938 bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2940 /* Allocate new ones. */
2941 for (i = 0; i < rdata->num_rx_desc; i++) {
2942 error = emx_newbuf(rdata, i, 1);
2943 if (error)
2944 return (error);
2947 /* Setup our descriptor pointers */
2948 rdata->next_rx_desc_to_check = 0;
2950 return (0);
2953 static void
2954 emx_init_rx_unit(struct emx_softc *sc)
2956 struct ifnet *ifp = &sc->arpcom.ac_if;
2957 uint64_t bus_addr;
2958 uint32_t rctl, itr, rfctl;
2959 int i;
2962 * Make sure receives are disabled while setting
2963 * up the descriptor ring
2965 rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2966 E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2969 * Set the interrupt throttling rate. Value is calculated
2970 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2972 if (sc->int_throttle_ceil)
2973 itr = 1000000000 / 256 / sc->int_throttle_ceil;
2974 else
2975 itr = 0;
2976 emx_set_itr(sc, itr);
2978 /* Use extended RX descriptor */
2979 rfctl = E1000_RFCTL_EXTEN;
2981 /* Disable accelerated ackknowledge */
2982 if (sc->hw.mac.type == e1000_82574)
2983 rfctl |= E1000_RFCTL_ACK_DIS;
2985 E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2988 * Receive Checksum Offload for TCP and UDP
2990 * Checksum offloading is also enabled if multiple receive
2991 * queue is to be supported, since we need it to figure out
2992 * packet type.
2994 if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2995 sc->rx_ring_cnt > 1) {
2996 uint32_t rxcsum;
2998 rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
3001 * NOTE:
3002 * PCSD must be enabled to enable multiple
3003 * receive queues.
3005 rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
3006 E1000_RXCSUM_PCSD;
3007 E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
3011 * Configure multiple receive queue (RSS)
3013 if (sc->rx_ring_cnt > 1) {
3014 uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
3015 uint32_t reta;
3017 KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
3018 ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
3021 * NOTE:
3022 * When we reach here, RSS has already been disabled
3023 * in emx_stop(), so we could safely configure RSS key
3024 * and redirect table.
3028 * Configure RSS key
3030 toeplitz_get_key(key, sizeof(key));
3031 for (i = 0; i < EMX_NRSSRK; ++i) {
3032 uint32_t rssrk;
3034 rssrk = EMX_RSSRK_VAL(key, i);
3035 EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
3037 E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
3041 * Configure RSS redirect table in following fashion:
3042 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
3044 reta = 0;
3045 for (i = 0; i < EMX_RETA_SIZE; ++i) {
3046 uint32_t q;
3048 q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
3049 reta |= q << (8 * i);
3051 EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
3053 for (i = 0; i < EMX_NRETA; ++i)
3054 E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
3057 * Enable multiple receive queues.
3058 * Enable IPv4 RSS standard hash functions.
3059 * Disable RSS interrupt.
3061 E1000_WRITE_REG(&sc->hw, E1000_MRQC,
3062 E1000_MRQC_ENABLE_RSS_2Q |
3063 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3064 E1000_MRQC_RSS_FIELD_IPV4);
3068 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3069 * long latencies are observed, like Lenovo X60. This
3070 * change eliminates the problem, but since having positive
3071 * values in RDTR is a known source of problems on other
3072 * platforms another solution is being sought.
3074 if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
3075 E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
3076 E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
3079 for (i = 0; i < sc->rx_ring_cnt; ++i) {
3080 struct emx_rxdata *rdata = &sc->rx_data[i];
3083 * Setup the Base and Length of the Rx Descriptor Ring
3085 bus_addr = rdata->rx_desc_paddr;
3086 E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
3087 rdata->num_rx_desc * sizeof(emx_rxdesc_t));
3088 E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
3089 (uint32_t)(bus_addr >> 32));
3090 E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
3091 (uint32_t)bus_addr);
3094 * Setup the HW Rx Head and Tail Descriptor Pointers
3096 E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
3097 E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
3098 sc->rx_data[i].num_rx_desc - 1);
3101 if (sc->hw.mac.type >= e1000_pch2lan) {
3102 if (ifp->if_mtu > ETHERMTU)
3103 e1000_lv_jumbo_workaround_ich8lan(&sc->hw, TRUE);
3104 else
3105 e1000_lv_jumbo_workaround_ich8lan(&sc->hw, FALSE);
3108 /* Setup the Receive Control Register */
3109 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3110 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3111 E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
3112 (sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3114 /* Make sure VLAN Filters are off */
3115 rctl &= ~E1000_RCTL_VFE;
3117 /* Don't store bad paket */
3118 rctl &= ~E1000_RCTL_SBP;
3120 /* MCLBYTES */
3121 rctl |= E1000_RCTL_SZ_2048;
3123 if (ifp->if_mtu > ETHERMTU)
3124 rctl |= E1000_RCTL_LPE;
3125 else
3126 rctl &= ~E1000_RCTL_LPE;
3128 /* Enable Receives */
3129 E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
3132 static void
3133 emx_destroy_rx_ring(struct emx_rxdata *rdata, int ndesc)
3135 struct emx_rxbuf *rx_buffer;
3136 int i;
3138 /* Free Receive Descriptor ring */
3139 if (rdata->rx_desc) {
3140 bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
3141 bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
3142 rdata->rx_desc_dmap);
3143 bus_dma_tag_destroy(rdata->rx_desc_dtag);
3145 rdata->rx_desc = NULL;
3148 if (rdata->rx_buf == NULL)
3149 return;
3151 for (i = 0; i < ndesc; i++) {
3152 rx_buffer = &rdata->rx_buf[i];
3154 KKASSERT(rx_buffer->m_head == NULL);
3155 bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
3157 bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
3158 bus_dma_tag_destroy(rdata->rxtag);
3160 kfree(rdata->rx_buf, M_DEVBUF);
3161 rdata->rx_buf = NULL;
3164 static void
3165 emx_rxeof(struct emx_rxdata *rdata, int count)
3167 struct ifnet *ifp = &rdata->sc->arpcom.ac_if;
3168 uint32_t staterr;
3169 emx_rxdesc_t *current_desc;
3170 struct mbuf *mp;
3171 int i, cpuid = mycpuid;
3173 i = rdata->next_rx_desc_to_check;
3174 current_desc = &rdata->rx_desc[i];
3175 staterr = le32toh(current_desc->rxd_staterr);
3177 if (!(staterr & E1000_RXD_STAT_DD))
3178 return;
3180 while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
3181 struct pktinfo *pi = NULL, pi0;
3182 struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
3183 struct mbuf *m = NULL;
3184 int eop, len;
3186 logif(pkt_receive);
3188 mp = rx_buf->m_head;
3191 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3192 * needs to access the last received byte in the mbuf.
