em: Enable MSI by default on devices has PCI advanced features capability.
[dragonfly.git] / sys / dev / netif / em / if_em.c
blob71105f8781b899722186fa208cce8e91b778973e
1 /*
2 * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>. All rights reserved.
4 * Copyright (c) 2001-2014, Intel Corporation
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived from
19 * this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
34 * Copyright (c) 2005 The DragonFly Project. All rights reserved.
36 * This code is derived from software contributed to The DragonFly Project
37 * by Matthew Dillon <dillon@backplane.com>
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in
47 * the documentation and/or other materials provided with the
48 * distribution.
49 * 3. Neither the name of The DragonFly Project nor the names of its
50 * contributors may be used to endorse or promote products derived
51 * from this software without specific, prior written permission.
53 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
57 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
68 * SERIALIZATION API RULES:
70 * - We must call lwkt_serialize_handler_enable() prior to enabling the
71 * hardware interrupt and lwkt_serialize_handler_disable() after disabling
72 * the hardware interrupt in order to avoid handler execution races from
73 * scheduled interrupt threads.
76 #include "opt_ifpoll.h"
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/ig_hal/e1000_dragonfly.h>
115 #include <dev/netif/em/if_em.h>
117 #define DEBUG_HW 0
119 #define EM_NAME "Intel(R) PRO/1000 Network Connection "
120 #define EM_VER " 7.4.2"
122 #define _EM_DEVICE(id, ret) \
123 { EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
124 #define EM_EMX_DEVICE(id) _EM_DEVICE(id, -100)
125 #define EM_DEVICE(id) _EM_DEVICE(id, 0)
126 #define EM_DEVICE_NULL { 0, 0, 0, NULL }
128 static const struct em_vendor_info em_vendor_info_array[] = {
129 EM_DEVICE(82540EM),
130 EM_DEVICE(82540EM_LOM),
131 EM_DEVICE(82540EP),
132 EM_DEVICE(82540EP_LOM),
133 EM_DEVICE(82540EP_LP),
135 EM_DEVICE(82541EI),
136 EM_DEVICE(82541ER),
137 EM_DEVICE(82541ER_LOM),
138 EM_DEVICE(82541EI_MOBILE),
139 EM_DEVICE(82541GI),
140 EM_DEVICE(82541GI_LF),
141 EM_DEVICE(82541GI_MOBILE),
143 EM_DEVICE(82542),
145 EM_DEVICE(82543GC_FIBER),
146 EM_DEVICE(82543GC_COPPER),
148 EM_DEVICE(82544EI_COPPER),
149 EM_DEVICE(82544EI_FIBER),
150 EM_DEVICE(82544GC_COPPER),
151 EM_DEVICE(82544GC_LOM),
153 EM_DEVICE(82545EM_COPPER),
154 EM_DEVICE(82545EM_FIBER),
155 EM_DEVICE(82545GM_COPPER),
156 EM_DEVICE(82545GM_FIBER),
157 EM_DEVICE(82545GM_SERDES),
159 EM_DEVICE(82546EB_COPPER),
160 EM_DEVICE(82546EB_FIBER),
161 EM_DEVICE(82546EB_QUAD_COPPER),
162 EM_DEVICE(82546GB_COPPER),
163 EM_DEVICE(82546GB_FIBER),
164 EM_DEVICE(82546GB_SERDES),
165 EM_DEVICE(82546GB_PCIE),
166 EM_DEVICE(82546GB_QUAD_COPPER),
167 EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
169 EM_DEVICE(82547EI),
170 EM_DEVICE(82547EI_MOBILE),
171 EM_DEVICE(82547GI),
173 EM_EMX_DEVICE(82571EB_COPPER),
174 EM_EMX_DEVICE(82571EB_FIBER),
175 EM_EMX_DEVICE(82571EB_SERDES),
176 EM_EMX_DEVICE(82571EB_SERDES_DUAL),
177 EM_EMX_DEVICE(82571EB_SERDES_QUAD),
178 EM_EMX_DEVICE(82571EB_QUAD_COPPER),
179 EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
180 EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
181 EM_EMX_DEVICE(82571EB_QUAD_FIBER),
182 EM_EMX_DEVICE(82571PT_QUAD_COPPER),
184 EM_EMX_DEVICE(82572EI_COPPER),
185 EM_EMX_DEVICE(82572EI_FIBER),
186 EM_EMX_DEVICE(82572EI_SERDES),
187 EM_EMX_DEVICE(82572EI),
189 EM_EMX_DEVICE(82573E),
190 EM_EMX_DEVICE(82573E_IAMT),
191 EM_EMX_DEVICE(82573L),
193 EM_DEVICE(82583V),
195 EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
196 EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
197 EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
198 EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
200 EM_DEVICE(ICH8_IGP_M_AMT),
201 EM_DEVICE(ICH8_IGP_AMT),
202 EM_DEVICE(ICH8_IGP_C),
203 EM_DEVICE(ICH8_IFE),
204 EM_DEVICE(ICH8_IFE_GT),
205 EM_DEVICE(ICH8_IFE_G),
206 EM_DEVICE(ICH8_IGP_M),
207 EM_DEVICE(ICH8_82567V_3),
209 EM_DEVICE(ICH9_IGP_M_AMT),
210 EM_DEVICE(ICH9_IGP_AMT),
211 EM_DEVICE(ICH9_IGP_C),
212 EM_DEVICE(ICH9_IGP_M),
213 EM_DEVICE(ICH9_IGP_M_V),
214 EM_DEVICE(ICH9_IFE),
215 EM_DEVICE(ICH9_IFE_GT),
216 EM_DEVICE(ICH9_IFE_G),
217 EM_DEVICE(ICH9_BM),
219 EM_EMX_DEVICE(82574L),
220 EM_EMX_DEVICE(82574LA),
222 EM_DEVICE(ICH10_R_BM_LM),
223 EM_DEVICE(ICH10_R_BM_LF),
224 EM_DEVICE(ICH10_R_BM_V),
225 EM_DEVICE(ICH10_D_BM_LM),
226 EM_DEVICE(ICH10_D_BM_LF),
227 EM_DEVICE(ICH10_D_BM_V),
229 EM_DEVICE(PCH_M_HV_LM),
230 EM_DEVICE(PCH_M_HV_LC),
231 EM_DEVICE(PCH_D_HV_DM),
232 EM_DEVICE(PCH_D_HV_DC),
234 EM_DEVICE(PCH2_LV_LM),
235 EM_DEVICE(PCH2_LV_V),
237 EM_EMX_DEVICE(PCH_LPT_I217_LM),
238 EM_EMX_DEVICE(PCH_LPT_I217_V),
239 EM_EMX_DEVICE(PCH_LPTLP_I218_LM),
240 EM_EMX_DEVICE(PCH_LPTLP_I218_V),
241 EM_EMX_DEVICE(PCH_I218_LM2),
242 EM_EMX_DEVICE(PCH_I218_V2),
243 EM_EMX_DEVICE(PCH_I218_LM3),
244 EM_EMX_DEVICE(PCH_I218_V3),
245 EM_EMX_DEVICE(PCH_SPT_I219_LM),
246 EM_EMX_DEVICE(PCH_SPT_I219_V),
247 EM_EMX_DEVICE(PCH_SPT_I219_LM2),
248 EM_EMX_DEVICE(PCH_SPT_I219_V2),
250 /* required last entry */
251 EM_DEVICE_NULL
254 static int em_probe(device_t);
255 static int em_attach(device_t);
256 static int em_detach(device_t);
257 static int em_shutdown(device_t);
258 static int em_suspend(device_t);
259 static int em_resume(device_t);
261 static void em_init(void *);
262 static void em_stop(struct adapter *);
263 static int em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
264 static void em_start(struct ifnet *, struct ifaltq_subque *);
265 #ifdef IFPOLL_ENABLE
266 static void em_npoll(struct ifnet *, struct ifpoll_info *);
267 static void em_npoll_compat(struct ifnet *, void *, int);
268 #endif
269 static void em_watchdog(struct ifnet *);
270 static void em_media_status(struct ifnet *, struct ifmediareq *);
271 static int em_media_change(struct ifnet *);
272 static void em_timer(void *);
274 static void em_intr(void *);
275 static void em_intr_mask(void *);
276 static void em_intr_body(struct adapter *, boolean_t);
277 static void em_rxeof(struct adapter *, int);
278 static void em_txeof(struct adapter *);
279 static void em_tx_collect(struct adapter *);
280 static void em_tx_purge(struct adapter *);
281 static void em_enable_intr(struct adapter *);
282 static void em_disable_intr(struct adapter *);
284 static int em_dma_malloc(struct adapter *, bus_size_t,
285 struct em_dma_alloc *);
286 static void em_dma_free(struct adapter *, struct em_dma_alloc *);
287 static void em_init_tx_ring(struct adapter *);
288 static int em_init_rx_ring(struct adapter *);
289 static int em_create_tx_ring(struct adapter *);
290 static int em_create_rx_ring(struct adapter *);
291 static void em_destroy_tx_ring(struct adapter *, int);
292 static void em_destroy_rx_ring(struct adapter *, int);
293 static int em_newbuf(struct adapter *, int, int);
294 static int em_encap(struct adapter *, struct mbuf **, int *, int *);
295 static void em_rxcsum(struct adapter *, struct e1000_rx_desc *,
296 struct mbuf *);
297 static int em_txcsum(struct adapter *, struct mbuf *,
298 uint32_t *, uint32_t *);
299 static int em_tso_pullup(struct adapter *, struct mbuf **);
300 static int em_tso_setup(struct adapter *, struct mbuf *,
301 uint32_t *, uint32_t *);
303 static int em_get_hw_info(struct adapter *);
304 static int em_is_valid_eaddr(const uint8_t *);
305 static int em_alloc_pci_res(struct adapter *);
306 static void em_free_pci_res(struct adapter *);
307 static int em_reset(struct adapter *);
308 static void em_setup_ifp(struct adapter *);
309 static void em_init_tx_unit(struct adapter *);
310 static void em_init_rx_unit(struct adapter *);
311 static void em_update_stats(struct adapter *);
312 static void em_set_promisc(struct adapter *);
313 static void em_disable_promisc(struct adapter *);
314 static void em_set_multi(struct adapter *);
315 static void em_update_link_status(struct adapter *);
316 static void em_smartspeed(struct adapter *);
317 static void em_set_itr(struct adapter *, uint32_t);
318 static void em_disable_aspm(struct adapter *);
320 /* Hardware workarounds */
321 static int em_82547_fifo_workaround(struct adapter *, int);
322 static void em_82547_update_fifo_head(struct adapter *, int);
323 static int em_82547_tx_fifo_reset(struct adapter *);
324 static void em_82547_move_tail(void *);
325 static void em_82547_move_tail_serialized(struct adapter *);
326 static uint32_t em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
328 static void em_print_debug_info(struct adapter *);
329 static void em_print_nvm_info(struct adapter *);
330 static void em_print_hw_stats(struct adapter *);
332 static int em_sysctl_stats(SYSCTL_HANDLER_ARGS);
333 static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
334 static int em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
335 static int em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
336 static void em_add_sysctl(struct adapter *adapter);
338 /* Management and WOL Support */
339 static void em_get_mgmt(struct adapter *);
340 static void em_rel_mgmt(struct adapter *);
341 static void em_get_hw_control(struct adapter *);
342 static void em_rel_hw_control(struct adapter *);
343 static void em_enable_wol(device_t);
345 static device_method_t em_methods[] = {
346 /* Device interface */
347 DEVMETHOD(device_probe, em_probe),
348 DEVMETHOD(device_attach, em_attach),
349 DEVMETHOD(device_detach, em_detach),
350 DEVMETHOD(device_shutdown, em_shutdown),
351 DEVMETHOD(device_suspend, em_suspend),
352 DEVMETHOD(device_resume, em_resume),
353 DEVMETHOD_END
356 static driver_t em_driver = {
357 "em",
358 em_methods,
359 sizeof(struct adapter),
362 static devclass_t em_devclass;
364 DECLARE_DUMMY_MODULE(if_em);
365 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
366 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
369 * Tunables
371 static int em_int_throttle_ceil = EM_DEFAULT_ITR;
372 static int em_rxd = EM_DEFAULT_RXD;
373 static int em_txd = EM_DEFAULT_TXD;
374 static int em_smart_pwr_down = 0;
376 /* Controls whether promiscuous also shows bad packets */
377 static int em_debug_sbp = FALSE;
379 static int em_82573_workaround = 1;
380 static int em_msi_enable = 1;
382 static char em_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_RXPAUSE;
384 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
385 TUNABLE_INT("hw.em.rxd", &em_rxd);
386 TUNABLE_INT("hw.em.txd", &em_txd);
387 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
388 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
389 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
390 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
391 TUNABLE_STR("hw.em.flow_ctrl", em_flowctrl, sizeof(em_flowctrl));
393 /* Global used in WOL setup with multiport cards */
394 static int em_global_quad_port_a = 0;
396 /* Set this to one to display debug statistics */
397 static int em_display_debug_stats = 0;
399 #if !defined(KTR_IF_EM)
400 #define KTR_IF_EM KTR_ALL
401 #endif
402 KTR_INFO_MASTER(if_em);
403 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
404 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
405 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
406 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
407 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
408 #define logif(name) KTR_LOG(if_em_ ## name)
410 static int
411 em_probe(device_t dev)
413 const struct em_vendor_info *ent;
414 uint16_t vid, did;
416 vid = pci_get_vendor(dev);
417 did = pci_get_device(dev);
419 for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
420 if (vid == ent->vendor_id && did == ent->device_id) {
421 device_set_desc(dev, ent->desc);
422 device_set_async_attach(dev, TRUE);
423 return (ent->ret);
426 return (ENXIO);
429 static int
430 em_attach(device_t dev)
432 struct adapter *adapter = device_get_softc(dev);
433 struct ifnet *ifp = &adapter->arpcom.ac_if;
434 int tsize, rsize;
435 int error = 0;
436 uint16_t eeprom_data, device_id, apme_mask;
437 driver_intr_t *intr_func;
438 char flowctrl[IFM_ETH_FC_STRLEN];
440 adapter->dev = adapter->osdep.dev = dev;
442 callout_init_mp(&adapter->timer);
443 callout_init_mp(&adapter->tx_fifo_timer);
445 ifmedia_init(&adapter->media, IFM_IMASK | IFM_ETH_FCMASK,
446 em_media_change, em_media_status);
448 /* Determine hardware and mac info */
449 error = em_get_hw_info(adapter);
450 if (error) {
451 device_printf(dev, "Identify hardware failed\n");
452 goto fail;
455 /* Setup PCI resources */
456 error = em_alloc_pci_res(adapter);
457 if (error) {
458 device_printf(dev, "Allocation of PCI resources failed\n");
459 goto fail;
463 * For ICH8 and family we need to map the flash memory,
464 * and this must happen after the MAC is identified.
466 * (SPT does not map the flash with a separate BAR)
468 if (adapter->hw.mac.type == e1000_ich8lan ||
469 adapter->hw.mac.type == e1000_ich9lan ||
470 adapter->hw.mac.type == e1000_ich10lan ||
471 adapter->hw.mac.type == e1000_pchlan ||
472 adapter->hw.mac.type == e1000_pch2lan ||
473 adapter->hw.mac.type == e1000_pch_lpt) {
474 adapter->flash_rid = EM_BAR_FLASH;
476 adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
477 &adapter->flash_rid, RF_ACTIVE);
478 if (adapter->flash == NULL) {
479 device_printf(dev, "Mapping of Flash failed\n");
480 error = ENXIO;
481 goto fail;
483 adapter->osdep.flash_bus_space_tag =
484 rman_get_bustag(adapter->flash);
485 adapter->osdep.flash_bus_space_handle =
486 rman_get_bushandle(adapter->flash);
489 * This is used in the shared code
490 * XXX this goof is actually not used.
492 adapter->hw.flash_address = (uint8_t *)adapter->flash;
495 switch (adapter->hw.mac.type) {
496 case e1000_82571:
497 case e1000_82572:
498 case e1000_pch_lpt:
499 case e1000_pch_spt:
501 * Pullup extra 4bytes into the first data segment for
502 * TSO, see:
503 * 82571/82572 specification update errata #7
505 * Same applies to I217 (and maybe I218 and I219).
