kernel/ale: Fix one more parentheses issue.
[dragonfly.git] / sys / dev / netif / ale / if_ale.c
blob860264e87dd8135235aae149e85db65e34950f1d
1 /*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
27 * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
32 #include <sys/param.h>
33 #include <sys/endian.h>
34 #include <sys/kernel.h>
35 #include <sys/bus.h>
36 #include <sys/interrupt.h>
37 #include <sys/malloc.h>
38 #include <sys/proc.h>
39 #include <sys/rman.h>
40 #include <sys/serialize.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
45 #include <net/ethernet.h>
46 #include <net/if.h>
47 #include <net/bpf.h>
48 #include <net/if_arp.h>
49 #include <net/if_dl.h>
50 #include <net/if_llc.h>
51 #include <net/if_media.h>
52 #include <net/ifq_var.h>
53 #include <net/vlan/if_vlan_var.h>
54 #include <net/vlan/if_vlan_ether.h>
56 #include <netinet/ip.h>
58 #include <dev/netif/mii_layer/mii.h>
59 #include <dev/netif/mii_layer/miivar.h>
61 #include <bus/pci/pcireg.h>
62 #include <bus/pci/pcivar.h>
63 #include "pcidevs.h"
65 #include <dev/netif/ale/if_alereg.h>
66 #include <dev/netif/ale/if_alevar.h>
68 /* "device miibus" required. See GENERIC if you get errors here. */
69 #include "miibus_if.h"
71 /* For more information about Tx checksum offload issues see ale_encap(). */
72 #define ALE_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
74 struct ale_dmamap_ctx {
75 int nsegs;
76 bus_dma_segment_t *segs;
79 static int ale_probe(device_t);
80 static int ale_attach(device_t);
81 static int ale_detach(device_t);
82 static int ale_shutdown(device_t);
83 static int ale_suspend(device_t);
84 static int ale_resume(device_t);
86 static int ale_miibus_readreg(device_t, int, int);
87 static int ale_miibus_writereg(device_t, int, int, int);
88 static void ale_miibus_statchg(device_t);
90 static void ale_init(void *);
91 static void ale_start(struct ifnet *, struct ifaltq_subque *);
92 static int ale_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
93 static void ale_watchdog(struct ifnet *);
94 static int ale_mediachange(struct ifnet *);
95 static void ale_mediastatus(struct ifnet *, struct ifmediareq *);
97 static void ale_intr(void *);
98 static int ale_rxeof(struct ale_softc *sc);
99 static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
100 uint32_t, uint32_t *);
101 static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
102 static void ale_txeof(struct ale_softc *);
104 static int ale_dma_alloc(struct ale_softc *);
105 static void ale_dma_free(struct ale_softc *);
106 static int ale_check_boundary(struct ale_softc *);
107 static void ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
108 static void ale_dmamap_buf_cb(void *, bus_dma_segment_t *, int,
109 bus_size_t, int);
110 static int ale_encap(struct ale_softc *, struct mbuf **);
111 static void ale_init_rx_pages(struct ale_softc *);
112 static void ale_init_tx_ring(struct ale_softc *);
114 static void ale_stop(struct ale_softc *);
115 static void ale_tick(void *);
116 static void ale_get_macaddr(struct ale_softc *);
117 static void ale_mac_config(struct ale_softc *);
118 static void ale_phy_reset(struct ale_softc *);
119 static void ale_reset(struct ale_softc *);
120 static void ale_rxfilter(struct ale_softc *);
121 static void ale_rxvlan(struct ale_softc *);
122 static void ale_stats_clear(struct ale_softc *);
123 static void ale_stats_update(struct ale_softc *);
124 static void ale_stop_mac(struct ale_softc *);
125 #ifdef notyet
126 static void ale_setlinkspeed(struct ale_softc *);
127 static void ale_setwol(struct ale_softc *);
128 #endif
130 static void ale_sysctl_node(struct ale_softc *);
131 static int sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
134 * Devices supported by this driver.
136 static struct ale_dev {
137 uint16_t ale_vendorid;
138 uint16_t ale_deviceid;
139 const char *ale_name;
140 } ale_devs[] = {
141 { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
142 "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
145 static device_method_t ale_methods[] = {
146 /* Device interface. */
147 DEVMETHOD(device_probe, ale_probe),
148 DEVMETHOD(device_attach, ale_attach),
149 DEVMETHOD(device_detach, ale_detach),
150 DEVMETHOD(device_shutdown, ale_shutdown),
151 DEVMETHOD(device_suspend, ale_suspend),
152 DEVMETHOD(device_resume, ale_resume),
154 /* Bus interface. */
155 DEVMETHOD(bus_print_child, bus_generic_print_child),
156 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
158 /* MII interface. */
159 DEVMETHOD(miibus_readreg, ale_miibus_readreg),
160 DEVMETHOD(miibus_writereg, ale_miibus_writereg),
161 DEVMETHOD(miibus_statchg, ale_miibus_statchg),
163 { NULL, NULL }
166 static driver_t ale_driver = {
167 "ale",
168 ale_methods,
169 sizeof(struct ale_softc)
172 static devclass_t ale_devclass;
174 DECLARE_DUMMY_MODULE(if_ale);
175 MODULE_VERSION(if_ale, 1);
176 MODULE_DEPEND(if_ale, miibus, 1, 1, 1);
177 DRIVER_MODULE(if_ale, pci, ale_driver, ale_devclass, NULL, NULL);
178 DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, NULL, NULL);
180 static int
181 ale_miibus_readreg(device_t dev, int phy, int reg)
183 struct ale_softc *sc;
184 uint32_t v;
185 int i;
187 sc = device_get_softc(dev);
189 if (phy != sc->ale_phyaddr)
190 return (0);
192 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
193 if (reg == MII_100T2CR || reg == MII_100T2SR ||
194 reg == MII_EXTSR)
195 return (0);
198 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
199 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
200 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
201 DELAY(5);
202 v = CSR_READ_4(sc, ALE_MDIO);
203 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
204 break;
207 if (i == 0) {
208 device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
209 return (0);
212 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
215 static int
216 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
218 struct ale_softc *sc;
219 uint32_t v;
220 int i;
222 sc = device_get_softc(dev);
224 if (phy != sc->ale_phyaddr)
225 return (0);
227 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
228 if (reg == MII_100T2CR || reg == MII_100T2SR ||
229 reg == MII_EXTSR)
230 return (0);
233 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
234 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
235 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
236 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
237 DELAY(5);
238 v = CSR_READ_4(sc, ALE_MDIO);
239 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
240 break;
243 if (i == 0)
244 device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
246 return (0);
249 static void
250 ale_miibus_statchg(device_t dev)
252 struct ale_softc *sc = device_get_softc(dev);
253 struct ifnet *ifp = &sc->arpcom.ac_if;
254 struct mii_data *mii;
255 uint32_t reg;
257 ASSERT_SERIALIZED(ifp->if_serializer);
259 if ((ifp->if_flags & IFF_RUNNING) == 0)
260 return;
262 mii = device_get_softc(sc->ale_miibus);
264 sc->ale_flags &= ~ALE_FLAG_LINK;
265 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
266 (IFM_ACTIVE | IFM_AVALID)) {
267 switch (IFM_SUBTYPE(mii->mii_media_active)) {
268 case IFM_10_T:
269 case IFM_100_TX:
270 sc->ale_flags |= ALE_FLAG_LINK;
271 break;
273 case IFM_1000_T:
274 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
275 sc->ale_flags |= ALE_FLAG_LINK;
276 break;
278 default:
279 break;
283 /* Stop Rx/Tx MACs. */
284 ale_stop_mac(sc);
286 /* Program MACs with resolved speed/duplex/flow-control. */
287 if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
288 ale_mac_config(sc);
289 /* Reenable Tx/Rx MACs. */
290 reg = CSR_READ_4(sc, ALE_MAC_CFG);
291 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
292 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
296 static void
297 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
299 struct ale_softc *sc = ifp->if_softc;
300 struct mii_data *mii = device_get_softc(sc->ale_miibus);
302 ASSERT_SERIALIZED(ifp->if_serializer);
304 mii_pollstat(mii);
305 ifmr->ifm_status = mii->mii_media_status;
306 ifmr->ifm_active = mii->mii_media_active;
309 static int
310 ale_mediachange(struct ifnet *ifp)
312 struct ale_softc *sc = ifp->if_softc;
313 struct mii_data *mii = device_get_softc(sc->ale_miibus);
314 int error;
316 ASSERT_SERIALIZED(ifp->if_serializer);
318 if (mii->mii_instance != 0) {
319 struct mii_softc *miisc;
321 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
322 mii_phy_reset(miisc);
324 error = mii_mediachg(mii);
326 return (error);
329 static int
330 ale_probe(device_t dev)
332 struct ale_dev *sp;
333 int i;
334 uint16_t vendor, devid;
336 vendor = pci_get_vendor(dev);
337 devid = pci_get_device(dev);
338 sp = ale_devs;
339 for (i = 0; i < NELEM(ale_devs); i++) {
340 if (vendor == sp->ale_vendorid &&
341 devid == sp->ale_deviceid) {
342 device_set_desc(dev, sp->ale_name);
343 return (0);
345 sp++;
348 return (ENXIO);
351 static void
352 ale_get_macaddr(struct ale_softc *sc)
354 uint32_t ea[2], reg;
355 int i, vpdc;
357 reg = CSR_READ_4(sc, ALE_SPI_CTRL);
358 if ((reg & SPI_VPD_ENB) != 0) {
359 reg &= ~SPI_VPD_ENB;
360 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
363 vpdc = pci_get_vpdcap_ptr(sc->ale_dev);
364 if (vpdc) {
366 * PCI VPD capability found, let TWSI reload EEPROM.
367 * This will set ethernet address of controller.
