Import OpenSSL-0.9.8i.
[dragonfly.git] / crypto / openssl-0.9.7e / crypto / bn / bn_sqrt.c
blobe2a1105dc838b2f29b3867f06f653d08a90f368f
1 /* crypto/bn/bn_mod.c */
2 /* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
3 * and Bodo Moeller for the OpenSSL project. */
4 /* ====================================================================
5 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * openssl-core@openssl.org.
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ====================================================================
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
58 #include "cryptlib.h"
59 #include "bn_lcl.h"
62 BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
63 /* Returns 'ret' such that
64 * ret^2 == a (mod p),
65 * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
66 * in Algebraic Computational Number Theory", algorithm 1.5.1).
67 * 'p' must be prime!
68 * If 'a' is not a square, this is not necessarily detected by
69 * the algorithms; a bogus result must be expected in this case.
72 BIGNUM *ret = in;
73 int err = 1;
74 int r;
75 BIGNUM *b, *q, *t, *x, *y;
76 int e, i, j;
78 if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
80 if (BN_abs_is_word(p, 2))
82 if (ret == NULL)
83 ret = BN_new();
84 if (ret == NULL)
85 goto end;
86 if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
88 BN_free(ret);
89 return NULL;
91 return ret;
94 BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
95 return(NULL);
98 if (BN_is_zero(a) || BN_is_one(a))
100 if (ret == NULL)
101 ret = BN_new();
102 if (ret == NULL)
103 goto end;
104 if (!BN_set_word(ret, BN_is_one(a)))
106 BN_free(ret);
107 return NULL;
109 return ret;
112 #if 0 /* if BN_mod_sqrt is used with correct input, this just wastes time */
113 r = BN_kronecker(a, p, ctx);
114 if (r < -1) return NULL;
115 if (r == -1)
117 BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
118 return(NULL);
120 #endif
122 BN_CTX_start(ctx);
123 b = BN_CTX_get(ctx);
124 q = BN_CTX_get(ctx);
125 t = BN_CTX_get(ctx);
126 x = BN_CTX_get(ctx);
127 y = BN_CTX_get(ctx);
128 if (y == NULL) goto end;
130 if (ret == NULL)
131 ret = BN_new();
132 if (ret == NULL) goto end;
134 /* now write |p| - 1 as 2^e*q where q is odd */
135 e = 1;
136 while (!BN_is_bit_set(p, e))
137 e++;
138 /* we'll set q later (if needed) */
140 if (e == 1)
142 /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse
143 * modulo (|p|-1)/2, and square roots can be computed
144 * directly by modular exponentiation.
145 * We have
146 * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2),
147 * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1.
149 if (!BN_rshift(q, p, 2)) goto end;
150 q->neg = 0;
151 if (!BN_add_word(q, 1)) goto end;
152 if (!BN_mod_exp(ret, a, q, p, ctx)) goto end;
153 err = 0;
154 goto end;
157 if (e == 2)
159 /* |p| == 5 (mod 8)
161 * In this case 2 is always a non-square since
162 * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime.
163 * So if a really is a square, then 2*a is a non-square.
164 * Thus for
165 * b := (2*a)^((|p|-5)/8),
166 * i := (2*a)*b^2
167 * we have
168 * i^2 = (2*a)^((1 + (|p|-5)/4)*2)
169 * = (2*a)^((p-1)/2)
170 * = -1;
171 * so if we set
172 * x := a*b*(i-1),
173 * then
174 * x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
175 * = a^2 * b^2 * (-2*i)
176 * = a*(-i)*(2*a*b^2)
177 * = a*(-i)*i
178 * = a.
180 * (This is due to A.O.L. Atkin,
181 * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
182 * November 1992.)
185 /* make sure that a is reduced modulo p */
186 if (a->neg || BN_ucmp(a, p) >= 0)
188 if (!BN_nnmod(x, a, p, ctx)) goto end;
189 a = x; /* use x as temporary variable */
192 /* t := 2*a */
193 if (!BN_mod_lshift1_quick(t, a, p)) goto end;
195 /* b := (2*a)^((|p|-5)/8) */
196 if (!BN_rshift(q, p, 3)) goto end;
197 q->neg = 0;
198 if (!BN_mod_exp(b, t, q, p, ctx)) goto end;
200 /* y := b^2 */
201 if (!BN_mod_sqr(y, b, p, ctx)) goto end;
203 /* t := (2*a)*b^2 - 1*/
204 if (!BN_mod_mul(t, t, y, p, ctx)) goto end;
205 if (!BN_sub_word(t, 1)) goto end;
207 /* x = a*b*t */
208 if (!BN_mod_mul(x, a, b, p, ctx)) goto end;
209 if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
211 if (!BN_copy(ret, x)) goto end;
212 err = 0;
213 goto end;
216 /* e > 2, so we really have to use the Tonelli/Shanks algorithm.
