kernel - Remove unneeded map token use from the vm_fault path.
[dragonfly.git] / sys / vm / vm_fault.c
blob58bb9136ebaae4229428350d5af47fe547a02a85
1 /*
2 * Copyright (c) 2003-2014 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * ---
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * Copyright (c) 1994 John S. Dyson
39 * All rights reserved.
40 * Copyright (c) 1994 David Greenman
41 * All rights reserved.
44 * This code is derived from software contributed to Berkeley by
45 * The Mach Operating System project at Carnegie-Mellon University.
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * ---
73 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74 * All rights reserved.
76 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
78 * Permission to use, copy, modify and distribute this software and
79 * its documentation is hereby granted, provided that both the copyright
80 * notice and this permission notice appear in all copies of the
81 * software, derivative works or modified versions, and any portions
82 * thereof, and that both notices appear in supporting documentation.
84 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
88 * Carnegie Mellon requests users of this software to return to
90 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
91 * School of Computer Science
92 * Carnegie Mellon University
93 * Pittsburgh PA 15213-3890
95 * any improvements or extensions that they make and grant Carnegie the
96 * rights to redistribute these changes.
100 * Page fault handling module.
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
114 #include <cpu/lwbuf.h>
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
128 #include <sys/thread2.h>
129 #include <vm/vm_page2.h>
131 struct faultstate {
132 vm_page_t m;
133 vm_object_t object;
134 vm_pindex_t pindex;
135 vm_prot_t prot;
136 vm_page_t first_m;
137 vm_object_t first_object;
138 vm_prot_t first_prot;
139 vm_map_t map;
140 vm_map_entry_t entry;
141 int lookup_still_valid;
142 int hardfault;
143 int fault_flags;
144 int map_generation;
145 int shared;
146 int first_shared;
147 boolean_t wired;
148 struct vnode *vp;
151 static int debug_fault = 0;
152 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
153 static int debug_cluster = 0;
154 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
155 int vm_shared_fault = 1;
156 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
157 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
158 "Allow shared token on vm_object");
160 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
161 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
162 vpte_t, int, int);
163 #if 0
164 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
165 #endif
166 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
167 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
168 vm_map_entry_t entry, int prot, int fault_flags);
169 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
170 vm_map_entry_t entry, int prot, int fault_flags);
172 static __inline void
173 release_page(struct faultstate *fs)
175 vm_page_deactivate(fs->m);
176 vm_page_wakeup(fs->m);
177 fs->m = NULL;
181 * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
182 * requires relocking and then checking the timestamp.
184 * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
185 * not have to update fs->map_generation here.
187 * NOTE: This function can fail due to a deadlock against the caller's
188 * holding of a vm_page BUSY.
190 static __inline int
191 relock_map(struct faultstate *fs)
193 int error;
195 if (fs->lookup_still_valid == FALSE && fs->map) {
196 error = vm_map_lock_read_to(fs->map);
197 if (error == 0)
198 fs->lookup_still_valid = TRUE;
199 } else {
200 error = 0;
202 return error;
205 static __inline void
206 unlock_map(struct faultstate *fs)
208 if (fs->lookup_still_valid && fs->map) {
209 vm_map_lookup_done(fs->map, fs->entry, 0);
210 fs->lookup_still_valid = FALSE;
215 * Clean up after a successful call to vm_fault_object() so another call
216 * to vm_fault_object() can be made.
218 static void
219 _cleanup_successful_fault(struct faultstate *fs, int relock)
222 * We allocated a junk page for a COW operation that did
223 * not occur, the page must be freed.
225 if (fs->object != fs->first_object) {
226 KKASSERT(fs->first_shared == 0);
227 vm_page_free(fs->first_m);
228 vm_object_pip_wakeup(fs->object);
229 fs->first_m = NULL;
233 * Reset fs->object.
235 fs->object = fs->first_object;
236 if (relock && fs->lookup_still_valid == FALSE) {
237 if (fs->map)
238 vm_map_lock_read(fs->map);
239 fs->lookup_still_valid = TRUE;
243 static void
244 _unlock_things(struct faultstate *fs, int dealloc)
246 _cleanup_successful_fault(fs, 0);
247 if (dealloc) {
248 /*vm_object_deallocate(fs->first_object);*/
249 /*fs->first_object = NULL; drop used later on */
251 unlock_map(fs);
252 if (fs->vp != NULL) {
253 vput(fs->vp);
254 fs->vp = NULL;
258 #define unlock_things(fs) _unlock_things(fs, 0)
259 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
260 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
263 * TRYPAGER
265 * Determine if the pager for the current object *might* contain the page.
267 * We only need to try the pager if this is not a default object (default
268 * objects are zero-fill and have no real pager), and if we are not taking
269 * a wiring fault or if the FS entry is wired.
271 #define TRYPAGER(fs) \
272 (fs->object->type != OBJT_DEFAULT && \
273 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
276 * vm_fault:
278 * Handle a page fault occuring at the given address, requiring the given
279 * permissions, in the map specified. If successful, the page is inserted
280 * into the associated physical map.
282 * NOTE: The given address should be truncated to the proper page address.
284 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
285 * a standard error specifying why the fault is fatal is returned.
287 * The map in question must be referenced, and remains so.
288 * The caller may hold no locks.
289 * No other requirements.
292 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
294 int result;
295 vm_pindex_t first_pindex;
296 struct faultstate fs;
297 struct lwp *lp;
298 struct proc *p;
299 thread_t td;
300 struct vm_map_ilock ilock;
301 int didilock;
302 int growstack;
303 int retry = 0;
304 int inherit_prot;
306 inherit_prot = fault_type & VM_PROT_NOSYNC;
307 fs.hardfault = 0;
308 fs.fault_flags = fault_flags;
309 fs.vp = NULL;
310 fs.shared = vm_shared_fault;
311 fs.first_shared = vm_shared_fault;
312 growstack = 1;
315 * vm_map interactions
317 td = curthread;
318 if ((lp = td->td_lwp) != NULL)
319 lp->lwp_flags |= LWP_PAGING;
321 RetryFault:
323 * Find the vm_map_entry representing the backing store and resolve
324 * the top level object and page index. This may have the side
325 * effect of executing a copy-on-write on the map entry and/or
326 * creating a shadow object, but will not COW any actual VM pages.
328 * On success fs.map is left read-locked and various other fields
329 * are initialized but not otherwise referenced or locked.
331 * NOTE! vm_map_lookup will try to upgrade the fault_type to
332 * VM_FAULT_WRITE if the map entry is a virtual page table
333 * and also writable, so we can set the 'A'accessed bit in
334 * the virtual page table entry.
336 fs.map = map;
337 result = vm_map_lookup(&fs.map, vaddr, fault_type,
338 &fs.entry, &fs.first_object,
339 &first_pindex, &fs.first_prot, &fs.wired);
342 * If the lookup failed or the map protections are incompatible,
343 * the fault generally fails.
345 * The failure could be due to TDF_NOFAULT if vm_map_lookup()
346 * tried to do a COW fault.
348 * If the caller is trying to do a user wiring we have more work
349 * to do.
351 if (result != KERN_SUCCESS) {
352 if (result == KERN_FAILURE_NOFAULT) {
353 result = KERN_FAILURE;
354 goto done;
356 if (result != KERN_PROTECTION_FAILURE ||
357 (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
359 if (result == KERN_INVALID_ADDRESS && growstack &&
360 map != &kernel_map && curproc != NULL) {
361 result = vm_map_growstack(map, vaddr);
362 if (result == KERN_SUCCESS) {
363 growstack = 0;
364 ++retry;
365 goto RetryFault;
367 result = KERN_FAILURE;
369 goto done;
373 * If we are user-wiring a r/w segment, and it is COW, then
374 * we need to do the COW operation. Note that we don't
375 * currently COW RO sections now, because it is NOT desirable
376 * to COW .text. We simply keep .text from ever being COW'ed
377 * and take the heat that one cannot debug wired .text sections.
379 result = vm_map_lookup(&fs.map, vaddr,
380 VM_PROT_READ|VM_PROT_WRITE|
381 VM_PROT_OVERRIDE_WRITE,
382 &fs.entry, &fs.first_object,
383 &first_pindex, &fs.first_prot,
384 &fs.wired);
385 if (result != KERN_SUCCESS) {
386 /* could also be KERN_FAILURE_NOFAULT */
387 result = KERN_FAILURE;
388 goto done;
392 * If we don't COW now, on a user wire, the user will never
393 * be able to write to the mapping. If we don't make this
394 * restriction, the bookkeeping would be nearly impossible.
396 * XXX We have a shared lock, this will have a MP race but
397 * I don't see how it can hurt anything.
399 if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
400 atomic_clear_char(&fs.entry->max_protection,
401 VM_PROT_WRITE);
406 * fs.map is read-locked
408 * Misc checks. Save the map generation number to detect races.
410 fs.map_generation = fs.map->timestamp;
411 fs.lookup_still_valid = TRUE;
412 fs.first_m = NULL;
413 fs.object = fs.first_object; /* so unlock_and_deallocate works */
414 fs.prot = fs.first_prot; /* default (used by uksmap) */
416 if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
417 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
418 panic("vm_fault: fault on nofault entry, addr: %p",
419 (void *)vaddr);
421 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
422 vaddr >= fs.entry->start &&
423 vaddr < fs.entry->start + PAGE_SIZE) {
424 panic("vm_fault: fault on stack guard, addr: %p",
425 (void *)vaddr);
430 * A user-kernel shared map has no VM object and bypasses
431 * everything. We execute the uksmap function with a temporary
432 * fictitious vm_page. The address is directly mapped with no
433 * management.
435 if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
436 struct vm_page fakem;
438 bzero(&fakem, sizeof(fakem));
439 fakem.pindex = first_pindex;
440 fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
441 fakem.valid = VM_PAGE_BITS_ALL;
442 fakem.pat_mode = VM_MEMATTR_DEFAULT;
443 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
444 result = KERN_FAILURE;
445 unlock_things(&fs);
446 goto done2;
448 pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
449 fs.wired, fs.entry);
450 goto done_success;
454 * A system map entry may return a NULL object. No object means
455 * no pager means an unrecoverable kernel fault.
457 if (fs.first_object == NULL) {
458 panic("vm_fault: unrecoverable fault at %p in entry %p",
459 (void *)vaddr, fs.entry);
463 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
464 * is set.
466 * Unfortunately a deadlock can occur if we are forced to page-in
467 * from swap, but diving all the way into the vm_pager_get_page()
468 * function to find out is too much. Just check the object type.
470 * The deadlock is a CAM deadlock on a busy VM page when trying
471 * to finish an I/O if another process gets stuck in
472 * vop_helper_read_shortcut() due to a swap fault.
474 if ((td->td_flags & TDF_NOFAULT) &&
475 (retry ||
476 fs.first_object->type == OBJT_VNODE ||
477 fs.first_object->type == OBJT_SWAP ||
478 fs.first_object->backing_object)) {
479 result = KERN_FAILURE;
480 unlock_things(&fs);
481 goto done2;
485 * If the entry is wired we cannot change the page protection.