369 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
370 TWSI_CTRL_SW_LD_START);
371 for (i = 100; i > 0; i--) {
372 DELAY(1000);
373 reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
374 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
375 break;
377 if (i == 0)
378 device_printf(sc->ale_dev,
379 "reloading EEPROM timeout!\n");
380 } else {
381 if (bootverbose)
382 device_printf(sc->ale_dev,
383 "PCI VPD capability not found!\n");
386 ea[0] = CSR_READ_4(sc, ALE_PAR0);
387 ea[1] = CSR_READ_4(sc, ALE_PAR1);
388 sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
389 sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
390 sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
391 sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
392 sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
393 sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
396 static void
397 ale_phy_reset(struct ale_softc *sc)
399 /* Reset magic from Linux. */
400 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
401 GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
402 GPHY_CTRL_PHY_PLL_ON);
403 DELAY(1000);
404 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
405 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
406 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
407 DELAY(1000);
409 #define ATPHY_DBG_ADDR 0x1D
410 #define ATPHY_DBG_DATA 0x1E
412 /* Enable hibernation mode. */
413 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
414 ATPHY_DBG_ADDR, 0x0B);
415 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
416 ATPHY_DBG_DATA, 0xBC00);
417 /* Set Class A/B for all modes. */
418 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
419 ATPHY_DBG_ADDR, 0x00);
420 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
421 ATPHY_DBG_DATA, 0x02EF);
422 /* Enable 10BT power saving. */
423 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
424 ATPHY_DBG_ADDR, 0x12);
425 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
426 ATPHY_DBG_DATA, 0x4C04);
427 /* Adjust 1000T power. */
428 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
429 ATPHY_DBG_ADDR, 0x04);
430 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
431 ATPHY_DBG_ADDR, 0x8BBB);
432 /* 10BT center tap voltage. */
433 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
434 ATPHY_DBG_ADDR, 0x05);
435 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
436 ATPHY_DBG_ADDR, 0x2C46);
438 #undef ATPHY_DBG_ADDR
439 #undef ATPHY_DBG_DATA
440 DELAY(1000);
443 static int
444 ale_attach(device_t dev)
446 struct ale_softc *sc = device_get_softc(dev);
447 struct ifnet *ifp = &sc->arpcom.ac_if;
448 int error = 0;
449 uint32_t rxf_len, txf_len;
450 uint8_t pcie_ptr;
452 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
453 sc->ale_dev = dev;
455 callout_init(&sc->ale_tick_ch);
457 #ifndef BURN_BRIDGES
458 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
459 uint32_t irq, mem;
461 irq = pci_read_config(dev, PCIR_INTLINE, 4);
462 mem = pci_read_config(dev, ALE_PCIR_BAR, 4);
464 device_printf(dev, "chip is in D%d power mode "
465 "-- setting to D0\n", pci_get_powerstate(dev));
467 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
469 pci_write_config(dev, PCIR_INTLINE, irq, 4);
470 pci_write_config(dev, ALE_PCIR_BAR, mem, 4);
472 #endif /* !BURN_BRIDGE */
474 /* Enable bus mastering */
475 pci_enable_busmaster(dev);
478 * Allocate memory mapped IO
480 sc->ale_mem_rid = ALE_PCIR_BAR;
481 sc->ale_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
482 &sc->ale_mem_rid, RF_ACTIVE);
483 if (sc->ale_mem_res == NULL) {
484 device_printf(dev, "can't allocate IO memory\n");
485 return ENXIO;
487 sc->ale_mem_bt = rman_get_bustag(sc->ale_mem_res);
488 sc->ale_mem_bh = rman_get_bushandle(sc->ale_mem_res);
491 * Allocate IRQ
493 sc->ale_irq_rid = 0;
494 sc->ale_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
495 &sc->ale_irq_rid,
496 RF_SHAREABLE | RF_ACTIVE);
497 if (sc->ale_irq_res == NULL) {
498 device_printf(dev, "can't allocate irq\n");
499 error = ENXIO;
500 goto fail;
503 /* Set PHY address. */
504 sc->ale_phyaddr = ALE_PHY_ADDR;
506 /* Reset PHY. */
507 ale_phy_reset(sc);
509 /* Reset the ethernet controller. */
510 ale_reset(sc);
512 /* Get PCI and chip id/revision. */
513 sc->ale_rev = pci_get_revid(dev);
514 if (sc->ale_rev >= 0xF0) {
515 /* L2E Rev. B. AR8114 */
516 sc->ale_flags |= ALE_FLAG_FASTETHER;
517 } else {
518 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
519 /* L1E AR8121 */
520 sc->ale_flags |= ALE_FLAG_JUMBO;
521 } else {
522 /* L2E Rev. A. AR8113 */
523 sc->ale_flags |= ALE_FLAG_FASTETHER;
528 * All known controllers seems to require 4 bytes alignment
529 * of Tx buffers to make Tx checksum offload with custom
530 * checksum generation method work.
532 sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
535 * All known controllers seems to have issues on Rx checksum
536 * offload for fragmented IP datagrams.
538 sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
541 * Don't use Tx CMB. It is known to cause RRS update failure
542 * under certain circumstances. Typical phenomenon of the
543 * issue would be unexpected sequence number encountered in
544 * Rx handler.
546 sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
547 sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
548 MASTER_CHIP_REV_SHIFT;
549 if (bootverbose) {
550 device_printf(dev, "PCI device revision : 0x%04x\n",
551 sc->ale_rev);
552 device_printf(dev, "Chip id/revision : 0x%04x\n",
553 sc->ale_chip_rev);
557 * Uninitialized hardware returns an invalid chip id/revision
558 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
560 txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
561 rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
562 if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
563 rxf_len == 0xFFFFFFF) {
564 device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
565 "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
566 txf_len, rxf_len);
567 error = ENXIO;
568 goto fail;
570 device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
572 /* Get DMA parameters from PCIe device control register. */
573 pcie_ptr = pci_get_pciecap_ptr(dev);
574 if (pcie_ptr) {
575 uint16_t devctl;
577 sc->ale_flags |= ALE_FLAG_PCIE;
578 devctl = pci_read_config(dev, pcie_ptr + PCIER_DEVCTRL, 2);
579 /* Max read request size. */
580 sc->ale_dma_rd_burst = ((devctl >> 12) & 0x07) <<
581 DMA_CFG_RD_BURST_SHIFT;
582 /* Max payload size. */
583 sc->ale_dma_wr_burst = ((devctl >> 5) & 0x07) <<
584 DMA_CFG_WR_BURST_SHIFT;
585 if (bootverbose) {
586 device_printf(dev, "Read request size : %d bytes.\n",
587 128 << ((devctl >> 12) & 0x07));
588 device_printf(dev, "TLP payload size : %d bytes.\n",
589 128 << ((devctl >> 5) & 0x07));
591 } else {
592 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
593 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
596 /* Create device sysctl node. */
597 ale_sysctl_node(sc);
599 if ((error = ale_dma_alloc(sc)) != 0)
600 goto fail;
602 /* Load station address. */
603 ale_get_macaddr(sc);
605 ifp->if_softc = sc;
606 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
607 ifp->if_ioctl = ale_ioctl;
608 ifp->if_start = ale_start;
609 ifp->if_init = ale_init;
610 ifp->if_watchdog = ale_watchdog;
611 ifq_set_maxlen(&ifp->if_snd, ALE_TX_RING_CNT - 1);
612 ifq_set_ready(&ifp->if_snd);
614 ifp->if_capabilities = IFCAP_RXCSUM |
615 IFCAP_VLAN_MTU |
616 IFCAP_VLAN_HWTAGGING;
617 #ifdef notyet
618 ifp->if_capabilities |= IFCAP_TXCSUM;
619 ifp->if_hwassist = ALE_CSUM_FEATURES;
620 #endif
621 ifp->if_capenable = ifp->if_capabilities;
623 /* Set up MII bus. */
624 if ((error = mii_phy_probe(dev, &sc->ale_miibus, ale_mediachange,
625 ale_mediastatus)) != 0) {
626 device_printf(dev, "no PHY found!\n");
627 goto fail;
630 ether_ifattach(ifp, sc->ale_eaddr, NULL);
632 /* Tell the upper layer(s) we support long frames. */
633 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
635 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->ale_irq_res));
637 error = bus_setup_intr(dev, sc->ale_irq_res, INTR_MPSAFE, ale_intr, sc,
638 &sc->ale_irq_handle, ifp->if_serializer);
639 if (error) {
640 device_printf(dev, "could not set up interrupt handler.\n");
641 ether_ifdetach(ifp);
642 goto fail;
645 return 0;
646 fail:
647 ale_detach(dev);
648 return (error);
651 static int
652 ale_detach(device_t dev)
654 struct ale_softc *sc = device_get_softc(dev);
656 if (device_is_attached(dev)) {
657 struct ifnet *ifp = &sc->arpcom.ac_if;
659 lwkt_serialize_enter(ifp->if_serializer);
660 sc->ale_flags |= ALE_FLAG_DETACH;
661 ale_stop(sc);
662 bus_teardown_intr(dev, sc->ale_irq_res, sc->ale_irq_handle);
663 lwkt_serialize_exit(ifp->if_serializer);
665 ether_ifdetach(ifp);
668 if (sc->ale_miibus != NULL)
669 device_delete_child(dev, sc->ale_miibus);
670 bus_generic_detach(dev);
672 if (sc->ale_irq_res != NULL) {
673 bus_release_resource(dev, SYS_RES_IRQ, sc->ale_irq_rid,
674 sc->ale_irq_res);
676 if (sc->ale_mem_res != NULL) {
677 bus_release_resource(dev, SYS_RES_MEMORY, sc->ale_mem_rid,
678 sc->ale_mem_res);
681 ale_dma_free(sc);
683 return (0);
686 #define ALE_SYSCTL_STAT_ADD32(c, h, n, p, d) \
687 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
688 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d) \
689 SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
691 static void
692 ale_sysctl_node(struct ale_softc *sc)
694 struct sysctl_ctx_list *ctx;
695 struct sysctl_oid_list *child, *parent;
696 struct sysctl_oid *tree;
697 struct ale_hw_stats *stats;
698 int error;
700 stats = &sc->ale_stats;
701 ctx = device_get_sysctl_ctx(sc->ale_dev);
702 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
704 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
705 CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0,
706 sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
707 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
708 CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0,
709 sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
712 * Pull in device tunables.
