kernel - CAM cleanup 3/N - Remove unnecessary mplocks
[dragonfly.git] / crypto / openssh / umac.c
blob6eb55b26ef7f7d040782180818119377954a392b
1 /* $OpenBSD: umac.c,v 1.11 2014/07/22 07:13:42 guenther Exp $ */
2 /* -----------------------------------------------------------------------
3 *
4 * umac.c -- C Implementation UMAC Message Authentication
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
12 * Copyright (c) 1999-2006 Ted Krovetz
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
23 * ---------------------------------------------------------------------- */
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
27 * 1) This version does not work properly on messages larger than 16MB
29 * 2) If you set the switch to use SSE2, then all data must be 16-byte
30 * aligned
32 * 3) When calling the function umac(), it is assumed that msg is in
33 * a writable buffer of length divisible by 32 bytes. The message itself
34 * does not have to fill the entire buffer, but bytes beyond msg may be
35 * zeroed.
37 * 4) Three free AES implementations are supported by this implementation of
38 * UMAC. Paulo Barreto's version is in the public domain and can be found
39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44 * the third.
46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47 * produced under gcc with optimizations set -O3 or higher. Dunno why.
49 /////////////////////////////////////////////////////////////////////// */
51 /* ---------------------------------------------------------------------- */
52 /* --- User Switches ---------------------------------------------------- */
53 /* ---------------------------------------------------------------------- */
55 #ifndef UMAC_OUTPUT_LEN
56 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
57 #endif
59 #if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \
60 UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16
61 # error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16
62 #endif
64 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
65 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
66 /* #define SSE2 0 Is SSE2 is available? */
67 /* #define RUN_TESTS 0 Run basic correctness/speed tests */
68 /* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */
70 /* ---------------------------------------------------------------------- */
71 /* -- Global Includes --------------------------------------------------- */
72 /* ---------------------------------------------------------------------- */
74 #include "includes.h"
75 #include <sys/types.h>
76 #include <string.h>
77 #include <stdio.h>
78 #include <stdlib.h>
79 #include <stddef.h>
81 #include "xmalloc.h"
82 #include "umac.h"
83 #include "misc.h"
85 /* ---------------------------------------------------------------------- */
86 /* --- Primitive Data Types --- */
87 /* ---------------------------------------------------------------------- */
89 /* The following assumptions may need change on your system */
90 typedef u_int8_t UINT8; /* 1 byte */
91 typedef u_int16_t UINT16; /* 2 byte */
92 typedef u_int32_t UINT32; /* 4 byte */
93 typedef u_int64_t UINT64; /* 8 bytes */
94 typedef unsigned int UWORD; /* Register */
96 /* ---------------------------------------------------------------------- */
97 /* --- Constants -------------------------------------------------------- */
98 /* ---------------------------------------------------------------------- */
100 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
102 /* Message "words" are read from memory in an endian-specific manner. */
103 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
104 /* be set true if the host computer is little-endian. */
106 #if BYTE_ORDER == LITTLE_ENDIAN
107 #define __LITTLE_ENDIAN__ 1
108 #else
109 #define __LITTLE_ENDIAN__ 0
110 #endif
112 /* ---------------------------------------------------------------------- */
113 /* ---------------------------------------------------------------------- */
114 /* ----- Architecture Specific ------------------------------------------ */
115 /* ---------------------------------------------------------------------- */
116 /* ---------------------------------------------------------------------- */
119 /* ---------------------------------------------------------------------- */
120 /* ---------------------------------------------------------------------- */
121 /* ----- Primitive Routines --------------------------------------------- */
122 /* ---------------------------------------------------------------------- */
123 /* ---------------------------------------------------------------------- */
126 /* ---------------------------------------------------------------------- */
127 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
128 /* ---------------------------------------------------------------------- */
130 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
132 /* ---------------------------------------------------------------------- */
133 /* --- Endian Conversion --- Forcing assembly on some platforms */
134 /* ---------------------------------------------------------------------- */
136 #if (__LITTLE_ENDIAN__)
137 #define LOAD_UINT32_REVERSED(p) get_u32(p)
138 #define STORE_UINT32_REVERSED(p,v) put_u32(p,v)
139 #else
140 #define LOAD_UINT32_REVERSED(p) get_u32_le(p)
141 #define STORE_UINT32_REVERSED(p,v) put_u32_le(p,v)
142 #endif
144 #define LOAD_UINT32_LITTLE(p) (get_u32_le(p))
145 #define STORE_UINT32_BIG(p,v) put_u32(p, v)
147 /* ---------------------------------------------------------------------- */
148 /* ---------------------------------------------------------------------- */
149 /* ----- Begin KDF & PDF Section ---------------------------------------- */
150 /* ---------------------------------------------------------------------- */
151 /* ---------------------------------------------------------------------- */
153 /* UMAC uses AES with 16 byte block and key lengths */
154 #define AES_BLOCK_LEN 16
156 /* OpenSSL's AES */
157 #ifdef WITH_OPENSSL
158 #include "openbsd-compat/openssl-compat.h"
159 #ifndef USE_BUILTIN_RIJNDAEL
160 # include <openssl/aes.h>
161 #endif
162 typedef AES_KEY aes_int_key[1];
163 #define aes_encryption(in,out,int_key) \
164 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
165 #define aes_key_setup(key,int_key) \
166 AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
167 #else
168 #include "rijndael.h"
169 #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
170 typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */
171 #define aes_encryption(in,out,int_key) \
172 rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
173 #define aes_key_setup(key,int_key) \
174 rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
175 UMAC_KEY_LEN*8)
176 #endif
178 /* The user-supplied UMAC key is stretched using AES in a counter
179 * mode to supply all random bits needed by UMAC. The kdf function takes
180 * an AES internal key representation 'key' and writes a stream of
181 * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
182 * 'ndx' causes a distinct byte stream.