487 if (fs.wired)
488 fault_type = fs.first_prot;
491 * We generally want to avoid unnecessary exclusive modes on backing
492 * and terminal objects because this can seriously interfere with
493 * heavily fork()'d processes (particularly /bin/sh scripts).
495 * However, we also want to avoid unnecessary retries due to needed
496 * shared->exclusive promotion for common faults. Exclusive mode is
497 * always needed if any page insertion, rename, or free occurs in an
498 * object (and also indirectly if any I/O is done).
500 * The main issue here is going to be fs.first_shared. If the
501 * first_object has a backing object which isn't shadowed and the
502 * process is single-threaded we might as well use an exclusive
503 * lock/chain right off the bat.
505 if (fs.first_shared && fs.first_object->backing_object &&
506 LIST_EMPTY(&fs.first_object->shadow_head) &&
507 td->td_proc && td->td_proc->p_nthreads == 1) {
508 fs.first_shared = 0;
512 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
513 * VM_FAULT_DIRTY - may require swap_pager_unswapped() later, but
514 * we can try shared first.
516 if (fault_flags & VM_FAULT_UNSWAP) {
517 fs.first_shared = 0;
521 * Obtain a top-level object lock, shared or exclusive depending
522 * on fs.first_shared. If a shared lock winds up being insufficient
523 * we will retry with an exclusive lock.
525 * The vnode pager lock is always shared.
527 if (fs.first_shared)
528 vm_object_hold_shared(fs.first_object);
529 else
530 vm_object_hold(fs.first_object);
531 if (fs.vp == NULL)
532 fs.vp = vnode_pager_lock(fs.first_object);
535 * The page we want is at (first_object, first_pindex), but if the
536 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
537 * page table to figure out the actual pindex.
539 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
540 * ONLY
542 didilock = 0;
543 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
544 vm_map_interlock(fs.map, &ilock, vaddr, vaddr + PAGE_SIZE);
545 didilock = 1;
546 result = vm_fault_vpagetable(&fs, &first_pindex,
547 fs.entry->aux.master_pde,
548 fault_type, 1);
549 if (result == KERN_TRY_AGAIN) {
550 vm_map_deinterlock(fs.map, &ilock);
551 vm_object_drop(fs.first_object);
552 ++retry;
553 goto RetryFault;
555 if (result != KERN_SUCCESS) {
556 vm_map_deinterlock(fs.map, &ilock);
557 goto done;
562 * Now we have the actual (object, pindex), fault in the page. If
563 * vm_fault_object() fails it will unlock and deallocate the FS
564 * data. If it succeeds everything remains locked and fs->object
565 * will have an additional PIP count if it is not equal to
566 * fs->first_object
568 * vm_fault_object will set fs->prot for the pmap operation. It is
569 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
570 * page can be safely written. However, it will force a read-only
571 * mapping for a read fault if the memory is managed by a virtual
572 * page table.
574 * If the fault code uses the shared object lock shortcut
575 * we must not try to burst (we can't allocate VM pages).
577 result = vm_fault_object(&fs, first_pindex, fault_type, 1);
579 if (debug_fault > 0) {
580 --debug_fault;
581 kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
582 "fs.m=%p fs.prot=%02x fs.wired=%02x fs.entry=%p\n",
583 result, (intmax_t)vaddr, fault_type, fault_flags,
584 fs.m, fs.prot, fs.wired, fs.entry);
587 if (result == KERN_TRY_AGAIN) {
588 if (didilock)
589 vm_map_deinterlock(fs.map, &ilock);
590 vm_object_drop(fs.first_object);
591 ++retry;
592 goto RetryFault;
594 if (result != KERN_SUCCESS) {
595 if (didilock)
596 vm_map_deinterlock(fs.map, &ilock);
597 goto done;
601 * On success vm_fault_object() does not unlock or deallocate, and fs.m
602 * will contain a busied page.
604 * Enter the page into the pmap and do pmap-related adjustments.
606 KKASSERT(fs.lookup_still_valid == TRUE);
607 vm_page_flag_set(fs.m, PG_REFERENCED);
608 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
609 fs.wired, fs.entry);
611 if (didilock)
612 vm_map_deinterlock(fs.map, &ilock);
614 /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
615 KKASSERT(fs.m->flags & PG_BUSY);
618 * If the page is not wired down, then put it where the pageout daemon
619 * can find it.
621 if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
622 if (fs.wired)
623 vm_page_wire(fs.m);
624 else
625 vm_page_unwire(fs.m, 1);
626 } else {
627 vm_page_activate(fs.m);
629 vm_page_wakeup(fs.m);
632 * Burst in a few more pages if possible. The fs.map should still
633 * be locked. To avoid interlocking against a vnode->getblk
634 * operation we had to be sure to unbusy our primary vm_page above
635 * first.
637 * A normal burst can continue down backing store, only execute
638 * if we are holding an exclusive lock, otherwise the exclusive
639 * locks the burst code gets might cause excessive SMP collisions.
641 * A quick burst can be utilized when there is no backing object
642 * (i.e. a shared file mmap).
644 if ((fault_flags & VM_FAULT_BURST) &&
645 (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
646 fs.wired == 0) {
647 if (fs.first_shared == 0 && fs.shared == 0) {
648 vm_prefault(fs.map->pmap, vaddr,
649 fs.entry, fs.prot, fault_flags);
650 } else {
651 vm_prefault_quick(fs.map->pmap, vaddr,
652 fs.entry, fs.prot, fault_flags);
656 done_success:
657 mycpu->gd_cnt.v_vm_faults++;
658 if (td->td_lwp)
659 ++td->td_lwp->lwp_ru.ru_minflt;
662 * Unlock everything, and return
664 unlock_things(&fs);
666 if (td->td_lwp) {
667 if (fs.hardfault) {
668 td->td_lwp->lwp_ru.ru_majflt++;
669 } else {
670 td->td_lwp->lwp_ru.ru_minflt++;
674 /*vm_object_deallocate(fs.first_object);*/
675 /*fs.m = NULL; */
676 /*fs.first_object = NULL; must still drop later */
678 result = KERN_SUCCESS;
679 done:
680 if (fs.first_object)
681 vm_object_drop(fs.first_object);
682 done2:
683 if (lp)
684 lp->lwp_flags &= ~LWP_PAGING;
686 #if !defined(NO_SWAPPING)
688 * Check the process RSS limit and force deactivation and
689 * (asynchronous) paging if necessary. This is a complex operation,
690 * only do it for direct user-mode faults, for now.
692 * To reduce overhead implement approximately a ~16MB hysteresis.
694 p = td->td_proc;
695 if ((fault_flags & VM_FAULT_USERMODE) && lp &&
696 p->p_limit && map->pmap && vm_pageout_memuse_mode >= 1 &&
697 map != &kernel_map) {
698 vm_pindex_t limit;
699 vm_pindex_t size;
701 limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
702 p->p_rlimit[RLIMIT_RSS].rlim_max));
703 size = pmap_resident_tlnw_count(map->pmap);
704 if (limit >= 0 && size > 4096 && size - 4096 >= limit) {
705 vm_pageout_map_deactivate_pages(map, limit);
708 #endif
710 return (result);
714 * Fault in the specified virtual address in the current process map,
715 * returning a held VM page or NULL. See vm_fault_page() for more
716 * information.
718 * No requirements.
720 vm_page_t
721 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type,
722 int *errorp, int *busyp)
724 struct lwp *lp = curthread->td_lwp;
725 vm_page_t m;
727 m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
728 fault_type, VM_FAULT_NORMAL,
729 errorp, busyp);
730 return(m);
734 * Fault in the specified virtual address in the specified map, doing all
735 * necessary manipulation of the object store and all necessary I/O. Return
736 * a held VM page or NULL, and set *errorp. The related pmap is not
737 * updated.
739 * If busyp is not NULL then *busyp will be set to TRUE if this routine
740 * decides to return a busied page (aka VM_PROT_WRITE), or FALSE if it
741 * does not (VM_PROT_WRITE not specified or busyp is NULL). If busyp is
742 * NULL the returned page is only held.
744 * If the caller has no intention of writing to the page's contents, busyp
745 * can be passed as NULL along with VM_PROT_WRITE to force a COW operation
746 * without busying the page.
748 * The returned page will also be marked PG_REFERENCED.
750 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
751 * error will be returned.
753 * No requirements.
755 vm_page_t
756 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
757 int fault_flags, int *errorp, int *busyp)
759 vm_pindex_t first_pindex;
760 struct faultstate fs;
761 int result;
762 int retry;
763 int growstack;
764 vm_prot_t orig_fault_type = fault_type;
766 retry = 0;
767 fs.hardfault = 0;
768 fs.fault_flags = fault_flags;
769 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
772 * Dive the pmap (concurrency possible). If we find the
773 * appropriate page we can terminate early and quickly.
775 * This works great for normal programs but will always return
776 * NULL for host lookups of vkernel maps in VMM mode.
778 fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type, busyp);
779 if (fs.m) {
780 if (fault_type & (VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE))
781 vm_page_dirty(fs.m);
782 *errorp = 0;
783 return(fs.m);
787 * Otherwise take a concurrency hit and do a formal page
788 * fault.
790 fs.vp = NULL;
791 fs.shared = vm_shared_fault;
792 fs.first_shared = vm_shared_fault;
793 growstack = 1;
796 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
797 * VM_FAULT_DIRTY - may require swap_pager_unswapped() later, but
798 * we can try shared first.
800 if (fault_flags & VM_FAULT_UNSWAP) {
801 fs.first_shared = 0;
804 RetryFault:
806 * Find the vm_map_entry representing the backing store and resolve
807 * the top level object and page index. This may have the side
808 * effect of executing a copy-on-write on the map entry and/or
809 * creating a shadow object, but will not COW any actual VM pages.
811 * On success fs.map is left read-locked and various other fields
812 * are initialized but not otherwise referenced or locked.
814 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
815 * if the map entry is a virtual page table and also writable,
816 * so we can set the 'A'accessed bit in the virtual page table
817 * entry.
819 fs.map = map;
820 result = vm_map_lookup(&fs.map, vaddr, fault_type,
821 &fs.entry, &fs.first_object,
822 &first_pindex, &fs.first_prot, &fs.wired);
824 if (result != KERN_SUCCESS) {
825 if (result == KERN_FAILURE_NOFAULT) {
826 *errorp = KERN_FAILURE;
827 fs.m = NULL;
828 goto done;
830 if (result != KERN_PROTECTION_FAILURE ||
831 (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
833 if (result == KERN_INVALID_ADDRESS && growstack &&
834 map != &kernel_map && curproc != NULL) {
835 result = vm_map_growstack(map, vaddr);
836 if (result == KERN_SUCCESS) {
837 growstack = 0;
838 ++retry;
839 goto RetryFault;
841 result = KERN_FAILURE;
843 fs.m = NULL;
844 *errorp = result;
845 goto done;
849 * If we are user-wiring a r/w segment, and it is COW, then
850 * we need to do the COW operation. Note that we don't
851 * currently COW RO sections now, because it is NOT desirable
852 * to COW .text. We simply keep .text from ever being COW'ed
853 * and take the heat that one cannot debug wired .text sections.