507 * NOTE:
508 * 4bytes instead of 2bytes, which are mentioned in the
509 * errata, are pulled; mainly to keep rest of the data
510 * properly aligned.
512 adapter->flags |= EM_FLAG_TSO_PULLEX;
513 /* FALL THROUGH */
515 default:
516 if (pci_is_pcie(dev))
517 adapter->flags |= EM_FLAG_TSO;
518 break;
521 /* Do Shared Code initialization */
522 if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
523 device_printf(dev, "Setup of Shared code failed\n");
524 error = ENXIO;
525 goto fail;
528 e1000_get_bus_info(&adapter->hw);
531 * Validate number of transmit and receive descriptors. It
532 * must not exceed hardware maximum, and must be multiple
533 * of E1000_DBA_ALIGN.
535 if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
536 (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
537 (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
538 em_txd < EM_MIN_TXD) {
539 if (adapter->hw.mac.type < e1000_82544)
540 adapter->num_tx_desc = EM_MAX_TXD_82543;
541 else
542 adapter->num_tx_desc = EM_DEFAULT_TXD;
543 device_printf(dev, "Using %d TX descriptors instead of %d!\n",
544 adapter->num_tx_desc, em_txd);
545 } else {
546 adapter->num_tx_desc = em_txd;
548 if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
549 (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
550 (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
551 em_rxd < EM_MIN_RXD) {
552 if (adapter->hw.mac.type < e1000_82544)
553 adapter->num_rx_desc = EM_MAX_RXD_82543;
554 else
555 adapter->num_rx_desc = EM_DEFAULT_RXD;
556 device_printf(dev, "Using %d RX descriptors instead of %d!\n",
557 adapter->num_rx_desc, em_rxd);
558 } else {
559 adapter->num_rx_desc = em_rxd;
562 adapter->hw.mac.autoneg = DO_AUTO_NEG;
563 adapter->hw.phy.autoneg_wait_to_complete = FALSE;
564 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
565 adapter->rx_buffer_len = MCLBYTES;
568 * Interrupt throttle rate
570 if (em_int_throttle_ceil == 0) {
571 adapter->int_throttle_ceil = 0;
572 } else {
573 int throttle = em_int_throttle_ceil;
575 if (throttle < 0)
576 throttle = EM_DEFAULT_ITR;
578 /* Recalculate the tunable value to get the exact frequency. */
579 throttle = 1000000000 / 256 / throttle;
581 /* Upper 16bits of ITR is reserved and should be zero */
582 if (throttle & 0xffff0000)
583 throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
585 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
588 e1000_init_script_state_82541(&adapter->hw, TRUE);
589 e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
591 /* Copper options */
592 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
593 adapter->hw.phy.mdix = AUTO_ALL_MODES;
594 adapter->hw.phy.disable_polarity_correction = FALSE;
595 adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
598 /* Set the frame limits assuming standard ethernet sized frames. */
599 adapter->hw.mac.max_frame_size =
600 ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
601 adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
603 /* This controls when hardware reports transmit completion status. */
604 adapter->hw.mac.report_tx_early = 1;
607 * Create top level busdma tag
609 error = bus_dma_tag_create(NULL, 1, 0,
610 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
611 NULL, NULL,
612 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
613 0, &adapter->parent_dtag);
614 if (error) {
615 device_printf(dev, "could not create top level DMA tag\n");
616 goto fail;
620 * Allocate Transmit Descriptor ring
622 tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
623 EM_DBA_ALIGN);
624 error = em_dma_malloc(adapter, tsize, &adapter->txdma);
625 if (error) {
626 device_printf(dev, "Unable to allocate tx_desc memory\n");
627 goto fail;
629 adapter->tx_desc_base = adapter->txdma.dma_vaddr;
632 * Allocate Receive Descriptor ring
634 rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
635 EM_DBA_ALIGN);
636 error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
637 if (error) {
638 device_printf(dev, "Unable to allocate rx_desc memory\n");
639 goto fail;
641 adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
643 /* Allocate multicast array memory. */
644 adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
645 M_DEVBUF, M_WAITOK);
647 /* Indicate SOL/IDER usage */
648 if (e1000_check_reset_block(&adapter->hw)) {
649 device_printf(dev,
650 "PHY reset is blocked due to SOL/IDER session.\n");
653 /* Disable EEE */
654 adapter->hw.dev_spec.ich8lan.eee_disable = 1;
657 * Start from a known state, this is important in reading the
658 * nvm and mac from that.
660 e1000_reset_hw(&adapter->hw);
662 /* Make sure we have a good EEPROM before we read from it */
663 if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
665 * Some PCI-E parts fail the first check due to
666 * the link being in sleep state, call it again,
667 * if it fails a second time its a real issue.
669 if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
670 device_printf(dev,
671 "The EEPROM Checksum Is Not Valid\n");
672 error = EIO;
673 goto fail;
677 /* Copy the permanent MAC address out of the EEPROM */
678 if (e1000_read_mac_addr(&adapter->hw) < 0) {
679 device_printf(dev, "EEPROM read error while reading MAC"
680 " address\n");
681 error = EIO;
682 goto fail;
684 if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
685 device_printf(dev, "Invalid MAC address\n");
686 error = EIO;
687 goto fail;
690 /* Disable ULP support */
691 e1000_disable_ulp_lpt_lp(&adapter->hw, TRUE);
693 /* Allocate transmit descriptors and buffers */
694 error = em_create_tx_ring(adapter);
695 if (error) {
696 device_printf(dev, "Could not setup transmit structures\n");
697 goto fail;
700 /* Allocate receive descriptors and buffers */
701 error = em_create_rx_ring(adapter);
702 if (error) {
703 device_printf(dev, "Could not setup receive structures\n");
704 goto fail;
707 /* Manually turn off all interrupts */
708 E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
710 /* Determine if we have to control management hardware */
711 if (e1000_enable_mng_pass_thru(&adapter->hw))
712 adapter->flags |= EM_FLAG_HAS_MGMT;
715 * Setup Wake-on-Lan
717 apme_mask = EM_EEPROM_APME;
718 eeprom_data = 0;
719 switch (adapter->hw.mac.type) {
720 case e1000_82542:
721 case e1000_82543:
722 break;
724 case e1000_82573:
725 case e1000_82583:
726 adapter->flags |= EM_FLAG_HAS_AMT;
727 /* FALL THROUGH */
729 case e1000_82546:
730 case e1000_82546_rev_3:
731 case e1000_82571:
732 case e1000_82572:
733 case e1000_80003es2lan:
734 if (adapter->hw.bus.func == 1) {
735 e1000_read_nvm(&adapter->hw,
736 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
737 } else {
738 e1000_read_nvm(&adapter->hw,
739 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
741 break;
743 case e1000_ich8lan:
744 case e1000_ich9lan:
745 case e1000_ich10lan:
746 case e1000_pchlan:
747 case e1000_pch2lan:
748 apme_mask = E1000_WUC_APME;
749 adapter->flags |= EM_FLAG_HAS_AMT;
750 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
751 break;
753 default:
754 e1000_read_nvm(&adapter->hw,
755 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
756 break;
758 if (eeprom_data & apme_mask)
759 adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
762 * We have the eeprom settings, now apply the special cases
763 * where the eeprom may be wrong or the board won't support
764 * wake on lan on a particular port
766 device_id = pci_get_device(dev);
767 switch (device_id) {
768 case E1000_DEV_ID_82546GB_PCIE:
769 adapter->wol = 0;
770 break;
772 case E1000_DEV_ID_82546EB_FIBER:
773 case E1000_DEV_ID_82546GB_FIBER:
774 case E1000_DEV_ID_82571EB_FIBER:
776 * Wake events only supported on port A for dual fiber
777 * regardless of eeprom setting
779 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
780 E1000_STATUS_FUNC_1)
781 adapter->wol = 0;
782 break;
784 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
785 case E1000_DEV_ID_82571EB_QUAD_COPPER:
786 case E1000_DEV_ID_82571EB_QUAD_FIBER:
787 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
788 /* if quad port adapter, disable WoL on all but port A */
789 if (em_global_quad_port_a != 0)
790 adapter->wol = 0;
791 /* Reset for multiple quad port adapters */
792 if (++em_global_quad_port_a == 4)
793 em_global_quad_port_a = 0;
794 break;
797 /* XXX disable wol */
798 adapter->wol = 0;
800 /* Setup flow control. */
801 device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
802 em_flowctrl);
803 adapter->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
804 if (adapter->hw.mac.type == e1000_pchlan) {
805 /* Only PAUSE reception is supported on PCH */
806 adapter->ifm_flowctrl &= ~IFM_ETH_TXPAUSE;
809 /* Setup OS specific network interface */
810 em_setup_ifp(adapter);
812 /* Add sysctl tree, must after em_setup_ifp() */
813 em_add_sysctl(adapter);
815 #ifdef IFPOLL_ENABLE
816 /* Polling setup */
817 ifpoll_compat_setup(&adapter->npoll,
818 device_get_sysctl_ctx(dev), device_get_sysctl_tree(dev),
819 device_get_unit(dev), ifp->if_serializer);
820 #endif
822 /* Reset the hardware */
823 error = em_reset(adapter);
824 if (error) {
826 * Some 82573 parts fail the first reset, call it again,
827 * if it fails a second time its a real issue.
829 error = em_reset(adapter);
830 if (error) {
831 device_printf(dev, "Unable to reset the hardware\n");
832 ether_ifdetach(ifp);
833 goto fail;
837 /* Initialize statistics */
838 em_update_stats(adapter);
840 adapter->hw.mac.get_link_status = 1;
841 em_update_link_status(adapter);
843 /* Do we need workaround for 82544 PCI-X adapter? */
844 if (adapter->hw.bus.type == e1000_bus_type_pcix &&
845 adapter->hw.mac.type == e1000_82544)
846 adapter->pcix_82544 = TRUE;
847 else
848 adapter->pcix_82544 = FALSE;
850 if (adapter->pcix_82544) {
852 * 82544 on PCI-X may split one TX segment
853 * into two TX descs, so we double its number
854 * of spare TX desc here.
856 adapter->spare_tx_desc = 2 * EM_TX_SPARE;
857 } else {
858 adapter->spare_tx_desc = EM_TX_SPARE;
860 if (adapter->flags & EM_FLAG_TSO)
861 adapter->spare_tx_desc = EM_TX_SPARE_TSO;
862 adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
865 * Keep following relationship between spare_tx_desc, oact_tx_desc
866 * and tx_int_nsegs:
867 * (spare_tx_desc + EM_TX_RESERVED) <=
868 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
870 adapter->oact_tx_desc = adapter->num_tx_desc / 8;
871 if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
872 adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
873 if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
874 adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
876 adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
877 if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
878 adapter->tx_int_nsegs = adapter->oact_tx_desc;
880 /* Non-AMT based hardware can now take control from firmware */
881 if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
882 EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
883 em_get_hw_control(adapter);
885 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
888 * Missing Interrupt Following ICR read:
890 * 82571/82572 specification update errata #76
891 * 82573 specification update errata #31
892 * 82574 specification update errata #12
893 * 82583 specification update errata #4
895 intr_func = em_intr;
896 if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
897 (adapter->hw.mac.type == e1000_82571 ||
898 adapter->hw.mac.type == e1000_82572 ||
899 adapter->hw.mac.type == e1000_82573 ||
900 adapter->hw.mac.type == e1000_82574 ||
901 adapter->hw.mac.type == e1000_82583))
902 intr_func = em_intr_mask;
904 error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
905 intr_func, adapter, &adapter->intr_tag,
906 ifp->if_serializer);
907 if (error) {
908 device_printf(dev, "Failed to register interrupt handler");
909 ether_ifdetach(ifp);
910 goto fail;
912 return (0);
913 fail:
914 em_detach(dev);
915 return (error);
918 static int
919 em_detach(device_t dev)
921 struct adapter *adapter = device_get_softc(dev);
923 if (device_is_attached(dev)) {
924 struct ifnet *ifp = &adapter->arpcom.ac_if;
926 lwkt_serialize_enter(ifp->if_serializer);
928 em_stop(adapter);
930 e1000_phy_hw_reset(&adapter->hw);
932 em_rel_mgmt(adapter);
933 em_rel_hw_control(adapter);
935 if (adapter->wol) {
936 E1000_WRITE_REG(&adapter->hw, E1000_WUC,
937 E1000_WUC_PME_EN);
938 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
939 em_enable_wol(dev);
942 bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
944 lwkt_serialize_exit(ifp->if_serializer);
946 ether_ifdetach(ifp);
947 } else if (adapter->memory != NULL) {
948 em_rel_hw_control(adapter);
951 ifmedia_removeall(&adapter->media);
952 bus_generic_detach(dev);
954 em_free_pci_res(adapter);
956 em_destroy_tx_ring(adapter, adapter->num_tx_desc);
957 em_destroy_rx_ring(adapter, adapter->num_rx_desc);
959 /* Free Transmit Descriptor ring */
960 if (adapter->tx_desc_base)
961 em_dma_free(adapter, &adapter->txdma);
963 /* Free Receive Descriptor ring */
964 if (adapter->rx_desc_base)
965 em_dma_free(adapter, &adapter->rxdma);
967 /* Free top level busdma tag */
968 if (adapter->parent_dtag != NULL)
969 bus_dma_tag_destroy(adapter->parent_dtag);
971 if (adapter->mta != NULL)
972 kfree(adapter->mta, M_DEVBUF);
974 return (0);
977 static int
978 em_shutdown(device_t dev)
980 return em_suspend(dev);
983 static int
984 em_suspend(device_t dev)
986 struct adapter *adapter = device_get_softc(dev);
987 struct ifnet *ifp = &adapter->arpcom.ac_if;
989 lwkt_serialize_enter(ifp->if_serializer);
991 em_stop(adapter);
993 em_rel_mgmt(adapter);
994 em_rel_hw_control(adapter);
996 if (adapter->wol) {
997 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
998 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
999 em_enable_wol(dev);
1002 lwkt_serialize_exit(ifp->if_serializer);
1004 return bus_generic_suspend(dev);
1007 static int
1008 em_resume(device_t dev)
1010 struct adapter *adapter = device_get_softc(dev);
1011 struct ifnet *ifp = &adapter->arpcom.ac_if;
1013 lwkt_serialize_enter(ifp->if_serializer);
1015 if (adapter->hw.mac.type == e1000_pch2lan)
1016 e1000_resume_workarounds_pchlan(&adapter->hw);
1018 em_init(adapter);
1019 em_get_mgmt(adapter);
1020 if_devstart(ifp);
1022 lwkt_serialize_exit(ifp->if_serializer);
1024 return bus_generic_resume(dev);
1027 static void
1028 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1030 struct adapter *adapter = ifp->if_softc;
1031 struct mbuf *m_head;
1032 int idx = -1, nsegs = 0;
1034 ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1035 ASSERT_SERIALIZED(ifp->if_serializer);
1037 if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1038 return;
1040 if (!adapter->link_active) {
1041 ifq_purge(&ifp->if_snd);
1042 return;
1045 while (!ifq_is_empty(&ifp->if_snd)) {
1046 /* Now do we at least have a minimal? */
1047 if (EM_IS_OACTIVE(adapter)) {
1048 em_tx_collect(adapter);
1049 if (EM_IS_OACTIVE(adapter)) {
1050 ifq_set_oactive(&ifp->if_snd);
1051 adapter->no_tx_desc_avail1++;
1052 break;
1056 logif(pkt_txqueue);
1057 m_head = ifq_dequeue(&ifp->if_snd);
1058 if (m_head == NULL)
1059 break;
1061 if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1062 IFNET_STAT_INC(ifp, oerrors, 1);
1063 em_tx_collect(adapter);
1064 continue;
1068 * TX interrupt are aggressively aggregated, so increasing
1069 * opackets at TX interrupt time will make the opackets
1070 * statistics vastly inaccurate; we do the opackets increment
1071 * now.