217 * First, find some y that is not a square. */
218 if (!BN_copy(q, p)) goto end; /* use 'q' as temp */
219 q->neg = 0;
220 i = 2;
223 /* For efficiency, try small numbers first;
224 * if this fails, try random numbers.
226 if (i < 22)
228 if (!BN_set_word(y, i)) goto end;
230 else
232 if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
233 if (BN_ucmp(y, p) >= 0)
235 if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
237 /* now 0 <= y < |p| */
238 if (BN_is_zero(y))
239 if (!BN_set_word(y, i)) goto end;
242 r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
243 if (r < -1) goto end;
244 if (r == 0)
246 /* m divides p */
247 BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
248 goto end;
251 while (r == 1 && ++i < 82);
253 if (r != -1)
255 /* Many rounds and still no non-square -- this is more likely
256 * a bug than just bad luck.
257 * Even if p is not prime, we should have found some y
258 * such that r == -1.
260 BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
261 goto end;
264 /* Here's our actual 'q': */
265 if (!BN_rshift(q, q, e)) goto end;
267 /* Now that we have some non-square, we can find an element
268 * of order 2^e by computing its q'th power. */
269 if (!BN_mod_exp(y, y, q, p, ctx)) goto end;
270 if (BN_is_one(y))
272 BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
273 goto end;
276 /* Now we know that (if p is indeed prime) there is an integer
277 * k, 0 <= k < 2^e, such that
279 * a^q * y^k == 1 (mod p).
281 * As a^q is a square and y is not, k must be even.
282 * q+1 is even, too, so there is an element
284 * X := a^((q+1)/2) * y^(k/2),
286 * and it satisfies
288 * X^2 = a^q * a * y^k
289 * = a,
291 * so it is the square root that we are looking for.
294 /* t := (q-1)/2 (note that q is odd) */
295 if (!BN_rshift1(t, q)) goto end;
297 /* x := a^((q-1)/2) */
298 if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
300 if (!BN_nnmod(t, a, p, ctx)) goto end;
301 if (BN_is_zero(t))
303 /* special case: a == 0 (mod p) */
304 if (!BN_zero(ret)) goto end;
305 err = 0;
306 goto end;
308 else
309 if (!BN_one(x)) goto end;
311 else
313 if (!BN_mod_exp(x, a, t, p, ctx)) goto end;
314 if (BN_is_zero(x))
316 /* special case: a == 0 (mod p) */
317 if (!BN_zero(ret)) goto end;
318 err = 0;
319 goto end;
323 /* b := a*x^2 (= a^q) */
324 if (!BN_mod_sqr(b, x, p, ctx)) goto end;
325 if (!BN_mod_mul(b, b, a, p, ctx)) goto end;
327 /* x := a*x (= a^((q+1)/2)) */
328 if (!BN_mod_mul(x, x, a, p, ctx)) goto end;
330 while (1)
332 /* Now b is a^q * y^k for some even k (0 <= k < 2^E
333 * where E refers to the original value of e, which we
334 * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2).
336 * We have a*b = x^2,
337 * y^2^(e-1) = -1,
338 * b^2^(e-1) = 1.
341 if (BN_is_one(b))
343 if (!BN_copy(ret, x)) goto end;
344 err = 0;
345 goto end;
349 /* find smallest i such that b^(2^i) = 1 */
350 i = 1;
351 if (!BN_mod_sqr(t, b, p, ctx)) goto end;
352 while (!BN_is_one(t))
354 i++;
355 if (i == e)
357 BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
358 goto end;
360 if (!BN_mod_mul(t, t, t, p, ctx)) goto end;
364 /* t := y^2^(e - i - 1) */
365 if (!BN_copy(t, y)) goto end;
366 for (j = e - i - 1; j > 0; j--)
368 if (!BN_mod_sqr(t, t, p, ctx)) goto end;
370 if (!BN_mod_mul(y, t, t, p, ctx)) goto end;
371 if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
372 if (!BN_mod_mul(b, b, y, p, ctx)) goto end;
373 e = i;
376 end:
377 if (err)
379 if (ret != NULL && ret != in)
381 BN_clear_free(ret);
383 ret = NULL;
385 BN_CTX_end(ctx);
386 return ret;