714 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
715 error = resource_int_value(device_get_name(sc->ale_dev),
716 device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
717 if (error == 0) {
718 if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
719 sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
720 device_printf(sc->ale_dev, "int_rx_mod value out of "
721 "range; using default: %d\n",
722 ALE_IM_RX_TIMER_DEFAULT);
723 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
727 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
728 error = resource_int_value(device_get_name(sc->ale_dev),
729 device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
730 if (error == 0) {
731 if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
732 sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
733 device_printf(sc->ale_dev, "int_tx_mod value out of "
734 "range; using default: %d\n",
735 ALE_IM_TX_TIMER_DEFAULT);
736 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
740 /* Misc statistics. */
741 ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
742 &stats->reset_brk_seq,
743 "Controller resets due to broken Rx sequnce number");
745 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
746 NULL, "ATE statistics");
747 parent = SYSCTL_CHILDREN(tree);
749 /* Rx statistics. */
750 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
751 NULL, "Rx MAC statistics");
752 child = SYSCTL_CHILDREN(tree);
753 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
754 &stats->rx_frames, "Good frames");
755 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
756 &stats->rx_bcast_frames, "Good broadcast frames");
757 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
758 &stats->rx_mcast_frames, "Good multicast frames");
759 ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
760 &stats->rx_pause_frames, "Pause control frames");
761 ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
762 &stats->rx_control_frames, "Control frames");
763 ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
764 &stats->rx_crcerrs, "CRC errors");
765 ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
766 &stats->rx_lenerrs, "Frames with length mismatched");
767 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
768 &stats->rx_bytes, "Good octets");
769 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
770 &stats->rx_bcast_bytes, "Good broadcast octets");
771 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
772 &stats->rx_mcast_bytes, "Good multicast octets");
773 ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
774 &stats->rx_runts, "Too short frames");
775 ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
776 &stats->rx_fragments, "Fragmented frames");
777 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
778 &stats->rx_pkts_64, "64 bytes frames");
779 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
780 &stats->rx_pkts_65_127, "65 to 127 bytes frames");
781 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
782 &stats->rx_pkts_128_255, "128 to 255 bytes frames");
783 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
784 &stats->rx_pkts_256_511, "256 to 511 bytes frames");
785 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
786 &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
787 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
788 &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
789 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
790 &stats->rx_pkts_1519_max, "1519 to max frames");
791 ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
792 &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
793 ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
794 &stats->rx_fifo_oflows, "FIFO overflows");
795 ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
796 &stats->rx_rrs_errs, "Return status write-back errors");
797 ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
798 &stats->rx_alignerrs, "Alignment errors");
799 ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
800 &stats->rx_pkts_filtered,
801 "Frames dropped due to address filtering");
803 /* Tx statistics. */
804 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
805 NULL, "Tx MAC statistics");
806 child = SYSCTL_CHILDREN(tree);
807 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
808 &stats->tx_frames, "Good frames");
809 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
810 &stats->tx_bcast_frames, "Good broadcast frames");
811 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
812 &stats->tx_mcast_frames, "Good multicast frames");
813 ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
814 &stats->tx_pause_frames, "Pause control frames");
815 ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
816 &stats->tx_control_frames, "Control frames");
817 ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
818 &stats->tx_excess_defer, "Frames with excessive derferrals");
819 ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
820 &stats->tx_excess_defer, "Frames with derferrals");
821 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
822 &stats->tx_bytes, "Good octets");
823 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
824 &stats->tx_bcast_bytes, "Good broadcast octets");
825 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
826 &stats->tx_mcast_bytes, "Good multicast octets");
827 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
828 &stats->tx_pkts_64, "64 bytes frames");
829 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
830 &stats->tx_pkts_65_127, "65 to 127 bytes frames");
831 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
832 &stats->tx_pkts_128_255, "128 to 255 bytes frames");
833 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
834 &stats->tx_pkts_256_511, "256 to 511 bytes frames");
835 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
836 &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
837 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
838 &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
839 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
840 &stats->tx_pkts_1519_max, "1519 to max frames");
841 ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
842 &stats->tx_single_colls, "Single collisions");
843 ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
844 &stats->tx_multi_colls, "Multiple collisions");
845 ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
846 &stats->tx_late_colls, "Late collisions");
847 ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
848 &stats->tx_excess_colls, "Excessive collisions");
849 ALE_SYSCTL_STAT_ADD32(ctx, child, "abort",
850 &stats->tx_abort, "Aborted frames due to Excessive collisions");
851 ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
852 &stats->tx_underrun, "FIFO underruns");
853 ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
854 &stats->tx_desc_underrun, "Descriptor write-back errors");
855 ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
856 &stats->tx_lenerrs, "Frames with length mismatched");
857 ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
858 &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
861 #undef ALE_SYSCTL_STAT_ADD32
862 #undef ALE_SYSCTL_STAT_ADD64
864 struct ale_dmamap_arg {
865 bus_addr_t ale_busaddr;
868 static void
869 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
871 struct ale_dmamap_arg *ctx;
873 if (error != 0)
874 return;
876 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
878 ctx = (struct ale_dmamap_arg *)arg;
879 ctx->ale_busaddr = segs[0].ds_addr;
883 * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
884 * which specifies high address region of DMA blocks. Therefore these
885 * blocks should have the same high address of given 4GB address
886 * space(i.e. crossing 4GB boundary is not allowed).
888 static int
889 ale_check_boundary(struct ale_softc *sc)
891 bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
892 bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
894 rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
895 sc->ale_pagesize;
896 rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
897 sc->ale_pagesize;
898 tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
899 tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
900 rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
901 rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
903 if ((ALE_ADDR_HI(tx_ring_end) !=
904 ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
905 (ALE_ADDR_HI(rx_page_end[0]) !=
906 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
907 (ALE_ADDR_HI(rx_page_end[1]) !=
908 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
909 (ALE_ADDR_HI(tx_cmb_end) !=
910 ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
911 (ALE_ADDR_HI(rx_cmb_end[0]) !=
912 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
913 (ALE_ADDR_HI(rx_cmb_end[1]) !=
914 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
915 return (EFBIG);
917 if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
918 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
919 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
920 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
921 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
922 return (EFBIG);
924 return (0);
927 static int
928 ale_dma_alloc(struct ale_softc *sc)
930 struct ale_txdesc *txd;
931 bus_addr_t lowaddr;
932 struct ale_dmamap_arg ctx;
933 int error, guard_size, i;
935 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
936 guard_size = ALE_JUMBO_FRAMELEN;
937 else
938 guard_size = ALE_MAX_FRAMELEN;
939 sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
940 ALE_RX_PAGE_ALIGN);
941 lowaddr = BUS_SPACE_MAXADDR;
942 again:
943 /* Create parent DMA tag. */
944 error = bus_dma_tag_create(
945 NULL, /* parent */
946 1, 0, /* alignment, boundary */
947 lowaddr, /* lowaddr */
948 BUS_SPACE_MAXADDR, /* highaddr */
949 NULL, NULL, /* filter, filterarg */
950 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
951 0, /* nsegments */
952 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
953 0, /* flags */
954 &sc->ale_cdata.ale_parent_tag);
955 if (error != 0) {
956 device_printf(sc->ale_dev,
957 "could not create parent DMA tag.\n");
958 goto fail;
961 /* Create DMA tag for Tx descriptor ring. */
962 error = bus_dma_tag_create(
963 sc->ale_cdata.ale_parent_tag, /* parent */
964 ALE_TX_RING_ALIGN, 0, /* alignment, boundary */
965 BUS_SPACE_MAXADDR, /* lowaddr */
966 BUS_SPACE_MAXADDR, /* highaddr */
967 NULL, NULL, /* filter, filterarg */
968 ALE_TX_RING_SZ, /* maxsize */
969 1, /* nsegments */
970 ALE_TX_RING_SZ, /* maxsegsize */
971 0, /* flags */
972 &sc->ale_cdata.ale_tx_ring_tag);
973 if (error != 0) {
974 device_printf(sc->ale_dev,
975 "could not create Tx ring DMA tag.\n");
976 goto fail;
979 /* Create DMA tag for Rx pages. */
980 for (i = 0; i < ALE_RX_PAGES; i++) {
981 error = bus_dma_tag_create(
982 sc->ale_cdata.ale_parent_tag, /* parent */
983 ALE_RX_PAGE_ALIGN, 0, /* alignment, boundary */
984 BUS_SPACE_MAXADDR, /* lowaddr */
985 BUS_SPACE_MAXADDR, /* highaddr */
986 NULL, NULL, /* filter, filterarg */
987 sc->ale_pagesize, /* maxsize */
988 1, /* nsegments */
989 sc->ale_pagesize, /* maxsegsize */
990 0, /* flags */
991 &sc->ale_cdata.ale_rx_page[i].page_tag);
992 if (error != 0) {
993 device_printf(sc->ale_dev,
994 "could not create Rx page %d DMA tag.\n", i);
995 goto fail;
999 /* Create DMA tag for Tx coalescing message block. */
1000 error = bus_dma_tag_create(
1001 sc->ale_cdata.ale_parent_tag, /* parent */
1002 ALE_CMB_ALIGN, 0, /* alignment, boundary */
1003 BUS_SPACE_MAXADDR, /* lowaddr */
1004 BUS_SPACE_MAXADDR, /* highaddr */
1005 NULL, NULL, /* filter, filterarg */
1006 ALE_TX_CMB_SZ, /* maxsize */
1007 1, /* nsegments */
1008 ALE_TX_CMB_SZ, /* maxsegsize */
1009 0, /* flags */
1010 &sc->ale_cdata.ale_tx_cmb_tag);
1011 if (error != 0) {
1012 device_printf(sc->ale_dev,
1013 "could not create Tx CMB DMA tag.\n");
1014 goto fail;
1017 /* Create DMA tag for Rx coalescing message block. */
1018 for (i = 0; i < ALE_RX_PAGES; i++) {
1019 error = bus_dma_tag_create(
1020 sc->ale_cdata.ale_parent_tag, /* parent */
1021 ALE_CMB_ALIGN, 0, /* alignment, boundary */
1022 BUS_SPACE_MAXADDR, /* lowaddr */
1023 BUS_SPACE_MAXADDR, /* highaddr */
1024 NULL, NULL, /* filter, filterarg */
1025 ALE_RX_CMB_SZ, /* maxsize */
1026 1, /* nsegments */
1027 ALE_RX_CMB_SZ, /* maxsegsize */
1028 0, /* flags */
1029 &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1030 if (error != 0) {
1031 device_printf(sc->ale_dev,
1032 "could not create Rx page %d CMB DMA tag.\n", i);
1033 goto fail;
1037 /* Allocate DMA'able memory and load the DMA map for Tx ring. */
1038 error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1039 (void **)&sc->ale_cdata.ale_tx_ring,
1040 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1041 &sc->ale_cdata.ale_tx_ring_map);
1042 if (error != 0) {
1043 device_printf(sc->ale_dev,
1044 "could not allocate DMA'able memory for Tx ring.\n");
1045 goto fail;
1047 ctx.ale_busaddr = 0;
1048 error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1049 sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1050 ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1051 if (error != 0 || ctx.ale_busaddr == 0) {
1052 device_printf(sc->ale_dev,
1053 "could not load DMA'able memory for Tx ring.\n");
1054 goto fail;
1056 sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1058 /* Rx pages. */
1059 for (i = 0; i < ALE_RX_PAGES; i++) {
1060 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1061 (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1062 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1063 &sc->ale_cdata.ale_rx_page[i].page_map);
1064 if (error != 0) {
1065 device_printf(sc->ale_dev,
1066 "could not allocate DMA'able memory for "
1067 "Rx page %d.\n", i);
1068 goto fail;
1070 ctx.ale_busaddr = 0;
1071 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1072 sc->ale_cdata.ale_rx_page[i].page_map,
1073 sc->ale_cdata.ale_rx_page[i].page_addr,
1074 sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1075 if (error != 0 || ctx.ale_busaddr == 0) {
1076 device_printf(sc->ale_dev,
1077 "could not load DMA'able memory for "
1078 "Rx page %d.\n", i);
1079 goto fail;
1081 sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1084 /* Tx CMB. */
1085 error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1086 (void **)&sc->ale_cdata.ale_tx_cmb,
1087 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1088 &sc->ale_cdata.ale_tx_cmb_map);
1089 if (error != 0) {
1090 device_printf(sc->ale_dev,
1091 "could not allocate DMA'able memory for Tx CMB.\n");
1092 goto fail;
1094 ctx.ale_busaddr = 0;
1095 error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1096 sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1097 ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1098 if (error != 0 || ctx.ale_busaddr == 0) {
1099 device_printf(sc->ale_dev,
1100 "could not load DMA'able memory for Tx CMB.\n");
1101 goto fail;
1103 sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1105 /* Rx CMB. */
1106 for (i = 0; i < ALE_RX_PAGES; i++) {
1107 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1108 (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1109 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1110 &sc->ale_cdata.ale_rx_page[i].cmb_map);
1111 if (error != 0) {
1112 device_printf(sc->ale_dev, "could not allocate "
1113 "DMA'able memory for Rx page %d CMB.\n", i);
1114 goto fail;
1116 ctx.ale_busaddr = 0;
1117 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1118 sc->ale_cdata.ale_rx_page[i].cmb_map,
1119 sc->ale_cdata.ale_rx_page[i].cmb_addr,
1120 ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1121 if (error != 0 || ctx.ale_busaddr == 0) {
1122 device_printf(sc->ale_dev, "could not load DMA'able "
1123 "memory for Rx page %d CMB.\n", i);
1124 goto fail;
1126 sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1130 * Tx descriptors/RXF0/CMB DMA blocks share the same
1131 * high address region of 64bit DMA address space.