855 result = vm_map_lookup(&fs.map, vaddr,
856 VM_PROT_READ|VM_PROT_WRITE|
857 VM_PROT_OVERRIDE_WRITE,
858 &fs.entry, &fs.first_object,
859 &first_pindex, &fs.first_prot,
860 &fs.wired);
861 if (result != KERN_SUCCESS) {
862 /* could also be KERN_FAILURE_NOFAULT */
863 *errorp = KERN_FAILURE;
864 fs.m = NULL;
865 goto done;
869 * If we don't COW now, on a user wire, the user will never
870 * be able to write to the mapping. If we don't make this
871 * restriction, the bookkeeping would be nearly impossible.
873 * XXX We have a shared lock, this will have a MP race but
874 * I don't see how it can hurt anything.
876 if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
877 atomic_clear_char(&fs.entry->max_protection,
878 VM_PROT_WRITE);
883 * fs.map is read-locked
885 * Misc checks. Save the map generation number to detect races.
887 fs.map_generation = fs.map->timestamp;
888 fs.lookup_still_valid = TRUE;
889 fs.first_m = NULL;
890 fs.object = fs.first_object; /* so unlock_and_deallocate works */
892 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
893 panic("vm_fault: fault on nofault entry, addr: %lx",
894 (u_long)vaddr);
898 * A user-kernel shared map has no VM object and bypasses
899 * everything. We execute the uksmap function with a temporary
900 * fictitious vm_page. The address is directly mapped with no
901 * management.
903 if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
904 struct vm_page fakem;
906 bzero(&fakem, sizeof(fakem));
907 fakem.pindex = first_pindex;
908 fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
909 fakem.valid = VM_PAGE_BITS_ALL;
910 fakem.pat_mode = VM_MEMATTR_DEFAULT;
911 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
912 *errorp = KERN_FAILURE;
913 fs.m = NULL;
914 unlock_things(&fs);
915 goto done2;
917 fs.m = PHYS_TO_VM_PAGE(fakem.phys_addr);
918 vm_page_hold(fs.m);
919 if (busyp)
920 *busyp = 0; /* don't need to busy R or W */
921 unlock_things(&fs);
922 *errorp = 0;
923 goto done;
928 * A system map entry may return a NULL object. No object means
929 * no pager means an unrecoverable kernel fault.
931 if (fs.first_object == NULL) {
932 panic("vm_fault: unrecoverable fault at %p in entry %p",
933 (void *)vaddr, fs.entry);
937 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
938 * is set.
940 * Unfortunately a deadlock can occur if we are forced to page-in
941 * from swap, but diving all the way into the vm_pager_get_page()
942 * function to find out is too much. Just check the object type.
944 if ((curthread->td_flags & TDF_NOFAULT) &&
945 (retry ||
946 fs.first_object->type == OBJT_VNODE ||
947 fs.first_object->type == OBJT_SWAP ||
948 fs.first_object->backing_object)) {
949 *errorp = KERN_FAILURE;
950 unlock_things(&fs);
951 fs.m = NULL;
952 goto done2;
956 * If the entry is wired we cannot change the page protection.
958 if (fs.wired)
959 fault_type = fs.first_prot;
962 * Make a reference to this object to prevent its disposal while we
963 * are messing with it. Once we have the reference, the map is free
964 * to be diddled. Since objects reference their shadows (and copies),
965 * they will stay around as well.
967 * The reference should also prevent an unexpected collapse of the
968 * parent that might move pages from the current object into the
969 * parent unexpectedly, resulting in corruption.
971 * Bump the paging-in-progress count to prevent size changes (e.g.
972 * truncation operations) during I/O. This must be done after
973 * obtaining the vnode lock in order to avoid possible deadlocks.
975 if (fs.first_shared)
976 vm_object_hold_shared(fs.first_object);
977 else
978 vm_object_hold(fs.first_object);
979 if (fs.vp == NULL)
980 fs.vp = vnode_pager_lock(fs.first_object); /* shared */
983 * The page we want is at (first_object, first_pindex), but if the
984 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
985 * page table to figure out the actual pindex.
987 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
988 * ONLY
990 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
991 result = vm_fault_vpagetable(&fs, &first_pindex,
992 fs.entry->aux.master_pde,
993 fault_type, 1);
994 if (result == KERN_TRY_AGAIN) {
995 vm_object_drop(fs.first_object);
996 ++retry;
997 goto RetryFault;
999 if (result != KERN_SUCCESS) {
1000 *errorp = result;
1001 fs.m = NULL;
1002 goto done;
1007 * Now we have the actual (object, pindex), fault in the page. If
1008 * vm_fault_object() fails it will unlock and deallocate the FS
1009 * data. If it succeeds everything remains locked and fs->object
1010 * will have an additinal PIP count if it is not equal to
1011 * fs->first_object
1013 fs.m = NULL;
1014 result = vm_fault_object(&fs, first_pindex, fault_type, 1);
1016 if (result == KERN_TRY_AGAIN) {
1017 vm_object_drop(fs.first_object);
1018 ++retry;
1019 goto RetryFault;
1021 if (result != KERN_SUCCESS) {
1022 *errorp = result;
1023 fs.m = NULL;
1024 goto done;
1027 if ((orig_fault_type & VM_PROT_WRITE) &&
1028 (fs.prot & VM_PROT_WRITE) == 0) {
1029 *errorp = KERN_PROTECTION_FAILURE;
1030 unlock_and_deallocate(&fs);
1031 fs.m = NULL;
1032 goto done;
1036 * DO NOT UPDATE THE PMAP!!! This function may be called for
1037 * a pmap unrelated to the current process pmap, in which case
1038 * the current cpu core will not be listed in the pmap's pm_active
1039 * mask. Thus invalidation interlocks will fail to work properly.
1041 * (for example, 'ps' uses procfs to read program arguments from
1042 * each process's stack).
1044 * In addition to the above this function will be called to acquire
1045 * a page that might already be faulted in, re-faulting it
1046 * continuously is a waste of time.
1048 * XXX could this have been the cause of our random seg-fault
1049 * issues? procfs accesses user stacks.
1051 vm_page_flag_set(fs.m, PG_REFERENCED);
1052 #if 0
1053 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
1054 mycpu->gd_cnt.v_vm_faults++;
1055 if (curthread->td_lwp)
1056 ++curthread->td_lwp->lwp_ru.ru_minflt;
1057 #endif
1060 * On success vm_fault_object() does not unlock or deallocate, and fs.m
1061 * will contain a busied page. So we must unlock here after having
1062 * messed with the pmap.
1064 unlock_things(&fs);
1067 * Return a held page. We are not doing any pmap manipulation so do
1068 * not set PG_MAPPED. However, adjust the page flags according to
1069 * the fault type because the caller may not use a managed pmapping
1070 * (so we don't want to lose the fact that the page will be dirtied
1071 * if a write fault was specified).
1073 if (fault_type & VM_PROT_WRITE)
1074 vm_page_dirty(fs.m);
1075 vm_page_activate(fs.m);
1077 if (curthread->td_lwp) {
1078 if (fs.hardfault) {
1079 curthread->td_lwp->lwp_ru.ru_majflt++;
1080 } else {
1081 curthread->td_lwp->lwp_ru.ru_minflt++;
1086 * Unlock everything, and return the held or busied page.
1088 if (busyp) {
1089 if (fault_type & (VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE)) {
1090 vm_page_dirty(fs.m);
1091 *busyp = 1;
1092 } else {
1093 *busyp = 0;
1094 vm_page_hold(fs.m);
1095 vm_page_wakeup(fs.m);
1097 } else {
1098 vm_page_hold(fs.m);
1099 vm_page_wakeup(fs.m);
1101 /*vm_object_deallocate(fs.first_object);*/
1102 /*fs.first_object = NULL; */
1103 *errorp = 0;
1105 done:
1106 if (fs.first_object)
1107 vm_object_drop(fs.first_object);
1108 done2:
1109 return(fs.m);
1113 * Fault in the specified (object,offset), dirty the returned page as
1114 * needed. If the requested fault_type cannot be done NULL and an
1115 * error is returned.
1117 * A held (but not busied) page is returned.
1119 * The passed in object must be held as specified by the shared
1120 * argument.
1122 vm_page_t
1123 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
1124 vm_prot_t fault_type, int fault_flags,
1125 int *sharedp, int *errorp)
1127 int result;
1128 vm_pindex_t first_pindex;
1129 struct faultstate fs;
1130 struct vm_map_entry entry;
1132 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1133 bzero(&entry, sizeof(entry));
1134 entry.object.vm_object = object;
1135 entry.maptype = VM_MAPTYPE_NORMAL;
1136 entry.protection = entry.max_protection = fault_type;
1138 fs.hardfault = 0;
1139 fs.fault_flags = fault_flags;
1140 fs.map = NULL;
1141 fs.shared = vm_shared_fault;
1142 fs.first_shared = *sharedp;
1143 fs.vp = NULL;
1144 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1147 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
1148 * VM_FAULT_DIRTY - may require swap_pager_unswapped() later, but
1149 * we can try shared first.
1151 if (fs.first_shared && (fault_flags & VM_FAULT_UNSWAP)) {
1152 fs.first_shared = 0;
1153 vm_object_upgrade(object);
1157 * Retry loop as needed (typically for shared->exclusive transitions)
1159 RetryFault:
1160 *sharedp = fs.first_shared;
1161 first_pindex = OFF_TO_IDX(offset);
1162 fs.first_object = object;
1163 fs.entry = &entry;
1164 fs.first_prot = fault_type;
1165 fs.wired = 0;
1166 /*fs.map_generation = 0; unused */
1169 * Make a reference to this object to prevent its disposal while we
1170 * are messing with it. Once we have the reference, the map is free
1171 * to be diddled. Since objects reference their shadows (and copies),
1172 * they will stay around as well.
1174 * The reference should also prevent an unexpected collapse of the
1175 * parent that might move pages from the current object into the
1176 * parent unexpectedly, resulting in corruption.
1178 * Bump the paging-in-progress count to prevent size changes (e.g.
1179 * truncation operations) during I/O. This must be done after
1180 * obtaining the vnode lock in order to avoid possible deadlocks.
1182 if (fs.vp == NULL)
1183 fs.vp = vnode_pager_lock(fs.first_object);
1185 fs.lookup_still_valid = TRUE;
1186 fs.first_m = NULL;
1187 fs.object = fs.first_object; /* so unlock_and_deallocate works */
1189 #if 0
1190 /* XXX future - ability to operate on VM object using vpagetable */
1191 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1192 result = vm_fault_vpagetable(&fs, &first_pindex,
1193 fs.entry->aux.master_pde,
1194 fault_type, 0);
1195 if (result == KERN_TRY_AGAIN) {
1196 if (fs.first_shared == 0 && *sharedp)
1197 vm_object_upgrade(object);
1198 goto RetryFault;
1200 if (result != KERN_SUCCESS) {
1201 *errorp = result;
1202 return (NULL);
1205 #endif
1208 * Now we have the actual (object, pindex), fault in the page. If
1209 * vm_fault_object() fails it will unlock and deallocate the FS
1210 * data. If it succeeds everything remains locked and fs->object
1211 * will have an additinal PIP count if it is not equal to
1212 * fs->first_object
1214 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1215 * We may have to upgrade its lock to handle the requested fault.