3194 bus_dmamap_sync(rdata->rxtag, rx_buf->map,
3195 BUS_DMASYNC_POSTREAD);
3197 len = le16toh(current_desc->rxd_length);
3198 if (staterr & E1000_RXD_STAT_EOP) {
3199 count--;
3200 eop = 1;
3201 } else {
3202 eop = 0;
3205 if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3206 uint16_t vlan = 0;
3207 uint32_t mrq, rss_hash;
3210 * Save several necessary information,
3211 * before emx_newbuf() destroy it.
3213 if ((staterr & E1000_RXD_STAT_VP) && eop)
3214 vlan = le16toh(current_desc->rxd_vlan);
3216 mrq = le32toh(current_desc->rxd_mrq);
3217 rss_hash = le32toh(current_desc->rxd_rss);
3219 EMX_RSS_DPRINTF(rdata->sc, 10,
3220 "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
3221 rdata->idx, mrq, rss_hash);
3223 if (emx_newbuf(rdata, i, 0) != 0) {
3224 IFNET_STAT_INC(ifp, iqdrops, 1);
3225 goto discard;
3228 /* Assign correct length to the current fragment */
3229 mp->m_len = len;
3231 if (rdata->fmp == NULL) {
3232 mp->m_pkthdr.len = len;
3233 rdata->fmp = mp; /* Store the first mbuf */
3234 rdata->lmp = mp;
3235 } else {
3237 * Chain mbuf's together
3239 rdata->lmp->m_next = mp;
3240 rdata->lmp = rdata->lmp->m_next;
3241 rdata->fmp->m_pkthdr.len += len;
3244 if (eop) {
3245 rdata->fmp->m_pkthdr.rcvif = ifp;
3246 IFNET_STAT_INC(ifp, ipackets, 1);
3248 if (ifp->if_capenable & IFCAP_RXCSUM)
3249 emx_rxcsum(staterr, rdata->fmp);
3251 if (staterr & E1000_RXD_STAT_VP) {
3252 rdata->fmp->m_pkthdr.ether_vlantag =
3253 vlan;
3254 rdata->fmp->m_flags |= M_VLANTAG;
3256 m = rdata->fmp;
3257 rdata->fmp = NULL;
3258 rdata->lmp = NULL;
3260 if (ifp->if_capenable & IFCAP_RSS) {
3261 pi = emx_rssinfo(m, &pi0, mrq,
3262 rss_hash, staterr);
3264 #ifdef EMX_RSS_DEBUG
3265 rdata->rx_pkts++;
3266 #endif
3268 } else {
3269 IFNET_STAT_INC(ifp, ierrors, 1);
3270 discard:
3271 emx_setup_rxdesc(current_desc, rx_buf);
3272 if (rdata->fmp != NULL) {
3273 m_freem(rdata->fmp);
3274 rdata->fmp = NULL;
3275 rdata->lmp = NULL;
3277 m = NULL;
3280 if (m != NULL)
3281 ifp->if_input(ifp, m, pi, cpuid);
3283 /* Advance our pointers to the next descriptor. */
3284 if (++i == rdata->num_rx_desc)
3285 i = 0;
3287 current_desc = &rdata->rx_desc[i];
3288 staterr = le32toh(current_desc->rxd_staterr);
3290 rdata->next_rx_desc_to_check = i;
3292 /* Advance the E1000's Receive Queue "Tail Pointer". */
3293 if (--i < 0)
3294 i = rdata->num_rx_desc - 1;
3295 E1000_WRITE_REG(&rdata->sc->hw, E1000_RDT(rdata->idx), i);
3298 static void
3299 emx_enable_intr(struct emx_softc *sc)
3301 uint32_t ims_mask = IMS_ENABLE_MASK;
3303 lwkt_serialize_handler_enable(&sc->main_serialize);
3305 #if 0
3306 if (sc->hw.mac.type == e1000_82574) {
3307 E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
3308 ims_mask |= EM_MSIX_MASK;
3310 #endif
3311 E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
3314 static void
3315 emx_disable_intr(struct emx_softc *sc)
3317 if (sc->hw.mac.type == e1000_82574)
3318 E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
3319 E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
3321 lwkt_serialize_handler_disable(&sc->main_serialize);
3325 * Bit of a misnomer, what this really means is
3326 * to enable OS management of the system... aka
3327 * to disable special hardware management features
3329 static void
3330 emx_get_mgmt(struct emx_softc *sc)
3332 /* A shared code workaround */
3333 if (sc->flags & EMX_FLAG_HAS_MGMT) {
3334 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3335 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3337 /* disable hardware interception of ARP */
3338 manc &= ~(E1000_MANC_ARP_EN);
3340 /* enable receiving management packets to the host */
3341 manc |= E1000_MANC_EN_MNG2HOST;
3342 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3343 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3344 manc2h |= E1000_MNG2HOST_PORT_623;
3345 manc2h |= E1000_MNG2HOST_PORT_664;
3346 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3348 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3353 * Give control back to hardware management
3354 * controller if there is one.