1133 if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1134 (error = ale_check_boundary(sc)) != 0) {
1135 device_printf(sc->ale_dev, "4GB boundary crossed, "
1136 "switching to 32bit DMA addressing mode.\n");
1137 ale_dma_free(sc);
1139 * Limit max allowable DMA address space to 32bit
1140 * and try again.
1142 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1143 goto again;
1147 * Create Tx buffer parent tag.
1148 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1149 * needs separate parent DMA tag as parent DMA address space
1150 * could be restricted to be within 32bit address space by
1151 * 4GB boundary crossing.
1153 error = bus_dma_tag_create(
1154 NULL, /* parent */
1155 1, 0, /* alignment, boundary */
1156 BUS_SPACE_MAXADDR, /* lowaddr */
1157 BUS_SPACE_MAXADDR, /* highaddr */
1158 NULL, NULL, /* filter, filterarg */
1159 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
1160 0, /* nsegments */
1161 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1162 0, /* flags */
1163 &sc->ale_cdata.ale_buffer_tag);
1164 if (error != 0) {
1165 device_printf(sc->ale_dev,
1166 "could not create parent buffer DMA tag.\n");
1167 goto fail;
1170 /* Create DMA tag for Tx buffers. */
1171 error = bus_dma_tag_create(
1172 sc->ale_cdata.ale_buffer_tag, /* parent */
1173 1, 0, /* alignment, boundary */
1174 BUS_SPACE_MAXADDR, /* lowaddr */
1175 BUS_SPACE_MAXADDR, /* highaddr */
1176 NULL, NULL, /* filter, filterarg */
1177 ALE_TSO_MAXSIZE, /* maxsize */
1178 ALE_MAXTXSEGS, /* nsegments */
1179 ALE_TSO_MAXSEGSIZE, /* maxsegsize */
1180 0, /* flags */
1181 &sc->ale_cdata.ale_tx_tag);
1182 if (error != 0) {
1183 device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1184 goto fail;
1187 /* Create DMA maps for Tx buffers. */
1188 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1189 txd = &sc->ale_cdata.ale_txdesc[i];
1190 txd->tx_m = NULL;
1191 txd->tx_dmamap = NULL;
1192 error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1193 &txd->tx_dmamap);
1194 if (error != 0) {
1195 device_printf(sc->ale_dev,
1196 "could not create Tx dmamap.\n");
1197 goto fail;
1200 fail:
1201 return (error);
1204 static void
1205 ale_dma_free(struct ale_softc *sc)
1207 struct ale_txdesc *txd;
1208 int i;
1210 /* Tx buffers. */
1211 if (sc->ale_cdata.ale_tx_tag != NULL) {
1212 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1213 txd = &sc->ale_cdata.ale_txdesc[i];
1214 if (txd->tx_dmamap != NULL) {
1215 bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1216 txd->tx_dmamap);
1217 txd->tx_dmamap = NULL;
1220 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1221 sc->ale_cdata.ale_tx_tag = NULL;
1223 /* Tx descriptor ring. */
1224 if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1225 if (sc->ale_cdata.ale_tx_ring_map != NULL)
1226 bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1227 sc->ale_cdata.ale_tx_ring_map);
1228 if (sc->ale_cdata.ale_tx_ring_map != NULL &&
1229 sc->ale_cdata.ale_tx_ring != NULL)
1230 bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1231 sc->ale_cdata.ale_tx_ring,
1232 sc->ale_cdata.ale_tx_ring_map);
1233 sc->ale_cdata.ale_tx_ring = NULL;
1234 sc->ale_cdata.ale_tx_ring_map = NULL;
1235 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1236 sc->ale_cdata.ale_tx_ring_tag = NULL;
1238 /* Rx page block. */
1239 for (i = 0; i < ALE_RX_PAGES; i++) {
1240 if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1241 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
1242 bus_dmamap_unload(
1243 sc->ale_cdata.ale_rx_page[i].page_tag,
1244 sc->ale_cdata.ale_rx_page[i].page_map);
1245 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
1246 sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1247 bus_dmamem_free(
1248 sc->ale_cdata.ale_rx_page[i].page_tag,
1249 sc->ale_cdata.ale_rx_page[i].page_addr,
1250 sc->ale_cdata.ale_rx_page[i].page_map);
1251 sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1252 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
1253 bus_dma_tag_destroy(
1254 sc->ale_cdata.ale_rx_page[i].page_tag);
1255 sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1258 /* Rx CMB. */
1259 for (i = 0; i < ALE_RX_PAGES; i++) {
1260 if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1261 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
1262 bus_dmamap_unload(
1263 sc->ale_cdata.ale_rx_page[i].cmb_tag,
1264 sc->ale_cdata.ale_rx_page[i].cmb_map);
1265 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
1266 sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1267 bus_dmamem_free(
1268 sc->ale_cdata.ale_rx_page[i].cmb_tag,
1269 sc->ale_cdata.ale_rx_page[i].cmb_addr,
1270 sc->ale_cdata.ale_rx_page[i].cmb_map);
1271 sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1272 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
1273 bus_dma_tag_destroy(
1274 sc->ale_cdata.ale_rx_page[i].cmb_tag);
1275 sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1278 /* Tx CMB. */
1279 if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1280 if (sc->ale_cdata.ale_tx_cmb_map != NULL)
1281 bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1282 sc->ale_cdata.ale_tx_cmb_map);
1283 if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
1284 sc->ale_cdata.ale_tx_cmb != NULL)
1285 bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1286 sc->ale_cdata.ale_tx_cmb,
1287 sc->ale_cdata.ale_tx_cmb_map);
1288 sc->ale_cdata.ale_tx_cmb = NULL;
1289 sc->ale_cdata.ale_tx_cmb_map = NULL;
1290 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1291 sc->ale_cdata.ale_tx_cmb_tag = NULL;
1293 if (sc->ale_cdata.ale_buffer_tag != NULL) {
1294 bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1295 sc->ale_cdata.ale_buffer_tag = NULL;
1297 if (sc->ale_cdata.ale_parent_tag != NULL) {
1298 bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1299 sc->ale_cdata.ale_parent_tag = NULL;
1303 static int
1304 ale_shutdown(device_t dev)
1306 return (ale_suspend(dev));
1309 #ifdef notyet
1312 * Note, this driver resets the link speed to 10/100Mbps by
1313 * restarting auto-negotiation in suspend/shutdown phase but we
1314 * don't know whether that auto-negotiation would succeed or not
1315 * as driver has no control after powering off/suspend operation.
1316 * If the renegotiation fail WOL may not work. Running at 1Gbps
1317 * will draw more power than 375mA at 3.3V which is specified in
1318 * PCI specification and that would result in complete
1319 * shutdowning power to ethernet controller.
1321 * TODO
1322 * Save current negotiated media speed/duplex/flow-control to
1323 * softc and restore the same link again after resuming. PHY
1324 * handling such as power down/resetting to 100Mbps may be better
1325 * handled in suspend method in phy driver.
1327 static void
1328 ale_setlinkspeed(struct ale_softc *sc)
1330 struct mii_data *mii;
1331 int aneg, i;
1333 mii = device_get_softc(sc->ale_miibus);
1334 mii_pollstat(mii);
1335 aneg = 0;
1336 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1337 (IFM_ACTIVE | IFM_AVALID)) {
1338 switch IFM_SUBTYPE(mii->mii_media_active) {
1339 case IFM_10_T:
1340 case IFM_100_TX:
1341 return;
1342 case IFM_1000_T:
1343 aneg++;
1344 break;
1345 default:
1346 break;
1349 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1350 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1351 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1352 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1353 MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1354 DELAY(1000);
1355 if (aneg != 0) {
1357 * Poll link state until ale(4) get a 10/100Mbps link.