1217 result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1219 if (result == KERN_TRY_AGAIN) {
1220 if (fs.first_shared == 0 && *sharedp)
1221 vm_object_upgrade(object);
1222 goto RetryFault;
1224 if (result != KERN_SUCCESS) {
1225 *errorp = result;
1226 return(NULL);
1229 if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1230 *errorp = KERN_PROTECTION_FAILURE;
1231 unlock_and_deallocate(&fs);
1232 return(NULL);
1236 * On success vm_fault_object() does not unlock or deallocate, so we
1237 * do it here. Note that the returned fs.m will be busied.
1239 unlock_things(&fs);
1242 * Return a held page. We are not doing any pmap manipulation so do
1243 * not set PG_MAPPED. However, adjust the page flags according to
1244 * the fault type because the caller may not use a managed pmapping
1245 * (so we don't want to lose the fact that the page will be dirtied
1246 * if a write fault was specified).
1248 vm_page_hold(fs.m);
1249 vm_page_activate(fs.m);
1250 if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1251 vm_page_dirty(fs.m);
1252 if (fault_flags & VM_FAULT_UNSWAP)
1253 swap_pager_unswapped(fs.m);
1256 * Indicate that the page was accessed.
1258 vm_page_flag_set(fs.m, PG_REFERENCED);
1260 if (curthread->td_lwp) {
1261 if (fs.hardfault) {
1262 curthread->td_lwp->lwp_ru.ru_majflt++;
1263 } else {
1264 curthread->td_lwp->lwp_ru.ru_minflt++;
1269 * Unlock everything, and return the held page.
1271 vm_page_wakeup(fs.m);
1272 /*vm_object_deallocate(fs.first_object);*/
1273 /*fs.first_object = NULL; */
1275 *errorp = 0;
1276 return(fs.m);
1280 * Translate the virtual page number (first_pindex) that is relative
1281 * to the address space into a logical page number that is relative to the
1282 * backing object. Use the virtual page table pointed to by (vpte).
1284 * Possibly downgrade the protection based on the vpte bits.
1286 * This implements an N-level page table. Any level can terminate the
1287 * scan by setting VPTE_PS. A linear mapping is accomplished by setting
1288 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1290 static
1292 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1293 vpte_t vpte, int fault_type, int allow_nofault)
1295 struct lwbuf *lwb;
1296 struct lwbuf lwb_cache;
1297 int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1298 int result;
1299 vpte_t *ptep;
1301 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1302 for (;;) {
1304 * We cannot proceed if the vpte is not valid, not readable
1305 * for a read fault, or not writable for a write fault.
1307 if ((vpte & VPTE_V) == 0) {
1308 unlock_and_deallocate(fs);
1309 return (KERN_FAILURE);
1311 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1312 unlock_and_deallocate(fs);
1313 return (KERN_FAILURE);
1315 if ((vpte & VPTE_PS) || vshift == 0)
1316 break;
1319 * Get the page table page. Nominally we only read the page
1320 * table, but since we are actively setting VPTE_M and VPTE_A,
1321 * tell vm_fault_object() that we are writing it.
1323 * There is currently no real need to optimize this.
1325 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1326 VM_PROT_READ|VM_PROT_WRITE,
1327 allow_nofault);
1328 if (result != KERN_SUCCESS)
1329 return (result);
1332 * Process the returned fs.m and look up the page table
1333 * entry in the page table page.
1335 vshift -= VPTE_PAGE_BITS;
1336 lwb = lwbuf_alloc(fs->m, &lwb_cache);
1337 ptep = ((vpte_t *)lwbuf_kva(lwb) +
1338 ((*pindex >> vshift) & VPTE_PAGE_MASK));
1339 vm_page_activate(fs->m);
1342 * Page table write-back - entire operation including
1343 * validation of the pte must be atomic to avoid races
1344 * against the vkernel changing the pte.
1346 * If the vpte is valid for the* requested operation, do
1347 * a write-back to the page table.
1349 * XXX VPTE_M is not set properly for page directory pages.
1350 * It doesn't get set in the page directory if the page table
1351 * is modified during a read access.
1353 for (;;) {
1354 vpte_t nvpte;
1357 * Reload for the cmpset, but make sure the pte is
1358 * still valid.
1360 vpte = *ptep;
1361 cpu_ccfence();
1362 nvpte = vpte;
1364 if ((vpte & VPTE_V) == 0)
1365 break;
1367 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW))
1368 nvpte |= VPTE_M | VPTE_A;
1369 if (fault_type & VM_PROT_READ)
1370 nvpte |= VPTE_A;
1371 if (vpte == nvpte)
1372 break;
1373 if (atomic_cmpset_long(ptep, vpte, nvpte)) {
1374 vm_page_dirty(fs->m);
1375 break;
1378 lwbuf_free(lwb);
1379 vm_page_flag_set(fs->m, PG_REFERENCED);
1380 vm_page_wakeup(fs->m);
1381 fs->m = NULL;
1382 cleanup_successful_fault(fs);
1386 * When the vkernel sets VPTE_RW it expects the real kernel to
1387 * reflect VPTE_M back when the page is modified via the mapping.
1388 * In order to accomplish this the real kernel must map the page
1389 * read-only for read faults and use write faults to reflect VPTE_M
1390 * back.
1392 * Once VPTE_M has been set, the real kernel's pte allows writing.
1393 * If the vkernel clears VPTE_M the vkernel must be sure to
1394 * MADV_INVAL the real kernel's mappings to force the real kernel
1395 * to re-fault on the next write so oit can set VPTE_M again.
1397 if ((fault_type & VM_PROT_WRITE) == 0 &&
1398 (vpte & (VPTE_RW | VPTE_M)) != (VPTE_RW | VPTE_M)) {
1399 fs->first_prot &= ~VM_PROT_WRITE;
1403 * Combine remaining address bits with the vpte.
1405 *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1406 (*pindex & ((1L << vshift) - 1));
1407 return (KERN_SUCCESS);
1412 * This is the core of the vm_fault code.
1414 * Do all operations required to fault-in (fs.first_object, pindex). Run
1415 * through the shadow chain as necessary and do required COW or virtual
1416 * copy operations. The caller has already fully resolved the vm_map_entry
1417 * and, if appropriate, has created a copy-on-write layer. All we need to
1418 * do is iterate the object chain.
1420 * On failure (fs) is unlocked and deallocated and the caller may return or
1421 * retry depending on the failure code. On success (fs) is NOT unlocked or
1422 * deallocated, fs.m will contained a resolved, busied page, and fs.object
1423 * will have an additional PIP count if it is not equal to fs.first_object.
1425 * If locks based on fs->first_shared or fs->shared are insufficient,
1426 * clear the appropriate field(s) and return RETRY. COWs require that
1427 * first_shared be 0, while page allocations (or frees) require that
1428 * shared be 0. Renames require that both be 0.
1430 * NOTE! fs->[first_]shared might be set with VM_FAULT_DIRTY also set.
1431 * we will have to retry with it exclusive if the vm_page is
1432 * PG_SWAPPED.
1434 * fs->first_object must be held on call.
1436 static
1438 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1439 vm_prot_t fault_type, int allow_nofault)
1441 vm_object_t next_object;
1442 vm_pindex_t pindex;
1443 int error;
1445 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1446 fs->prot = fs->first_prot;
1447 fs->object = fs->first_object;
1448 pindex = first_pindex;
1450 vm_object_chain_acquire(fs->first_object, fs->shared);
1451 vm_object_pip_add(fs->first_object, 1);
1454 * If a read fault occurs we try to upgrade the page protection
1455 * and make it also writable if possible. There are three cases
1456 * where we cannot make the page mapping writable:
1458 * (1) The mapping is read-only or the VM object is read-only,
1459 * fs->prot above will simply not have VM_PROT_WRITE set.
1461 * (2) If the mapping is a virtual page table fs->first_prot will
1462 * have already been properly adjusted by vm_fault_vpagetable().
1463 * to detect writes so we can set VPTE_M in the virtual page
1464 * table. Used by vkernels.
1466 * (3) If the VM page is read-only or copy-on-write, upgrading would
1467 * just result in an unnecessary COW fault.
1469 * (4) If the pmap specifically requests A/M bit emulation, downgrade
1470 * here.
1472 #if 0
1473 /* see vpagetable code */
1474 if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1475 if ((fault_type & VM_PROT_WRITE) == 0)
1476 fs->prot &= ~VM_PROT_WRITE;
1478 #endif
1480 if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1481 pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1482 if ((fault_type & VM_PROT_WRITE) == 0)
1483 fs->prot &= ~VM_PROT_WRITE;
1486 /* vm_object_hold(fs->object); implied b/c object == first_object */
1488 for (;;) {
1490 * The entire backing chain from first_object to object
1491 * inclusive is chainlocked.
1493 * If the object is dead, we stop here
1495 if (fs->object->flags & OBJ_DEAD) {
1496 vm_object_pip_wakeup(fs->first_object);
1497 vm_object_chain_release_all(fs->first_object,
1498 fs->object);
1499 if (fs->object != fs->first_object)
1500 vm_object_drop(fs->object);
1501 unlock_and_deallocate(fs);
1502 return (KERN_PROTECTION_FAILURE);
1506 * See if the page is resident. Wait/Retry if the page is
1507 * busy (lots of stuff may have changed so we can't continue
1508 * in that case).
1510 * We can theoretically allow the soft-busy case on a read
1511 * fault if the page is marked valid, but since such
1512 * pages are typically already pmap'd, putting that
1513 * special case in might be more effort then it is
1514 * worth. We cannot under any circumstances mess
1515 * around with a vm_page_t->busy page except, perhaps,
1516 * to pmap it.
1518 fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1519 TRUE, &error);
1520 if (error) {
1521 vm_object_pip_wakeup(fs->first_object);
1522 vm_object_chain_release_all(fs->first_object,
1523 fs->object);
1524 if (fs->object != fs->first_object)
1525 vm_object_drop(fs->object);
1526 unlock_things(fs);
1527 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1528 mycpu->gd_cnt.v_intrans++;
1529 /*vm_object_deallocate(fs->first_object);*/
1530 /*fs->first_object = NULL;*/
1531 fs->m = NULL;
1532 return (KERN_TRY_AGAIN);
1534 if (fs->m) {
1536 * The page is busied for us.
1538 * If reactivating a page from PQ_CACHE we may have
1539 * to rate-limit.