3356 static void
3357 emx_rel_mgmt(struct emx_softc *sc)
3359 if (sc->flags & EMX_FLAG_HAS_MGMT) {
3360 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3362 /* re-enable hardware interception of ARP */
3363 manc |= E1000_MANC_ARP_EN;
3364 manc &= ~E1000_MANC_EN_MNG2HOST;
3366 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3371 * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3372 * For ASF and Pass Through versions of f/w this means that
3373 * the driver is loaded. For AMT version (only with 82573)
3374 * of the f/w this means that the network i/f is open.
3376 static void
3377 emx_get_hw_control(struct emx_softc *sc)
3379 /* Let firmware know the driver has taken over */
3380 if (sc->hw.mac.type == e1000_82573) {
3381 uint32_t swsm;
3383 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3384 E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3385 swsm | E1000_SWSM_DRV_LOAD);
3386 } else {
3387 uint32_t ctrl_ext;
3389 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3390 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3391 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3393 sc->flags |= EMX_FLAG_HW_CTRL;
3397 * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3398 * For ASF and Pass Through versions of f/w this means that the
3399 * driver is no longer loaded. For AMT version (only with 82573)
3400 * of the f/w this means that the network i/f is closed.
3402 static void
3403 emx_rel_hw_control(struct emx_softc *sc)
3405 if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3406 return;
3407 sc->flags &= ~EMX_FLAG_HW_CTRL;
3409 /* Let firmware taken over control of h/w */
3410 if (sc->hw.mac.type == e1000_82573) {
3411 uint32_t swsm;
3413 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3414 E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3415 swsm & ~E1000_SWSM_DRV_LOAD);
3416 } else {
3417 uint32_t ctrl_ext;
3419 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3420 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3421 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3425 static int
3426 emx_is_valid_eaddr(const uint8_t *addr)
3428 char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3430 if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3431 return (FALSE);
3433 return (TRUE);
3437 * Enable PCI Wake On Lan capability
3439 void
3440 emx_enable_wol(device_t dev)
3442 uint16_t cap, status;
3443 uint8_t id;
3445 /* First find the capabilities pointer*/
3446 cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3448 /* Read the PM Capabilities */
3449 id = pci_read_config(dev, cap, 1);
3450 if (id != PCIY_PMG) /* Something wrong */
3451 return;
3454 * OK, we have the power capabilities,
3455 * so now get the status register
3457 cap += PCIR_POWER_STATUS;
3458 status = pci_read_config(dev, cap, 2);
3459 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3460 pci_write_config(dev, cap, status, 2);
3463 static void
3464 emx_update_stats(struct emx_softc *sc)
3466 struct ifnet *ifp = &sc->arpcom.ac_if;
3468 if (sc->hw.phy.media_type == e1000_media_type_copper ||
3469 (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3470 sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3471 sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3473 sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3474 sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3475 sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3476 sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3478 sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3479 sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3480 sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3481 sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3482 sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3483 sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3484 sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3485 sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3486 sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3487 sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3488 sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3489 sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3490 sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3491 sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3492 sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3493 sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3494 sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3495 sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3496 sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3497 sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3499 /* For the 64-bit byte counters the low dword must be read first. */
3500 /* Both registers clear on the read of the high dword */