1073 IFNET_STAT_INC(ifp, opackets, 1);
1075 if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1076 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1077 nsegs = 0;
1078 idx = -1;
1081 /* Send a copy of the frame to the BPF listener */
1082 ETHER_BPF_MTAP(ifp, m_head);
1084 /* Set timeout in case hardware has problems transmitting. */
1085 ifp->if_timer = EM_TX_TIMEOUT;
1087 if (idx >= 0)
1088 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1091 static int
1092 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1094 struct adapter *adapter = ifp->if_softc;
1095 struct ifreq *ifr = (struct ifreq *)data;
1096 uint16_t eeprom_data = 0;
1097 int max_frame_size, mask, reinit;
1098 int error = 0;
1100 ASSERT_SERIALIZED(ifp->if_serializer);
1102 switch (command) {
1103 case SIOCSIFMTU:
1104 switch (adapter->hw.mac.type) {
1105 case e1000_82573:
1107 * 82573 only supports jumbo frames
1108 * if ASPM is disabled.
1110 e1000_read_nvm(&adapter->hw,
1111 NVM_INIT_3GIO_3, 1, &eeprom_data);
1112 if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1113 max_frame_size = ETHER_MAX_LEN;
1114 break;
1116 /* FALL THROUGH */
1118 /* Limit Jumbo Frame size */
1119 case e1000_82571:
1120 case e1000_82572:
1121 case e1000_ich9lan:
1122 case e1000_ich10lan:
1123 case e1000_pch2lan:
1124 case e1000_pch_lpt:
1125 case e1000_pch_spt:
1126 case e1000_82574:
1127 case e1000_82583:
1128 case e1000_80003es2lan:
1129 max_frame_size = 9234;
1130 break;
1132 case e1000_pchlan:
1133 max_frame_size = 4096;
1134 break;
1136 /* Adapters that do not support jumbo frames */
1137 case e1000_82542:
1138 case e1000_ich8lan:
1139 max_frame_size = ETHER_MAX_LEN;
1140 break;
1142 default:
1143 max_frame_size = MAX_JUMBO_FRAME_SIZE;
1144 break;
1146 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1147 ETHER_CRC_LEN) {
1148 error = EINVAL;
1149 break;
1152 ifp->if_mtu = ifr->ifr_mtu;
1153 adapter->hw.mac.max_frame_size =
1154 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1156 if (ifp->if_flags & IFF_RUNNING)
1157 em_init(adapter);
1158 break;
1160 case SIOCSIFFLAGS:
1161 if (ifp->if_flags & IFF_UP) {
1162 if ((ifp->if_flags & IFF_RUNNING)) {
1163 if ((ifp->if_flags ^ adapter->if_flags) &
1164 (IFF_PROMISC | IFF_ALLMULTI)) {
1165 em_disable_promisc(adapter);
1166 em_set_promisc(adapter);
1168 } else {
1169 em_init(adapter);
1171 } else if (ifp->if_flags & IFF_RUNNING) {
1172 em_stop(adapter);
1174 adapter->if_flags = ifp->if_flags;
1175 break;
1177 case SIOCADDMULTI:
1178 case SIOCDELMULTI:
1179 if (ifp->if_flags & IFF_RUNNING) {
1180 em_disable_intr(adapter);
1181 em_set_multi(adapter);
1182 if (adapter->hw.mac.type == e1000_82542 &&
1183 adapter->hw.revision_id == E1000_REVISION_2)
1184 em_init_rx_unit(adapter);
1185 #ifdef IFPOLL_ENABLE
1186 if (!(ifp->if_flags & IFF_NPOLLING))
1187 #endif
1188 em_enable_intr(adapter);
1190 break;
1192 case SIOCSIFMEDIA:
1193 /* Check SOL/IDER usage */
1194 if (e1000_check_reset_block(&adapter->hw)) {
1195 device_printf(adapter->dev, "Media change is"
1196 " blocked due to SOL/IDER session.\n");
1197 break;
1199 /* FALL THROUGH */
1201 case SIOCGIFMEDIA:
1202 error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1203 break;
1205 case SIOCSIFCAP:
1206 reinit = 0;
1207 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1208 if (mask & IFCAP_RXCSUM) {
1209 ifp->if_capenable ^= IFCAP_RXCSUM;
1210 reinit = 1;
1212 if (mask & IFCAP_TXCSUM) {
1213 ifp->if_capenable ^= IFCAP_TXCSUM;
1214 if (ifp->if_capenable & IFCAP_TXCSUM)
1215 ifp->if_hwassist |= EM_CSUM_FEATURES;
1216 else
1217 ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1219 if (mask & IFCAP_TSO) {
1220 ifp->if_capenable ^= IFCAP_TSO;
1221 if (ifp->if_capenable & IFCAP_TSO)
1222 ifp->if_hwassist |= CSUM_TSO;
1223 else
1224 ifp->if_hwassist &= ~CSUM_TSO;
1226 if (mask & IFCAP_VLAN_HWTAGGING) {
1227 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1228 reinit = 1;
1230 if (reinit && (ifp->if_flags & IFF_RUNNING))
1231 em_init(adapter);
1232 break;
1234 default:
1235 error = ether_ioctl(ifp, command, data);
1236 break;
1238 return (error);
1241 static void
1242 em_watchdog(struct ifnet *ifp)
1244 struct adapter *adapter = ifp->if_softc;
1246 ASSERT_SERIALIZED(ifp->if_serializer);
1249 * The timer is set to 5 every time start queues a packet.
1250 * Then txeof keeps resetting it as long as it cleans at
1251 * least one descriptor.
1252 * Finally, anytime all descriptors are clean the timer is
1253 * set to 0.
1256 if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1257 E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1259 * If we reach here, all TX jobs are completed and
1260 * the TX engine should have been idled for some time.
1261 * We don't need to call if_devstart() here.
1263 ifq_clr_oactive(&ifp->if_snd);
1264 ifp->if_timer = 0;
1265 return;
1269 * If we are in this routine because of pause frames, then
1270 * don't reset the hardware.
1272 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1273 E1000_STATUS_TXOFF) {
1274 ifp->if_timer = EM_TX_TIMEOUT;
1275 return;
1278 if (e1000_check_for_link(&adapter->hw) == 0)
1279 if_printf(ifp, "watchdog timeout -- resetting\n");
1281 IFNET_STAT_INC(ifp, oerrors, 1);
1282 adapter->watchdog_events++;
1284 em_init(adapter);
1286 if (!ifq_is_empty(&ifp->if_snd))
1287 if_devstart(ifp);
1290 static void
1291 em_init(void *xsc)
1293 struct adapter *adapter = xsc;
1294 struct ifnet *ifp = &adapter->arpcom.ac_if;
1295 device_t dev = adapter->dev;
1297 ASSERT_SERIALIZED(ifp->if_serializer);
1299 em_stop(adapter);
1301 /* Get the latest mac address, User can use a LAA */
1302 bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1304 /* Put the address into the Receive Address Array */
1305 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1308 * With the 82571 adapter, RAR[0] may be overwritten
1309 * when the other port is reset, we make a duplicate
1310 * in RAR[14] for that eventuality, this assures
1311 * the interface continues to function.
1313 if (adapter->hw.mac.type == e1000_82571) {
1314 e1000_set_laa_state_82571(&adapter->hw, TRUE);
1315 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1316 E1000_RAR_ENTRIES - 1);
1319 /* Reset the hardware */
1320 if (em_reset(adapter)) {
1321 device_printf(dev, "Unable to reset the hardware\n");
1322 /* XXX em_stop()? */
1323 return;
1325 em_update_link_status(adapter);
1327 /* Setup VLAN support, basic and offload if available */
1328 E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1330 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1331 uint32_t ctrl;
1333 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1334 ctrl |= E1000_CTRL_VME;
1335 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1338 /* Configure for OS presence */
1339 em_get_mgmt(adapter);
1341 /* Prepare transmit descriptors and buffers */
1342 em_init_tx_ring(adapter);
1343 em_init_tx_unit(adapter);
1345 /* Setup Multicast table */
1346 em_set_multi(adapter);
1348 /* Prepare receive descriptors and buffers */
1349 if (em_init_rx_ring(adapter)) {
1350 device_printf(dev, "Could not setup receive structures\n");
1351 em_stop(adapter);
1352 return;
1354 em_init_rx_unit(adapter);
1356 /* Don't lose promiscuous settings */
1357 em_set_promisc(adapter);
1359 ifp->if_flags |= IFF_RUNNING;
1360 ifq_clr_oactive(&ifp->if_snd);
1362 callout_reset(&adapter->timer, hz, em_timer, adapter);
1363 e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1365 /* MSI/X configuration for 82574 */
1366 if (adapter->hw.mac.type == e1000_82574) {
1367 int tmp;
1369 tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1370 tmp |= E1000_CTRL_EXT_PBA_CLR;
1371 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1373 * XXX MSIX
1374 * Set the IVAR - interrupt vector routing.
1375 * Each nibble represents a vector, high bit
1376 * is enable, other 3 bits are the MSIX table
1377 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1378 * Link (other) to 2, hence the magic number.
1380 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1383 #ifdef IFPOLL_ENABLE
1385 * Only enable interrupts if we are not polling, make sure
1386 * they are off otherwise.
1388 if (ifp->if_flags & IFF_NPOLLING)
1389 em_disable_intr(adapter);
1390 else
1391 #endif /* IFPOLL_ENABLE */
1392 em_enable_intr(adapter);
1394 /* AMT based hardware can now take control from firmware */
1395 if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1396 (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1397 adapter->hw.mac.type >= e1000_82571)
1398 em_get_hw_control(adapter);
1401 #ifdef IFPOLL_ENABLE
1403 static void
1404 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1406 struct adapter *adapter = ifp->if_softc;
1408 ASSERT_SERIALIZED(ifp->if_serializer);
1410 if (adapter->npoll.ifpc_stcount-- == 0) {
1411 uint32_t reg_icr;
1413 adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1415 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1416 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1417 callout_stop(&adapter->timer);
1418 adapter->hw.mac.get_link_status = 1;
1419 em_update_link_status(adapter);
1420 callout_reset(&adapter->timer, hz, em_timer, adapter);
1424 em_rxeof(adapter, count);
1425 em_txeof(adapter);
1427 if (!ifq_is_empty(&ifp->if_snd))
1428 if_devstart(ifp);
1431 static void
1432 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1434 struct adapter *adapter = ifp->if_softc;
1436 ASSERT_SERIALIZED(ifp->if_serializer);
1438 if (info != NULL) {
1439 int cpuid = adapter->npoll.ifpc_cpuid;
1441 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1442 info->ifpi_rx[cpuid].arg = NULL;
1443 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1445 if (ifp->if_flags & IFF_RUNNING)
1446 em_disable_intr(adapter);
1447 ifq_set_cpuid(&ifp->if_snd, cpuid);
1448 } else {
1449 if (ifp->if_flags & IFF_RUNNING)
1450 em_enable_intr(adapter);
1451 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1455 #endif /* IFPOLL_ENABLE */
1457 static void
1458 em_intr(void *xsc)
1460 em_intr_body(xsc, TRUE);
1463 static void
1464 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1466 struct ifnet *ifp = &adapter->arpcom.ac_if;
1467 uint32_t reg_icr;
1469 logif(intr_beg);
1470 ASSERT_SERIALIZED(ifp->if_serializer);
1472 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1474 if (chk_asserted &&
1475 ((adapter->hw.mac.type >= e1000_82571 &&
1476 (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1477 reg_icr == 0)) {
1478 logif(intr_end);
1479 return;
1483 * XXX: some laptops trigger several spurious interrupts
1484 * on em(4) when in the resume cycle. The ICR register
1485 * reports all-ones value in this case. Processing such
1486 * interrupts would lead to a freeze. I don't know why.
1488 if (reg_icr == 0xffffffff) {
1489 logif(intr_end);
1490 return;
1493 if (ifp->if_flags & IFF_RUNNING) {
1494 if (reg_icr &
1495 (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1496 em_rxeof(adapter, -1);
1497 if (reg_icr & E1000_ICR_TXDW) {
1498 em_txeof(adapter);
1499 if (!ifq_is_empty(&ifp->if_snd))
1500 if_devstart(ifp);
1504 /* Link status change */
1505 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1506 callout_stop(&adapter->timer);
1507 adapter->hw.mac.get_link_status = 1;
1508 em_update_link_status(adapter);
1510 /* Deal with TX cruft when link lost */
1511 em_tx_purge(adapter);
1513 callout_reset(&adapter->timer, hz, em_timer, adapter);
1516 if (reg_icr & E1000_ICR_RXO)
1517 adapter->rx_overruns++;
1519 logif(intr_end);
1522 static void
1523 em_intr_mask(void *xsc)
1525 struct adapter *adapter = xsc;
1527 E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1529 * NOTE:
1530 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1531 * so don't check it.
1533 em_intr_body(adapter, FALSE);
1534 E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1537 static void
1538 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1540 struct adapter *adapter = ifp->if_softc;
1542 ASSERT_SERIALIZED(ifp->if_serializer);
1544 em_update_link_status(adapter);
1546 ifmr->ifm_status = IFM_AVALID;
1547 ifmr->ifm_active = IFM_ETHER;
1549 if (!adapter->link_active) {
1550 if (adapter->hw.mac.autoneg)
1551 ifmr->ifm_active |= IFM_NONE;
1552 else
1553 ifmr->ifm_active = adapter->media.ifm_media;
1554 return;
1557 ifmr->ifm_status |= IFM_ACTIVE;
1558 if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1559 ifmr->ifm_active |= adapter->ifm_flowctrl;
1561 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1562 adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1563 u_char fiber_type = IFM_1000_SX;
1565 if (adapter->hw.mac.type == e1000_82545)
1566 fiber_type = IFM_1000_LX;
1567 ifmr->ifm_active |= fiber_type | IFM_FDX;
1568 } else {
1569 switch (adapter->link_speed) {
1570 case 10:
1571 ifmr->ifm_active |= IFM_10_T;
1572 break;
1573 case 100:
1574 ifmr->ifm_active |= IFM_100_TX;
1575 break;
1577 case 1000:
1578 ifmr->ifm_active |= IFM_1000_T;
1579 break;
1581 if (adapter->link_duplex == FULL_DUPLEX)
1582 ifmr->ifm_active |= IFM_FDX;
1583 else
1584 ifmr->ifm_active |= IFM_HDX;
1586 if (ifmr->ifm_active & IFM_FDX) {
1587 ifmr->ifm_active |=
1588 e1000_fc2ifmedia(adapter->hw.fc.current_mode);
1592 static int
1593 em_media_change(struct ifnet *ifp)
1595 struct adapter *adapter = ifp->if_softc;
1596 struct ifmedia *ifm = &adapter->media;
1598 ASSERT_SERIALIZED(ifp->if_serializer);
1600 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1601 return (EINVAL);
1603 if (adapter->hw.mac.type == e1000_pchlan &&
1604 (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)) {
1605 if (bootverbose)
1606 if_printf(ifp, "TX PAUSE is not supported on PCH\n");
1607 return EINVAL;
1610 switch (IFM_SUBTYPE(ifm->ifm_media)) {
1611 case IFM_AUTO:
1612 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1613 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1614 break;
1616 case IFM_1000_LX:
1617 case IFM_1000_SX:
1618 case IFM_1000_T:
1619 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1620 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1621 break;
1623 case IFM_100_TX:
1624 if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1625 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1626 } else {
1627 if (IFM_OPTIONS(ifm->ifm_media) &
1628 (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1629 if (bootverbose) {
1630 if_printf(ifp, "Flow control is not "
1631 "allowed for half-duplex\n");
1633 return EINVAL;
1635 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1637 adapter->hw.mac.autoneg = FALSE;
1638 adapter->hw.phy.autoneg_advertised = 0;
1639 break;
1641 case IFM_10_T:
1642 if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1643 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1644 } else {
1645 if (IFM_OPTIONS(ifm->ifm_media) &
1646 (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1647 if (bootverbose) {
1648 if_printf(ifp, "Flow control is not "
1649 "allowed for half-duplex\n");
1651 return EINVAL;
1653 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1655 adapter->hw.mac.autoneg = FALSE;
1656 adapter->hw.phy.autoneg_advertised = 0;
1657 break;
1659 default:
1660 if (bootverbose) {
1661 if_printf(ifp, "Unsupported media type %d\n",
1662 IFM_SUBTYPE(ifm->ifm_media));
1664 return EINVAL;
1666 adapter->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1668 if (ifp->if_flags & IFF_RUNNING)
1669 em_init(adapter);
1671 return (0);
1674 static int
1675 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1676 int *segs_used, int *idx)
1678 bus_dma_segment_t segs[EM_MAX_SCATTER];
1679 bus_dmamap_t map;
1680 struct em_buffer *tx_buffer, *tx_buffer_mapped;
1681 struct e1000_tx_desc *ctxd = NULL;
1682 struct mbuf *m_head = *m_headp;
1683 uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1684 int maxsegs, nsegs, i, j, first, last = 0, error;
1686 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1687 error = em_tso_pullup(adapter, m_headp);
1688 if (error)
1689 return error;
1690 m_head = *m_headp;
1693 txd_upper = txd_lower = 0;
1694 txd_used = 0;
1697 * Capture the first descriptor index, this descriptor
1698 * will have the index of the EOP which is the only one
1699 * that now gets a DONE bit writeback.