1541 int queue = fs->m->queue;
1542 vm_page_unqueue_nowakeup(fs->m);
1544 if ((queue - fs->m->pc) == PQ_CACHE &&
1545 vm_page_count_severe()) {
1546 vm_page_activate(fs->m);
1547 vm_page_wakeup(fs->m);
1548 fs->m = NULL;
1549 vm_object_pip_wakeup(fs->first_object);
1550 vm_object_chain_release_all(fs->first_object,
1551 fs->object);
1552 if (fs->object != fs->first_object)
1553 vm_object_drop(fs->object);
1554 unlock_and_deallocate(fs);
1555 if (allow_nofault == 0 ||
1556 (curthread->td_flags & TDF_NOFAULT) == 0) {
1557 thread_t td;
1559 vm_wait_pfault();
1560 td = curthread;
1561 if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1562 return (KERN_PROTECTION_FAILURE);
1564 return (KERN_TRY_AGAIN);
1568 * If it still isn't completely valid (readable),
1569 * or if a read-ahead-mark is set on the VM page,
1570 * jump to readrest, else we found the page and
1571 * can return.
1573 * We can release the spl once we have marked the
1574 * page busy.
1576 if (fs->m->object != &kernel_object) {
1577 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1578 VM_PAGE_BITS_ALL) {
1579 goto readrest;
1581 if (fs->m->flags & PG_RAM) {
1582 if (debug_cluster)
1583 kprintf("R");
1584 vm_page_flag_clear(fs->m, PG_RAM);
1585 goto readrest;
1588 break; /* break to PAGE HAS BEEN FOUND */
1592 * Page is not resident, If this is the search termination
1593 * or the pager might contain the page, allocate a new page.
1595 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1597 * Allocating, must be exclusive.
1599 if (fs->object == fs->first_object &&
1600 fs->first_shared) {
1601 fs->first_shared = 0;
1602 vm_object_pip_wakeup(fs->first_object);
1603 vm_object_chain_release_all(fs->first_object,
1604 fs->object);
1605 if (fs->object != fs->first_object)
1606 vm_object_drop(fs->object);
1607 unlock_and_deallocate(fs);
1608 return (KERN_TRY_AGAIN);
1610 if (fs->object != fs->first_object &&
1611 fs->shared) {
1612 fs->first_shared = 0;
1613 fs->shared = 0;
1614 vm_object_pip_wakeup(fs->first_object);
1615 vm_object_chain_release_all(fs->first_object,
1616 fs->object);
1617 if (fs->object != fs->first_object)
1618 vm_object_drop(fs->object);
1619 unlock_and_deallocate(fs);
1620 return (KERN_TRY_AGAIN);
1624 * If the page is beyond the object size we fail
1626 if (pindex >= fs->object->size) {
1627 vm_object_pip_wakeup(fs->first_object);
1628 vm_object_chain_release_all(fs->first_object,
1629 fs->object);
1630 if (fs->object != fs->first_object)
1631 vm_object_drop(fs->object);
1632 unlock_and_deallocate(fs);
1633 return (KERN_PROTECTION_FAILURE);
1637 * Allocate a new page for this object/offset pair.
1639 * It is possible for the allocation to race, so
1640 * handle the case.
1642 fs->m = NULL;
1643 if (!vm_page_count_severe()) {
1644 fs->m = vm_page_alloc(fs->object, pindex,
1645 ((fs->vp || fs->object->backing_object) ?
1646 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1647 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1648 VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1650 if (fs->m == NULL) {
1651 vm_object_pip_wakeup(fs->first_object);
1652 vm_object_chain_release_all(fs->first_object,
1653 fs->object);
1654 if (fs->object != fs->first_object)
1655 vm_object_drop(fs->object);
1656 unlock_and_deallocate(fs);
1657 if (allow_nofault == 0 ||
1658 (curthread->td_flags & TDF_NOFAULT) == 0) {
1659 thread_t td;
1661 vm_wait_pfault();
1662 td = curthread;
1663 if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1664 return (KERN_PROTECTION_FAILURE);
1666 return (KERN_TRY_AGAIN);
1670 * Fall through to readrest. We have a new page which
1671 * will have to be paged (since m->valid will be 0).
1675 readrest:
1677 * We have found an invalid or partially valid page, a
1678 * page with a read-ahead mark which might be partially or
1679 * fully valid (and maybe dirty too), or we have allocated
1680 * a new page.
1682 * Attempt to fault-in the page if there is a chance that the
1683 * pager has it, and potentially fault in additional pages
1684 * at the same time.
1686 * If TRYPAGER is true then fs.m will be non-NULL and busied
1687 * for us.
1689 if (TRYPAGER(fs)) {
1690 int rv;
1691 int seqaccess;
1692 u_char behavior = vm_map_entry_behavior(fs->entry);
1694 if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1695 seqaccess = 0;
1696 else
1697 seqaccess = -1;
1700 * Doing I/O may synchronously insert additional
1701 * pages so we can't be shared at this point either.
1703 * NOTE: We can't free fs->m here in the allocated
1704 * case (fs->object != fs->first_object) as
1705 * this would require an exclusively locked
1706 * VM object.
1708 if (fs->object == fs->first_object &&
1709 fs->first_shared) {
1710 vm_page_deactivate(fs->m);
1711 vm_page_wakeup(fs->m);
1712 fs->m = NULL;
1713 fs->first_shared = 0;
1714 vm_object_pip_wakeup(fs->first_object);
1715 vm_object_chain_release_all(fs->first_object,
1716 fs->object);
1717 if (fs->object != fs->first_object)
1718 vm_object_drop(fs->object);
1719 unlock_and_deallocate(fs);
1720 return (KERN_TRY_AGAIN);
1722 if (fs->object != fs->first_object &&
1723 fs->shared) {
1724 vm_page_deactivate(fs->m);
1725 vm_page_wakeup(fs->m);
1726 fs->m = NULL;
1727 fs->first_shared = 0;
1728 fs->shared = 0;
1729 vm_object_pip_wakeup(fs->first_object);
1730 vm_object_chain_release_all(fs->first_object,
1731 fs->object);
1732 if (fs->object != fs->first_object)
1733 vm_object_drop(fs->object);
1734 unlock_and_deallocate(fs);
1735 return (KERN_TRY_AGAIN);
1739 * Avoid deadlocking against the map when doing I/O.
1740 * fs.object and the page is PG_BUSY'd.
1742 * NOTE: Once unlocked, fs->entry can become stale
1743 * so this will NULL it out.
1745 * NOTE: fs->entry is invalid until we relock the
1746 * map and verify that the timestamp has not
1747 * changed.
1749 unlock_map(fs);
1752 * Acquire the page data. We still hold a ref on
1753 * fs.object and the page has been PG_BUSY's.
1755 * The pager may replace the page (for example, in
1756 * order to enter a fictitious page into the
1757 * object). If it does so it is responsible for
1758 * cleaning up the passed page and properly setting
1759 * the new page PG_BUSY.
1761 * If we got here through a PG_RAM read-ahead
1762 * mark the page may be partially dirty and thus
1763 * not freeable. Don't bother checking to see
1764 * if the pager has the page because we can't free
1765 * it anyway. We have to depend on the get_page
1766 * operation filling in any gaps whether there is
1767 * backing store or not.
1769 rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1771 if (rv == VM_PAGER_OK) {
1773 * Relookup in case pager changed page. Pager
1774 * is responsible for disposition of old page
1775 * if moved.
1777 * XXX other code segments do relookups too.
1778 * It's a bad abstraction that needs to be
1779 * fixed/removed.
1781 fs->m = vm_page_lookup(fs->object, pindex);
1782 if (fs->m == NULL) {
1783 vm_object_pip_wakeup(fs->first_object);
1784 vm_object_chain_release_all(
1785 fs->first_object, fs->object);
1786 if (fs->object != fs->first_object)
1787 vm_object_drop(fs->object);
1788 unlock_and_deallocate(fs);
1789 return (KERN_TRY_AGAIN);
1791 ++fs->hardfault;
1792 break; /* break to PAGE HAS BEEN FOUND */
1796 * Remove the bogus page (which does not exist at this
1797 * object/offset); before doing so, we must get back
1798 * our object lock to preserve our invariant.
1800 * Also wake up any other process that may want to bring
1801 * in this page.
1803 * If this is the top-level object, we must leave the
1804 * busy page to prevent another process from rushing
1805 * past us, and inserting the page in that object at
1806 * the same time that we are.
1808 if (rv == VM_PAGER_ERROR) {
1809 if (curproc) {
1810 kprintf("vm_fault: pager read error, "
1811 "pid %d (%s)\n",
1812 curproc->p_pid,
1813 curproc->p_comm);
1814 } else {
1815 kprintf("vm_fault: pager read error, "
1816 "thread %p (%s)\n",
1817 curthread,
1818 curproc->p_comm);
1823 * Data outside the range of the pager or an I/O error
1825 * The page may have been wired during the pagein,
1826 * e.g. by the buffer cache, and cannot simply be
1827 * freed. Call vnode_pager_freepage() to deal with it.
1829 * Also note that we cannot free the page if we are
1830 * holding the related object shared. XXX not sure
1831 * what to do in that case.
1833 if (fs->object != fs->first_object) {
1834 vnode_pager_freepage(fs->m);
1835 fs->m = NULL;
1837 * XXX - we cannot just fall out at this
1838 * point, m has been freed and is invalid!
1842 * XXX - the check for kernel_map is a kludge to work
1843 * around having the machine panic on a kernel space
1844 * fault w/ I/O error.
1846 if (((fs->map != &kernel_map) &&
1847 (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1848 if (fs->m) {
1849 if (fs->first_shared) {
1850 vm_page_deactivate(fs->m);
1851 vm_page_wakeup(fs->m);
1852 } else {
1853 vnode_pager_freepage(fs->m);
1855 fs->m = NULL;
1857 vm_object_pip_wakeup(fs->first_object);
1858 vm_object_chain_release_all(fs->first_object,
1859 fs->object);
1860 if (fs->object != fs->first_object)
1861 vm_object_drop(fs->object);
1862 unlock_and_deallocate(fs);
1863 if (rv == VM_PAGER_ERROR)
1864 return (KERN_FAILURE);
1865 else
1866 return (KERN_PROTECTION_FAILURE);
1867 /* NOT REACHED */
1872 * We get here if the object has a default pager (or unwiring)
1873 * or the pager doesn't have the page.
1875 * fs->first_m will be used for the COW unless we find a
1876 * deeper page to be mapped read-only, in which case the
1877 * unlock*(fs) will free first_m.
1879 if (fs->object == fs->first_object)
1880 fs->first_m = fs->m;
1883 * Move on to the next object. The chain lock should prevent
1884 * the backing_object from getting ripped out from under us.
1886 * The object lock for the next object is governed by
1887 * fs->shared.
1889 if ((next_object = fs->object->backing_object) != NULL) {
1890 if (fs->shared)
1891 vm_object_hold_shared(next_object);
1892 else
1893 vm_object_hold(next_object);
1894 vm_object_chain_acquire(next_object, fs->shared);
1895 KKASSERT(next_object == fs->object->backing_object);
1896 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1899 if (next_object == NULL) {
1901 * If there's no object left, fill the page in the top
1902 * object with zeros.