184 static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
186 UINT8 in_buf[AES_BLOCK_LEN] = {0};
187 UINT8 out_buf[AES_BLOCK_LEN];
188 UINT8 *dst_buf = (UINT8 *)bufp;
189 int i;
191 /* Setup the initial value */
192 in_buf[AES_BLOCK_LEN-9] = ndx;
193 in_buf[AES_BLOCK_LEN-1] = i = 1;
195 while (nbytes >= AES_BLOCK_LEN) {
196 aes_encryption(in_buf, out_buf, key);
197 memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
198 in_buf[AES_BLOCK_LEN-1] = ++i;
199 nbytes -= AES_BLOCK_LEN;
200 dst_buf += AES_BLOCK_LEN;
202 if (nbytes) {
203 aes_encryption(in_buf, out_buf, key);
204 memcpy(dst_buf,out_buf,nbytes);
208 /* The final UHASH result is XOR'd with the output of a pseudorandom
209 * function. Here, we use AES to generate random output and
210 * xor the appropriate bytes depending on the last bits of nonce.
211 * This scheme is optimized for sequential, increasing big-endian nonces.
214 typedef struct {
215 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */
216 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */
217 aes_int_key prf_key; /* Expanded AES key for PDF */
218 } pdf_ctx;
220 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
222 UINT8 buf[UMAC_KEY_LEN];
224 kdf(buf, prf_key, 0, UMAC_KEY_LEN);
225 aes_key_setup(buf, pc->prf_key);
227 /* Initialize pdf and cache */
228 memset(pc->nonce, 0, sizeof(pc->nonce));
229 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
232 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
234 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
235 * of the AES output. If last time around we returned the ndx-1st
236 * element, then we may have the result in the cache already.
239 #if (UMAC_OUTPUT_LEN == 4)
240 #define LOW_BIT_MASK 3
241 #elif (UMAC_OUTPUT_LEN == 8)
242 #define LOW_BIT_MASK 1
243 #elif (UMAC_OUTPUT_LEN > 8)
244 #define LOW_BIT_MASK 0
245 #endif
246 union {
247 UINT8 tmp_nonce_lo[4];
248 UINT32 align;
249 } t;
250 #if LOW_BIT_MASK != 0
251 int ndx = nonce[7] & LOW_BIT_MASK;
252 #endif
253 *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
254 t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
256 if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
257 (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
259 ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
260 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
261 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
264 #if (UMAC_OUTPUT_LEN == 4)
265 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
266 #elif (UMAC_OUTPUT_LEN == 8)
267 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
268 #elif (UMAC_OUTPUT_LEN == 12)
269 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
270 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
271 #elif (UMAC_OUTPUT_LEN == 16)
272 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
273 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
274 #endif
277 /* ---------------------------------------------------------------------- */
278 /* ---------------------------------------------------------------------- */
279 /* ----- Begin NH Hash Section ------------------------------------------ */
280 /* ---------------------------------------------------------------------- */
281 /* ---------------------------------------------------------------------- */
283 /* The NH-based hash functions used in UMAC are described in the UMAC paper
284 * and specification, both of which can be found at the UMAC website.
285 * The interface to this implementation has two
286 * versions, one expects the entire message being hashed to be passed
287 * in a single buffer and returns the hash result immediately. The second
288 * allows the message to be passed in a sequence of buffers. In the
289 * muliple-buffer interface, the client calls the routine nh_update() as
290 * many times as necessary. When there is no more data to be fed to the
291 * hash, the client calls nh_final() which calculates the hash output.
292 * Before beginning another hash calculation the nh_reset() routine
293 * must be called. The single-buffer routine, nh(), is equivalent to
294 * the sequence of calls nh_update() and nh_final(); however it is
295 * optimized and should be prefered whenever the multiple-buffer interface
296 * is not necessary. When using either interface, it is the client's
297 * responsability to pass no more than L1_KEY_LEN bytes per hash result.