1359 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1360 mii_pollstat(mii);
1361 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1362 == (IFM_ACTIVE | IFM_AVALID)) {
1363 switch (IFM_SUBTYPE(
1364 mii->mii_media_active)) {
1365 case IFM_10_T:
1366 case IFM_100_TX:
1367 ale_mac_config(sc);
1368 return;
1369 default:
1370 break;
1373 ALE_UNLOCK(sc);
1374 pause("alelnk", hz);
1375 ALE_LOCK(sc);
1377 if (i == MII_ANEGTICKS_GIGE)
1378 device_printf(sc->ale_dev,
1379 "establishing a link failed, WOL may not work!");
1382 * No link, force MAC to have 100Mbps, full-duplex link.
1383 * This is the last resort and may/may not work.
1385 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1386 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1387 ale_mac_config(sc);
1390 static void
1391 ale_setwol(struct ale_softc *sc)
1393 struct ifnet *ifp;
1394 uint32_t reg, pmcs;
1395 uint16_t pmstat;
1396 int pmc;
1398 ALE_LOCK_ASSERT(sc);
1400 if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1401 /* Disable WOL. */
1402 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1403 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1404 reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1405 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1406 /* Force PHY power down. */
1407 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1408 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1409 GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1410 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1411 GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1412 return;
1415 ifp = sc->ale_ifp;
1416 if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1417 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1418 ale_setlinkspeed(sc);
1421 pmcs = 0;
1422 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1423 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1424 CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1425 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1426 reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1427 MAC_CFG_BCAST);
1428 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1429 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1430 if ((ifp->if_capenable & IFCAP_WOL) != 0)
1431 reg |= MAC_CFG_RX_ENB;
1432 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1434 if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1435 /* WOL disabled, PHY power down. */
1436 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1437 reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1438 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1439 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1440 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1441 GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1442 GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1443 GPHY_CTRL_PWDOWN_HW);
1445 /* Request PME. */
1446 pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1447 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1448 if ((ifp->if_capenable & IFCAP_WOL) != 0)
1449 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1450 pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1453 #endif /* notyet */
1455 static int
1456 ale_suspend(device_t dev)
1458 struct ale_softc *sc = device_get_softc(dev);
1459 struct ifnet *ifp = &sc->arpcom.ac_if;
1461 lwkt_serialize_enter(ifp->if_serializer);
1462 ale_stop(sc);
1463 #ifdef notyet
1464 ale_setwol(sc);
1465 #endif
1466 lwkt_serialize_exit(ifp->if_serializer);
1467 return (0);
1470 static int
1471 ale_resume(device_t dev)
1473 struct ale_softc *sc = device_get_softc(dev);
1474 struct ifnet *ifp = &sc->arpcom.ac_if;
1475 uint16_t cmd;
1477 lwkt_serialize_enter(ifp->if_serializer);
1480 * Clear INTx emulation disable for hardwares that
1481 * is set in resume event. From Linux.
1483 cmd = pci_read_config(sc->ale_dev, PCIR_COMMAND, 2);
1484 if ((cmd & 0x0400) != 0) {
1485 cmd &= ~0x0400;
1486 pci_write_config(sc->ale_dev, PCIR_COMMAND, cmd, 2);
1489 #ifdef notyet
1490 if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1491 uint16_t pmstat;
1492 int pmc;
1494 /* Disable PME and clear PME status. */
1495 pmstat = pci_read_config(sc->ale_dev,
1496 pmc + PCIR_POWER_STATUS, 2);
1497 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1498 pmstat &= ~PCIM_PSTAT_PMEENABLE;
1499 pci_write_config(sc->ale_dev,
1500 pmc + PCIR_POWER_STATUS, pmstat, 2);
1503 #endif
1505 /* Reset PHY. */
1506 ale_phy_reset(sc);
1507 if ((ifp->if_flags & IFF_UP) != 0)
1508 ale_init(sc);
1510 lwkt_serialize_exit(ifp->if_serializer);
1511 return (0);
1514 static int
1515 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1517 struct ale_txdesc *txd, *txd_last;
1518 struct tx_desc *desc;
1519 struct mbuf *m;
1520 bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1521 struct ale_dmamap_ctx ctx;
1522 bus_dmamap_t map;
1523 uint32_t cflags, poff, vtag;
1524 int error, i, nsegs, prod;
1526 M_ASSERTPKTHDR((*m_head));
1528 m = *m_head;
1529 cflags = vtag = 0;
1530 poff = 0;
1532 prod = sc->ale_cdata.ale_tx_prod;
1533 txd = &sc->ale_cdata.ale_txdesc[prod];
1534 txd_last = txd;
1535 map = txd->tx_dmamap;
1537 ctx.nsegs = ALE_MAXTXSEGS;
1538 ctx.segs = txsegs;
1539 error = bus_dmamap_load_mbuf(sc->ale_cdata.ale_tx_tag, map,
1540 *m_head, ale_dmamap_buf_cb, &ctx,
1541 BUS_DMA_NOWAIT);
1542 if (error == EFBIG) {
1543 m = m_defrag(*m_head, M_NOWAIT);
1544 if (m == NULL) {
1545 m_freem(*m_head);
1546 *m_head = NULL;
1547 return (ENOMEM);
1549 *m_head = m;
1551 ctx.nsegs = ALE_MAXTXSEGS;
1552 ctx.segs = txsegs;
1553 error = bus_dmamap_load_mbuf(sc->ale_cdata.ale_tx_tag, map,
1554 *m_head, ale_dmamap_buf_cb, &ctx,
1555 BUS_DMA_NOWAIT);
1556 if (error != 0) {
1557 m_freem(*m_head);
1558 *m_head = NULL;
1559 return (error);
1561 } else if (error != 0) {
1562 return (error);
1564 nsegs = ctx.nsegs;
1566 if (nsegs == 0) {
1567 m_freem(*m_head);
1568 *m_head = NULL;
1569 return (EIO);
1572 /* Check descriptor overrun. */
1573 if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
1574 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1575 return (ENOBUFS);
1577 bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1579 m = *m_head;
1580 /* Configure Tx checksum offload. */
1581 if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1583 * AR81xx supports Tx custom checksum offload feature
1584 * that offloads single 16bit checksum computation.
1585 * So you can choose one among IP, TCP and UDP.
1586 * Normally driver sets checksum start/insertion
1587 * position from the information of TCP/UDP frame as
1588 * TCP/UDP checksum takes more time than that of IP.
1589 * However it seems that custom checksum offload
1590 * requires 4 bytes aligned Tx buffers due to hardware
1591 * bug.
1592 * AR81xx also supports explicit Tx checksum computation
1593 * if it is told that the size of IP header and TCP
1594 * header(for UDP, the header size does not matter
1595 * because it's fixed length). However with this scheme
1596 * TSO does not work so you have to choose one either
1597 * TSO or explicit Tx checksum offload. I chosen TSO
1598 * plus custom checksum offload with work-around which
1599 * will cover most common usage for this consumer
1600 * ethernet controller. The work-around takes a lot of
1601 * CPU cycles if Tx buffer is not aligned on 4 bytes
1602 * boundary, though.
1604 cflags |= ALE_TD_CXSUM;
1605 /* Set checksum start offset. */
1606 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1607 /* Set checksum insertion position of TCP/UDP. */
1608 cflags |= ((poff + m->m_pkthdr.csum_data) <<
1609 ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1612 /* Configure VLAN hardware tag insertion. */
1613 if ((m->m_flags & M_VLANTAG) != 0) {
1614 vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vlantag);
1615 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1616 cflags |= ALE_TD_INSERT_VLAN_TAG;
1619 desc = NULL;
1620 for (i = 0; i < nsegs; i++) {
1621 desc = &sc->ale_cdata.ale_tx_ring[prod];
1622 desc->addr = htole64(txsegs[i].ds_addr);
1623 desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1624 desc->flags = htole32(cflags);
1625 sc->ale_cdata.ale_tx_cnt++;
1626 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1628 /* Update producer index. */
1629 sc->ale_cdata.ale_tx_prod = prod;
1631 /* Finally set EOP on the last descriptor. */
1632 prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1633 desc = &sc->ale_cdata.ale_tx_ring[prod];
1634 desc->flags |= htole32(ALE_TD_EOP);
1636 /* Swap dmamap of the first and the last. */
1637 txd = &sc->ale_cdata.ale_txdesc[prod];
1638 map = txd_last->tx_dmamap;
1639 txd_last->tx_dmamap = txd->tx_dmamap;
1640 txd->tx_dmamap = map;
1641 txd->tx_m = m;
1643 /* Sync descriptors. */
1644 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1645 sc->ale_cdata.ale_tx_ring_map, BUS_DMASYNC_PREWRITE);
1647 return (0);
1650 static void
1651 ale_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1653 struct ale_softc *sc = ifp->if_softc;
1654 struct mbuf *m_head;
1655 int enq;
1657 ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1658 ASSERT_SERIALIZED(ifp->if_serializer);
1660 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1661 ifq_purge(&ifp->if_snd);
1662 return;
1665 if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1666 return;
1668 /* Reclaim transmitted frames. */
1669 if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1670 ale_txeof(sc);
1672 enq = 0;
1673 while (!ifq_is_empty(&ifp->if_snd)) {
1674 m_head = ifq_dequeue(&ifp->if_snd);
1675 if (m_head == NULL)
1676 break;
1679 * Pack the data into the transmit ring. If we
1680 * don't have room, set the OACTIVE flag and wait
1681 * for the NIC to drain the ring.
1683 if (ale_encap(sc, &m_head)) {
1684 if (m_head == NULL)
1685 break;
1686 ifq_prepend(&ifp->if_snd, m_head);
1687 ifq_set_oactive(&ifp->if_snd);
1688 break;
1690 enq = 1;
1693 * If there's a BPF listener, bounce a copy of this frame
1694 * to him.