1904 if (fs->object != fs->first_object) {
1905 #if 0
1906 if (fs->first_object->backing_object !=
1907 fs->object) {
1908 vm_object_hold(fs->first_object->backing_object);
1910 #endif
1911 vm_object_chain_release_all(
1912 fs->first_object->backing_object,
1913 fs->object);
1914 #if 0
1915 if (fs->first_object->backing_object !=
1916 fs->object) {
1917 vm_object_drop(fs->first_object->backing_object);
1919 #endif
1920 vm_object_pip_wakeup(fs->object);
1921 vm_object_drop(fs->object);
1922 fs->object = fs->first_object;
1923 pindex = first_pindex;
1924 fs->m = fs->first_m;
1926 fs->first_m = NULL;
1929 * Zero the page and mark it valid.
1931 vm_page_zero_fill(fs->m);
1932 mycpu->gd_cnt.v_zfod++;
1933 fs->m->valid = VM_PAGE_BITS_ALL;
1934 break; /* break to PAGE HAS BEEN FOUND */
1936 if (fs->object != fs->first_object) {
1937 vm_object_pip_wakeup(fs->object);
1938 vm_object_lock_swap();
1939 vm_object_drop(fs->object);
1941 KASSERT(fs->object != next_object,
1942 ("object loop %p", next_object));
1943 fs->object = next_object;
1944 vm_object_pip_add(fs->object, 1);
1948 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1949 * is held.]
1951 * object still held.
1953 * local shared variable may be different from fs->shared.
1955 * If the page is being written, but isn't already owned by the
1956 * top-level object, we have to copy it into a new page owned by the
1957 * top-level object.
1959 KASSERT((fs->m->flags & PG_BUSY) != 0,
1960 ("vm_fault: not busy after main loop"));
1962 if (fs->object != fs->first_object) {
1964 * We only really need to copy if we want to write it.
1966 if (fault_type & VM_PROT_WRITE) {
1968 * This allows pages to be virtually copied from a
1969 * backing_object into the first_object, where the
1970 * backing object has no other refs to it, and cannot
1971 * gain any more refs. Instead of a bcopy, we just
1972 * move the page from the backing object to the
1973 * first object. Note that we must mark the page
1974 * dirty in the first object so that it will go out
1975 * to swap when needed.
1977 if (
1979 * Must be holding exclusive locks
1981 fs->first_shared == 0 &&
1982 fs->shared == 0 &&
1984 * Map, if present, has not changed
1986 (fs->map == NULL ||
1987 fs->map_generation == fs->map->timestamp) &&
1989 * Only one shadow object
1991 (fs->object->shadow_count == 1) &&
1993 * No COW refs, except us
1995 (fs->object->ref_count == 1) &&
1997 * No one else can look this object up
1999 (fs->object->handle == NULL) &&
2001 * No other ways to look the object up
2003 ((fs->object->type == OBJT_DEFAULT) ||
2004 (fs->object->type == OBJT_SWAP)) &&
2006 * We don't chase down the shadow chain
2008 (fs->object == fs->first_object->backing_object) &&
2011 * grab the lock if we need to
2013 (fs->lookup_still_valid ||
2014 fs->map == NULL ||
2015 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
2018 * (first_m) and (m) are both busied. We have
2019 * move (m) into (first_m)'s object/pindex
2020 * in an atomic fashion, then free (first_m).
2022 * first_object is held so second remove
2023 * followed by the rename should wind
2024 * up being atomic. vm_page_free() might
2025 * block so we don't do it until after the
2026 * rename.
2028 fs->lookup_still_valid = 1;
2029 vm_page_protect(fs->first_m, VM_PROT_NONE);
2030 vm_page_remove(fs->first_m);
2031 vm_page_rename(fs->m, fs->first_object,
2032 first_pindex);
2033 vm_page_free(fs->first_m);
2034 fs->first_m = fs->m;
2035 fs->m = NULL;
2036 mycpu->gd_cnt.v_cow_optim++;
2037 } else {
2039 * Oh, well, lets copy it.
2041 * Why are we unmapping the original page
2042 * here? Well, in short, not all accessors
2043 * of user memory go through the pmap. The
2044 * procfs code doesn't have access user memory
2045 * via a local pmap, so vm_fault_page*()
2046 * can't call pmap_enter(). And the umtx*()
2047 * code may modify the COW'd page via a DMAP
2048 * or kernel mapping and not via the pmap,
2049 * leaving the original page still mapped
2050 * read-only into the pmap.
2052 * So we have to remove the page from at
2053 * least the current pmap if it is in it.
2054 * Just remove it from all pmaps.
2056 KKASSERT(fs->first_shared == 0);
2057 vm_page_copy(fs->m, fs->first_m);
2058 vm_page_protect(fs->m, VM_PROT_NONE);
2059 vm_page_event(fs->m, VMEVENT_COW);
2063 * We no longer need the old page or object.
2065 if (fs->m)
2066 release_page(fs);
2069 * We intend to revert to first_object, undo the
2070 * chain lock through to that.
2072 #if 0
2073 if (fs->first_object->backing_object != fs->object)
2074 vm_object_hold(fs->first_object->backing_object);
2075 #endif
2076 vm_object_chain_release_all(
2077 fs->first_object->backing_object,
2078 fs->object);
2079 #if 0
2080 if (fs->first_object->backing_object != fs->object)
2081 vm_object_drop(fs->first_object->backing_object);
2082 #endif
2085 * fs->object != fs->first_object due to above
2086 * conditional
2088 vm_object_pip_wakeup(fs->object);
2089 vm_object_drop(fs->object);
2092 * Only use the new page below...
2094 mycpu->gd_cnt.v_cow_faults++;
2095 fs->m = fs->first_m;
2096 fs->object = fs->first_object;
2097 pindex = first_pindex;
2098 } else {
2100 * If it wasn't a write fault avoid having to copy
2101 * the page by mapping it read-only.
2103 fs->prot &= ~VM_PROT_WRITE;
2108 * Relock the map if necessary, then check the generation count.
2109 * relock_map() will update fs->timestamp to account for the
2110 * relocking if necessary.
2112 * If the count has changed after relocking then all sorts of
2113 * crap may have happened and we have to retry.
2115 * NOTE: The relock_map() can fail due to a deadlock against
2116 * the vm_page we are holding BUSY.
2118 if (fs->lookup_still_valid == FALSE && fs->map) {
2119 if (relock_map(fs) ||
2120 fs->map->timestamp != fs->map_generation) {
2121 release_page(fs);
2122 vm_object_pip_wakeup(fs->first_object);
2123 vm_object_chain_release_all(fs->first_object,
2124 fs->object);
2125 if (fs->object != fs->first_object)
2126 vm_object_drop(fs->object);
2127 unlock_and_deallocate(fs);
2128 return (KERN_TRY_AGAIN);
2133 * If the fault is a write, we know that this page is being
2134 * written NOW so dirty it explicitly to save on pmap_is_modified()
2135 * calls later.
2137 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
2138 * if the page is already dirty to prevent data written with
2139 * the expectation of being synced from not being synced.
2140 * Likewise if this entry does not request NOSYNC then make
2141 * sure the page isn't marked NOSYNC. Applications sharing
2142 * data should use the same flags to avoid ping ponging.
2144 * Also tell the backing pager, if any, that it should remove
2145 * any swap backing since the page is now dirty.
2147 vm_page_activate(fs->m);
2148 if (fs->prot & VM_PROT_WRITE) {
2149 vm_object_set_writeable_dirty(fs->m->object);
2150 vm_set_nosync(fs->m, fs->entry);
2151 if (fs->fault_flags & VM_FAULT_DIRTY) {
2152 vm_page_dirty(fs->m);
2153 if (fs->m->flags & PG_SWAPPED) {
2155 * If the page is swapped out we have to call
2156 * swap_pager_unswapped() which requires an
2157 * exclusive object lock. If we are shared,
2158 * we must clear the shared flag and retry.
2160 if ((fs->object == fs->first_object &&
2161 fs->first_shared) ||
2162 (fs->object != fs->first_object &&
2163 fs->shared)) {
2164 vm_page_wakeup(fs->m);
2165 fs->m = NULL;
2166 if (fs->object == fs->first_object)
2167 fs->first_shared = 0;
2168 else
2169 fs->shared = 0;
2170 vm_object_pip_wakeup(fs->first_object);
2171 vm_object_chain_release_all(
2172 fs->first_object, fs->object);
2173 if (fs->object != fs->first_object)
2174 vm_object_drop(fs->object);
2175 unlock_and_deallocate(fs);
2176 return (KERN_TRY_AGAIN);
2178 swap_pager_unswapped(fs->m);
2183 vm_object_pip_wakeup(fs->first_object);
2184 vm_object_chain_release_all(fs->first_object, fs->object);
2185 if (fs->object != fs->first_object)
2186 vm_object_drop(fs->object);
2189 * Page had better still be busy. We are still locked up and
2190 * fs->object will have another PIP reference if it is not equal
2191 * to fs->first_object.
2193 KASSERT(fs->m->flags & PG_BUSY,
2194 ("vm_fault: page %p not busy!", fs->m));
2197 * Sanity check: page must be completely valid or it is not fit to
2198 * map into user space. vm_pager_get_pages() ensures this.
2200 if (fs->m->valid != VM_PAGE_BITS_ALL) {
2201 vm_page_zero_invalid(fs->m, TRUE);
2202 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
2205 return (KERN_SUCCESS);
2209 * Wire down a range of virtual addresses in a map. The entry in question
2210 * should be marked in-transition and the map must be locked. We must
2211 * release the map temporarily while faulting-in the page to avoid a
2212 * deadlock. Note that the entry may be clipped while we are blocked but
2213 * will never be freed.
2215 * No requirements.
2218 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2219 boolean_t user_wire, int kmflags)
2221 boolean_t fictitious;
2222 vm_offset_t start;
2223 vm_offset_t end;
2224 vm_offset_t va;
2225 pmap_t pmap;
2226 int rv;
2227 int wire_prot;
2228 int fault_flags;
2229 vm_page_t m;
2231 if (user_wire) {
2232 wire_prot = VM_PROT_READ;
2233 fault_flags = VM_FAULT_USER_WIRE;
2234 } else {
2235 wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2236 fault_flags = VM_FAULT_CHANGE_WIRING;
2238 if (kmflags & KM_NOTLBSYNC)
2239 wire_prot |= VM_PROT_NOSYNC;
2241 pmap = vm_map_pmap(map);
2242 start = entry->start;
2243 end = entry->end;
2245 switch(entry->maptype) {
2246 case VM_MAPTYPE_NORMAL:
2247 case VM_MAPTYPE_VPAGETABLE:
2248 fictitious = entry->object.vm_object &&
2249 ((entry->object.vm_object->type == OBJT_DEVICE) ||
2250 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2251 break;
2252 case VM_MAPTYPE_UKSMAP:
2253 fictitious = TRUE;
2254 break;
2255 default:
2256 fictitious = FALSE;
2257 break;
2260 if (entry->eflags & MAP_ENTRY_KSTACK)
2261 start += PAGE_SIZE;
2262 map->timestamp++;
2263 vm_map_unlock(map);
2266 * We simulate a fault to get the page and enter it in the physical
2267 * map.