1701 first = adapter->next_avail_tx_desc;
1702 tx_buffer = &adapter->tx_buffer_area[first];
1703 tx_buffer_mapped = tx_buffer;
1704 map = tx_buffer->map;
1706 maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1707 KASSERT(maxsegs >= adapter->spare_tx_desc,
1708 ("not enough spare TX desc"));
1709 if (adapter->pcix_82544) {
1710 /* Half it; see the comment in em_attach() */
1711 maxsegs >>= 1;
1713 if (maxsegs > EM_MAX_SCATTER)
1714 maxsegs = EM_MAX_SCATTER;
1716 error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1717 segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1718 if (error) {
1719 if (error == ENOBUFS)
1720 adapter->mbuf_alloc_failed++;
1721 else
1722 adapter->no_tx_dma_setup++;
1724 m_freem(*m_headp);
1725 *m_headp = NULL;
1726 return error;
1728 bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1730 m_head = *m_headp;
1731 adapter->tx_nsegs += nsegs;
1732 *segs_used += nsegs;
1734 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1735 /* TSO will consume one TX desc */
1736 i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1737 adapter->tx_nsegs += i;
1738 *segs_used += i;
1739 } else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1740 /* TX csum offloading will consume one TX desc */
1741 i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1742 adapter->tx_nsegs += i;
1743 *segs_used += i;
1746 /* Handle VLAN tag */
1747 if (m_head->m_flags & M_VLANTAG) {
1748 /* Set the vlan id. */
1749 txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1750 /* Tell hardware to add tag */
1751 txd_lower |= htole32(E1000_TXD_CMD_VLE);
1754 i = adapter->next_avail_tx_desc;
1756 /* Set up our transmit descriptors */
1757 for (j = 0; j < nsegs; j++) {
1758 /* If adapter is 82544 and on PCIX bus */
1759 if(adapter->pcix_82544) {
1760 DESC_ARRAY desc_array;
1761 uint32_t array_elements, counter;
1764 * Check the Address and Length combination and
1765 * split the data accordingly
1767 array_elements = em_82544_fill_desc(segs[j].ds_addr,
1768 segs[j].ds_len, &desc_array);
1769 for (counter = 0; counter < array_elements; counter++) {
1770 KKASSERT(txd_used < adapter->num_tx_desc_avail);
1772 tx_buffer = &adapter->tx_buffer_area[i];
1773 ctxd = &adapter->tx_desc_base[i];
1775 ctxd->buffer_addr = htole64(
1776 desc_array.descriptor[counter].address);
1777 ctxd->lower.data = htole32(
1778 E1000_TXD_CMD_IFCS | txd_lower |
1779 desc_array.descriptor[counter].length);
1780 ctxd->upper.data = htole32(txd_upper);
1782 last = i;
1783 if (++i == adapter->num_tx_desc)
1784 i = 0;
1786 txd_used++;
1788 } else {
1789 tx_buffer = &adapter->tx_buffer_area[i];
1790 ctxd = &adapter->tx_desc_base[i];
1792 ctxd->buffer_addr = htole64(segs[j].ds_addr);
1793 ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1794 txd_lower | segs[j].ds_len);
1795 ctxd->upper.data = htole32(txd_upper);
1797 last = i;
1798 if (++i == adapter->num_tx_desc)
1799 i = 0;
1803 adapter->next_avail_tx_desc = i;
1804 if (adapter->pcix_82544) {
1805 KKASSERT(adapter->num_tx_desc_avail > txd_used);
1806 adapter->num_tx_desc_avail -= txd_used;
1807 } else {
1808 KKASSERT(adapter->num_tx_desc_avail > nsegs);
1809 adapter->num_tx_desc_avail -= nsegs;
1812 tx_buffer->m_head = m_head;
1813 tx_buffer_mapped->map = tx_buffer->map;
1814 tx_buffer->map = map;
1816 if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1817 adapter->tx_nsegs = 0;
1820 * Report Status (RS) is turned on
1821 * every tx_int_nsegs descriptors.
1823 cmd = E1000_TXD_CMD_RS;
1826 * Keep track of the descriptor, which will
1827 * be written back by hardware.
1829 adapter->tx_dd[adapter->tx_dd_tail] = last;
1830 EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1831 KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1835 * Last Descriptor of Packet needs End Of Packet (EOP)
1837 ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1839 if (adapter->hw.mac.type == e1000_82547) {
1841 * Advance the Transmit Descriptor Tail (TDT), this tells the
1842 * E1000 that this frame is available to transmit.
1844 if (adapter->link_duplex == HALF_DUPLEX) {
1845 em_82547_move_tail_serialized(adapter);
1846 } else {
1847 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1848 em_82547_update_fifo_head(adapter,
1849 m_head->m_pkthdr.len);
1851 } else {
1853 * Defer TDT updating, until enough descriptors are setup
1855 *idx = i;
1857 return (0);
1861 * 82547 workaround to avoid controller hang in half-duplex environment.
1862 * The workaround is to avoid queuing a large packet that would span
1863 * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
1864 * in this case. We do that only when FIFO is quiescent.
1866 static void
1867 em_82547_move_tail_serialized(struct adapter *adapter)
1869 struct e1000_tx_desc *tx_desc;
1870 uint16_t hw_tdt, sw_tdt, length = 0;
1871 bool eop = 0;
1873 ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1875 hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1876 sw_tdt = adapter->next_avail_tx_desc;
1878 while (hw_tdt != sw_tdt) {
1879 tx_desc = &adapter->tx_desc_base[hw_tdt];
1880 length += tx_desc->lower.flags.length;
1881 eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1882 if (++hw_tdt == adapter->num_tx_desc)
1883 hw_tdt = 0;
1885 if (eop) {
1886 if (em_82547_fifo_workaround(adapter, length)) {
1887 adapter->tx_fifo_wrk_cnt++;
1888 callout_reset(&adapter->tx_fifo_timer, 1,
1889 em_82547_move_tail, adapter);
1890 break;
1892 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1893 em_82547_update_fifo_head(adapter, length);
1894 length = 0;
1899 static void
1900 em_82547_move_tail(void *xsc)
1902 struct adapter *adapter = xsc;
1903 struct ifnet *ifp = &adapter->arpcom.ac_if;
1905 lwkt_serialize_enter(ifp->if_serializer);
1906 em_82547_move_tail_serialized(adapter);
1907 lwkt_serialize_exit(ifp->if_serializer);
1910 static int
1911 em_82547_fifo_workaround(struct adapter *adapter, int len)
1913 int fifo_space, fifo_pkt_len;
1915 fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1917 if (adapter->link_duplex == HALF_DUPLEX) {
1918 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1920 if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1921 if (em_82547_tx_fifo_reset(adapter))
1922 return (0);
1923 else
1924 return (1);
1927 return (0);
1930 static void
1931 em_82547_update_fifo_head(struct adapter *adapter, int len)
1933 int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1935 /* tx_fifo_head is always 16 byte aligned */
1936 adapter->tx_fifo_head += fifo_pkt_len;
1937 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1938 adapter->tx_fifo_head -= adapter->tx_fifo_size;
1941 static int
1942 em_82547_tx_fifo_reset(struct adapter *adapter)
1944 uint32_t tctl;
1946 if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1947 E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1948 (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1949 E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1950 (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1951 E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1952 (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1953 /* Disable TX unit */
1954 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1955 E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1956 tctl & ~E1000_TCTL_EN);
1958 /* Reset FIFO pointers */
1959 E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1960 adapter->tx_head_addr);
1961 E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1962 adapter->tx_head_addr);
1963 E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1964 adapter->tx_head_addr);
1965 E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1966 adapter->tx_head_addr);
1968 /* Re-enable TX unit */
1969 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1970 E1000_WRITE_FLUSH(&adapter->hw);
1972 adapter->tx_fifo_head = 0;
1973 adapter->tx_fifo_reset_cnt++;
1975 return (TRUE);
1976 } else {
1977 return (FALSE);
1981 static void
1982 em_set_promisc(struct adapter *adapter)
1984 struct ifnet *ifp = &adapter->arpcom.ac_if;
1985 uint32_t reg_rctl;
1987 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1989 if (ifp->if_flags & IFF_PROMISC) {
1990 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1991 /* Turn this on if you want to see bad packets */
1992 if (em_debug_sbp)
1993 reg_rctl |= E1000_RCTL_SBP;
1994 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1995 } else if (ifp->if_flags & IFF_ALLMULTI) {
1996 reg_rctl |= E1000_RCTL_MPE;
1997 reg_rctl &= ~E1000_RCTL_UPE;
1998 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2002 static void
2003 em_disable_promisc(struct adapter *adapter)
2005 uint32_t reg_rctl;
2007 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2009 reg_rctl &= ~E1000_RCTL_UPE;
2010 reg_rctl &= ~E1000_RCTL_MPE;
2011 reg_rctl &= ~E1000_RCTL_SBP;
2012 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2015 static void
2016 em_set_multi(struct adapter *adapter)
2018 struct ifnet *ifp = &adapter->arpcom.ac_if;
2019 struct ifmultiaddr *ifma;
2020 uint32_t reg_rctl = 0;
2021 uint8_t *mta;
2022 int mcnt = 0;
2024 mta = adapter->mta;
2025 bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
2027 if (adapter->hw.mac.type == e1000_82542 &&
2028 adapter->hw.revision_id == E1000_REVISION_2) {
2029 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2030 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2031 e1000_pci_clear_mwi(&adapter->hw);
2032 reg_rctl |= E1000_RCTL_RST;
2033 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2034 msec_delay(5);
2037 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2038 if (ifma->ifma_addr->sa_family != AF_LINK)
2039 continue;
2041 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
2042 break;
2044 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2045 &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2046 mcnt++;
2049 if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
2050 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2051 reg_rctl |= E1000_RCTL_MPE;
2052 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2053 } else {
2054 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
2057 if (adapter->hw.mac.type == e1000_82542 &&
2058 adapter->hw.revision_id == E1000_REVISION_2) {
2059 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2060 reg_rctl &= ~E1000_RCTL_RST;
2061 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2062 msec_delay(5);
2063 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2064 e1000_pci_set_mwi(&adapter->hw);
2069 * This routine checks for link status and updates statistics.
2071 static void
2072 em_timer(void *xsc)
2074 struct adapter *adapter = xsc;
2075 struct ifnet *ifp = &adapter->arpcom.ac_if;
2077 lwkt_serialize_enter(ifp->if_serializer);
2079 em_update_link_status(adapter);
2080 em_update_stats(adapter);
2082 /* Reset LAA into RAR[0] on 82571 */
2083 if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2084 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2086 if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2087 em_print_hw_stats(adapter);
2089 em_smartspeed(adapter);
2091 callout_reset(&adapter->timer, hz, em_timer, adapter);
2093 lwkt_serialize_exit(ifp->if_serializer);
2096 static void
2097 em_update_link_status(struct adapter *adapter)
2099 struct e1000_hw *hw = &adapter->hw;
2100 struct ifnet *ifp = &adapter->arpcom.ac_if;
2101 device_t dev = adapter->dev;
2102 uint32_t link_check = 0;
2104 /* Get the cached link value or read phy for real */
2105 switch (hw->phy.media_type) {
2106 case e1000_media_type_copper:
2107 if (hw->mac.get_link_status) {
2108 /* Do the work to read phy */
2109 e1000_check_for_link(hw);
2110 link_check = !hw->mac.get_link_status;
2111 if (link_check) /* ESB2 fix */
2112 e1000_cfg_on_link_up(hw);
2113 } else {
2114 link_check = TRUE;
2116 break;
2118 case e1000_media_type_fiber:
2119 e1000_check_for_link(hw);
2120 link_check =
2121 E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2122 break;
2124 case e1000_media_type_internal_serdes:
2125 e1000_check_for_link(hw);
2126 link_check = adapter->hw.mac.serdes_has_link;
2127 break;
2129 case e1000_media_type_unknown:
2130 default:
2131 break;
2134 /* Now check for a transition */
2135 if (link_check && adapter->link_active == 0) {
2136 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2137 &adapter->link_duplex);
2140 * Check if we should enable/disable SPEED_MODE bit on
2141 * 82571/82572
2143 if (adapter->link_speed != SPEED_1000 &&
2144 (hw->mac.type == e1000_82571 ||
2145 hw->mac.type == e1000_82572)) {
2146 int tarc0;
2148 tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2149 tarc0 &= ~SPEED_MODE_BIT;
2150 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2152 if (bootverbose) {
2153 char flowctrl[IFM_ETH_FC_STRLEN];
2155 e1000_fc2str(hw->fc.current_mode, flowctrl,
2156 sizeof(flowctrl));
2157 device_printf(dev, "Link is up %d Mbps %s, "
2158 "Flow control: %s\n",
2159 adapter->link_speed,
2160 (adapter->link_duplex == FULL_DUPLEX) ?
2161 "Full Duplex" : "Half Duplex",
2162 flowctrl);
2164 if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
2165 e1000_force_flowctrl(hw, adapter->ifm_flowctrl);
2166 adapter->link_active = 1;
2167 adapter->smartspeed = 0;
2168 ifp->if_baudrate = adapter->link_speed * 1000000;
2169 ifp->if_link_state = LINK_STATE_UP;
2170 if_link_state_change(ifp);
2171 } else if (!link_check && adapter->link_active == 1) {
2172 ifp->if_baudrate = adapter->link_speed = 0;
2173 adapter->link_duplex = 0;
2174 if (bootverbose)
2175 device_printf(dev, "Link is Down\n");
2176 adapter->link_active = 0;
2177 #if 0
2178 /* Link down, disable watchdog */
2179 if->if_timer = 0;
2180 #endif
2181 ifp->if_link_state = LINK_STATE_DOWN;
2182 if_link_state_change(ifp);
2186 static void
2187 em_stop(struct adapter *adapter)
2189 struct ifnet *ifp = &adapter->arpcom.ac_if;
2190 int i;
2192 ASSERT_SERIALIZED(ifp->if_serializer);
2194 em_disable_intr(adapter);
2196 callout_stop(&adapter->timer);
2197 callout_stop(&adapter->tx_fifo_timer);
2199 ifp->if_flags &= ~IFF_RUNNING;
2200 ifq_clr_oactive(&ifp->if_snd);
2201 ifp->if_timer = 0;
2203 e1000_reset_hw(&adapter->hw);
2204 if (adapter->hw.mac.type >= e1000_82544)
2205 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2207 for (i = 0; i < adapter->num_tx_desc; i++) {
2208 struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2210 if (tx_buffer->m_head != NULL) {
2211 bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2212 m_freem(tx_buffer->m_head);
2213 tx_buffer->m_head = NULL;
2217 for (i = 0; i < adapter->num_rx_desc; i++) {
2218 struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2220 if (rx_buffer->m_head != NULL) {
2221 bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2222 m_freem(rx_buffer->m_head);
2223 rx_buffer->m_head = NULL;
2227 if (adapter->fmp != NULL)
2228 m_freem(adapter->fmp);
2229 adapter->fmp = NULL;
2230 adapter->lmp = NULL;
2232 adapter->csum_flags = 0;
2233 adapter->csum_lhlen = 0;
2234 adapter->csum_iphlen = 0;
2235 adapter->csum_thlen = 0;
2236 adapter->csum_mss = 0;
2237 adapter->csum_pktlen = 0;
2239 adapter->tx_dd_head = 0;
2240 adapter->tx_dd_tail = 0;
2241 adapter->tx_nsegs = 0;
2244 static int
2245 em_get_hw_info(struct adapter *adapter)
2247 device_t dev = adapter->dev;
2249 /* Save off the information about this board */
2250 adapter->hw.vendor_id = pci_get_vendor(dev);
2251 adapter->hw.device_id = pci_get_device(dev);
2252 adapter->hw.revision_id = pci_get_revid(dev);
2253 adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2254 adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2256 /* Do Shared Code Init and Setup */
2257 if (e1000_set_mac_type(&adapter->hw))
2258 return ENXIO;
2259 return 0;
2262 static int
2263 em_alloc_pci_res(struct adapter *adapter)
2265 device_t dev = adapter->dev;
2266 u_int intr_flags;
2267 int val, rid, msi_enable, cap;
2269 /* Enable bus mastering */
2270 pci_enable_busmaster(dev);
2272 adapter->memory_rid = EM_BAR_MEM;
2273 adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2274 &adapter->memory_rid, RF_ACTIVE);
2275 if (adapter->memory == NULL) {
2276 device_printf(dev, "Unable to allocate bus resource: memory\n");
2277 return (ENXIO);
2279 adapter->osdep.mem_bus_space_tag =
2280 rman_get_bustag(adapter->memory);
2281 adapter->osdep.mem_bus_space_handle =
2282 rman_get_bushandle(adapter->memory);
2284 /* XXX This is quite goofy, it is not actually used */
2285 adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2287 /* Only older adapters use IO mapping */
2288 if (adapter->hw.mac.type > e1000_82543 &&
2289 adapter->hw.mac.type < e1000_82571) {
2290 /* Figure our where our IO BAR is ? */
2291 for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2292 val = pci_read_config(dev, rid, 4);
2293 if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2294 adapter->io_rid = rid;
2295 break;
2297 rid += 4;
2298 /* check for 64bit BAR */
2299 if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2300 rid += 4;
2302 if (rid >= PCIR_CARDBUSCIS) {
2303 device_printf(dev, "Unable to locate IO BAR\n");
2304 return (ENXIO);
2306 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2307 &adapter->io_rid, RF_ACTIVE);
2308 if (adapter->ioport == NULL) {
2309 device_printf(dev, "Unable to allocate bus resource: "
2310 "ioport\n");
2311 return (ENXIO);
2313 adapter->hw.io_base = 0;
2314 adapter->osdep.io_bus_space_tag =
2315 rman_get_bustag(adapter->ioport);
2316 adapter->osdep.io_bus_space_handle =
2317 rman_get_bushandle(adapter->ioport);
2321 * Don't enable MSI-X on 82574, see:
2322 * 82574 specification update errata #15
2324 * Don't enable MSI on PCI/PCI-X chips, see:
2325 * 82540 specification update errata #6
2326 * 82545 specification update errata #4
2328 * Don't enable MSI on 82571/82572, see:
2329 * 82571/82572 specification update errata #63
2331 * Some versions of I219 only have PCI AF.