299 * The routine nh_init() initializes the nh_ctx data structure and
300 * must be called once, before any other PDF routine.
303 /* The "nh_aux" routines do the actual NH hashing work. They
304 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
305 * produce output for all STREAMS NH iterations in one call,
306 * allowing the parallel implementation of the streams.
309 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
310 #define L1_KEY_LEN 1024 /* Internal key bytes */
311 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
312 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
313 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
314 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
316 typedef struct {
317 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
318 UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */
319 int next_data_empty; /* Bookeeping variable for data buffer. */
320 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */
321 UINT64 state[STREAMS]; /* on-line state */
322 } nh_ctx;
325 #if (UMAC_OUTPUT_LEN == 4)
327 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
328 /* NH hashing primitive. Previous (partial) hash result is loaded and
329 * then stored via hp pointer. The length of the data pointed at by "dp",
330 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
331 * is expected to be endian compensated in memory at key setup.
334 UINT64 h;
335 UWORD c = dlen / 32;
336 UINT32 *k = (UINT32 *)kp;
337 const UINT32 *d = (const UINT32 *)dp;
338 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
339 UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
341 h = *((UINT64 *)hp);
342 do {
343 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
344 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
345 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
346 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
347 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
348 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
349 h += MUL64((k0 + d0), (k4 + d4));
350 h += MUL64((k1 + d1), (k5 + d5));
351 h += MUL64((k2 + d2), (k6 + d6));
352 h += MUL64((k3 + d3), (k7 + d7));
354 d += 8;
355 k += 8;
356 } while (--c);
357 *((UINT64 *)hp) = h;
360 #elif (UMAC_OUTPUT_LEN == 8)
362 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
363 /* Same as previous nh_aux, but two streams are handled in one pass,
364 * reading and writing 16 bytes of hash-state per call.
367 UINT64 h1,h2;
368 UWORD c = dlen / 32;
369 UINT32 *k = (UINT32 *)kp;
370 const UINT32 *d = (const UINT32 *)dp;
371 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
372 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
373 k8,k9,k10,k11;
375 h1 = *((UINT64 *)hp);
376 h2 = *((UINT64 *)hp + 1);
377 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
378 do {
379 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
380 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
381 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
382 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
383 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
384 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
386 h1 += MUL64((k0 + d0), (k4 + d4));
387 h2 += MUL64((k4 + d0), (k8 + d4));
389 h1 += MUL64((k1 + d1), (k5 + d5));
390 h2 += MUL64((k5 + d1), (k9 + d5));
392 h1 += MUL64((k2 + d2), (k6 + d6));
393 h2 += MUL64((k6 + d2), (k10 + d6));
395 h1 += MUL64((k3 + d3), (k7 + d7));
396 h2 += MUL64((k7 + d3), (k11 + d7));
398 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
400 d += 8;
401 k += 8;
402 } while (--c);
403 ((UINT64 *)hp)[0] = h1;
404 ((UINT64 *)hp)[1] = h2;
407 #elif (UMAC_OUTPUT_LEN == 12)
409 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
410 /* Same as previous nh_aux, but two streams are handled in one pass,
411 * reading and writing 24 bytes of hash-state per call.
414 UINT64 h1,h2,h3;
415 UWORD c = dlen / 32;
416 UINT32 *k = (UINT32 *)kp;
417 const UINT32 *d = (const UINT32 *)dp;
418 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
419 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
420 k8,k9,k10,k11,k12,k13,k14,k15;
422 h1 = *((UINT64 *)hp);
423 h2 = *((UINT64 *)hp + 1);
424 h3 = *((UINT64 *)hp + 2);
425 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
426 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
427 do {
428 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
429 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
430 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
431 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
432 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
433 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
435 h1 += MUL64((k0 + d0), (k4 + d4));
436 h2 += MUL64((k4 + d0), (k8 + d4));
437 h3 += MUL64((k8 + d0), (k12 + d4));
439 h1 += MUL64((k1 + d1), (k5 + d5));
440 h2 += MUL64((k5 + d1), (k9 + d5));
441 h3 += MUL64((k9 + d1), (k13 + d5));
443 h1 += MUL64((k2 + d2), (k6 + d6));
444 h2 += MUL64((k6 + d2), (k10 + d6));
445 h3 += MUL64((k10 + d2), (k14 + d6));
447 h1 += MUL64((k3 + d3), (k7 + d7));
448 h2 += MUL64((k7 + d3), (k11 + d7));
449 h3 += MUL64((k11 + d3), (k15 + d7));
451 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
452 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
454 d += 8;
455 k += 8;
456 } while (--c);
457 ((UINT64 *)hp)[0] = h1;
458 ((UINT64 *)hp)[1] = h2;
459 ((UINT64 *)hp)[2] = h3;
462 #elif (UMAC_OUTPUT_LEN == 16)
464 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
465 /* Same as previous nh_aux, but two streams are handled in one pass,
466 * reading and writing 24 bytes of hash-state per call.