1696 ETHER_BPF_MTAP(ifp, m_head);
1699 if (enq) {
1700 /* Kick. */
1701 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1702 sc->ale_cdata.ale_tx_prod);
1704 /* Set a timeout in case the chip goes out to lunch. */
1705 ifp->if_timer = ALE_TX_TIMEOUT;
1709 static void
1710 ale_watchdog(struct ifnet *ifp)
1712 struct ale_softc *sc = ifp->if_softc;
1714 ASSERT_SERIALIZED(ifp->if_serializer);
1716 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1717 if_printf(ifp, "watchdog timeout (lost link)\n");
1718 IFNET_STAT_INC(ifp, oerrors, 1);
1719 ale_init(sc);
1720 return;
1723 if_printf(ifp, "watchdog timeout -- resetting\n");
1724 IFNET_STAT_INC(ifp, oerrors, 1);
1725 ale_init(sc);
1727 if (!ifq_is_empty(&ifp->if_snd))
1728 if_devstart(ifp);
1731 static int
1732 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1734 struct ale_softc *sc;
1735 struct ifreq *ifr;
1736 struct mii_data *mii;
1737 int error, mask;
1739 ASSERT_SERIALIZED(ifp->if_serializer);
1741 sc = ifp->if_softc;
1742 ifr = (struct ifreq *)data;
1743 error = 0;
1745 switch (cmd) {
1746 case SIOCSIFMTU:
1747 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1748 ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1749 ifr->ifr_mtu > ETHERMTU))
1750 error = EINVAL;
1751 else if (ifp->if_mtu != ifr->ifr_mtu) {
1752 ifp->if_mtu = ifr->ifr_mtu;
1753 if ((ifp->if_flags & IFF_RUNNING) != 0)
1754 ale_init(sc);
1756 break;
1758 case SIOCSIFFLAGS:
1759 if ((ifp->if_flags & IFF_UP) != 0) {
1760 if ((ifp->if_flags & IFF_RUNNING) != 0) {
1761 if (((ifp->if_flags ^ sc->ale_if_flags)
1762 & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1763 ale_rxfilter(sc);
1764 } else {
1765 if ((sc->ale_flags & ALE_FLAG_DETACH) == 0)
1766 ale_init(sc);
1768 } else {
1769 if ((ifp->if_flags & IFF_RUNNING) != 0)
1770 ale_stop(sc);
1772 sc->ale_if_flags = ifp->if_flags;
1773 break;
1775 case SIOCADDMULTI:
1776 case SIOCDELMULTI:
1777 if ((ifp->if_flags & IFF_RUNNING) != 0)
1778 ale_rxfilter(sc);
1779 break;
1781 case SIOCSIFMEDIA:
1782 case SIOCGIFMEDIA:
1783 mii = device_get_softc(sc->ale_miibus);
1784 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1785 break;
1787 case SIOCSIFCAP:
1788 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1789 if ((mask & IFCAP_TXCSUM) != 0 &&
1790 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1791 ifp->if_capenable ^= IFCAP_TXCSUM;
1792 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1793 ifp->if_hwassist |= ALE_CSUM_FEATURES;
1794 else
1795 ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
1797 if ((mask & IFCAP_RXCSUM) != 0 &&
1798 (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
1799 ifp->if_capenable ^= IFCAP_RXCSUM;
1801 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1802 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1803 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1804 ale_rxvlan(sc);
1806 break;
1808 default:
1809 error = ether_ioctl(ifp, cmd, data);
1810 break;
1812 return (error);
1815 static void
1816 ale_mac_config(struct ale_softc *sc)
1818 struct mii_data *mii;
1819 uint32_t reg;
1821 mii = device_get_softc(sc->ale_miibus);
1822 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1823 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1824 MAC_CFG_SPEED_MASK);
1825 /* Reprogram MAC with resolved speed/duplex. */
1826 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1827 case IFM_10_T:
1828 case IFM_100_TX:
1829 reg |= MAC_CFG_SPEED_10_100;
1830 break;
1831 case IFM_1000_T:
1832 reg |= MAC_CFG_SPEED_1000;
1833 break;
1835 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1836 reg |= MAC_CFG_FULL_DUPLEX;
1837 #ifdef notyet
1838 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1839 reg |= MAC_CFG_TX_FC;
1840 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1841 reg |= MAC_CFG_RX_FC;
1842 #endif
1844 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1847 static void
1848 ale_stats_clear(struct ale_softc *sc)
1850 struct smb sb;
1851 uint32_t *reg;
1852 int i;
1854 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1855 CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1856 i += sizeof(uint32_t);
1858 /* Read Tx statistics. */
1859 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1860 CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1861 i += sizeof(uint32_t);
1865 static void
1866 ale_stats_update(struct ale_softc *sc)
1868 struct ale_hw_stats *stat;
1869 struct smb sb, *smb;
1870 struct ifnet *ifp;
1871 uint32_t *reg;
1872 int i;
1874 ifp = &sc->arpcom.ac_if;
1875 stat = &sc->ale_stats;
1876 smb = &sb;
1878 /* Read Rx statistics. */
1879 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1880 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1881 i += sizeof(uint32_t);
1883 /* Read Tx statistics. */
1884 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1885 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1886 i += sizeof(uint32_t);
1889 /* Rx stats. */
1890 stat->rx_frames += smb->rx_frames;
1891 stat->rx_bcast_frames += smb->rx_bcast_frames;
1892 stat->rx_mcast_frames += smb->rx_mcast_frames;
1893 stat->rx_pause_frames += smb->rx_pause_frames;
1894 stat->rx_control_frames += smb->rx_control_frames;
1895 stat->rx_crcerrs += smb->rx_crcerrs;
1896 stat->rx_lenerrs += smb->rx_lenerrs;
1897 stat->rx_bytes += smb->rx_bytes;
1898 stat->rx_runts += smb->rx_runts;
1899 stat->rx_fragments += smb->rx_fragments;
1900 stat->rx_pkts_64 += smb->rx_pkts_64;
1901 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1902 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1903 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1904 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1905 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1906 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1907 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1908 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1909 stat->rx_rrs_errs += smb->rx_rrs_errs;
1910 stat->rx_alignerrs += smb->rx_alignerrs;
1911 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1912 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1913 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1915 /* Tx stats. */
1916 stat->tx_frames += smb->tx_frames;
1917 stat->tx_bcast_frames += smb->tx_bcast_frames;
1918 stat->tx_mcast_frames += smb->tx_mcast_frames;
1919 stat->tx_pause_frames += smb->tx_pause_frames;
1920 stat->tx_excess_defer += smb->tx_excess_defer;
1921 stat->tx_control_frames += smb->tx_control_frames;
1922 stat->tx_deferred += smb->tx_deferred;
1923 stat->tx_bytes += smb->tx_bytes;
1924 stat->tx_pkts_64 += smb->tx_pkts_64;
1925 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1926 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1927 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1928 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1929 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1930 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1931 stat->tx_single_colls += smb->tx_single_colls;
1932 stat->tx_multi_colls += smb->tx_multi_colls;
1933 stat->tx_late_colls += smb->tx_late_colls;
1934 stat->tx_excess_colls += smb->tx_excess_colls;
1935 stat->tx_abort += smb->tx_abort;
1936 stat->tx_underrun += smb->tx_underrun;
1937 stat->tx_desc_underrun += smb->tx_desc_underrun;
1938 stat->tx_lenerrs += smb->tx_lenerrs;
1939 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1940 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1941 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1943 /* Update counters in ifnet. */
1944 IFNET_STAT_INC(ifp, opackets, smb->tx_frames);
1946 IFNET_STAT_INC(ifp, collisions, smb->tx_single_colls +
1947 smb->tx_multi_colls * 2 + smb->tx_late_colls +
1948 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT);
1951 * XXX
1952 * tx_pkts_truncated counter looks suspicious. It constantly
1953 * increments with no sign of Tx errors. This may indicate
1954 * the counter name is not correct one so I've removed the
1955 * counter in output errors.
1957 IFNET_STAT_INC(ifp, oerrors, smb->tx_abort + smb->tx_late_colls +
1958 smb->tx_underrun);
1960 IFNET_STAT_INC(ifp, ipackets, smb->rx_frames);
1962 IFNET_STAT_INC(ifp, ierrors, smb->rx_crcerrs + smb->rx_lenerrs +
1963 smb->rx_runts + smb->rx_pkts_truncated +
1964 smb->rx_fifo_oflows + smb->rx_rrs_errs +
1965 smb->rx_alignerrs);
1968 static void
1969 ale_intr(void *xsc)
1971 struct ale_softc *sc = xsc;
1972 struct ifnet *ifp = &sc->arpcom.ac_if;
1973 uint32_t status;
1975 ASSERT_SERIALIZED(ifp->if_serializer);
1977 status = CSR_READ_4(sc, ALE_INTR_STATUS);
1978 if ((status & ALE_INTRS) == 0)
1979 return;
1981 /* Acknowledge and disable interrupts. */
1982 CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1984 if ((ifp->if_flags & IFF_RUNNING) != 0) {
1985 int error;
1987 error = ale_rxeof(sc);
1988 if (error) {
1989 sc->ale_stats.reset_brk_seq++;
1990 ale_init(sc);
1991 return;
1994 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
1995 if ((status & INTR_DMA_RD_TO_RST) != 0)
1996 device_printf(sc->ale_dev,
1997 "DMA read error! -- resetting\n");
1998 if ((status & INTR_DMA_WR_TO_RST) != 0)
1999 device_printf(sc->ale_dev,
2000 "DMA write error! -- resetting\n");
2001 ale_init(sc);
2002 return;
2005 ale_txeof(sc);
2006 if (!ifq_is_empty(&ifp->if_snd))
2007 if_devstart(ifp);
2010 /* Re-enable interrupts. */
2011 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2014 static void
2015 ale_txeof(struct ale_softc *sc)
2017 struct ifnet *ifp = &sc->arpcom.ac_if;
2018 struct ale_txdesc *txd;
2019 uint32_t cons, prod;
2020 int prog;
2022 if (sc->ale_cdata.ale_tx_cnt == 0)
2023 return;
2025 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2026 sc->ale_cdata.ale_tx_ring_map, BUS_DMASYNC_POSTREAD);
2027 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2028 bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2029 sc->ale_cdata.ale_tx_cmb_map, BUS_DMASYNC_POSTREAD);
2030 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2031 } else
2032 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2033 cons = sc->ale_cdata.ale_tx_cons;
2035 * Go through our Tx list and free mbufs for those
2036 * frames which have been transmitted.