2333 msi_enable = em_msi_enable;
2334 if (msi_enable &&
2335 (!(pci_is_pcie(dev) ||
2336 pci_find_extcap(dev, PCIY_PCIAF, &cap) == 0) ||
2337 adapter->hw.mac.type == e1000_82571 ||
2338 adapter->hw.mac.type == e1000_82572))
2339 msi_enable = 0;
2340 again:
2341 adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2342 &adapter->intr_rid, &intr_flags);
2344 if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2345 int unshared;
2347 unshared = device_getenv_int(dev, "irq.unshared", 0);
2348 if (!unshared) {
2349 adapter->flags |= EM_FLAG_SHARED_INTR;
2350 if (bootverbose)
2351 device_printf(dev, "IRQ shared\n");
2352 } else {
2353 intr_flags &= ~RF_SHAREABLE;
2354 if (bootverbose)
2355 device_printf(dev, "IRQ unshared\n");
2359 adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2360 &adapter->intr_rid, intr_flags);
2361 if (adapter->intr_res == NULL) {
2362 device_printf(dev, "Unable to allocate bus resource: %s\n",
2363 adapter->intr_type == PCI_INTR_TYPE_MSI ?
2364 "MSI" : "legacy intr");
2365 if (!msi_enable) {
2366 /* Retry with MSI. */
2367 msi_enable = 1;
2368 adapter->flags &= ~EM_FLAG_SHARED_INTR;
2369 goto again;
2371 return (ENXIO);
2374 adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2375 adapter->hw.back = &adapter->osdep;
2376 return (0);
2379 static void
2380 em_free_pci_res(struct adapter *adapter)
2382 device_t dev = adapter->dev;
2384 if (adapter->intr_res != NULL) {
2385 bus_release_resource(dev, SYS_RES_IRQ,
2386 adapter->intr_rid, adapter->intr_res);
2389 if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2390 pci_release_msi(dev);
2392 if (adapter->memory != NULL) {
2393 bus_release_resource(dev, SYS_RES_MEMORY,
2394 adapter->memory_rid, adapter->memory);
2397 if (adapter->flash != NULL) {
2398 bus_release_resource(dev, SYS_RES_MEMORY,
2399 adapter->flash_rid, adapter->flash);
2402 if (adapter->ioport != NULL) {
2403 bus_release_resource(dev, SYS_RES_IOPORT,
2404 adapter->io_rid, adapter->ioport);
2408 static int
2409 em_reset(struct adapter *adapter)
2411 device_t dev = adapter->dev;
2412 uint16_t rx_buffer_size;
2413 uint32_t pba;
2415 /* When hardware is reset, fifo_head is also reset */
2416 adapter->tx_fifo_head = 0;
2418 /* Set up smart power down as default off on newer adapters. */
2419 if (!em_smart_pwr_down &&
2420 (adapter->hw.mac.type == e1000_82571 ||
2421 adapter->hw.mac.type == e1000_82572)) {
2422 uint16_t phy_tmp = 0;
2424 /* Speed up time to link by disabling smart power down. */
2425 e1000_read_phy_reg(&adapter->hw,
2426 IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2427 phy_tmp &= ~IGP02E1000_PM_SPD;
2428 e1000_write_phy_reg(&adapter->hw,
2429 IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2433 * Packet Buffer Allocation (PBA)
2434 * Writing PBA sets the receive portion of the buffer
2435 * the remainder is used for the transmit buffer.
2437 * Devices before the 82547 had a Packet Buffer of 64K.
2438 * Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2439 * After the 82547 the buffer was reduced to 40K.
2440 * Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2441 * Note: default does not leave enough room for Jumbo Frame >10k.
2443 switch (adapter->hw.mac.type) {
2444 case e1000_82547:
2445 case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2446 if (adapter->hw.mac.max_frame_size > 8192)
2447 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2448 else
2449 pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2450 adapter->tx_fifo_head = 0;
2451 adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2452 adapter->tx_fifo_size =
2453 (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2454 break;
2456 /* Total Packet Buffer on these is 48K */
2457 case e1000_82571:
2458 case e1000_82572:
2459 case e1000_80003es2lan:
2460 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2461 break;
2463 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2464 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2465 break;
2467 case e1000_82574:
2468 case e1000_82583:
2469 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2470 break;
2472 case e1000_ich8lan:
2473 pba = E1000_PBA_8K;
2474 break;
2476 case e1000_ich9lan:
2477 case e1000_ich10lan:
2478 #define E1000_PBA_10K 0x000A
2479 pba = E1000_PBA_10K;
2480 break;
2482 case e1000_pchlan:
2483 case e1000_pch2lan:
2484 case e1000_pch_lpt:
2485 case e1000_pch_spt:
2486 pba = E1000_PBA_26K;
2487 break;
2489 default:
2490 /* Devices before 82547 had a Packet Buffer of 64K. */
2491 if (adapter->hw.mac.max_frame_size > 8192)
2492 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2493 else
2494 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2496 E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2499 * These parameters control the automatic generation (Tx) and
2500 * response (Rx) to Ethernet PAUSE frames.
2501 * - High water mark should allow for at least two frames to be
2502 * received after sending an XOFF.
2503 * - Low water mark works best when it is very near the high water mark.
2504 * This allows the receiver to restart by sending XON when it has
2505 * drained a bit. Here we use an arbitary value of 1500 which will
2506 * restart after one full frame is pulled from the buffer. There
2507 * could be several smaller frames in the buffer and if so they will
2508 * not trigger the XON until their total number reduces the buffer
2509 * by 1500.
2510 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2512 rx_buffer_size =
2513 (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2515 adapter->hw.fc.high_water = rx_buffer_size -
2516 roundup2(adapter->hw.mac.max_frame_size, 1024);
2517 adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2519 if (adapter->hw.mac.type == e1000_80003es2lan)
2520 adapter->hw.fc.pause_time = 0xFFFF;
2521 else
2522 adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2524 adapter->hw.fc.send_xon = TRUE;
2526 adapter->hw.fc.requested_mode = e1000_ifmedia2fc(adapter->ifm_flowctrl);
2529 * Device specific overrides/settings
2531 switch (adapter->hw.mac.type) {
2532 case e1000_pchlan:
2533 KASSERT(adapter->hw.fc.requested_mode == e1000_fc_rx_pause ||
2534 adapter->hw.fc.requested_mode == e1000_fc_none,
2535 ("unsupported flow control on PCH %d",
2536 adapter->hw.fc.requested_mode));
2537 adapter->hw.fc.pause_time = 0xFFFF; /* override */
2538 if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2539 adapter->hw.fc.high_water = 0x3500;
2540 adapter->hw.fc.low_water = 0x1500;
2541 } else {
2542 adapter->hw.fc.high_water = 0x5000;
2543 adapter->hw.fc.low_water = 0x3000;
2545 adapter->hw.fc.refresh_time = 0x1000;
2546 break;
2548 case e1000_pch2lan:
2549 case e1000_pch_lpt:
2550 case e1000_pch_spt:
2551 adapter->hw.fc.high_water = 0x5C20;
2552 adapter->hw.fc.low_water = 0x5048;
2553 adapter->hw.fc.pause_time = 0x0650;
2554 adapter->hw.fc.refresh_time = 0x0400;
2555 /* Jumbos need adjusted PBA */
2556 if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2557 E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2558 else
2559 E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2560 break;
2562 case e1000_ich9lan:
2563 case e1000_ich10lan:
2564 if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2565 adapter->hw.fc.high_water = 0x2800;
2566 adapter->hw.fc.low_water =
2567 adapter->hw.fc.high_water - 8;
2568 break;
2570 /* FALL THROUGH */
2571 default:
2572 if (adapter->hw.mac.type == e1000_80003es2lan)
2573 adapter->hw.fc.pause_time = 0xFFFF;
2574 break;
2577 /* Issue a global reset */
2578 e1000_reset_hw(&adapter->hw);
2579 if (adapter->hw.mac.type >= e1000_82544)
2580 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2581 em_disable_aspm(adapter);
2583 if (e1000_init_hw(&adapter->hw) < 0) {
2584 device_printf(dev, "Hardware Initialization Failed\n");
2585 return (EIO);
2588 E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2589 e1000_get_phy_info(&adapter->hw);
2590 e1000_check_for_link(&adapter->hw);
2592 return (0);
2595 static void
2596 em_setup_ifp(struct adapter *adapter)
2598 struct ifnet *ifp = &adapter->arpcom.ac_if;
2600 if_initname(ifp, device_get_name(adapter->dev),
2601 device_get_unit(adapter->dev));
2602 ifp->if_softc = adapter;
2603 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2604 ifp->if_init = em_init;
2605 ifp->if_ioctl = em_ioctl;
2606 ifp->if_start = em_start;
2607 #ifdef IFPOLL_ENABLE
2608 ifp->if_npoll = em_npoll;
2609 #endif
2610 ifp->if_watchdog = em_watchdog;
2611 ifp->if_nmbclusters = adapter->num_rx_desc;
2612 ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2613 ifq_set_ready(&ifp->if_snd);
2615 ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2617 ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2618 if (adapter->hw.mac.type >= e1000_82543)
2619 ifp->if_capabilities |= IFCAP_HWCSUM;
2620 if (adapter->flags & EM_FLAG_TSO)
2621 ifp->if_capabilities |= IFCAP_TSO;
2622 ifp->if_capenable = ifp->if_capabilities;
2624 if (ifp->if_capenable & IFCAP_TXCSUM)
2625 ifp->if_hwassist |= EM_CSUM_FEATURES;
2626 if (ifp->if_capenable & IFCAP_TSO)
2627 ifp->if_hwassist |= CSUM_TSO;
2630 * Tell the upper layer(s) we support long frames.
2632 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2635 * Specify the media types supported by this adapter and register
2636 * callbacks to update media and link information
2638 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2639 adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2640 u_char fiber_type = IFM_1000_SX; /* default type */
2642 if (adapter->hw.mac.type == e1000_82545)
2643 fiber_type = IFM_1000_LX;
2644 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2645 0, NULL);
2646 } else {
2647 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2648 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2649 0, NULL);
2650 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2651 0, NULL);
2652 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2653 0, NULL);
2654 if (adapter->hw.phy.type != e1000_phy_ife) {
2655 ifmedia_add(&adapter->media,
2656 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2659 ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2660 ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO |
2661 adapter->ifm_flowctrl);
2666 * Workaround for SmartSpeed on 82541 and 82547 controllers
2668 static void
2669 em_smartspeed(struct adapter *adapter)
2671 uint16_t phy_tmp;
2673 if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2674 adapter->hw.mac.autoneg == 0 ||
2675 (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2676 return;
2678 if (adapter->smartspeed == 0) {
2680 * If Master/Slave config fault is asserted twice,
2681 * we assume back-to-back
2683 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2684 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2685 return;
2686 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2687 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2688 e1000_read_phy_reg(&adapter->hw,
2689 PHY_1000T_CTRL, &phy_tmp);
2690 if (phy_tmp & CR_1000T_MS_ENABLE) {
2691 phy_tmp &= ~CR_1000T_MS_ENABLE;
2692 e1000_write_phy_reg(&adapter->hw,
2693 PHY_1000T_CTRL, phy_tmp);
2694 adapter->smartspeed++;
2695 if (adapter->hw.mac.autoneg &&
2696 !e1000_phy_setup_autoneg(&adapter->hw) &&
2697 !e1000_read_phy_reg(&adapter->hw,
2698 PHY_CONTROL, &phy_tmp)) {
2699 phy_tmp |= MII_CR_AUTO_NEG_EN |
2700 MII_CR_RESTART_AUTO_NEG;
2701 e1000_write_phy_reg(&adapter->hw,
2702 PHY_CONTROL, phy_tmp);
2706 return;
2707 } else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2708 /* If still no link, perhaps using 2/3 pair cable */
2709 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2710 phy_tmp |= CR_1000T_MS_ENABLE;
2711 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2712 if (adapter->hw.mac.autoneg &&
2713 !e1000_phy_setup_autoneg(&adapter->hw) &&
2714 !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2715 phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2716 e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2720 /* Restart process after EM_SMARTSPEED_MAX iterations */
2721 if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2722 adapter->smartspeed = 0;
2725 static int
2726 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2727 struct em_dma_alloc *dma)
2729 dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2730 EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2731 &dma->dma_tag, &dma->dma_map,
2732 &dma->dma_paddr);
2733 if (dma->dma_vaddr == NULL)
2734 return ENOMEM;
2735 else
2736 return 0;
2739 static void
2740 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2742 if (dma->dma_tag == NULL)
2743 return;
2744 bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2745 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2746 bus_dma_tag_destroy(dma->dma_tag);
2749 static int
2750 em_create_tx_ring(struct adapter *adapter)
2752 device_t dev = adapter->dev;
2753 struct em_buffer *tx_buffer;
2754 int error, i;
2756 adapter->tx_buffer_area =
2757 kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2758 M_DEVBUF, M_WAITOK | M_ZERO);
2761 * Create DMA tags for tx buffers
2763 error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2764 1, 0, /* alignment, bounds */
2765 BUS_SPACE_MAXADDR, /* lowaddr */
2766 BUS_SPACE_MAXADDR, /* highaddr */
2767 NULL, NULL, /* filter, filterarg */
2768 EM_TSO_SIZE, /* maxsize */
2769 EM_MAX_SCATTER, /* nsegments */
2770 PAGE_SIZE, /* maxsegsize */
2771 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2772 BUS_DMA_ONEBPAGE, /* flags */
2773 &adapter->txtag);
2774 if (error) {
2775 device_printf(dev, "Unable to allocate TX DMA tag\n");
2776 kfree(adapter->tx_buffer_area, M_DEVBUF);
2777 adapter->tx_buffer_area = NULL;
2778 return error;
2782 * Create DMA maps for tx buffers
2784 for (i = 0; i < adapter->num_tx_desc; i++) {
2785 tx_buffer = &adapter->tx_buffer_area[i];
2787 error = bus_dmamap_create(adapter->txtag,
2788 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2789 &tx_buffer->map);
2790 if (error) {
2791 device_printf(dev, "Unable to create TX DMA map\n");
2792 em_destroy_tx_ring(adapter, i);
2793 return error;
2796 return (0);
2799 static void
2800 em_init_tx_ring(struct adapter *adapter)
2802 /* Clear the old ring contents */
2803 bzero(adapter->tx_desc_base,
2804 (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2806 /* Reset state */
2807 adapter->next_avail_tx_desc = 0;
2808 adapter->next_tx_to_clean = 0;
2809 adapter->num_tx_desc_avail = adapter->num_tx_desc;
2812 static void
2813 em_init_tx_unit(struct adapter *adapter)
2815 uint32_t tctl, tarc, tipg = 0;
2816 uint64_t bus_addr;
2818 /* Setup the Base and Length of the Tx Descriptor Ring */
2819 bus_addr = adapter->txdma.dma_paddr;
2820 E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2821 adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2822 E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2823 (uint32_t)(bus_addr >> 32));
2824 E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2825 (uint32_t)bus_addr);
2826 /* Setup the HW Tx Head and Tail descriptor pointers */
2827 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2828 E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2830 /* Set the default values for the Tx Inter Packet Gap timer */
2831 switch (adapter->hw.mac.type) {
2832 case e1000_82542:
2833 tipg = DEFAULT_82542_TIPG_IPGT;
2834 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2835 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2836 break;
2838 case e1000_80003es2lan:
2839 tipg = DEFAULT_82543_TIPG_IPGR1;
2840 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2841 E1000_TIPG_IPGR2_SHIFT;
2842 break;
2844 default:
2845 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2846 adapter->hw.phy.media_type ==
2847 e1000_media_type_internal_serdes)
2848 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2849 else
2850 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2851 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2852 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2853 break;
2856 E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2858 /* NOTE: 0 is not allowed for TIDV */
2859 E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2860 if(adapter->hw.mac.type >= e1000_82540)
2861 E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2863 if (adapter->hw.mac.type == e1000_82571 ||
2864 adapter->hw.mac.type == e1000_82572) {
2865 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2866 tarc |= SPEED_MODE_BIT;
2867 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2868 } else if (adapter->hw.mac.type == e1000_80003es2lan) {
2869 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2870 tarc |= 1;
2871 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2872 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2873 tarc |= 1;
2874 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2877 /* Program the Transmit Control Register */
2878 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2879 tctl &= ~E1000_TCTL_CT;
2880 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2881 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2883 if (adapter->hw.mac.type >= e1000_82571)
2884 tctl |= E1000_TCTL_MULR;
2886 /* This write will effectively turn on the transmit unit. */
2887 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2889 if (adapter->hw.mac.type == e1000_82571 ||
2890 adapter->hw.mac.type == e1000_82572 ||
2891 adapter->hw.mac.type == e1000_80003es2lan) {
2892 /* Bit 28 of TARC1 must be cleared when MULR is enabled */
2893 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2894 tarc &= ~(1 << 28);
2895 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2899 static void
2900 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2902 struct em_buffer *tx_buffer;
2903 int i;
2905 if (adapter->tx_buffer_area == NULL)
2906 return;
2908 for (i = 0; i < ndesc; i++) {
2909 tx_buffer = &adapter->tx_buffer_area[i];
2911 KKASSERT(tx_buffer->m_head == NULL);
2912 bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2914 bus_dma_tag_destroy(adapter->txtag);
2916 kfree(adapter->tx_buffer_area, M_DEVBUF);
2917 adapter->tx_buffer_area = NULL;
2921 * The offload context needs to be set when we transfer the first
2922 * packet of a particular protocol (TCP/UDP). This routine has been
2923 * enhanced to deal with inserted VLAN headers.