469 UINT64 h1,h2,h3,h4;
470 UWORD c = dlen / 32;
471 UINT32 *k = (UINT32 *)kp;
472 const UINT32 *d = (const UINT32 *)dp;
473 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
474 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
475 k8,k9,k10,k11,k12,k13,k14,k15,
476 k16,k17,k18,k19;
478 h1 = *((UINT64 *)hp);
479 h2 = *((UINT64 *)hp + 1);
480 h3 = *((UINT64 *)hp + 2);
481 h4 = *((UINT64 *)hp + 3);
482 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
483 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
484 do {
485 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
486 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
487 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
488 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
489 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
490 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
491 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
493 h1 += MUL64((k0 + d0), (k4 + d4));
494 h2 += MUL64((k4 + d0), (k8 + d4));
495 h3 += MUL64((k8 + d0), (k12 + d4));
496 h4 += MUL64((k12 + d0), (k16 + d4));
498 h1 += MUL64((k1 + d1), (k5 + d5));
499 h2 += MUL64((k5 + d1), (k9 + d5));
500 h3 += MUL64((k9 + d1), (k13 + d5));
501 h4 += MUL64((k13 + d1), (k17 + d5));
503 h1 += MUL64((k2 + d2), (k6 + d6));
504 h2 += MUL64((k6 + d2), (k10 + d6));
505 h3 += MUL64((k10 + d2), (k14 + d6));
506 h4 += MUL64((k14 + d2), (k18 + d6));
508 h1 += MUL64((k3 + d3), (k7 + d7));
509 h2 += MUL64((k7 + d3), (k11 + d7));
510 h3 += MUL64((k11 + d3), (k15 + d7));
511 h4 += MUL64((k15 + d3), (k19 + d7));
513 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
514 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
515 k8 = k16; k9 = k17; k10 = k18; k11 = k19;
517 d += 8;
518 k += 8;
519 } while (--c);
520 ((UINT64 *)hp)[0] = h1;
521 ((UINT64 *)hp)[1] = h2;
522 ((UINT64 *)hp)[2] = h3;
523 ((UINT64 *)hp)[3] = h4;
526 /* ---------------------------------------------------------------------- */
527 #endif /* UMAC_OUTPUT_LENGTH */
528 /* ---------------------------------------------------------------------- */
531 /* ---------------------------------------------------------------------- */
533 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
534 /* This function is a wrapper for the primitive NH hash functions. It takes
535 * as argument "hc" the current hash context and a buffer which must be a
536 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
537 * appropriately according to how much message has been hashed already.
540 UINT8 *key;
542 key = hc->nh_key + hc->bytes_hashed;
543 nh_aux(key, buf, hc->state, nbytes);
546 /* ---------------------------------------------------------------------- */
548 #if (__LITTLE_ENDIAN__)
549 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
550 /* We endian convert the keys on little-endian computers to */
551 /* compensate for the lack of big-endian memory reads during hashing. */
553 UWORD iters = num_bytes / bpw;
554 if (bpw == 4) {
555 UINT32 *p = (UINT32 *)buf;
556 do {
557 *p = LOAD_UINT32_REVERSED(p);
558 p++;
559 } while (--iters);
560 } else if (bpw == 8) {
561 UINT32 *p = (UINT32 *)buf;
562 UINT32 t;
563 do {
564 t = LOAD_UINT32_REVERSED(p+1);
565 p[1] = LOAD_UINT32_REVERSED(p);
566 p[0] = t;
567 p += 2;
568 } while (--iters);
571 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
572 #else
573 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
574 #endif
576 /* ---------------------------------------------------------------------- */
578 static void nh_reset(nh_ctx *hc)
579 /* Reset nh_ctx to ready for hashing of new data */
581 hc->bytes_hashed = 0;
582 hc->next_data_empty = 0;
583 hc->state[0] = 0;
584 #if (UMAC_OUTPUT_LEN >= 8)
585 hc->state[1] = 0;
586 #endif
587 #if (UMAC_OUTPUT_LEN >= 12)
588 hc->state[2] = 0;
589 #endif
590 #if (UMAC_OUTPUT_LEN == 16)
591 hc->state[3] = 0;
592 #endif
596 /* ---------------------------------------------------------------------- */
598 static void nh_init(nh_ctx *hc, aes_int_key prf_key)
599 /* Generate nh_key, endian convert and reset to be ready for hashing. */
601 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
602 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
603 nh_reset(hc);
606 /* ---------------------------------------------------------------------- */
608 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
609 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
610 /* even multiple of HASH_BUF_BYTES. */
612 UINT32 i,j;
614 j = hc->next_data_empty;
615 if ((j + nbytes) >= HASH_BUF_BYTES) {