3502 sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3503 sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3505 sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3506 sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3507 sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3508 sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3509 sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3511 sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3512 sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3514 sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3515 sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3516 sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3517 sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3518 sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3519 sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3520 sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3521 sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3522 sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3523 sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3525 sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3526 sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3527 sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3528 sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3529 sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3530 sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3532 IFNET_STAT_SET(ifp, collisions, sc->stats.colc);
3534 /* Rx Errors */
3535 IFNET_STAT_SET(ifp, ierrors,
3536 sc->stats.rxerrc + sc->stats.crcerrs + sc->stats.algnerrc +
3537 sc->stats.ruc + sc->stats.roc + sc->stats.mpc + sc->stats.cexterr);
3539 /* Tx Errors */
3540 IFNET_STAT_SET(ifp, oerrors, sc->stats.ecol + sc->stats.latecol);
3543 static void
3544 emx_print_debug_info(struct emx_softc *sc)
3546 device_t dev = sc->dev;
3547 uint8_t *hw_addr = sc->hw.hw_addr;
3548 int i;
3550 device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3551 device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3552 E1000_READ_REG(&sc->hw, E1000_CTRL),
3553 E1000_READ_REG(&sc->hw, E1000_RCTL));
3554 device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3555 ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3556 (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3557 device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3558 sc->hw.fc.high_water, sc->hw.fc.low_water);
3559 device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3560 E1000_READ_REG(&sc->hw, E1000_TIDV),
3561 E1000_READ_REG(&sc->hw, E1000_TADV));
3562 device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3563 E1000_READ_REG(&sc->hw, E1000_RDTR),
3564 E1000_READ_REG(&sc->hw, E1000_RADV));
3566 for (i = 0; i < sc->tx_ring_cnt; ++i) {
3567 device_printf(dev, "hw %d tdh = %d, hw tdt = %d\n", i,
3568 E1000_READ_REG(&sc->hw, E1000_TDH(i)),
3569 E1000_READ_REG(&sc->hw, E1000_TDT(i)));
3571 for (i = 0; i < sc->rx_ring_cnt; ++i) {
3572 device_printf(dev, "hw %d rdh = %d, hw rdt = %d\n", i,
3573 E1000_READ_REG(&sc->hw, E1000_RDH(i)),
3574 E1000_READ_REG(&sc->hw, E1000_RDT(i)));
3577 for (i = 0; i < sc->tx_ring_cnt; ++i) {
3578 device_printf(dev, "TX %d Tx descriptors avail = %d\n", i,
3579 sc->tx_data[i].num_tx_desc_avail);
3580 device_printf(dev, "TX %d TSO segments = %lu\n", i,
3581 sc->tx_data[i].tso_segments);
3582 device_printf(dev, "TX %d TSO ctx reused = %lu\n", i,
3583 sc->tx_data[i].tso_ctx_reused);
3587 static void
3588 emx_print_hw_stats(struct emx_softc *sc)
3590 device_t dev = sc->dev;
3592 device_printf(dev, "Excessive collisions = %lld\n",
3593 (long long)sc->stats.ecol);
3594 #if (DEBUG_HW > 0) /* Dont output these errors normally */
3595 device_printf(dev, "Symbol errors = %lld\n",
3596 (long long)sc->stats.symerrs);
3597 #endif
3598 device_printf(dev, "Sequence errors = %lld\n",
3599 (long long)sc->stats.sec);
3600 device_printf(dev, "Defer count = %lld\n",
3601 (long long)sc->stats.dc);
3602 device_printf(dev, "Missed Packets = %lld\n",
3603 (long long)sc->stats.mpc);
3604 device_printf(dev, "Receive No Buffers = %lld\n",
3605 (long long)sc->stats.rnbc);
3606 /* RLEC is inaccurate on some hardware, calculate our own. */
3607 device_printf(dev, "Receive Length Errors = %lld\n",
3608 ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3609 device_printf(dev, "Receive errors = %lld\n",
3610 (long long)sc->stats.rxerrc);
3611 device_printf(dev, "Crc errors = %lld\n",
3612 (long long)sc->stats.crcerrs);
3613 device_printf(dev, "Alignment errors = %lld\n",
3614 (long long)sc->stats.algnerrc);
3615 device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3616 (long long)sc->stats.cexterr);
3617 device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3618 device_printf(dev, "XON Rcvd = %lld\n",
3619 (long long)sc->stats.xonrxc);
3620 device_printf(dev, "XON Xmtd = %lld\n",
3621 (long long)sc->stats.xontxc);
3622 device_printf(dev, "XOFF Rcvd = %lld\n",
3623 (long long)sc->stats.xoffrxc);
3624 device_printf(dev, "XOFF Xmtd = %lld\n",
3625 (long long)sc->stats.xofftxc);
3626 device_printf(dev, "Good Packets Rcvd = %lld\n",
3627 (long long)sc->stats.gprc);
3628 device_printf(dev, "Good Packets Xmtd = %lld\n",
3629 (long long)sc->stats.gptc);
3632 static void
3633 emx_print_nvm_info(struct emx_softc *sc)
3635 uint16_t eeprom_data;
3636 int i, j, row = 0;
3638 /* Its a bit crude, but it gets the job done */
3639 kprintf("\nInterface EEPROM Dump:\n");
3640 kprintf("Offset\n0x0000 ");
3641 for (i = 0, j = 0; i < 32; i++, j++) {
3642 if (j == 8) { /* Make the offset block */
3643 j = 0; ++row;
3644 kprintf("\n0x00%x0 ",row);
3646 e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3647 kprintf("%04x ", eeprom_data);
3649 kprintf("\n");
3652 static int
3653 emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3655 struct emx_softc *sc;
3656 struct ifnet *ifp;
3657 int error, result;
3659 result = -1;
3660 error = sysctl_handle_int(oidp, &result, 0, req);
3661 if (error || !req->newptr)
3662 return (error);
3664 sc = (struct emx_softc *)arg1;
3665 ifp = &sc->arpcom.ac_if;
3667 ifnet_serialize_all(ifp);
3669 if (result == 1)
3670 emx_print_debug_info(sc);
3673 * This value will cause a hex dump of the
3674 * first 32 16-bit words of the EEPROM to
3675 * the screen.