2925 * If the new packet's ether header length, ip header length and
2926 * csum offloading type are same as the previous packet, we should
2927 * avoid allocating a new csum context descriptor; mainly to take
2928 * advantage of the pipeline effect of the TX data read request.
2930 * This function returns number of TX descrptors allocated for
2931 * csum context.
2933 static int
2934 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2935 uint32_t *txd_upper, uint32_t *txd_lower)
2937 struct e1000_context_desc *TXD;
2938 int curr_txd, ehdrlen, csum_flags;
2939 uint32_t cmd, hdr_len, ip_hlen;
2941 csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2942 ip_hlen = mp->m_pkthdr.csum_iphlen;
2943 ehdrlen = mp->m_pkthdr.csum_lhlen;
2945 if (adapter->csum_lhlen == ehdrlen &&
2946 adapter->csum_iphlen == ip_hlen &&
2947 adapter->csum_flags == csum_flags) {
2949 * Same csum offload context as the previous packets;
2950 * just return.
2952 *txd_upper = adapter->csum_txd_upper;
2953 *txd_lower = adapter->csum_txd_lower;
2954 return 0;
2958 * Setup a new csum offload context.
2961 curr_txd = adapter->next_avail_tx_desc;
2962 TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2964 cmd = 0;
2966 /* Setup of IP header checksum. */
2967 if (csum_flags & CSUM_IP) {
2969 * Start offset for header checksum calculation.
2970 * End offset for header checksum calculation.
2971 * Offset of place to put the checksum.
2973 TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2974 TXD->lower_setup.ip_fields.ipcse =
2975 htole16(ehdrlen + ip_hlen - 1);
2976 TXD->lower_setup.ip_fields.ipcso =
2977 ehdrlen + offsetof(struct ip, ip_sum);
2978 cmd |= E1000_TXD_CMD_IP;
2979 *txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2981 hdr_len = ehdrlen + ip_hlen;
2983 if (csum_flags & CSUM_TCP) {
2985 * Start offset for payload checksum calculation.
2986 * End offset for payload checksum calculation.
2987 * Offset of place to put the checksum.
2989 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2990 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2991 TXD->upper_setup.tcp_fields.tucso =
2992 hdr_len + offsetof(struct tcphdr, th_sum);
2993 cmd |= E1000_TXD_CMD_TCP;
2994 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2995 } else if (csum_flags & CSUM_UDP) {
2997 * Start offset for header checksum calculation.
2998 * End offset for header checksum calculation.
2999 * Offset of place to put the checksum.
3001 TXD->upper_setup.tcp_fields.tucss = hdr_len;
3002 TXD->upper_setup.tcp_fields.tucse = htole16(0);
3003 TXD->upper_setup.tcp_fields.tucso =
3004 hdr_len + offsetof(struct udphdr, uh_sum);
3005 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3008 *txd_lower = E1000_TXD_CMD_DEXT | /* Extended descr type */
3009 E1000_TXD_DTYP_D; /* Data descr */
3011 /* Save the information for this csum offloading context */
3012 adapter->csum_lhlen = ehdrlen;
3013 adapter->csum_iphlen = ip_hlen;
3014 adapter->csum_flags = csum_flags;
3015 adapter->csum_txd_upper = *txd_upper;
3016 adapter->csum_txd_lower = *txd_lower;
3018 TXD->tcp_seg_setup.data = htole32(0);
3019 TXD->cmd_and_length =
3020 htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
3022 if (++curr_txd == adapter->num_tx_desc)
3023 curr_txd = 0;
3025 KKASSERT(adapter->num_tx_desc_avail > 0);
3026 adapter->num_tx_desc_avail--;
3028 adapter->next_avail_tx_desc = curr_txd;
3029 return 1;
3032 static void
3033 em_txeof(struct adapter *adapter)
3035 struct ifnet *ifp = &adapter->arpcom.ac_if;
3036 struct em_buffer *tx_buffer;
3037 int first, num_avail;
3039 if (adapter->tx_dd_head == adapter->tx_dd_tail)
3040 return;
3042 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3043 return;
3045 num_avail = adapter->num_tx_desc_avail;
3046 first = adapter->next_tx_to_clean;
3048 while (adapter->tx_dd_head != adapter->tx_dd_tail) {
3049 struct e1000_tx_desc *tx_desc;
3050 int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3052 tx_desc = &adapter->tx_desc_base[dd_idx];
3053 if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
3054 EM_INC_TXDD_IDX(adapter->tx_dd_head);
3056 if (++dd_idx == adapter->num_tx_desc)
3057 dd_idx = 0;
3059 while (first != dd_idx) {
3060 logif(pkt_txclean);
3062 num_avail++;
3064 tx_buffer = &adapter->tx_buffer_area[first];
3065 if (tx_buffer->m_head) {
3066 bus_dmamap_unload(adapter->txtag,
3067 tx_buffer->map);
3068 m_freem(tx_buffer->m_head);
3069 tx_buffer->m_head = NULL;
3072 if (++first == adapter->num_tx_desc)
3073 first = 0;
3075 } else {
3076 break;
3079 adapter->next_tx_to_clean = first;
3080 adapter->num_tx_desc_avail = num_avail;
3082 if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3083 adapter->tx_dd_head = 0;
3084 adapter->tx_dd_tail = 0;
3087 if (!EM_IS_OACTIVE(adapter)) {
3088 ifq_clr_oactive(&ifp->if_snd);
3090 /* All clean, turn off the timer */
3091 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3092 ifp->if_timer = 0;
3096 static void
3097 em_tx_collect(struct adapter *adapter)
3099 struct ifnet *ifp = &adapter->arpcom.ac_if;
3100 struct em_buffer *tx_buffer;
3101 int tdh, first, num_avail, dd_idx = -1;
3103 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3104 return;
3106 tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
3107 if (tdh == adapter->next_tx_to_clean)
3108 return;
3110 if (adapter->tx_dd_head != adapter->tx_dd_tail)
3111 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3113 num_avail = adapter->num_tx_desc_avail;
3114 first = adapter->next_tx_to_clean;
3116 while (first != tdh) {
3117 logif(pkt_txclean);
3119 num_avail++;
3121 tx_buffer = &adapter->tx_buffer_area[first];
3122 if (tx_buffer->m_head) {
3123 bus_dmamap_unload(adapter->txtag,
3124 tx_buffer->map);
3125 m_freem(tx_buffer->m_head);
3126 tx_buffer->m_head = NULL;
3129 if (first == dd_idx) {
3130 EM_INC_TXDD_IDX(adapter->tx_dd_head);
3131 if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3132 adapter->tx_dd_head = 0;
3133 adapter->tx_dd_tail = 0;
3134 dd_idx = -1;
3135 } else {
3136 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3140 if (++first == adapter->num_tx_desc)
3141 first = 0;
3143 adapter->next_tx_to_clean = first;
3144 adapter->num_tx_desc_avail = num_avail;
3146 if (!EM_IS_OACTIVE(adapter)) {
3147 ifq_clr_oactive(&ifp->if_snd);
3149 /* All clean, turn off the timer */
3150 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3151 ifp->if_timer = 0;
3156 * When Link is lost sometimes there is work still in the TX ring
3157 * which will result in a watchdog, rather than allow that do an
3158 * attempted cleanup and then reinit here. Note that this has been
3159 * seens mostly with fiber adapters.
3161 static void
3162 em_tx_purge(struct adapter *adapter)
3164 struct ifnet *ifp = &adapter->arpcom.ac_if;
3166 if (!adapter->link_active && ifp->if_timer) {
3167 em_tx_collect(adapter);
3168 if (ifp->if_timer) {
3169 if_printf(ifp, "Link lost, TX pending, reinit\n");
3170 ifp->if_timer = 0;
3171 em_init(adapter);
3176 static int
3177 em_newbuf(struct adapter *adapter, int i, int init)
3179 struct mbuf *m;
3180 bus_dma_segment_t seg;
3181 bus_dmamap_t map;
3182 struct em_buffer *rx_buffer;
3183 int error, nseg;
3185 m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
3186 if (m == NULL) {
3187 adapter->mbuf_cluster_failed++;
3188 if (init) {
3189 if_printf(&adapter->arpcom.ac_if,
3190 "Unable to allocate RX mbuf\n");
3192 return (ENOBUFS);
3194 m->m_len = m->m_pkthdr.len = MCLBYTES;
3196 if (adapter->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
3197 m_adj(m, ETHER_ALIGN);
3199 error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3200 adapter->rx_sparemap, m,
3201 &seg, 1, &nseg, BUS_DMA_NOWAIT);
3202 if (error) {
3203 m_freem(m);
3204 if (init) {
3205 if_printf(&adapter->arpcom.ac_if,
3206 "Unable to load RX mbuf\n");
3208 return (error);
3211 rx_buffer = &adapter->rx_buffer_area[i];
3212 if (rx_buffer->m_head != NULL)
3213 bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3215 map = rx_buffer->map;
3216 rx_buffer->map = adapter->rx_sparemap;
3217 adapter->rx_sparemap = map;
3219 rx_buffer->m_head = m;
3221 adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3222 return (0);
3225 static int
3226 em_create_rx_ring(struct adapter *adapter)
3228 device_t dev = adapter->dev;
3229 struct em_buffer *rx_buffer;
3230 int i, error;
3232 adapter->rx_buffer_area =
3233 kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3234 M_DEVBUF, M_WAITOK | M_ZERO);
3237 * Create DMA tag for rx buffers
3239 error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3240 1, 0, /* alignment, bounds */
3241 BUS_SPACE_MAXADDR, /* lowaddr */
3242 BUS_SPACE_MAXADDR, /* highaddr */
3243 NULL, NULL, /* filter, filterarg */
3244 MCLBYTES, /* maxsize */
3245 1, /* nsegments */
3246 MCLBYTES, /* maxsegsize */
3247 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3248 &adapter->rxtag);
3249 if (error) {
3250 device_printf(dev, "Unable to allocate RX DMA tag\n");
3251 kfree(adapter->rx_buffer_area, M_DEVBUF);
3252 adapter->rx_buffer_area = NULL;
3253 return error;
3257 * Create spare DMA map for rx buffers
3259 error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3260 &adapter->rx_sparemap);
3261 if (error) {
3262 device_printf(dev, "Unable to create spare RX DMA map\n");
3263 bus_dma_tag_destroy(adapter->rxtag);
3264 kfree(adapter->rx_buffer_area, M_DEVBUF);
3265 adapter->rx_buffer_area = NULL;
3266 return error;
3270 * Create DMA maps for rx buffers
3272 for (i = 0; i < adapter->num_rx_desc; i++) {
3273 rx_buffer = &adapter->rx_buffer_area[i];
3275 error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3276 &rx_buffer->map);
3277 if (error) {
3278 device_printf(dev, "Unable to create RX DMA map\n");
3279 em_destroy_rx_ring(adapter, i);
3280 return error;
3283 return (0);
3286 static int
3287 em_init_rx_ring(struct adapter *adapter)
3289 int i, error;
3291 /* Reset descriptor ring */
3292 bzero(adapter->rx_desc_base,
3293 (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3295 /* Allocate new ones. */
3296 for (i = 0; i < adapter->num_rx_desc; i++) {
3297 error = em_newbuf(adapter, i, 1);
3298 if (error)
3299 return (error);
3302 /* Setup our descriptor pointers */
3303 adapter->next_rx_desc_to_check = 0;
3305 return (0);
3308 static void
3309 em_init_rx_unit(struct adapter *adapter)
3311 struct ifnet *ifp = &adapter->arpcom.ac_if;
3312 uint64_t bus_addr;
3313 uint32_t rctl;
3316 * Make sure receives are disabled while setting
3317 * up the descriptor ring
3319 rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3320 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3322 if (adapter->hw.mac.type >= e1000_82540) {
3323 uint32_t itr;
3326 * Set the interrupt throttling rate. Value is calculated
3327 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3329 if (adapter->int_throttle_ceil)
3330 itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3331 else
3332 itr = 0;
3333 em_set_itr(adapter, itr);
3336 /* Disable accelerated ackknowledge */
3337 if (adapter->hw.mac.type == e1000_82574) {
3338 E1000_WRITE_REG(&adapter->hw,
3339 E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3342 /* Receive Checksum Offload for TCP and UDP */
3343 if (ifp->if_capenable & IFCAP_RXCSUM) {
3344 uint32_t rxcsum;
3346 rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3347 rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3348 E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3352 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3353 * long latencies are observed, like Lenovo X60. This
3354 * change eliminates the problem, but since having positive
3355 * values in RDTR is a known source of problems on other
3356 * platforms another solution is being sought.