616 if (j) {
617 i = HASH_BUF_BYTES - j;
618 memcpy(hc->data+j, buf, i);
619 nh_transform(hc,hc->data,HASH_BUF_BYTES);
620 nbytes -= i;
621 buf += i;
622 hc->bytes_hashed += HASH_BUF_BYTES;
624 if (nbytes >= HASH_BUF_BYTES) {
625 i = nbytes & ~(HASH_BUF_BYTES - 1);
626 nh_transform(hc, buf, i);
627 nbytes -= i;
628 buf += i;
629 hc->bytes_hashed += i;
631 j = 0;
633 memcpy(hc->data + j, buf, nbytes);
634 hc->next_data_empty = j + nbytes;
637 /* ---------------------------------------------------------------------- */
639 static void zero_pad(UINT8 *p, int nbytes)
641 /* Write "nbytes" of zeroes, beginning at "p" */
642 if (nbytes >= (int)sizeof(UWORD)) {
643 while ((ptrdiff_t)p % sizeof(UWORD)) {
644 *p = 0;
645 nbytes--;
646 p++;
648 while (nbytes >= (int)sizeof(UWORD)) {
649 *(UWORD *)p = 0;
650 nbytes -= sizeof(UWORD);
651 p += sizeof(UWORD);
654 while (nbytes) {
655 *p = 0;
656 nbytes--;
657 p++;
661 /* ---------------------------------------------------------------------- */
663 static void nh_final(nh_ctx *hc, UINT8 *result)
664 /* After passing some number of data buffers to nh_update() for integration
665 * into an NH context, nh_final is called to produce a hash result. If any
666 * bytes are in the buffer hc->data, incorporate them into the
667 * NH context. Finally, add into the NH accumulation "state" the total number
668 * of bits hashed. The resulting numbers are written to the buffer "result".
669 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
672 int nh_len, nbits;
674 if (hc->next_data_empty != 0) {
675 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
676 ~(L1_PAD_BOUNDARY - 1));
677 zero_pad(hc->data + hc->next_data_empty,
678 nh_len - hc->next_data_empty);
679 nh_transform(hc, hc->data, nh_len);
680 hc->bytes_hashed += hc->next_data_empty;
681 } else if (hc->bytes_hashed == 0) {
682 nh_len = L1_PAD_BOUNDARY;
683 zero_pad(hc->data, L1_PAD_BOUNDARY);
684 nh_transform(hc, hc->data, nh_len);
687 nbits = (hc->bytes_hashed << 3);
688 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
689 #if (UMAC_OUTPUT_LEN >= 8)
690 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
691 #endif
692 #if (UMAC_OUTPUT_LEN >= 12)
693 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
694 #endif
695 #if (UMAC_OUTPUT_LEN == 16)
696 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
697 #endif
698 nh_reset(hc);
701 /* ---------------------------------------------------------------------- */
703 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
704 UINT32 unpadded_len, UINT8 *result)
705 /* All-in-one nh_update() and nh_final() equivalent.
706 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
707 * well aligned
710 UINT32 nbits;
712 /* Initialize the hash state */
713 nbits = (unpadded_len << 3);
715 ((UINT64 *)result)[0] = nbits;
716 #if (UMAC_OUTPUT_LEN >= 8)
717 ((UINT64 *)result)[1] = nbits;
718 #endif
719 #if (UMAC_OUTPUT_LEN >= 12)
720 ((UINT64 *)result)[2] = nbits;
721 #endif
722 #if (UMAC_OUTPUT_LEN == 16)
723 ((UINT64 *)result)[3] = nbits;
724 #endif
726 nh_aux(hc->nh_key, buf, result, padded_len);
729 /* ---------------------------------------------------------------------- */
730 /* ---------------------------------------------------------------------- */
731 /* ----- Begin UHASH Section -------------------------------------------- */
732 /* ---------------------------------------------------------------------- */
733 /* ---------------------------------------------------------------------- */
735 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
736 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
737 * unless the initial data to be hashed is short. After the polynomial-
738 * layer, an inner-product hash is used to produce the final UHASH output.
740 * UHASH provides two interfaces, one all-at-once and another where data
741 * buffers are presented sequentially. In the sequential interface, the
742 * UHASH client calls the routine uhash_update() as many times as necessary.
743 * When there is no more data to be fed to UHASH, the client calls
744 * uhash_final() which
745 * calculates the UHASH output. Before beginning another UHASH calculation
746 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
747 * uhash(), is equivalent to the sequence of calls uhash_update() and
748 * uhash_final(); however it is optimized and should be
749 * used whenever the sequential interface is not necessary.
751 * The routine uhash_init() initializes the uhash_ctx data structure and
752 * must be called once, before any other UHASH routine.