2269 for (va = start; va < end; va += PAGE_SIZE) {
2270 rv = vm_fault(map, va, wire_prot, fault_flags);
2271 if (rv) {
2272 while (va > start) {
2273 va -= PAGE_SIZE;
2274 m = pmap_unwire(pmap, va);
2275 if (m && !fictitious) {
2276 vm_page_busy_wait(m, FALSE, "vmwrpg");
2277 vm_page_unwire(m, 1);
2278 vm_page_wakeup(m);
2281 goto done;
2284 rv = KERN_SUCCESS;
2285 done:
2286 vm_map_lock(map);
2288 return (rv);
2292 * Unwire a range of virtual addresses in a map. The map should be
2293 * locked.
2295 void
2296 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2298 boolean_t fictitious;
2299 vm_offset_t start;
2300 vm_offset_t end;
2301 vm_offset_t va;
2302 pmap_t pmap;
2303 vm_page_t m;
2305 pmap = vm_map_pmap(map);
2306 start = entry->start;
2307 end = entry->end;
2308 fictitious = entry->object.vm_object &&
2309 ((entry->object.vm_object->type == OBJT_DEVICE) ||
2310 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2311 if (entry->eflags & MAP_ENTRY_KSTACK)
2312 start += PAGE_SIZE;
2315 * Since the pages are wired down, we must be able to get their
2316 * mappings from the physical map system.
2318 for (va = start; va < end; va += PAGE_SIZE) {
2319 m = pmap_unwire(pmap, va);
2320 if (m && !fictitious) {
2321 vm_page_busy_wait(m, FALSE, "vmwrpg");
2322 vm_page_unwire(m, 1);
2323 vm_page_wakeup(m);
2329 * Copy all of the pages from a wired-down map entry to another.
2331 * The source and destination maps must be locked for write.
2332 * The source and destination maps token must be held
2333 * The source map entry must be wired down (or be a sharing map
2334 * entry corresponding to a main map entry that is wired down).
2336 * No other requirements.
2338 * XXX do segment optimization
2340 void
2341 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2342 vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2344 vm_object_t dst_object;
2345 vm_object_t src_object;
2346 vm_ooffset_t dst_offset;
2347 vm_ooffset_t src_offset;
2348 vm_prot_t prot;
2349 vm_offset_t vaddr;
2350 vm_page_t dst_m;
2351 vm_page_t src_m;
2353 src_object = src_entry->object.vm_object;
2354 src_offset = src_entry->offset;
2357 * Create the top-level object for the destination entry. (Doesn't
2358 * actually shadow anything - we copy the pages directly.)
2360 vm_map_entry_allocate_object(dst_entry);
2361 dst_object = dst_entry->object.vm_object;
2363 prot = dst_entry->max_protection;
2366 * Loop through all of the pages in the entry's range, copying each
2367 * one from the source object (it should be there) to the destination
2368 * object.
2370 vm_object_hold(src_object);
2371 vm_object_hold(dst_object);
2372 for (vaddr = dst_entry->start, dst_offset = 0;
2373 vaddr < dst_entry->end;
2374 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2377 * Allocate a page in the destination object
2379 do {
2380 dst_m = vm_page_alloc(dst_object,
2381 OFF_TO_IDX(dst_offset),
2382 VM_ALLOC_NORMAL);
2383 if (dst_m == NULL) {
2384 vm_wait(0);
2386 } while (dst_m == NULL);
2389 * Find the page in the source object, and copy it in.
2390 * (Because the source is wired down, the page will be in
2391 * memory.)
2393 src_m = vm_page_lookup(src_object,
2394 OFF_TO_IDX(dst_offset + src_offset));
2395 if (src_m == NULL)
2396 panic("vm_fault_copy_wired: page missing");
2398 vm_page_copy(src_m, dst_m);
2399 vm_page_event(src_m, VMEVENT_COW);
2402 * Enter it in the pmap...
2404 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2407 * Mark it no longer busy, and put it on the active list.
2409 vm_page_activate(dst_m);
2410 vm_page_wakeup(dst_m);
2412 vm_object_drop(dst_object);
2413 vm_object_drop(src_object);
2416 #if 0
2419 * This routine checks around the requested page for other pages that
2420 * might be able to be faulted in. This routine brackets the viable
2421 * pages for the pages to be paged in.
2423 * Inputs:
2424 * m, rbehind, rahead
2426 * Outputs:
2427 * marray (array of vm_page_t), reqpage (index of requested page)
2429 * Return value:
2430 * number of pages in marray
2432 static int
2433 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2434 vm_page_t *marray, int *reqpage)
2436 int i,j;
2437 vm_object_t object;
2438 vm_pindex_t pindex, startpindex, endpindex, tpindex;
2439 vm_page_t rtm;
2440 int cbehind, cahead;
2442 object = m->object;
2443 pindex = m->pindex;
2446 * we don't fault-ahead for device pager
2448 if ((object->type == OBJT_DEVICE) ||
2449 (object->type == OBJT_MGTDEVICE)) {
2450 *reqpage = 0;
2451 marray[0] = m;
2452 return 1;
2456 * if the requested page is not available, then give up now
2458 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2459 *reqpage = 0; /* not used by caller, fix compiler warn */
2460 return 0;
2463 if ((cbehind == 0) && (cahead == 0)) {
2464 *reqpage = 0;
2465 marray[0] = m;
2466 return 1;
2469 if (rahead > cahead) {
2470 rahead = cahead;
2473 if (rbehind > cbehind) {
2474 rbehind = cbehind;
2478 * Do not do any readahead if we have insufficient free memory.
2480 * XXX code was broken disabled before and has instability
2481 * with this conditonal fixed, so shortcut for now.
2483 if (burst_fault == 0 || vm_page_count_severe()) {
2484 marray[0] = m;
2485 *reqpage = 0;
2486 return 1;
2490 * scan backward for the read behind pages -- in memory
2492 * Assume that if the page is not found an interrupt will not
2493 * create it. Theoretically interrupts can only remove (busy)
2494 * pages, not create new associations.
2496 if (pindex > 0) {
2497 if (rbehind > pindex) {
2498 rbehind = pindex;
2499 startpindex = 0;
2500 } else {
2501 startpindex = pindex - rbehind;
2504 vm_object_hold(object);
2505 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2506 if (vm_page_lookup(object, tpindex - 1))
2507 break;
2510 i = 0;
2511 while (tpindex < pindex) {
2512 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2513 VM_ALLOC_NULL_OK);
2514 if (rtm == NULL) {
2515 for (j = 0; j < i; j++) {
2516 vm_page_free(marray[j]);
2518 vm_object_drop(object);
2519 marray[0] = m;
2520 *reqpage = 0;
2521 return 1;
2523 marray[i] = rtm;
2524 ++i;
2525 ++tpindex;
2527 vm_object_drop(object);
2528 } else {
2529 i = 0;
2533 * Assign requested page
2535 marray[i] = m;
2536 *reqpage = i;
2537 ++i;
2540 * Scan forwards for read-ahead pages
2542 tpindex = pindex + 1;
2543 endpindex = tpindex + rahead;
2544 if (endpindex > object->size)
2545 endpindex = object->size;
2547 vm_object_hold(object);
2548 while (tpindex < endpindex) {
2549 if (vm_page_lookup(object, tpindex))
2550 break;
2551 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2552 VM_ALLOC_NULL_OK);
2553 if (rtm == NULL)
2554 break;
2555 marray[i] = rtm;
2556 ++i;
2557 ++tpindex;
2559 vm_object_drop(object);
2561 return (i);
2564 #endif
2567 * vm_prefault() provides a quick way of clustering pagefaults into a
2568 * processes address space. It is a "cousin" of pmap_object_init_pt,
2569 * except it runs at page fault time instead of mmap time.
2571 * vm.fast_fault Enables pre-faulting zero-fill pages
2573 * vm.prefault_pages Number of pages (1/2 negative, 1/2 positive) to
2574 * prefault. Scan stops in either direction when
2575 * a page is found to already exist.
2577 * This code used to be per-platform pmap_prefault(). It is now
2578 * machine-independent and enhanced to also pre-fault zero-fill pages
2579 * (see vm.fast_fault) as well as make them writable, which greatly
2580 * reduces the number of page faults programs incur.
2582 * Application performance when pre-faulting zero-fill pages is heavily
2583 * dependent on the application. Very tiny applications like /bin/echo
2584 * lose a little performance while applications of any appreciable size
2585 * gain performance. Prefaulting multiple pages also reduces SMP
2586 * congestion and can improve SMP performance significantly.
2588 * NOTE! prot may allow writing but this only applies to the top level
2589 * object. If we wind up mapping a page extracted from a backing
2590 * object we have to make sure it is read-only.
2592 * NOTE! The caller has already handled any COW operations on the
2593 * vm_map_entry via the normal fault code. Do NOT call this
2594 * shortcut unless the normal fault code has run on this entry.
2596 * The related map must be locked.
2597 * No other requirements.
2599 static int vm_prefault_pages = 8;
2600 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2601 "Maximum number of pages to pre-fault");
2602 static int vm_fast_fault = 1;
2603 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2604 "Burst fault zero-fill regions");
2607 * Set PG_NOSYNC if the map entry indicates so, but only if the page
2608 * is not already dirty by other means. This will prevent passive
2609 * filesystem syncing as well as 'sync' from writing out the page.
2611 static void
2612 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2614 if (entry->eflags & MAP_ENTRY_NOSYNC) {
2615 if (m->dirty == 0)
2616 vm_page_flag_set(m, PG_NOSYNC);
2617 } else {
2618 vm_page_flag_clear(m, PG_NOSYNC);
2622 static void
2623 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2624 int fault_flags)
2626 struct lwp *lp;
2627 vm_page_t m;
2628 vm_offset_t addr;
2629 vm_pindex_t index;
2630 vm_pindex_t pindex;
2631 vm_object_t object;
2632 int pprot;
2633 int i;
2634 int noneg;
2635 int nopos;
2636 int maxpages;
2639 * Get stable max count value, disabled if set to 0
2641 maxpages = vm_prefault_pages;
2642 cpu_ccfence();
2643 if (maxpages <= 0)
2644 return;
2647 * We do not currently prefault mappings that use virtual page
2648 * tables. We do not prefault foreign pmaps.
2650 if (entry->maptype != VM_MAPTYPE_NORMAL)
2651 return;
2652 lp = curthread->td_lwp;
2653 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2654 return;
2657 * Limit pre-fault count to 1024 pages.
2659 if (maxpages > 1024)
2660 maxpages = 1024;
2662 object = entry->object.vm_object;
2663 KKASSERT(object != NULL);
2664 KKASSERT(object == entry->object.vm_object);
2667 * NOTE: VM_FAULT_DIRTY allowed later so must hold object exclusively
2668 * now (or do something more complex XXX).
2670 vm_object_hold(object);
2671 vm_object_chain_acquire(object, 0);
2673 noneg = 0;
2674 nopos = 0;
2675 for (i = 0; i < maxpages; ++i) {
2676 vm_object_t lobject;
2677 vm_object_t nobject;
2678 int allocated = 0;
2679 int error;
2682 * This can eat a lot of time on a heavily contended
2683 * machine so yield on the tick if needed.