3358 if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3359 E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3360 E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3364 * Setup the Base and Length of the Rx Descriptor Ring
3366 bus_addr = adapter->rxdma.dma_paddr;
3367 E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3368 adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3369 E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3370 (uint32_t)(bus_addr >> 32));
3371 E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3372 (uint32_t)bus_addr);
3375 * Setup the HW Rx Head and Tail Descriptor Pointers
3377 E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3378 E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3380 /* Set PTHRESH for improved jumbo performance */
3381 if (((adapter->hw.mac.type == e1000_ich9lan) ||
3382 (adapter->hw.mac.type == e1000_pch2lan) ||
3383 (adapter->hw.mac.type == e1000_ich10lan)) &&
3384 (ifp->if_mtu > ETHERMTU)) {
3385 uint32_t rxdctl;
3387 rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3388 E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3391 if (adapter->hw.mac.type >= e1000_pch2lan) {
3392 if (ifp->if_mtu > ETHERMTU)
3393 e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3394 else
3395 e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3398 /* Setup the Receive Control Register */
3399 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3400 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3401 E1000_RCTL_RDMTS_HALF |
3402 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3404 /* Make sure VLAN Filters are off */
3405 rctl &= ~E1000_RCTL_VFE;
3407 if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3408 rctl |= E1000_RCTL_SBP;
3409 else
3410 rctl &= ~E1000_RCTL_SBP;
3412 switch (adapter->rx_buffer_len) {
3413 default:
3414 case 2048:
3415 rctl |= E1000_RCTL_SZ_2048;
3416 break;
3418 case 4096:
3419 rctl |= E1000_RCTL_SZ_4096 |
3420 E1000_RCTL_BSEX | E1000_RCTL_LPE;
3421 break;
3423 case 8192:
3424 rctl |= E1000_RCTL_SZ_8192 |
3425 E1000_RCTL_BSEX | E1000_RCTL_LPE;
3426 break;
3428 case 16384:
3429 rctl |= E1000_RCTL_SZ_16384 |
3430 E1000_RCTL_BSEX | E1000_RCTL_LPE;
3431 break;
3434 if (ifp->if_mtu > ETHERMTU)
3435 rctl |= E1000_RCTL_LPE;
3436 else
3437 rctl &= ~E1000_RCTL_LPE;
3439 /* Enable Receives */
3440 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3443 static void
3444 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3446 struct em_buffer *rx_buffer;
3447 int i;
3449 if (adapter->rx_buffer_area == NULL)
3450 return;
3452 for (i = 0; i < ndesc; i++) {
3453 rx_buffer = &adapter->rx_buffer_area[i];
3455 KKASSERT(rx_buffer->m_head == NULL);
3456 bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3458 bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3459 bus_dma_tag_destroy(adapter->rxtag);
3461 kfree(adapter->rx_buffer_area, M_DEVBUF);
3462 adapter->rx_buffer_area = NULL;
3465 static void
3466 em_rxeof(struct adapter *adapter, int count)
3468 struct ifnet *ifp = &adapter->arpcom.ac_if;
3469 uint8_t status, accept_frame = 0, eop = 0;
3470 uint16_t len, desc_len, prev_len_adj;
3471 struct e1000_rx_desc *current_desc;
3472 struct mbuf *mp;
3473 int i;
3475 i = adapter->next_rx_desc_to_check;
3476 current_desc = &adapter->rx_desc_base[i];
3478 if (!(current_desc->status & E1000_RXD_STAT_DD))
3479 return;
3481 while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3482 struct mbuf *m = NULL;
3484 logif(pkt_receive);
3486 mp = adapter->rx_buffer_area[i].m_head;
3489 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3490 * needs to access the last received byte in the mbuf.
3492 bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3493 BUS_DMASYNC_POSTREAD);
3495 accept_frame = 1;
3496 prev_len_adj = 0;
3497 desc_len = le16toh(current_desc->length);
3498 status = current_desc->status;
3499 if (status & E1000_RXD_STAT_EOP) {
3500 count--;
3501 eop = 1;
3502 if (desc_len < ETHER_CRC_LEN) {
3503 len = 0;
3504 prev_len_adj = ETHER_CRC_LEN - desc_len;
3505 } else {
3506 len = desc_len - ETHER_CRC_LEN;
3508 } else {
3509 eop = 0;
3510 len = desc_len;
3513 if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3514 uint8_t last_byte;
3515 uint32_t pkt_len = desc_len;
3517 if (adapter->fmp != NULL)
3518 pkt_len += adapter->fmp->m_pkthdr.len;
3520 last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3521 if (TBI_ACCEPT(&adapter->hw, status,
3522 current_desc->errors, pkt_len, last_byte,
3523 adapter->min_frame_size,
3524 adapter->hw.mac.max_frame_size)) {
3525 e1000_tbi_adjust_stats_82543(&adapter->hw,
3526 &adapter->stats, pkt_len,
3527 adapter->hw.mac.addr,
3528 adapter->hw.mac.max_frame_size);
3529 if (len > 0)
3530 len--;
3531 } else {
3532 accept_frame = 0;
3536 if (accept_frame) {
3537 if (em_newbuf(adapter, i, 0) != 0) {
3538 IFNET_STAT_INC(ifp, iqdrops, 1);
3539 goto discard;
3542 /* Assign correct length to the current fragment */
3543 mp->m_len = len;
3545 if (adapter->fmp == NULL) {
3546 mp->m_pkthdr.len = len;
3547 adapter->fmp = mp; /* Store the first mbuf */
3548 adapter->lmp = mp;
3549 } else {
3551 * Chain mbuf's together
3555 * Adjust length of previous mbuf in chain if
3556 * we received less than 4 bytes in the last
3557 * descriptor.
3559 if (prev_len_adj > 0) {
3560 adapter->lmp->m_len -= prev_len_adj;
3561 adapter->fmp->m_pkthdr.len -=
3562 prev_len_adj;
3564 adapter->lmp->m_next = mp;
3565 adapter->lmp = adapter->lmp->m_next;
3566 adapter->fmp->m_pkthdr.len += len;
3569 if (eop) {
3570 adapter->fmp->m_pkthdr.rcvif = ifp;
3571 IFNET_STAT_INC(ifp, ipackets, 1);
3573 if (ifp->if_capenable & IFCAP_RXCSUM) {
3574 em_rxcsum(adapter, current_desc,
3575 adapter->fmp);
3578 if (status & E1000_RXD_STAT_VP) {
3579 adapter->fmp->m_pkthdr.ether_vlantag =
3580 (le16toh(current_desc->special) &
3581 E1000_RXD_SPC_VLAN_MASK);
3582 adapter->fmp->m_flags |= M_VLANTAG;
3584 m = adapter->fmp;
3585 adapter->fmp = NULL;
3586 adapter->lmp = NULL;
3588 } else {
3589 IFNET_STAT_INC(ifp, ierrors, 1);
3590 discard:
3591 #ifdef foo
3592 /* Reuse loaded DMA map and just update mbuf chain */
3593 mp = adapter->rx_buffer_area[i].m_head;
3594 mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3595 mp->m_data = mp->m_ext.ext_buf;
3596 mp->m_next = NULL;
3597 if (adapter->hw.mac.max_frame_size <=
3598 (MCLBYTES - ETHER_ALIGN))
3599 m_adj(mp, ETHER_ALIGN);
3600 #endif
3601 if (adapter->fmp != NULL) {
3602 m_freem(adapter->fmp);
3603 adapter->fmp = NULL;
3604 adapter->lmp = NULL;
3606 m = NULL;
3609 /* Zero out the receive descriptors status. */
3610 current_desc->status = 0;
3612 if (m != NULL)
3613 ifp->if_input(ifp, m, NULL, -1);
3615 /* Advance our pointers to the next descriptor. */
3616 if (++i == adapter->num_rx_desc)
3617 i = 0;
3618 current_desc = &adapter->rx_desc_base[i];
3620 adapter->next_rx_desc_to_check = i;
3622 /* Advance the E1000's Receive Queue #0 "Tail Pointer". */
3623 if (--i < 0)
3624 i = adapter->num_rx_desc - 1;
3625 E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3628 static void
3629 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3630 struct mbuf *mp)
3632 /* 82543 or newer only */
3633 if (adapter->hw.mac.type < e1000_82543 ||
3634 /* Ignore Checksum bit is set */
3635 (rx_desc->status & E1000_RXD_STAT_IXSM))
3636 return;
3638 if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3639 !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3640 /* IP Checksum Good */
3641 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3644 if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3645 !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3646 mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3647 CSUM_PSEUDO_HDR |
3648 CSUM_FRAG_NOT_CHECKED;
3649 mp->m_pkthdr.csum_data = htons(0xffff);
3653 static void
3654 em_enable_intr(struct adapter *adapter)
3656 uint32_t ims_mask = IMS_ENABLE_MASK;
3658 lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3660 #if 0
3661 /* XXX MSIX */
3662 if (adapter->hw.mac.type == e1000_82574) {
3663 E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3664 ims_mask |= EM_MSIX_MASK;
3666 #endif
3667 E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3670 static void
3671 em_disable_intr(struct adapter *adapter)
3673 uint32_t clear = 0xffffffff;
3676 * The first version of 82542 had an errata where when link was forced
3677 * it would stay up even up even if the cable was disconnected.
3678 * Sequence errors were used to detect the disconnect and then the
3679 * driver would unforce the link. This code in the in the ISR. For
3680 * this to work correctly the Sequence error interrupt had to be
3681 * enabled all the time.
3683 if (adapter->hw.mac.type == e1000_82542 &&
3684 adapter->hw.revision_id == E1000_REVISION_2)
3685 clear &= ~E1000_ICR_RXSEQ;
3686 else if (adapter->hw.mac.type == e1000_82574)
3687 E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3689 E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3691 adapter->npoll.ifpc_stcount = 0;
3693 lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3697 * Bit of a misnomer, what this really means is
3698 * to enable OS management of the system... aka
3699 * to disable special hardware management features
3701 static void
3702 em_get_mgmt(struct adapter *adapter)
3704 /* A shared code workaround */
3705 #define E1000_82542_MANC2H E1000_MANC2H
3706 if (adapter->flags & EM_FLAG_HAS_MGMT) {
3707 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3708 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3710 /* disable hardware interception of ARP */
3711 manc &= ~(E1000_MANC_ARP_EN);
3713 /* enable receiving management packets to the host */
3714 if (adapter->hw.mac.type >= e1000_82571) {
3715 manc |= E1000_MANC_EN_MNG2HOST;
3716 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3717 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3718 manc2h |= E1000_MNG2HOST_PORT_623;
3719 manc2h |= E1000_MNG2HOST_PORT_664;
3720 E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3723 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3728 * Give control back to hardware management
3729 * controller if there is one.
3731 static void
3732 em_rel_mgmt(struct adapter *adapter)
3734 if (adapter->flags & EM_FLAG_HAS_MGMT) {
3735 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3737 /* re-enable hardware interception of ARP */
3738 manc |= E1000_MANC_ARP_EN;
3740 if (adapter->hw.mac.type >= e1000_82571)
3741 manc &= ~E1000_MANC_EN_MNG2HOST;
3743 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3748 * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3749 * For ASF and Pass Through versions of f/w this means that
3750 * the driver is loaded. For AMT version (only with 82573)
3751 * of the f/w this means that the network i/f is open.
3753 static void
3754 em_get_hw_control(struct adapter *adapter)
3756 /* Let firmware know the driver has taken over */
3757 if (adapter->hw.mac.type == e1000_82573) {
3758 uint32_t swsm;
3760 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3761 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3762 swsm | E1000_SWSM_DRV_LOAD);
3763 } else {
3764 uint32_t ctrl_ext;
3766 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3767 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3768 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3770 adapter->flags |= EM_FLAG_HW_CTRL;
3774 * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3775 * For ASF and Pass Through versions of f/w this means that the
3776 * driver is no longer loaded. For AMT version (only with 82573)
3777 * of the f/w this means that the network i/f is closed.
3779 static void
3780 em_rel_hw_control(struct adapter *adapter)
3782 if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3783 return;
3784 adapter->flags &= ~EM_FLAG_HW_CTRL;
3786 /* Let firmware taken over control of h/w */
3787 if (adapter->hw.mac.type == e1000_82573) {
3788 uint32_t swsm;
3790 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3791 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3792 swsm & ~E1000_SWSM_DRV_LOAD);
3793 } else {
3794 uint32_t ctrl_ext;
3796 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3797 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3798 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3802 static int
3803 em_is_valid_eaddr(const uint8_t *addr)
3805 char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3807 if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3808 return (FALSE);
3810 return (TRUE);
3814 * Enable PCI Wake On Lan capability
3816 void
3817 em_enable_wol(device_t dev)
3819 uint16_t cap, status;
3820 uint8_t id;
3822 /* First find the capabilities pointer*/
3823 cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3825 /* Read the PM Capabilities */
3826 id = pci_read_config(dev, cap, 1);
3827 if (id != PCIY_PMG) /* Something wrong */
3828 return;
3831 * OK, we have the power capabilities,
3832 * so now get the status register
3834 cap += PCIR_POWER_STATUS;
3835 status = pci_read_config(dev, cap, 2);
3836 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3837 pci_write_config(dev, cap, status, 2);
3842 * 82544 Coexistence issue workaround.
3843 * There are 2 issues.
3844 * 1. Transmit Hang issue.
3845 * To detect this issue, following equation can be used...
3846 * SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3847 * If SUM[3:0] is in between 1 to 4, we will have this issue.
3849 * 2. DAC issue.
3850 * To detect this issue, following equation can be used...
3851 * SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3852 * If SUM[3:0] is in between 9 to c, we will have this issue.
3854 * WORKAROUND:
3855 * Make sure we do not have ending address
3856 * as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3858 static uint32_t
3859 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3861 uint32_t safe_terminator;
3864 * Since issue is sensitive to length and address.
3865 * Let us first check the address...