755 /* ---------------------------------------------------------------------- */
756 /* ----- Constants and uhash_ctx ---------------------------------------- */
757 /* ---------------------------------------------------------------------- */
759 /* ---------------------------------------------------------------------- */
760 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
761 /* ---------------------------------------------------------------------- */
763 /* Primes and masks */
764 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
765 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
766 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
769 /* ---------------------------------------------------------------------- */
771 typedef struct uhash_ctx {
772 nh_ctx hash; /* Hash context for L1 NH hash */
773 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */
774 UINT64 poly_accum[STREAMS]; /* poly hash result */
775 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */
776 UINT32 ip_trans[STREAMS]; /* Inner-product translation */
777 UINT32 msg_len; /* Total length of data passed */
778 /* to uhash */
779 } uhash_ctx;
780 typedef struct uhash_ctx *uhash_ctx_t;
782 /* ---------------------------------------------------------------------- */
785 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
786 * word at a time. As described in the specification, poly32 and poly64
787 * require keys from special domains. The following implementations exploit
788 * the special domains to avoid overflow. The results are not guaranteed to
789 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
790 * patches any errant values.
793 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
795 UINT32 key_hi = (UINT32)(key >> 32),
796 key_lo = (UINT32)key,
797 cur_hi = (UINT32)(cur >> 32),
798 cur_lo = (UINT32)cur,
799 x_lo,
800 x_hi;
801 UINT64 X,T,res;
803 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
804 x_lo = (UINT32)X;
805 x_hi = (UINT32)(X >> 32);
807 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
809 T = ((UINT64)x_lo << 32);
810 res += T;
811 if (res < T)
812 res += 59;
814 res += data;
815 if (res < data)
816 res += 59;
818 return res;
822 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
823 * implementation does not handle all ramp levels. Because we don't handle
824 * the ramp up to p128 modulus in this implementation, we are limited to
825 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
826 * bytes input to UMAC per tag, ie. 16MB).
828 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
830 int i;
831 UINT64 *data=(UINT64*)data_in;
833 for (i = 0; i < STREAMS; i++) {
834 if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
835 hc->poly_accum[i] = poly64(hc->poly_accum[i],
836 hc->poly_key_8[i], p64 - 1);
837 hc->poly_accum[i] = poly64(hc->poly_accum[i],
838 hc->poly_key_8[i], (data[i] - 59));
839 } else {
840 hc->poly_accum[i] = poly64(hc->poly_accum[i],
841 hc->poly_key_8[i], data[i]);
847 /* ---------------------------------------------------------------------- */
850 /* The final step in UHASH is an inner-product hash. The poly hash
851 * produces a result not neccesarily WORD_LEN bytes long. The inner-
852 * product hash breaks the polyhash output into 16-bit chunks and
853 * multiplies each with a 36 bit key.
856 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
858 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
859 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
860 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
861 t = t + ipkp[3] * (UINT64)(UINT16)(data);
863 return t;
866 static UINT32 ip_reduce_p36(UINT64 t)
868 /* Divisionless modular reduction */
869 UINT64 ret;
871 ret = (t & m36) + 5 * (t >> 36);
872 if (ret >= p36)
873 ret -= p36;
875 /* return least significant 32 bits */
876 return (UINT32)(ret);
880 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
881 * the polyhash stage is skipped and ip_short is applied directly to the
882 * NH output.
884 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
886 UINT64 t;
887 UINT64 *nhp = (UINT64 *)nh_res;
889 t = ip_aux(0,ahc->ip_keys, nhp[0]);
890 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
891 #if (UMAC_OUTPUT_LEN >= 8)
892 t = ip_aux(0,ahc->ip_keys+4, nhp[1]);
893 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
894 #endif
895 #if (UMAC_OUTPUT_LEN >= 12)
896 t = ip_aux(0,ahc->ip_keys+8, nhp[2]);
897 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
898 #endif
899 #if (UMAC_OUTPUT_LEN == 16)
900 t = ip_aux(0,ahc->ip_keys+12, nhp[3]);
901 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
902 #endif
905 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
906 * the polyhash stage is not skipped and ip_long is applied to the
907 * polyhash output.
909 static void ip_long(uhash_ctx_t ahc, u_char *res)
911 int i;
912 UINT64 t;
914 for (i = 0; i < STREAMS; i++) {
915 /* fix polyhash output not in Z_p64 */
916 if (ahc->poly_accum[i] >= p64)
917 ahc->poly_accum[i] -= p64;
918 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
919 STORE_UINT32_BIG((UINT32 *)res+i,
920 ip_reduce_p36(t) ^ ahc->ip_trans[i]);
925 /* ---------------------------------------------------------------------- */
927 /* ---------------------------------------------------------------------- */
929 /* Reset uhash context for next hash session */
930 static int uhash_reset(uhash_ctx_t pc)
932 nh_reset(&pc->hash);
933 pc->msg_len = 0;
934 pc->poly_accum[0] = 1;
935 #if (UMAC_OUTPUT_LEN >= 8)
936 pc->poly_accum[1] = 1;
937 #endif
938 #if (UMAC_OUTPUT_LEN >= 12)
939 pc->poly_accum[2] = 1;
940 #endif
941 #if (UMAC_OUTPUT_LEN == 16)
942 pc->poly_accum[3] = 1;
943 #endif
944 return 1;
947 /* ---------------------------------------------------------------------- */
949 /* Given a pointer to the internal key needed by kdf() and a uhash context,
950 * initialize the NH context and generate keys needed for poly and inner-
951 * product hashing. All keys are endian adjusted in memory so that native
952 * loads cause correct keys to be in registers during calculation.