3677 if (result == 2)
3678 emx_print_nvm_info(sc);
3680 ifnet_deserialize_all(ifp);
3682 return (error);
3685 static int
3686 emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3688 int error, result;
3690 result = -1;
3691 error = sysctl_handle_int(oidp, &result, 0, req);
3692 if (error || !req->newptr)
3693 return (error);
3695 if (result == 1) {
3696 struct emx_softc *sc = (struct emx_softc *)arg1;
3697 struct ifnet *ifp = &sc->arpcom.ac_if;
3699 ifnet_serialize_all(ifp);
3700 emx_print_hw_stats(sc);
3701 ifnet_deserialize_all(ifp);
3703 return (error);
3706 static void
3707 emx_add_sysctl(struct emx_softc *sc)
3709 struct sysctl_ctx_list *ctx;
3710 struct sysctl_oid *tree;
3711 #if defined(EMX_RSS_DEBUG) || defined(EMX_TSS_DEBUG)
3712 char pkt_desc[32];
3713 int i;
3714 #endif
3716 ctx = device_get_sysctl_ctx(sc->dev);
3717 tree = device_get_sysctl_tree(sc->dev);
3718 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3719 OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3720 emx_sysctl_debug_info, "I", "Debug Information");
3722 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3723 OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3724 emx_sysctl_stats, "I", "Statistics");
3726 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3727 OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_data[0].num_rx_desc, 0,
3728 "# of RX descs");
3729 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3730 OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_data[0].num_tx_desc, 0,
3731 "# of TX descs");
3733 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3734 OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3735 emx_sysctl_int_throttle, "I", "interrupt throttling rate");
3736 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3737 OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3738 emx_sysctl_tx_intr_nsegs, "I", "# segments per TX interrupt");
3739 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3740 OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3741 emx_sysctl_tx_wreg_nsegs, "I",
3742 "# segments sent before write to hardware register");
3744 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3745 OID_AUTO, "rx_ring_cnt", CTLFLAG_RD, &sc->rx_ring_cnt, 0,
3746 "# of RX rings");
3747 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3748 OID_AUTO, "tx_ring_cnt", CTLFLAG_RD, &sc->tx_ring_cnt, 0,
3749 "# of TX rings");
3750 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3751 OID_AUTO, "tx_ring_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
3752 "# of TX rings used");
3754 #ifdef IFPOLL_ENABLE
3755 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3756 OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
3757 sc, 0, emx_sysctl_npoll_rxoff, "I",
3758 "NPOLLING RX cpu offset");
3759 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
3760 OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
3761 sc, 0, emx_sysctl_npoll_txoff, "I",
3762 "NPOLLING TX cpu offset");
3763 #endif
3765 #ifdef EMX_RSS_DEBUG
3766 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
3767 OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3768 0, "RSS debug level");
3769 for (i = 0; i < sc->rx_ring_cnt; ++i) {
3770 ksnprintf(pkt_desc, sizeof(pkt_desc), "rx%d_pkt", i);
3771 SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3772 pkt_desc, CTLFLAG_RW, &sc->rx_data[i].rx_pkts,
3773 "RXed packets");
3775 #endif
3776 #ifdef EMX_TSS_DEBUG
3777 for (i = 0; i < sc->tx_ring_cnt; ++i) {
3778 ksnprintf(pkt_desc, sizeof(pkt_desc), "tx%d_pkt", i);
3779 SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3780 pkt_desc, CTLFLAG_RW, &sc->tx_data[i].tx_pkts,
3781 "TXed packets");
3783 #endif
3786 static int
3787 emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3789 struct emx_softc *sc = (void *)arg1;
3790 struct ifnet *ifp = &sc->arpcom.ac_if;
3791 int error, throttle;
3793 throttle = sc->int_throttle_ceil;
3794 error = sysctl_handle_int(oidp, &throttle, 0, req);
3795 if (error || req->newptr == NULL)
3796 return error;
3797 if (throttle < 0 || throttle > 1000000000 / 256)
3798 return EINVAL;
3800 if (throttle) {
3802 * Set the interrupt throttling rate in 256ns increments,
3803 * recalculate sysctl value assignment to get exact frequency.