2038 for (prog = 0; cons != prod; prog++,
2039 ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2040 if (sc->ale_cdata.ale_tx_cnt <= 0)
2041 break;
2042 prog++;
2043 ifq_clr_oactive(&ifp->if_snd);
2044 sc->ale_cdata.ale_tx_cnt--;
2045 txd = &sc->ale_cdata.ale_txdesc[cons];
2046 if (txd->tx_m != NULL) {
2047 /* Reclaim transmitted mbufs. */
2048 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2049 txd->tx_dmamap);
2050 m_freem(txd->tx_m);
2051 txd->tx_m = NULL;
2055 if (prog > 0) {
2056 sc->ale_cdata.ale_tx_cons = cons;
2058 * Unarm watchdog timer only when there is no pending
2059 * Tx descriptors in queue.
2061 if (sc->ale_cdata.ale_tx_cnt == 0)
2062 ifp->if_timer = 0;
2066 static void
2067 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2068 uint32_t length, uint32_t *prod)
2070 struct ale_rx_page *rx_page;
2072 rx_page = *page;
2073 /* Update consumer position. */
2074 rx_page->cons += roundup(length + sizeof(struct rx_rs),
2075 ALE_RX_PAGE_ALIGN);
2076 if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2078 * End of Rx page reached, let hardware reuse
2079 * this page.
2081 rx_page->cons = 0;
2082 *rx_page->cmb_addr = 0;
2083 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2084 BUS_DMASYNC_PREWRITE);
2085 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2086 RXF_VALID);
2087 /* Switch to alternate Rx page. */
2088 sc->ale_cdata.ale_rx_curp ^= 1;
2089 rx_page = *page =
2090 &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2091 /* Page flipped, sync CMB and Rx page. */
2092 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2093 BUS_DMASYNC_POSTREAD);
2094 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2095 BUS_DMASYNC_POSTREAD);
2096 /* Sync completed, cache updated producer index. */
2097 *prod = *rx_page->cmb_addr;
2103 * It seems that AR81xx controller can compute partial checksum.
2104 * The partial checksum value can be used to accelerate checksum
2105 * computation for fragmented TCP/UDP packets. Upper network stack
2106 * already takes advantage of the partial checksum value in IP
2107 * reassembly stage. But I'm not sure the correctness of the
2108 * partial hardware checksum assistance due to lack of data sheet.
2109 * In addition, the Rx feature of controller that requires copying
2110 * for every frames effectively nullifies one of most nice offload
2111 * capability of controller.
2113 static void
2114 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2116 struct ifnet *ifp = &sc->arpcom.ac_if;
2117 struct ip *ip;
2118 char *p;
2120 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2121 if ((status & ALE_RD_IPCSUM_NOK) == 0)
2122 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2124 if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2125 if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2126 ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2127 ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2128 m->m_pkthdr.csum_flags |=
2129 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2130 m->m_pkthdr.csum_data = 0xffff;
2132 } else {
2133 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2134 (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2135 p = mtod(m, char *);
2136 p += ETHER_HDR_LEN;
2137 if ((status & ALE_RD_802_3) != 0)
2138 p += LLC_SNAPFRAMELEN;
2139 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
2140 (status & ALE_RD_VLAN) != 0)
2141 p += EVL_ENCAPLEN;
2142 ip = (struct ip *)p;
2143 if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2144 return;
2145 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2146 CSUM_PSEUDO_HDR;
2147 m->m_pkthdr.csum_data = 0xffff;
2151 * Don't mark bad checksum for TCP/UDP frames
2152 * as fragmented frames may always have set
2153 * bad checksummed bit of frame status.
2157 /* Process received frames. */
2158 static int
2159 ale_rxeof(struct ale_softc *sc)
2161 struct ifnet *ifp = &sc->arpcom.ac_if;
2162 struct ale_rx_page *rx_page;
2163 struct rx_rs *rs;
2164 struct mbuf *m;
2165 uint32_t length, prod, seqno, status, vtags;
2166 int prog;
2168 rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2169 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2170 BUS_DMASYNC_POSTREAD);
2171 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2172 BUS_DMASYNC_POSTREAD);
2174 * Don't directly access producer index as hardware may
2175 * update it while Rx handler is in progress. It would
2176 * be even better if there is a way to let hardware
2177 * know how far driver processed its received frames.
2178 * Alternatively, hardware could provide a way to disable
2179 * CMB updates until driver acknowledges the end of CMB
2180 * access.
2182 prod = *rx_page->cmb_addr;
2183 for (prog = 0; ; prog++) {
2184 if (rx_page->cons >= prod)
2185 break;
2186 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2187 seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2188 if (sc->ale_cdata.ale_rx_seqno != seqno) {
2190 * Normally I believe this should not happen unless
2191 * severe driver bug or corrupted memory. However
2192 * it seems to happen under certain conditions which
2193 * is triggered by abrupt Rx events such as initiation
2194 * of bulk transfer of remote host. It's not easy to
2195 * reproduce this and I doubt it could be related
2196 * with FIFO overflow of hardware or activity of Tx
2197 * CMB updates. I also remember similar behaviour
2198 * seen on RealTek 8139 which uses resembling Rx
2199 * scheme.
2201 if (bootverbose)
2202 device_printf(sc->ale_dev,
2203 "garbled seq: %u, expected: %u -- "
2204 "resetting!\n", seqno,
2205 sc->ale_cdata.ale_rx_seqno);
2206 return (EIO);
2208 /* Frame received. */
2209 sc->ale_cdata.ale_rx_seqno++;
2210 length = ALE_RX_BYTES(le32toh(rs->length));
2211 status = le32toh(rs->flags);
2212 if ((status & ALE_RD_ERROR) != 0) {
2214 * We want to pass the following frames to upper
2215 * layer regardless of error status of Rx return
2216 * status.
2218 * o IP/TCP/UDP checksum is bad.
2219 * o frame length and protocol specific length
2220 * does not match.
2222 if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2223 ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2224 ALE_RD_TRUNC)) != 0) {
2225 ale_rx_update_page(sc, &rx_page, length, &prod);
2226 continue;
2230 * m_devget(9) is major bottle-neck of ale(4) (It comes
2231 * from hardware limitation). For jumbo frames we could
2232 * get a slightly better performance if driver use
2233 * m_getjcl(9) with proper buffer size argument. However
2234 * that would make code more complicated and I don't
2235 * think users would expect good Rx performance numbers
2236 * on these low-end consumer ethernet controller.
2238 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2239 ETHER_ALIGN, ifp);
2240 if (m == NULL) {
2241 IFNET_STAT_INC(ifp, iqdrops, 1);
2242 ale_rx_update_page(sc, &rx_page, length, &prod);
2243 continue;
2245 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2246 (status & ALE_RD_IPV4) != 0)
2247 ale_rxcsum(sc, m, status);
2248 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2249 (status & ALE_RD_VLAN) != 0) {
2250 vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2251 m->m_pkthdr.ether_vlantag = ALE_RX_VLAN_TAG(vtags);
2252 m->m_flags |= M_VLANTAG;
2255 /* Pass it to upper layer. */
2256 ifp->if_input(ifp, m, NULL, -1);
2258 ale_rx_update_page(sc, &rx_page, length, &prod);
2260 return 0;
2263 static void
2264 ale_tick(void *xsc)
2266 struct ale_softc *sc = xsc;
2267 struct ifnet *ifp = &sc->arpcom.ac_if;
2268 struct mii_data *mii;
2270 lwkt_serialize_enter(ifp->if_serializer);
2272 mii = device_get_softc(sc->ale_miibus);
2273 mii_tick(mii);
2274 ale_stats_update(sc);
2276 callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2278 lwkt_serialize_exit(ifp->if_serializer);
2281 static void
2282 ale_reset(struct ale_softc *sc)
2284 uint32_t reg;
2285 int i;
2287 /* Initialize PCIe module. From Linux. */
2288 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2290 CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2291 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2292 DELAY(10);
2293 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2294 break;
2296 if (i == 0)
2297 device_printf(sc->ale_dev, "master reset timeout!\n");
2299 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2300 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2301 break;
2302 DELAY(10);
2305 if (i == 0)
2306 device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2309 static void
2310 ale_init(void *xsc)
2312 struct ale_softc *sc = xsc;
2313 struct ifnet *ifp = &sc->arpcom.ac_if;
2314 struct mii_data *mii;
2315 uint8_t eaddr[ETHER_ADDR_LEN];
2316 bus_addr_t paddr;
2317 uint32_t reg, rxf_hi, rxf_lo;
2319 ASSERT_SERIALIZED(ifp->if_serializer);
2321 mii = device_get_softc(sc->ale_miibus);
2324 * Cancel any pending I/O.
2326 ale_stop(sc);
2329 * Reset the chip to a known state.
2331 ale_reset(sc);
2333 /* Initialize Tx descriptors, DMA memory blocks. */
2334 ale_init_rx_pages(sc);
2335 ale_init_tx_ring(sc);
2337 /* Reprogram the station address. */
2338 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2339 CSR_WRITE_4(sc, ALE_PAR0,
2340 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2341 CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2344 * Clear WOL status and disable all WOL feature as WOL
2345 * would interfere Rx operation under normal environments.
2347 CSR_READ_4(sc, ALE_WOL_CFG);
2348 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2351 * Set Tx descriptor/RXF0/CMB base addresses. They share
2352 * the same high address part of DMAable region.
2354 paddr = sc->ale_cdata.ale_tx_ring_paddr;
2355 CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2356 CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2357 CSR_WRITE_4(sc, ALE_TPD_CNT,
2358 (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2360 /* Set Rx page base address, note we use single queue. */
2361 paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2362 CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2363 paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2364 CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2366 /* Set Tx/Rx CMB addresses. */
2367 paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2368 CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2369 paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2370 CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2371 paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2372 CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2374 /* Mark RXF0 is valid. */
2375 CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2376 CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2378 * No need to initialize RFX1/RXF2/RXF3. We don't use
2379 * multi-queue yet.
2382 /* Set Rx page size, excluding guard frame size. */
2383 CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2385 /* Tell hardware that we're ready to load DMA blocks. */
2386 CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2388 /* Set Rx/Tx interrupt trigger threshold. */
2389 CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2390 (4 << INT_TRIG_TX_THRESH_SHIFT));
2392 * XXX
2393 * Set interrupt trigger timer, its purpose and relation
2394 * with interrupt moderation mechanism is not clear yet.