3867 if (length <= 4) {
3868 desc_array->descriptor[0].address = address;
3869 desc_array->descriptor[0].length = length;
3870 desc_array->elements = 1;
3871 return (desc_array->elements);
3874 safe_terminator =
3875 (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3877 /* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3878 if (safe_terminator == 0 ||
3879 (safe_terminator > 4 && safe_terminator < 9) ||
3880 (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3881 desc_array->descriptor[0].address = address;
3882 desc_array->descriptor[0].length = length;
3883 desc_array->elements = 1;
3884 return (desc_array->elements);
3887 desc_array->descriptor[0].address = address;
3888 desc_array->descriptor[0].length = length - 4;
3889 desc_array->descriptor[1].address = address + (length - 4);
3890 desc_array->descriptor[1].length = 4;
3891 desc_array->elements = 2;
3892 return (desc_array->elements);
3895 static void
3896 em_update_stats(struct adapter *adapter)
3898 struct ifnet *ifp = &adapter->arpcom.ac_if;
3900 if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3901 (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3902 adapter->stats.symerrs +=
3903 E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3904 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3906 adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3907 adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3908 adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3909 adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3911 adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3912 adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3913 adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3914 adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3915 adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3916 adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3917 adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3918 adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3919 adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3920 adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3921 adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3922 adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3923 adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3924 adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3925 adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3926 adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3927 adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3928 adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3929 adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3930 adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3932 /* For the 64-bit byte counters the low dword must be read first. */
3933 /* Both registers clear on the read of the high dword */
3935 adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3936 adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3938 adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3939 adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3940 adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3941 adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3942 adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3944 adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3945 adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3947 adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3948 adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3949 adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3950 adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3951 adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3952 adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3953 adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3954 adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3955 adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3956 adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3958 if (adapter->hw.mac.type >= e1000_82543) {
3959 adapter->stats.algnerrc +=
3960 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3961 adapter->stats.rxerrc +=
3962 E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3963 adapter->stats.tncrs +=
3964 E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3965 adapter->stats.cexterr +=
3966 E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3967 adapter->stats.tsctc +=
3968 E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3969 adapter->stats.tsctfc +=
3970 E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3973 IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
3975 /* Rx Errors */
3976 IFNET_STAT_SET(ifp, ierrors,
3977 adapter->dropped_pkts + adapter->stats.rxerrc +
3978 adapter->stats.crcerrs + adapter->stats.algnerrc +
3979 adapter->stats.ruc + adapter->stats.roc +
3980 adapter->stats.mpc + adapter->stats.cexterr);
3982 /* Tx Errors */
3983 IFNET_STAT_SET(ifp, oerrors,
3984 adapter->stats.ecol + adapter->stats.latecol +
3985 adapter->watchdog_events);
3988 static void
3989 em_print_debug_info(struct adapter *adapter)
3991 device_t dev = adapter->dev;
3992 uint8_t *hw_addr = adapter->hw.hw_addr;
3994 device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3995 device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3996 E1000_READ_REG(&adapter->hw, E1000_CTRL),
3997 E1000_READ_REG(&adapter->hw, E1000_RCTL));
3998 device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3999 ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
4000 (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
4001 device_printf(dev, "Flow control watermarks high = %d low = %d\n",
4002 adapter->hw.fc.high_water,
4003 adapter->hw.fc.low_water);
4004 device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
4005 E1000_READ_REG(&adapter->hw, E1000_TIDV),
4006 E1000_READ_REG(&adapter->hw, E1000_TADV));
4007 device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
4008 E1000_READ_REG(&adapter->hw, E1000_RDTR),
4009 E1000_READ_REG(&adapter->hw, E1000_RADV));
4010 device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
4011 (long long)adapter->tx_fifo_wrk_cnt,
4012 (long long)adapter->tx_fifo_reset_cnt);
4013 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4014 E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
4015 E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
4016 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4017 E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
4018 E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
4019 device_printf(dev, "Num Tx descriptors avail = %d\n",
4020 adapter->num_tx_desc_avail);
4021 device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
4022 adapter->no_tx_desc_avail1);
4023 device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
4024 adapter->no_tx_desc_avail2);
4025 device_printf(dev, "Std mbuf failed = %ld\n",
4026 adapter->mbuf_alloc_failed);
4027 device_printf(dev, "Std mbuf cluster failed = %ld\n",
4028 adapter->mbuf_cluster_failed);
4029 device_printf(dev, "Driver dropped packets = %ld\n",
4030 adapter->dropped_pkts);
4031 device_printf(dev, "Driver tx dma failure in encap = %ld\n",
4032 adapter->no_tx_dma_setup);
4035 static void
4036 em_print_hw_stats(struct adapter *adapter)
4038 device_t dev = adapter->dev;
4040 device_printf(dev, "Excessive collisions = %lld\n",
4041 (long long)adapter->stats.ecol);
4042 #if (DEBUG_HW > 0) /* Dont output these errors normally */
4043 device_printf(dev, "Symbol errors = %lld\n",
4044 (long long)adapter->stats.symerrs);
4045 #endif
4046 device_printf(dev, "Sequence errors = %lld\n",
4047 (long long)adapter->stats.sec);
4048 device_printf(dev, "Defer count = %lld\n",
4049 (long long)adapter->stats.dc);
4050 device_printf(dev, "Missed Packets = %lld\n",
4051 (long long)adapter->stats.mpc);
4052 device_printf(dev, "Receive No Buffers = %lld\n",
4053 (long long)adapter->stats.rnbc);
4054 /* RLEC is inaccurate on some hardware, calculate our own. */
4055 device_printf(dev, "Receive Length Errors = %lld\n",
4056 ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
4057 device_printf(dev, "Receive errors = %lld\n",
4058 (long long)adapter->stats.rxerrc);
4059 device_printf(dev, "Crc errors = %lld\n",
4060 (long long)adapter->stats.crcerrs);
4061 device_printf(dev, "Alignment errors = %lld\n",
4062 (long long)adapter->stats.algnerrc);
4063 device_printf(dev, "Collision/Carrier extension errors = %lld\n",
4064 (long long)adapter->stats.cexterr);
4065 device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
4066 device_printf(dev, "watchdog timeouts = %ld\n",
4067 adapter->watchdog_events);
4068 device_printf(dev, "XON Rcvd = %lld\n",
4069 (long long)adapter->stats.xonrxc);
4070 device_printf(dev, "XON Xmtd = %lld\n",
4071 (long long)adapter->stats.xontxc);
4072 device_printf(dev, "XOFF Rcvd = %lld\n",
4073 (long long)adapter->stats.xoffrxc);
4074 device_printf(dev, "XOFF Xmtd = %lld\n",
4075 (long long)adapter->stats.xofftxc);
4076 device_printf(dev, "Good Packets Rcvd = %lld\n",
4077 (long long)adapter->stats.gprc);
4078 device_printf(dev, "Good Packets Xmtd = %lld\n",
4079 (long long)adapter->stats.gptc);
4082 static void
4083 em_print_nvm_info(struct adapter *adapter)
4085 uint16_t eeprom_data;
4086 int i, j, row = 0;
4088 /* Its a bit crude, but it gets the job done */
4089 kprintf("\nInterface EEPROM Dump:\n");
4090 kprintf("Offset\n0x0000 ");
4091 for (i = 0, j = 0; i < 32; i++, j++) {
4092 if (j == 8) { /* Make the offset block */
4093 j = 0; ++row;
4094 kprintf("\n0x00%x0 ",row);
4096 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4097 kprintf("%04x ", eeprom_data);
4099 kprintf("\n");
4102 static int
4103 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4105 struct adapter *adapter;
4106 struct ifnet *ifp;
4107 int error, result;
4109 result = -1;
4110 error = sysctl_handle_int(oidp, &result, 0, req);
4111 if (error || !req->newptr)
4112 return (error);
4114 adapter = (struct adapter *)arg1;
4115 ifp = &adapter->arpcom.ac_if;
4117 lwkt_serialize_enter(ifp->if_serializer);
4119 if (result == 1)
4120 em_print_debug_info(adapter);
4123 * This value will cause a hex dump of the
4124 * first 32 16-bit words of the EEPROM to
4125 * the screen.
4127 if (result == 2)
4128 em_print_nvm_info(adapter);
4130 lwkt_serialize_exit(ifp->if_serializer);
4132 return (error);
4135 static int
4136 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4138 int error, result;
4140 result = -1;
4141 error = sysctl_handle_int(oidp, &result, 0, req);
4142 if (error || !req->newptr)
4143 return (error);
4145 if (result == 1) {
4146 struct adapter *adapter = (struct adapter *)arg1;
4147 struct ifnet *ifp = &adapter->arpcom.ac_if;
4149 lwkt_serialize_enter(ifp->if_serializer);
4150 em_print_hw_stats(adapter);
4151 lwkt_serialize_exit(ifp->if_serializer);
4153 return (error);
4156 static void
4157 em_add_sysctl(struct adapter *adapter)
4159 struct sysctl_ctx_list *ctx;
4160 struct sysctl_oid *tree;
4162 ctx = device_get_sysctl_ctx(adapter->dev);
4163 tree = device_get_sysctl_tree(adapter->dev);
4164 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4165 OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4166 em_sysctl_debug_info, "I", "Debug Information");
4168 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4169 OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4170 em_sysctl_stats, "I", "Statistics");
4172 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4173 OID_AUTO, "rxd", CTLFLAG_RD,
4174 &adapter->num_rx_desc, 0, NULL);
4175 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4176 OID_AUTO, "txd", CTLFLAG_RD,
4177 &adapter->num_tx_desc, 0, NULL);
4179 if (adapter->hw.mac.type >= e1000_82540) {
4180 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4181 OID_AUTO, "int_throttle_ceil",
4182 CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4183 em_sysctl_int_throttle, "I",
4184 "interrupt throttling rate");
4186 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4187 OID_AUTO, "int_tx_nsegs",
4188 CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4189 em_sysctl_int_tx_nsegs, "I",
4190 "# segments per TX interrupt");
4191 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4192 OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4193 &adapter->tx_wreg_nsegs, 0,
4194 "# segments before write to hardware register");
4197 static int
4198 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4200 struct adapter *adapter = (void *)arg1;
4201 struct ifnet *ifp = &adapter->arpcom.ac_if;
4202 int error, throttle;
4204 throttle = adapter->int_throttle_ceil;
4205 error = sysctl_handle_int(oidp, &throttle, 0, req);
4206 if (error || req->newptr == NULL)
4207 return error;
4208 if (throttle < 0 || throttle > 1000000000 / 256)
4209 return EINVAL;
4211 if (throttle) {
4213 * Set the interrupt throttling rate in 256ns increments,
4214 * recalculate sysctl value assignment to get exact frequency.
4216 throttle = 1000000000 / 256 / throttle;
4218 /* Upper 16bits of ITR is reserved and should be zero */
4219 if (throttle & 0xffff0000)
4220 return EINVAL;
4223 lwkt_serialize_enter(ifp->if_serializer);
4225 if (throttle)
4226 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4227 else
4228 adapter->int_throttle_ceil = 0;
4230 if (ifp->if_flags & IFF_RUNNING)
4231 em_set_itr(adapter, throttle);
4233 lwkt_serialize_exit(ifp->if_serializer);
4235 if (bootverbose) {
4236 if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4237 adapter->int_throttle_ceil);
4239 return 0;
4242 static int
4243 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4245 struct adapter *adapter = (void *)arg1;
4246 struct ifnet *ifp = &adapter->arpcom.ac_if;
4247 int error, segs;
4249 segs = adapter->tx_int_nsegs;
4250 error = sysctl_handle_int(oidp, &segs, 0, req);
4251 if (error || req->newptr == NULL)
4252 return error;
4253 if (segs <= 0)
4254 return EINVAL;
4256 lwkt_serialize_enter(ifp->if_serializer);
4259 * Don't allow int_tx_nsegs to become:
4260 * o Less the oact_tx_desc
4261 * o Too large that no TX desc will cause TX interrupt to
4262 * be generated (OACTIVE will never recover)
4263 * o Too small that will cause tx_dd[] overflow
4265 if (segs < adapter->oact_tx_desc ||
4266 segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4267 segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4268 error = EINVAL;
4269 } else {
4270 error = 0;
4271 adapter->tx_int_nsegs = segs;
4274 lwkt_serialize_exit(ifp->if_serializer);
4276 return error;
4279 static void
4280 em_set_itr(struct adapter *adapter, uint32_t itr)
4282 E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4283 if (adapter->hw.mac.type == e1000_82574) {
4284 int i;
4287 * When using MSIX interrupts we need to
4288 * throttle using the EITR register
4290 for (i = 0; i < 4; ++i) {
4291 E1000_WRITE_REG(&adapter->hw,
4292 E1000_EITR_82574(i), itr);
4297 static void
4298 em_disable_aspm(struct adapter *adapter)
4300 uint16_t link_cap, link_ctrl, disable;
4301 uint8_t pcie_ptr, reg;
4302 device_t dev = adapter->dev;
4304 switch (adapter->hw.mac.type) {
4305 case e1000_82571:
4306 case e1000_82572:
4307 case e1000_82573:
4309 * 82573 specification update
4310 * errata #8 disable L0s
4311 * errata #41 disable L1
4313 * 82571/82572 specification update
4314 # errata #13 disable L1
4315 * errata #68 disable L0s
4317 disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4318 break;
4320 case e1000_82574:
4321 case e1000_82583:
4323 * 82574 specification update errata #20
4324 * 82583 specification update errata #9
4326 * There is no need to disable L1
4328 disable = PCIEM_LNKCTL_ASPM_L0S;
4329 break;
4331 default:
4332 return;
4335 pcie_ptr = pci_get_pciecap_ptr(dev);
4336 if (pcie_ptr == 0)
4337 return;
4339 link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4340 if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4341 return;
4343 if (bootverbose) {
4344 if_printf(&adapter->arpcom.ac_if,
4345 "disable ASPM %#02x\n", disable);
4348 reg = pcie_ptr + PCIER_LINKCTRL;
4349 link_ctrl = pci_read_config(dev, reg, 2);
4350 link_ctrl &= ~disable;
4351 pci_write_config(dev, reg, link_ctrl, 2);
4354 static int
4355 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4357 int iphlen, hoff, thoff, ex = 0;
4358 struct mbuf *m;
4359 struct ip *ip;
4361 m = *mp;
4362 KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4364 iphlen = m->m_pkthdr.csum_iphlen;
4365 thoff = m->m_pkthdr.csum_thlen;
4366 hoff = m->m_pkthdr.csum_lhlen;
4368 KASSERT(iphlen > 0, ("invalid ip hlen"));
4369 KASSERT(thoff > 0, ("invalid tcp hlen"));
4370 KASSERT(hoff > 0, ("invalid ether hlen"));
4372 if (adapter->flags & EM_FLAG_TSO_PULLEX)
4373 ex = 4;
4375 if (m->m_len < hoff + iphlen + thoff + ex) {
4376 m = m_pullup(m, hoff + iphlen + thoff + ex);
4377 if (m == NULL) {
4378 *mp = NULL;
4379 return ENOBUFS;
4381 *mp = m;
4383 ip = mtodoff(m, struct ip *, hoff);
4384 ip->ip_len = 0;
4386 return 0;
4389 static int
4390 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4391 uint32_t *txd_upper, uint32_t *txd_lower)
4393 struct e1000_context_desc *TXD;
4394 int hoff, iphlen, thoff, hlen;
4395 int mss, pktlen, curr_txd;
4397 iphlen = mp->m_pkthdr.csum_iphlen;
4398 thoff = mp->m_pkthdr.csum_thlen;
4399 hoff = mp->m_pkthdr.csum_lhlen;
4400 mss = mp->m_pkthdr.tso_segsz;
4401 pktlen = mp->m_pkthdr.len;
4403 if (adapter->csum_flags == CSUM_TSO &&
4404 adapter->csum_iphlen == iphlen &&
4405 adapter->csum_lhlen == hoff &&
4406 adapter->csum_thlen == thoff &&
4407 adapter->csum_mss == mss &&
4408 adapter->csum_pktlen == pktlen) {
4409 *txd_upper = adapter->csum_txd_upper;
4410 *txd_lower = adapter->csum_txd_lower;
4411 return 0;
4413 hlen = hoff + iphlen + thoff;
4416 * Setup a new TSO context.
4419 curr_txd = adapter->next_avail_tx_desc;
4420 TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4422 *txd_lower = E1000_TXD_CMD_DEXT | /* Extended descr type */
4423 E1000_TXD_DTYP_D | /* Data descr type */
4424 E1000_TXD_CMD_TSE; /* Do TSE on this packet */
4426 /* IP and/or TCP header checksum calculation and insertion. */
4427 *txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4430 * Start offset for header checksum calculation.
4431 * End offset for header checksum calculation.
4432 * Offset of place put the checksum.
4434 TXD->lower_setup.ip_fields.ipcss = hoff;
4435 TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4436 TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4439 * Start offset for payload checksum calculation.
4440 * End offset for payload checksum calculation.
4441 * Offset of place to put the checksum.
4443 TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4444 TXD->upper_setup.tcp_fields.tucse = 0;
4445 TXD->upper_setup.tcp_fields.tucso =
4446 hoff + iphlen + offsetof(struct tcphdr, th_sum);
4449 * Payload size per packet w/o any headers.
4450 * Length of all headers up to payload.
4452 TXD->tcp_seg_setup.fields.mss = htole16(mss);
4453 TXD->tcp_seg_setup.fields.hdr_len = hlen;
4454 TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4455 E1000_TXD_CMD_DEXT | /* Extended descr */
4456 E1000_TXD_CMD_TSE | /* TSE context */
4457 E1000_TXD_CMD_IP | /* Do IP csum */
4458 E1000_TXD_CMD_TCP | /* Do TCP checksum */
4459 (pktlen - hlen)); /* Total len */
4461 /* Save the information for this TSO context */
4462 adapter->csum_flags = CSUM_TSO;
4463 adapter->csum_lhlen = hoff;
4464 adapter->csum_iphlen = iphlen;
4465 adapter->csum_thlen = thoff;
4466 adapter->csum_mss = mss;
4467 adapter->csum_pktlen = pktlen;
4468 adapter->csum_txd_upper = *txd_upper;
4469 adapter->csum_txd_lower = *txd_lower;
4471 if (++curr_txd == adapter->num_tx_desc)
4472 curr_txd = 0;
4474 KKASSERT(adapter->num_tx_desc_avail > 0);
4475 adapter->num_tx_desc_avail--;
4477 adapter->next_avail_tx_desc = curr_txd;
4478 return 1;