2685 if ((i & 7) == 7)
2686 lwkt_yield();
2689 * Calculate the page to pre-fault, stopping the scan in
2690 * each direction separately if the limit is reached.
2692 if (i & 1) {
2693 if (noneg)
2694 continue;
2695 addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2696 } else {
2697 if (nopos)
2698 continue;
2699 addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2701 if (addr < entry->start) {
2702 noneg = 1;
2703 if (noneg && nopos)
2704 break;
2705 continue;
2707 if (addr >= entry->end) {
2708 nopos = 1;
2709 if (noneg && nopos)
2710 break;
2711 continue;
2715 * Skip pages already mapped, and stop scanning in that
2716 * direction. When the scan terminates in both directions
2717 * we are done.
2719 if (pmap_prefault_ok(pmap, addr) == 0) {
2720 if (i & 1)
2721 noneg = 1;
2722 else
2723 nopos = 1;
2724 if (noneg && nopos)
2725 break;
2726 continue;
2730 * Follow the VM object chain to obtain the page to be mapped
2731 * into the pmap.
2733 * If we reach the terminal object without finding a page
2734 * and we determine it would be advantageous, then allocate
2735 * a zero-fill page for the base object. The base object
2736 * is guaranteed to be OBJT_DEFAULT for this case.
2738 * In order to not have to check the pager via *haspage*()
2739 * we stop if any non-default object is encountered. e.g.
2740 * a vnode or swap object would stop the loop.
2742 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2743 lobject = object;
2744 pindex = index;
2745 pprot = prot;
2747 KKASSERT(lobject == entry->object.vm_object);
2748 /*vm_object_hold(lobject); implied */
2750 while ((m = vm_page_lookup_busy_try(lobject, pindex,
2751 TRUE, &error)) == NULL) {
2752 if (lobject->type != OBJT_DEFAULT)
2753 break;
2754 if (lobject->backing_object == NULL) {
2755 if (vm_fast_fault == 0)
2756 break;
2757 if ((prot & VM_PROT_WRITE) == 0 ||
2758 vm_page_count_min(0)) {
2759 break;
2763 * NOTE: Allocated from base object
2765 m = vm_page_alloc(object, index,
2766 VM_ALLOC_NORMAL |
2767 VM_ALLOC_ZERO |
2768 VM_ALLOC_USE_GD |
2769 VM_ALLOC_NULL_OK);
2770 if (m == NULL)
2771 break;
2772 allocated = 1;
2773 pprot = prot;
2774 /* lobject = object .. not needed */
2775 break;
2777 if (lobject->backing_object_offset & PAGE_MASK)
2778 break;
2779 nobject = lobject->backing_object;
2780 vm_object_hold(nobject);
2781 KKASSERT(nobject == lobject->backing_object);
2782 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2783 if (lobject != object) {
2784 vm_object_lock_swap();
2785 vm_object_drop(lobject);
2787 lobject = nobject;
2788 pprot &= ~VM_PROT_WRITE;
2789 vm_object_chain_acquire(lobject, 0);
2793 * NOTE: A non-NULL (m) will be associated with lobject if
2794 * it was found there, otherwise it is probably a
2795 * zero-fill page associated with the base object.
2797 * Give-up if no page is available.
2799 if (m == NULL) {
2800 if (lobject != object) {
2801 #if 0
2802 if (object->backing_object != lobject)
2803 vm_object_hold(object->backing_object);
2804 #endif
2805 vm_object_chain_release_all(
2806 object->backing_object, lobject);
2807 #if 0
2808 if (object->backing_object != lobject)
2809 vm_object_drop(object->backing_object);
2810 #endif
2811 vm_object_drop(lobject);
2813 break;
2817 * The object must be marked dirty if we are mapping a
2818 * writable page. m->object is either lobject or object,
2819 * both of which are still held. Do this before we
2820 * potentially drop the object.
2822 if (pprot & VM_PROT_WRITE)
2823 vm_object_set_writeable_dirty(m->object);
2826 * Do not conditionalize on PG_RAM. If pages are present in
2827 * the VM system we assume optimal caching. If caching is
2828 * not optimal the I/O gravy train will be restarted when we
2829 * hit an unavailable page. We do not want to try to restart
2830 * the gravy train now because we really don't know how much
2831 * of the object has been cached. The cost for restarting
2832 * the gravy train should be low (since accesses will likely
2833 * be I/O bound anyway).
2835 if (lobject != object) {
2836 #if 0
2837 if (object->backing_object != lobject)
2838 vm_object_hold(object->backing_object);
2839 #endif
2840 vm_object_chain_release_all(object->backing_object,
2841 lobject);
2842 #if 0
2843 if (object->backing_object != lobject)
2844 vm_object_drop(object->backing_object);
2845 #endif
2846 vm_object_drop(lobject);
2850 * Enter the page into the pmap if appropriate. If we had
2851 * allocated the page we have to place it on a queue. If not
2852 * we just have to make sure it isn't on the cache queue
2853 * (pages on the cache queue are not allowed to be mapped).
2855 if (allocated) {
2857 * Page must be zerod.
2859 vm_page_zero_fill(m);
2860 mycpu->gd_cnt.v_zfod++;
2861 m->valid = VM_PAGE_BITS_ALL;
2864 * Handle dirty page case
2866 if (pprot & VM_PROT_WRITE)
2867 vm_set_nosync(m, entry);
2868 pmap_enter(pmap, addr, m, pprot, 0, entry);
2869 mycpu->gd_cnt.v_vm_faults++;
2870 if (curthread->td_lwp)
2871 ++curthread->td_lwp->lwp_ru.ru_minflt;
2872 vm_page_deactivate(m);
2873 if (pprot & VM_PROT_WRITE) {
2874 /*vm_object_set_writeable_dirty(m->object);*/
2875 vm_set_nosync(m, entry);
2876 if (fault_flags & VM_FAULT_DIRTY) {
2877 vm_page_dirty(m);
2878 /*XXX*/
2879 swap_pager_unswapped(m);
2882 vm_page_wakeup(m);
2883 } else if (error) {
2884 /* couldn't busy page, no wakeup */
2885 } else if (
2886 ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2887 (m->flags & PG_FICTITIOUS) == 0) {
2889 * A fully valid page not undergoing soft I/O can
2890 * be immediately entered into the pmap.
2892 if ((m->queue - m->pc) == PQ_CACHE)
2893 vm_page_deactivate(m);
2894 if (pprot & VM_PROT_WRITE) {
2895 /*vm_object_set_writeable_dirty(m->object);*/
2896 vm_set_nosync(m, entry);
2897 if (fault_flags & VM_FAULT_DIRTY) {
2898 vm_page_dirty(m);
2899 /*XXX*/
2900 swap_pager_unswapped(m);
2903 if (pprot & VM_PROT_WRITE)
2904 vm_set_nosync(m, entry);
2905 pmap_enter(pmap, addr, m, pprot, 0, entry);
2906 mycpu->gd_cnt.v_vm_faults++;
2907 if (curthread->td_lwp)
2908 ++curthread->td_lwp->lwp_ru.ru_minflt;
2909 vm_page_wakeup(m);
2910 } else {
2911 vm_page_wakeup(m);
2914 vm_object_chain_release(object);
2915 vm_object_drop(object);
2919 * Object can be held shared
2921 static void
2922 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2923 vm_map_entry_t entry, int prot, int fault_flags)
2925 struct lwp *lp;
2926 vm_page_t m;
2927 vm_offset_t addr;
2928 vm_pindex_t pindex;
2929 vm_object_t object;
2930 int i;
2931 int noneg;
2932 int nopos;
2933 int maxpages;
2936 * Get stable max count value, disabled if set to 0
2938 maxpages = vm_prefault_pages;
2939 cpu_ccfence();
2940 if (maxpages <= 0)
2941 return;
2944 * We do not currently prefault mappings that use virtual page
2945 * tables. We do not prefault foreign pmaps.
2947 if (entry->maptype != VM_MAPTYPE_NORMAL)
2948 return;
2949 lp = curthread->td_lwp;
2950 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2951 return;
2952 object = entry->object.vm_object;
2953 if (object->backing_object != NULL)
2954 return;
2955 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2958 * Limit pre-fault count to 1024 pages.
2960 if (maxpages > 1024)
2961 maxpages = 1024;
2963 noneg = 0;
2964 nopos = 0;
2965 for (i = 0; i < maxpages; ++i) {
2966 int error;
2969 * Calculate the page to pre-fault, stopping the scan in
2970 * each direction separately if the limit is reached.
2972 if (i & 1) {
2973 if (noneg)
2974 continue;
2975 addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2976 } else {
2977 if (nopos)
2978 continue;
2979 addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2981 if (addr < entry->start) {
2982 noneg = 1;
2983 if (noneg && nopos)
2984 break;
2985 continue;
2987 if (addr >= entry->end) {
2988 nopos = 1;
2989 if (noneg && nopos)
2990 break;
2991 continue;
2995 * Follow the VM object chain to obtain the page to be mapped
2996 * into the pmap. This version of the prefault code only
2997 * works with terminal objects.
2999 * The page must already exist. If we encounter a problem
3000 * we stop here.
3002 * WARNING! We cannot call swap_pager_unswapped() or insert
3003 * a new vm_page with a shared token.
3005 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
3007 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
3008 if (m == NULL || error)
3009 break;
3012 * Skip pages already mapped, and stop scanning in that
3013 * direction. When the scan terminates in both directions
3014 * we are done.
3016 if (pmap_prefault_ok(pmap, addr) == 0) {
3017 vm_page_wakeup(m);
3018 if (i & 1)
3019 noneg = 1;
3020 else
3021 nopos = 1;
3022 if (noneg && nopos)
3023 break;
3024 continue;
3028 * Stop if the page cannot be trivially entered into the
3029 * pmap.
3031 if (((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) ||
3032 (m->flags & PG_FICTITIOUS) ||
3033 ((m->flags & PG_SWAPPED) &&
3034 (prot & VM_PROT_WRITE) &&
3035 (fault_flags & VM_FAULT_DIRTY))) {
3036 vm_page_wakeup(m);
3037 break;
3041 * Enter the page into the pmap. The object might be held
3042 * shared so we can't do any (serious) modifying operation
3043 * on it.
3045 if ((m->queue - m->pc) == PQ_CACHE)
3046 vm_page_deactivate(m);
3047 if (prot & VM_PROT_WRITE) {
3048 vm_object_set_writeable_dirty(m->object);
3049 vm_set_nosync(m, entry);
3050 if (fault_flags & VM_FAULT_DIRTY) {
3051 vm_page_dirty(m);
3052 /* can't happeen due to conditional above */
3053 /* swap_pager_unswapped(m); */
3056 pmap_enter(pmap, addr, m, prot, 0, entry);
3057 mycpu->gd_cnt.v_vm_faults++;
3058 if (curthread->td_lwp)
3059 ++curthread->td_lwp->lwp_ru.ru_minflt;
3060 vm_page_wakeup(m);