954 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
956 int i;
957 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
959 /* Zero the entire uhash context */
960 memset(ahc, 0, sizeof(uhash_ctx));
962 /* Initialize the L1 hash */
963 nh_init(&ahc->hash, prf_key);
965 /* Setup L2 hash variables */
966 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */
967 for (i = 0; i < STREAMS; i++) {
968 /* Fill keys from the buffer, skipping bytes in the buffer not
969 * used by this implementation. Endian reverse the keys if on a
970 * little-endian computer.
972 memcpy(ahc->poly_key_8+i, buf+24*i, 8);
973 endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
974 /* Mask the 64-bit keys to their special domain */
975 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
976 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */
979 /* Setup L3-1 hash variables */
980 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
981 for (i = 0; i < STREAMS; i++)
982 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
983 4*sizeof(UINT64));
984 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
985 sizeof(ahc->ip_keys));
986 for (i = 0; i < STREAMS*4; i++)
987 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */
989 /* Setup L3-2 hash variables */
990 /* Fill buffer with index 4 key */
991 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
992 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
993 STREAMS * sizeof(UINT32));
996 /* ---------------------------------------------------------------------- */
998 #if 0
999 static uhash_ctx_t uhash_alloc(u_char key[])
1001 /* Allocate memory and force to a 16-byte boundary. */
1002 uhash_ctx_t ctx;
1003 u_char bytes_to_add;
1004 aes_int_key prf_key;
1006 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1007 if (ctx) {
1008 if (ALLOC_BOUNDARY) {
1009 bytes_to_add = ALLOC_BOUNDARY -
1010 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1011 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1012 *((u_char *)ctx - 1) = bytes_to_add;
1014 aes_key_setup(key,prf_key);
1015 uhash_init(ctx, prf_key);
1017 return (ctx);
1019 #endif
1021 /* ---------------------------------------------------------------------- */
1023 #if 0
1024 static int uhash_free(uhash_ctx_t ctx)
1026 /* Free memory allocated by uhash_alloc */
1027 u_char bytes_to_sub;
1029 if (ctx) {
1030 if (ALLOC_BOUNDARY) {
1031 bytes_to_sub = *((u_char *)ctx - 1);
1032 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1034 free(ctx);
1036 return (1);
1038 #endif
1039 /* ---------------------------------------------------------------------- */
1041 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1042 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1043 * hash each one with NH, calling the polyhash on each NH output.
1046 UWORD bytes_hashed, bytes_remaining;
1047 UINT64 result_buf[STREAMS];
1048 UINT8 *nh_result = (UINT8 *)&result_buf;
1050 if (ctx->msg_len + len <= L1_KEY_LEN) {
1051 nh_update(&ctx->hash, (const UINT8 *)input, len);
1052 ctx->msg_len += len;
1053 } else {
1055 bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1056 if (ctx->msg_len == L1_KEY_LEN)
1057 bytes_hashed = L1_KEY_LEN;
1059 if (bytes_hashed + len >= L1_KEY_LEN) {
1061 /* If some bytes have been passed to the hash function */
1062 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1063 /* bytes to complete the current nh_block. */
1064 if (bytes_hashed) {
1065 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1066 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1067 nh_final(&ctx->hash, nh_result);
1068 ctx->msg_len += bytes_remaining;
1069 poly_hash(ctx,(UINT32 *)nh_result);
1070 len -= bytes_remaining;
1071 input += bytes_remaining;
1074 /* Hash directly from input stream if enough bytes */
1075 while (len >= L1_KEY_LEN) {
1076 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
1077 L1_KEY_LEN, nh_result);
1078 ctx->msg_len += L1_KEY_LEN;
1079 len -= L1_KEY_LEN;
1080 input += L1_KEY_LEN;
1081 poly_hash(ctx,(UINT32 *)nh_result);
1085 /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1086 if (len) {
1087 nh_update(&ctx->hash, (const UINT8 *)input, len);
1088 ctx->msg_len += len;
1092 return (1);
1095 /* ---------------------------------------------------------------------- */
1097 static int uhash_final(uhash_ctx_t ctx, u_char *res)
1098 /* Incorporate any pending data, pad, and generate tag */
1100 UINT64 result_buf[STREAMS];
1101 UINT8 *nh_result = (UINT8 *)&result_buf;
1103 if (ctx->msg_len > L1_KEY_LEN) {
1104 if (ctx->msg_len % L1_KEY_LEN) {
1105 nh_final(&ctx->hash, nh_result);
1106 poly_hash(ctx,(UINT32 *)nh_result);
1108 ip_long(ctx, res);
1109 } else {
1110 nh_final(&ctx->hash, nh_result);
1111 ip_short(ctx,nh_result, res);
1113 uhash_reset(ctx);
1114 return (1);
1117 /* ---------------------------------------------------------------------- */
1119 #if 0
1120 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1121 /* assumes that msg is in a writable buffer of length divisible by */
1122 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
1124 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1125 UINT32 nh_len;
1126 int extra_zeroes_needed;
1128 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1129 * the polyhash.