2396 CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2397 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2398 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2400 /* Configure interrupt moderation timer. */
2401 reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2402 reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2403 CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2404 reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2405 reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2406 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2407 if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2408 reg |= MASTER_IM_RX_TIMER_ENB;
2409 if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2410 reg |= MASTER_IM_TX_TIMER_ENB;
2411 CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2412 CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2414 /* Set Maximum frame size of controller. */
2415 if (ifp->if_mtu < ETHERMTU)
2416 sc->ale_max_frame_size = ETHERMTU;
2417 else
2418 sc->ale_max_frame_size = ifp->if_mtu;
2419 sc->ale_max_frame_size += ETHER_HDR_LEN + EVL_ENCAPLEN + ETHER_CRC_LEN;
2420 CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2422 /* Configure IPG/IFG parameters. */
2423 CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2424 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2425 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2426 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2427 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2429 /* Set parameters for half-duplex media. */
2430 CSR_WRITE_4(sc, ALE_HDPX_CFG,
2431 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2432 HDPX_CFG_LCOL_MASK) |
2433 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2434 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2435 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2436 HDPX_CFG_ABEBT_MASK) |
2437 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2438 HDPX_CFG_JAMIPG_MASK));
2440 /* Configure Tx jumbo frame parameters. */
2441 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2442 if (ifp->if_mtu < ETHERMTU)
2443 reg = sc->ale_max_frame_size;
2444 else if (ifp->if_mtu < 6 * 1024)
2445 reg = (sc->ale_max_frame_size * 2) / 3;
2446 else
2447 reg = sc->ale_max_frame_size / 2;
2448 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2449 roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2450 TX_JUMBO_THRESH_UNIT_SHIFT);
2453 /* Configure TxQ. */
2454 reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2455 << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2456 reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2457 TXQ_CFG_TPD_BURST_MASK;
2458 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2460 /* Configure Rx jumbo frame & flow control parameters. */
2461 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2462 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2463 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2464 (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2465 RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2466 ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2467 RX_JUMBO_LKAH_MASK));
2468 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2469 rxf_hi = (reg * 7) / 10;
2470 rxf_lo = (reg * 3)/ 10;
2471 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2472 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2473 RX_FIFO_PAUSE_THRESH_LO_MASK) |
2474 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2475 RX_FIFO_PAUSE_THRESH_HI_MASK));
2478 /* Disable RSS. */
2479 CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2480 CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2482 /* Configure RxQ. */
2483 CSR_WRITE_4(sc, ALE_RXQ_CFG,
2484 RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2486 /* Configure DMA parameters. */
2487 reg = 0;
2488 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2489 reg |= DMA_CFG_TXCMB_ENB;
2490 CSR_WRITE_4(sc, ALE_DMA_CFG,
2491 DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2492 sc->ale_dma_rd_burst | reg |
2493 sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2494 ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2495 DMA_CFG_RD_DELAY_CNT_MASK) |
2496 ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2497 DMA_CFG_WR_DELAY_CNT_MASK));
2500 * Hardware can be configured to issue SMB interrupt based
2501 * on programmed interval. Since there is a callout that is
2502 * invoked for every hz in driver we use that instead of
2503 * relying on periodic SMB interrupt.
2505 CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2507 /* Clear MAC statistics. */
2508 ale_stats_clear(sc);
2511 * Configure Tx/Rx MACs.
2512 * - Auto-padding for short frames.
2513 * - Enable CRC generation.
2514 * Actual reconfiguration of MAC for resolved speed/duplex
2515 * is followed after detection of link establishment.
2516 * AR81xx always does checksum computation regardless of
2517 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2518 * cause Rx handling issue for fragmented IP datagrams due
2519 * to silicon bug.
2521 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2522 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2523 MAC_CFG_PREAMBLE_MASK);
2524 if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2525 reg |= MAC_CFG_SPEED_10_100;
2526 else
2527 reg |= MAC_CFG_SPEED_1000;
2528 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2530 /* Set up the receive filter. */
2531 ale_rxfilter(sc);
2532 ale_rxvlan(sc);
2534 /* Acknowledge all pending interrupts and clear it. */
2535 CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2536 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2537 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2539 sc->ale_flags &= ~ALE_FLAG_LINK;
2541 /* Switch to the current media. */
2542 mii_mediachg(mii);
2544 callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2546 ifp->if_flags |= IFF_RUNNING;
2547 ifq_clr_oactive(&ifp->if_snd);
2550 static void
2551 ale_stop(struct ale_softc *sc)
2553 struct ifnet *ifp = &sc->arpcom.ac_if;
2554 struct ale_txdesc *txd;
2555 uint32_t reg;
2556 int i;
2558 ASSERT_SERIALIZED(ifp->if_serializer);
2561 * Mark the interface down and cancel the watchdog timer.
2563 ifp->if_flags &= ~IFF_RUNNING;
2564 ifq_clr_oactive(&ifp->if_snd);
2565 ifp->if_timer = 0;
2567 callout_stop(&sc->ale_tick_ch);
2568 sc->ale_flags &= ~ALE_FLAG_LINK;
2570 ale_stats_update(sc);
2572 /* Disable interrupts. */
2573 CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2574 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2576 /* Disable queue processing and DMA. */
2577 reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2578 reg &= ~TXQ_CFG_ENB;
2579 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2580 reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2581 reg &= ~RXQ_CFG_ENB;
2582 CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2583 reg = CSR_READ_4(sc, ALE_DMA_CFG);
2584 reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2585 CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2586 DELAY(1000);
2588 /* Stop Rx/Tx MACs. */
2589 ale_stop_mac(sc);
2591 /* Disable interrupts again? XXX */
2592 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2595 * Free TX mbufs still in the queues.
2597 for (i = 0; i < ALE_TX_RING_CNT; i++) {
2598 txd = &sc->ale_cdata.ale_txdesc[i];
2599 if (txd->tx_m != NULL) {
2600 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2601 txd->tx_dmamap);
2602 m_freem(txd->tx_m);
2603 txd->tx_m = NULL;
2608 static void
2609 ale_stop_mac(struct ale_softc *sc)
2611 uint32_t reg;
2612 int i;
2614 reg = CSR_READ_4(sc, ALE_MAC_CFG);
2615 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2616 reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2617 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2620 for (i = ALE_TIMEOUT; i > 0; i--) {
2621 reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2622 if (reg == 0)
2623 break;
2624 DELAY(10);
2626 if (i == 0)
2627 device_printf(sc->ale_dev,
2628 "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2631 static void
2632 ale_init_tx_ring(struct ale_softc *sc)
2634 struct ale_txdesc *txd;
2635 int i;
2637 sc->ale_cdata.ale_tx_prod = 0;
2638 sc->ale_cdata.ale_tx_cons = 0;
2639 sc->ale_cdata.ale_tx_cnt = 0;
2641 bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2642 bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2643 for (i = 0; i < ALE_TX_RING_CNT; i++) {
2644 txd = &sc->ale_cdata.ale_txdesc[i];
2645 txd->tx_m = NULL;
2647 *sc->ale_cdata.ale_tx_cmb = 0;
2648 bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2649 sc->ale_cdata.ale_tx_cmb_map,
2650 BUS_DMASYNC_PREWRITE);
2651 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2652 sc->ale_cdata.ale_tx_ring_map,
2653 BUS_DMASYNC_PREWRITE);
2656 static void
2657 ale_init_rx_pages(struct ale_softc *sc)
2659 struct ale_rx_page *rx_page;
2660 int i;
2662 sc->ale_cdata.ale_rx_seqno = 0;
2663 sc->ale_cdata.ale_rx_curp = 0;
2665 for (i = 0; i < ALE_RX_PAGES; i++) {
2666 rx_page = &sc->ale_cdata.ale_rx_page[i];
2667 bzero(rx_page->page_addr, sc->ale_pagesize);
2668 bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
2669 rx_page->cons = 0;
2670 *rx_page->cmb_addr = 0;
2671 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2672 BUS_DMASYNC_PREWRITE);
2673 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2674 BUS_DMASYNC_PREWRITE);
2678 static void
2679 ale_rxvlan(struct ale_softc *sc)
2681 struct ifnet *ifp;
2682 uint32_t reg;
2684 ifp = &sc->arpcom.ac_if;
2685 reg = CSR_READ_4(sc, ALE_MAC_CFG);
2686 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2687 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2688 reg |= MAC_CFG_VLAN_TAG_STRIP;
2689 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2692 static void
2693 ale_rxfilter(struct ale_softc *sc)
2695 struct ifnet *ifp;
2696 struct ifmultiaddr *ifma;
2697 uint32_t crc;
2698 uint32_t mchash[2];
2699 uint32_t rxcfg;
2701 ifp = &sc->arpcom.ac_if;
2703 rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
2704 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2705 if ((ifp->if_flags & IFF_BROADCAST) != 0)
2706 rxcfg |= MAC_CFG_BCAST;
2707 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2708 if ((ifp->if_flags & IFF_PROMISC) != 0)
2709 rxcfg |= MAC_CFG_PROMISC;
2710 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2711 rxcfg |= MAC_CFG_ALLMULTI;
2712 CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
2713 CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
2714 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2715 return;
2718 /* Program new filter. */
2719 bzero(mchash, sizeof(mchash));
2721 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2722 if (ifma->ifma_addr->sa_family != AF_LINK)
2723 continue;
2724 crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2725 ifma->ifma_addr), ETHER_ADDR_LEN);
2726 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2729 CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2730 CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2731 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2734 static int
2735 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
2737 return (sysctl_int_range(oidp, arg1, arg2, req,
2738 ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
2741 static void
2742 ale_dmamap_buf_cb(void *xctx, bus_dma_segment_t *segs, int nsegs,
2743 bus_size_t mapsz __unused, int error)
2745 struct ale_dmamap_ctx *ctx = xctx;
2746 int i;
2748 if (error)
2749 return;
2751 if (nsegs > ctx->nsegs) {
2752 ctx->nsegs = 0;
2753 return;
2756 ctx->nsegs = nsegs;
2757 for (i = 0; i < nsegs; ++i)
2758 ctx->segs[i] = segs[i];