3805 throttle = 1000000000 / 256 / throttle;
3807 /* Upper 16bits of ITR is reserved and should be zero */
3808 if (throttle & 0xffff0000)
3809 return EINVAL;
3812 ifnet_serialize_all(ifp);
3814 if (throttle)
3815 sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3816 else
3817 sc->int_throttle_ceil = 0;
3819 if (ifp->if_flags & IFF_RUNNING)
3820 emx_set_itr(sc, throttle);
3822 ifnet_deserialize_all(ifp);
3824 if (bootverbose) {
3825 if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3826 sc->int_throttle_ceil);
3828 return 0;
3831 static int
3832 emx_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3834 struct emx_softc *sc = (void *)arg1;
3835 struct ifnet *ifp = &sc->arpcom.ac_if;
3836 struct emx_txdata *tdata = &sc->tx_data[0];
3837 int error, segs;
3839 segs = tdata->tx_intr_nsegs;
3840 error = sysctl_handle_int(oidp, &segs, 0, req);
3841 if (error || req->newptr == NULL)
3842 return error;
3843 if (segs <= 0)
3844 return EINVAL;
3846 ifnet_serialize_all(ifp);
3849 * Don't allow tx_intr_nsegs to become:
3850 * o Less the oact_tx_desc
3851 * o Too large that no TX desc will cause TX interrupt to
3852 * be generated (OACTIVE will never recover)
3853 * o Too small that will cause tx_dd[] overflow
3855 if (segs < tdata->oact_tx_desc ||
3856 segs >= tdata->num_tx_desc - tdata->oact_tx_desc ||
3857 segs < tdata->num_tx_desc / EMX_TXDD_SAFE) {
3858 error = EINVAL;
3859 } else {
3860 int i;
3862 error = 0;
3863 for (i = 0; i < sc->tx_ring_cnt; ++i)
3864 sc->tx_data[i].tx_intr_nsegs = segs;
3867 ifnet_deserialize_all(ifp);
3869 return error;
3872 static int
3873 emx_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3875 struct emx_softc *sc = (void *)arg1;
3876 struct ifnet *ifp = &sc->arpcom.ac_if;
3877 int error, nsegs, i;
3879 nsegs = sc->tx_data[0].tx_wreg_nsegs;
3880 error = sysctl_handle_int(oidp, &nsegs, 0, req);
3881 if (error || req->newptr == NULL)
3882 return error;
3884 ifnet_serialize_all(ifp);
3885 for (i = 0; i < sc->tx_ring_cnt; ++i)
3886 sc->tx_data[i].tx_wreg_nsegs =nsegs;
3887 ifnet_deserialize_all(ifp);
3889 return 0;
3892 #ifdef IFPOLL_ENABLE
3894 static int
3895 emx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3897 struct emx_softc *sc = (void *)arg1;
3898 struct ifnet *ifp = &sc->arpcom.ac_if;
3899 int error, off;
3901 off = sc->rx_npoll_off;
3902 error = sysctl_handle_int(oidp, &off, 0, req);
3903 if (error || req->newptr == NULL)
3904 return error;
3905 if (off < 0)
3906 return EINVAL;
3908 ifnet_serialize_all(ifp);
3909 if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3910 error = EINVAL;
3911 } else {
3912 error = 0;
3913 sc->rx_npoll_off = off;
3915 ifnet_deserialize_all(ifp);
3917 return error;
3920 static int
3921 emx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3923 struct emx_softc *sc = (void *)arg1;
3924 struct ifnet *ifp = &sc->arpcom.ac_if;
3925 int error, off;
3927 off = sc->tx_npoll_off;
3928 error = sysctl_handle_int(oidp, &off, 0, req);
3929 if (error || req->newptr == NULL)
3930 return error;
3931 if (off < 0)
3932 return EINVAL;
3934 ifnet_serialize_all(ifp);
3935 if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3936 error = EINVAL;
3937 } else {
3938 error = 0;
3939 sc->tx_npoll_off = off;
3941 ifnet_deserialize_all(ifp);
3943 return error;
3946 #endif /* IFPOLL_ENABLE */
3948 static int
3949 emx_dma_alloc(struct emx_softc *sc)
3951 int error, i;
3954 * Create top level busdma tag
3956 error = bus_dma_tag_create(NULL, 1, 0,
3957 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3958 NULL, NULL,
3959 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3960 0, &sc->parent_dtag);
3961 if (error) {
3962 device_printf(sc->dev, "could not create top level DMA tag\n");
3963 return error;
3967 * Allocate transmit descriptors ring and buffers
3969 for (i = 0; i < sc->tx_ring_cnt; ++i) {
3970 error = emx_create_tx_ring(&sc->tx_data[i]);
3971 if (error) {
3972 device_printf(sc->dev,
3973 "Could not setup transmit structures\n");
3974 return error;
3979 * Allocate receive descriptors ring and buffers
3981 for (i = 0; i < sc->rx_ring_cnt; ++i) {
3982 error = emx_create_rx_ring(&sc->rx_data[i]);
3983 if (error) {
3984 device_printf(sc->dev,
3985 "Could not setup receive structures\n");
3986 return error;
3989 return 0;
3992 static void
3993 emx_dma_free(struct emx_softc *sc)
3995 int i;
3997 for (i = 0; i < sc->tx_ring_cnt; ++i) {
3998 emx_destroy_tx_ring(&sc->tx_data[i],
3999 sc->tx_data[i].num_tx_desc);
4002 for (i = 0; i < sc->rx_ring_cnt; ++i) {
4003 emx_destroy_rx_ring(&sc->rx_data[i],
4004 sc->rx_data[i].num_rx_desc);
4007 /* Free top level busdma tag */