1131 if (len <= L1_KEY_LEN) {
1132 if (len == 0) /* If zero length messages will not */
1133 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */
1134 else
1135 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1136 extra_zeroes_needed = nh_len - len;
1137 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1138 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1139 ip_short(ahc,nh_result, res);
1140 } else {
1141 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1142 * output to poly_hash().
1144 do {
1145 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1146 poly_hash(ahc,(UINT32 *)nh_result);
1147 len -= L1_KEY_LEN;
1148 msg += L1_KEY_LEN;
1149 } while (len >= L1_KEY_LEN);
1150 if (len) {
1151 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1152 extra_zeroes_needed = nh_len - len;
1153 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1154 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1155 poly_hash(ahc,(UINT32 *)nh_result);
1158 ip_long(ahc, res);
1161 uhash_reset(ahc);
1162 return 1;
1164 #endif
1166 /* ---------------------------------------------------------------------- */
1167 /* ---------------------------------------------------------------------- */
1168 /* ----- Begin UMAC Section --------------------------------------------- */
1169 /* ---------------------------------------------------------------------- */
1170 /* ---------------------------------------------------------------------- */
1172 /* The UMAC interface has two interfaces, an all-at-once interface where
1173 * the entire message to be authenticated is passed to UMAC in one buffer,
1174 * and a sequential interface where the message is presented a little at a
1175 * time. The all-at-once is more optimaized than the sequential version and
1176 * should be preferred when the sequential interface is not required.
1178 struct umac_ctx {
1179 uhash_ctx hash; /* Hash function for message compression */
1180 pdf_ctx pdf; /* PDF for hashed output */
1181 void *free_ptr; /* Address to free this struct via */
1182 } umac_ctx;
1184 /* ---------------------------------------------------------------------- */
1186 #if 0
1187 int umac_reset(struct umac_ctx *ctx)
1188 /* Reset the hash function to begin a new authentication. */
1190 uhash_reset(&ctx->hash);
1191 return (1);
1193 #endif
1195 /* ---------------------------------------------------------------------- */
1197 int umac_delete(struct umac_ctx *ctx)
1198 /* Deallocate the ctx structure */
1200 if (ctx) {
1201 if (ALLOC_BOUNDARY)
1202 ctx = (struct umac_ctx *)ctx->free_ptr;
1203 free(ctx);
1205 return (1);
1208 /* ---------------------------------------------------------------------- */
1210 struct umac_ctx *umac_new(const u_char key[])
1211 /* Dynamically allocate a umac_ctx struct, initialize variables,
1212 * generate subkeys from key. Align to 16-byte boundary.
1215 struct umac_ctx *ctx, *octx;
1216 size_t bytes_to_add;
1217 aes_int_key prf_key;
1219 octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
1220 if (ctx) {
1221 if (ALLOC_BOUNDARY) {
1222 bytes_to_add = ALLOC_BOUNDARY -
1223 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1224 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1226 ctx->free_ptr = octx;
1227 aes_key_setup(key, prf_key);
1228 pdf_init(&ctx->pdf, prf_key);
1229 uhash_init(&ctx->hash, prf_key);
1232 return (ctx);
1235 /* ---------------------------------------------------------------------- */
1237 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
1238 /* Incorporate any pending data, pad, and generate tag */
1240 uhash_final(&ctx->hash, (u_char *)tag);
1241 pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1243 return (1);
1246 /* ---------------------------------------------------------------------- */
1248 int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
1249 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
1250 /* hash each one, calling the PDF on the hashed output whenever the hash- */
1251 /* output buffer is full. */
1253 uhash_update(&ctx->hash, input, len);
1254 return (1);
1257 /* ---------------------------------------------------------------------- */
1259 #if 0
1260 int umac(struct umac_ctx *ctx, u_char *input,
1261 long len, u_char tag[],
1262 u_char nonce[8])
1263 /* All-in-one version simply calls umac_update() and umac_final(). */
1265 uhash(&ctx->hash, input, len, (u_char *)tag);
1266 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1268 return (1);
1270 #endif
1272 /* ---------------------------------------------------------------------- */
1273 /* ---------------------------------------------------------------------- */
1274 /* ----- End UMAC Section ----------------------------------------------- */
1275 /* ---------------------------------------------------------------------- */
1276 /* ---------------------------------------------------------------------- */