4008 if (sc->parent_dtag != NULL)
4009 bus_dma_tag_destroy(sc->parent_dtag);
4012 static void
4013 emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
4015 struct emx_softc *sc = ifp->if_softc;
4017 ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, slz);
4020 static void
4021 emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4023 struct emx_softc *sc = ifp->if_softc;
4025 ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, slz);
4028 static int
4029 emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4031 struct emx_softc *sc = ifp->if_softc;
4033 return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE, slz);
4036 static void
4037 emx_serialize_skipmain(struct emx_softc *sc)
4039 lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
4042 static void
4043 emx_deserialize_skipmain(struct emx_softc *sc)
4045 lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
4048 #ifdef INVARIANTS
4050 static void
4051 emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
4052 boolean_t serialized)
4054 struct emx_softc *sc = ifp->if_softc;
4056 ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
4057 slz, serialized);
4060 #endif /* INVARIANTS */
4062 #ifdef IFPOLL_ENABLE
4064 static void
4065 emx_npoll_status(struct ifnet *ifp)
4067 struct emx_softc *sc = ifp->if_softc;
4068 uint32_t reg_icr;
4070 ASSERT_SERIALIZED(&sc->main_serialize);
4072 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4073 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4074 callout_stop(&sc->timer);
4075 sc->hw.mac.get_link_status = 1;
4076 emx_update_link_status(sc);
4077 callout_reset(&sc->timer, hz, emx_timer, sc);
4081 static void
4082 emx_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
4084 struct emx_txdata *tdata = arg;
4086 ASSERT_SERIALIZED(&tdata->tx_serialize);
4088 emx_txeof(tdata);
4089 if (!ifsq_is_empty(tdata->ifsq))
4090 ifsq_devstart(tdata->ifsq);
4093 static void
4094 emx_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
4096 struct emx_rxdata *rdata = arg;
4098 ASSERT_SERIALIZED(&rdata->rx_serialize);
4100 emx_rxeof(rdata, cycle);
4103 static void
4104 emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
4106 struct emx_softc *sc = ifp->if_softc;
4107 int i, txr_cnt;
4109 ASSERT_IFNET_SERIALIZED_ALL(ifp);
4111 if (info) {
4112 int off;
4114 info->ifpi_status.status_func = emx_npoll_status;
4115 info->ifpi_status.serializer = &sc->main_serialize;
4117 txr_cnt = emx_get_txring_inuse(sc, TRUE);
4118 off = sc->tx_npoll_off;
4119 for (i = 0; i < txr_cnt; ++i) {
4120 struct emx_txdata *tdata = &sc->tx_data[i];
4121 int idx = i + off;
4123 KKASSERT(idx < ncpus2);
4124 info->ifpi_tx[idx].poll_func = emx_npoll_tx;
4125 info->ifpi_tx[idx].arg = tdata;
4126 info->ifpi_tx[idx].serializer = &tdata->tx_serialize;
4127 ifsq_set_cpuid(tdata->ifsq, idx);
4130 off = sc->rx_npoll_off;
4131 for (i = 0; i < sc->rx_ring_cnt; ++i) {
4132 struct emx_rxdata *rdata = &sc->rx_data[i];
4133 int idx = i + off;
4135 KKASSERT(idx < ncpus2);
4136 info->ifpi_rx[idx].poll_func = emx_npoll_rx;
4137 info->ifpi_rx[idx].arg = rdata;
4138 info->ifpi_rx[idx].serializer = &rdata->rx_serialize;
4141 if (ifp->if_flags & IFF_RUNNING) {
4142 if (txr_cnt == sc->tx_ring_inuse)
4143 emx_disable_intr(sc);
4144 else
4145 emx_init(sc);
4147 } else {
4148 for (i = 0; i < sc->tx_ring_cnt; ++i) {
4149 struct emx_txdata *tdata = &sc->tx_data[i];
4151 ifsq_set_cpuid(tdata->ifsq,
4152 rman_get_cpuid(sc->intr_res));
4155 if (ifp->if_flags & IFF_RUNNING) {
4156 txr_cnt = emx_get_txring_inuse(sc, FALSE);
4157 if (txr_cnt == sc->tx_ring_inuse)
4158 emx_enable_intr(sc);
4159 else
4160 emx_init(sc);
4165 #endif /* IFPOLL_ENABLE */
4167 static void
4168 emx_set_itr(struct emx_softc *sc, uint32_t itr)
4170 E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
4171 if (sc->hw.mac.type == e1000_82574) {
4172 int i;
4175 * When using MSIX interrupts we need to
4176 * throttle using the EITR register
4178 for (i = 0; i < 4; ++i)
4179 E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
4184 * Disable the L0s, 82574L Errata #20
4186 static void
4187 emx_disable_aspm(struct emx_softc *sc)
4189 uint16_t link_cap, link_ctrl, disable;
4190 uint8_t pcie_ptr, reg;
4191 device_t dev = sc->dev;
4193 switch (sc->hw.mac.type) {
4194 case e1000_82571:
4195 case e1000_82572:
4196 case e1000_82573:
4198 * 82573 specification update
4199 * errata #8 disable L0s
4200 * errata #41 disable L1
4202 * 82571/82572 specification update
4203 # errata #13 disable L1
4204 * errata #68 disable L0s
4206 disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4207 break;
4209 case e1000_82574:
4211 * 82574 specification update errata #20
4213 * There is no need to disable L1
4215 disable = PCIEM_LNKCTL_ASPM_L0S;
4216 break;
4218 default:
4219 return;
4222 pcie_ptr = pci_get_pciecap_ptr(dev);
4223 if (pcie_ptr == 0)
4224 return;
4226 link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4227 if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4228 return;
4230 if (bootverbose)
4231 if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
4233 reg = pcie_ptr + PCIER_LINKCTRL;
4234 link_ctrl = pci_read_config(dev, reg, 2);
4235 link_ctrl &= ~disable;
4236 pci_write_config(dev, reg, link_ctrl, 2);
4239 static int
4240 emx_tso_pullup(struct emx_txdata *tdata, struct mbuf **mp)
4242 int iphlen, hoff, thoff, ex = 0;
4243 struct mbuf *m;
4244 struct ip *ip;
4246 m = *mp;
4247 KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4249 iphlen = m->m_pkthdr.csum_iphlen;
4250 thoff = m->m_pkthdr.csum_thlen;
4251 hoff = m->m_pkthdr.csum_lhlen;
4253 KASSERT(iphlen > 0, ("invalid ip hlen"));
4254 KASSERT(thoff > 0, ("invalid tcp hlen"));
4255 KASSERT(hoff > 0, ("invalid ether hlen"));
4257 if (tdata->tx_flags & EMX_TXFLAG_TSO_PULLEX)
4258 ex = 4;
4260 if (m->m_len < hoff + iphlen + thoff + ex) {
4261 m = m_pullup(m, hoff + iphlen + thoff + ex);
4262 if (m == NULL) {
4263 *mp = NULL;
4264 return ENOBUFS;
4266 *mp = m;
4268 ip = mtodoff(m, struct ip *, hoff);
4269 ip->ip_len = 0;
4271 return 0;
4274 static int
4275 emx_tso_setup(struct emx_txdata *tdata, struct mbuf *mp,
4276 uint32_t *txd_upper, uint32_t *txd_lower)
4278 struct e1000_context_desc *TXD;
4279 int hoff, iphlen, thoff, hlen;
4280 int mss, pktlen, curr_txd;
4282 #ifdef EMX_TSO_DEBUG
4283 tdata->tso_segments++;
4284 #endif
4286 iphlen = mp->m_pkthdr.csum_iphlen;
4287 thoff = mp->m_pkthdr.csum_thlen;
4288 hoff = mp->m_pkthdr.csum_lhlen;
4289 mss = mp->m_pkthdr.tso_segsz;
4290 pktlen = mp->m_pkthdr.len;
4292 if ((tdata->tx_flags & EMX_TXFLAG_FORCECTX) == 0 &&
4293 tdata->csum_flags == CSUM_TSO &&
4294 tdata->csum_iphlen == iphlen &&
4295 tdata->csum_lhlen == hoff &&
4296 tdata->csum_thlen == thoff &&
4297 tdata->csum_mss == mss &&
4298 tdata->csum_pktlen == pktlen) {
4299 *txd_upper = tdata->csum_txd_upper;
4300 *txd_lower = tdata->csum_txd_lower;
4301 #ifdef EMX_TSO_DEBUG
4302 tdata->tso_ctx_reused++;
4303 #endif
4304 return 0;
4306 hlen = hoff + iphlen + thoff;
4309 * Setup a new TSO context.
4312 curr_txd = tdata->next_avail_tx_desc;
4313 TXD = (struct e1000_context_desc *)&tdata->tx_desc_base[curr_txd];
4315 *txd_lower = E1000_TXD_CMD_DEXT | /* Extended descr type */
4316 E1000_TXD_DTYP_D | /* Data descr type */
4317 E1000_TXD_CMD_TSE; /* Do TSE on this packet */
4319 /* IP and/or TCP header checksum calculation and insertion. */
4320 *txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4323 * Start offset for header checksum calculation.
4324 * End offset for header checksum calculation.
4325 * Offset of place put the checksum.
4327 TXD->lower_setup.ip_fields.ipcss = hoff;
4328 TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4329 TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4332 * Start offset for payload checksum calculation.
4333 * End offset for payload checksum calculation.
4334 * Offset of place to put the checksum.
4336 TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4337 TXD->upper_setup.tcp_fields.tucse = 0;
4338 TXD->upper_setup.tcp_fields.tucso =
4339 hoff + iphlen + offsetof(struct tcphdr, th_sum);
4342 * Payload size per packet w/o any headers.
4343 * Length of all headers up to payload.
4345 TXD->tcp_seg_setup.fields.mss = htole16(mss);
4346 TXD->tcp_seg_setup.fields.hdr_len = hlen;
4347 TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4348 E1000_TXD_CMD_DEXT | /* Extended descr */
4349 E1000_TXD_CMD_TSE | /* TSE context */
4350 E1000_TXD_CMD_IP | /* Do IP csum */
4351 E1000_TXD_CMD_TCP | /* Do TCP checksum */
4352 (pktlen - hlen)); /* Total len */
4354 /* Save the information for this TSO context */
4355 tdata->csum_flags = CSUM_TSO;
4356 tdata->csum_lhlen = hoff;
4357 tdata->csum_iphlen = iphlen;
4358 tdata->csum_thlen = thoff;
4359 tdata->csum_mss = mss;
4360 tdata->csum_pktlen = pktlen;
4361 tdata->csum_txd_upper = *txd_upper;
4362 tdata->csum_txd_lower = *txd_lower;
4364 if (++curr_txd == tdata->num_tx_desc)
4365 curr_txd = 0;
4367 KKASSERT(tdata->num_tx_desc_avail > 0);
4368 tdata->num_tx_desc_avail--;
4370 tdata->next_avail_tx_desc = curr_txd;
4371 return 1;
4374 static int
4375 emx_get_txring_inuse(const struct emx_softc *sc, boolean_t polling)
4377 if (polling)
4378 return sc->tx_ring_cnt;
4379 else
4380 return 1;