sbin/hammer: Rename hammer_parsedevs() to hammer_parse_blkdevs()
[dragonfly.git] / sys / vm / vm_swapcache.c
blob8fd3e6e5840953f9d9dba56a99487dfcfc48f028
1 /*
2 * (MPSAFE)
4 * Copyright (c) 2010 The DragonFly Project. All rights reserved.
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon@backplane.com>
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
38 * Implement the swapcache daemon. When enabled swap is assumed to be
39 * configured on a fast storage device such as a SSD. Swap is assigned
40 * to clean vnode-backed pages in the inactive queue, clustered by object
41 * if possible, and written out. The swap assignment sticks around even
42 * after the underlying pages have been recycled.
44 * The daemon manages write bandwidth based on sysctl settings to control
45 * wear on the SSD.
47 * The vnode strategy code will check for the swap assignments and divert
48 * reads to the swap device when the data is present in the swapcache.
50 * This operates on both regular files and the block device vnodes used by
51 * filesystems to manage meta-data.
54 #include "opt_vm.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/kthread.h>
60 #include <sys/resourcevar.h>
61 #include <sys/signalvar.h>
62 #include <sys/vnode.h>
63 #include <sys/vmmeter.h>
64 #include <sys/sysctl.h>
65 #include <sys/eventhandler.h>
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/lock.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_pageout.h>
74 #include <vm/vm_pager.h>
75 #include <vm/swap_pager.h>
76 #include <vm/vm_extern.h>
78 #include <sys/thread2.h>
79 #include <sys/spinlock2.h>
80 #include <vm/vm_page2.h>
82 /* the kernel process "vm_pageout"*/
83 static int vm_swapcached_flush (vm_page_t m, int isblkdev);
84 static int vm_swapcache_test(vm_page_t m);
85 static int vm_swapcache_writing_heuristic(void);
86 static int vm_swapcache_writing(vm_page_t marker, int count, int scount);
87 static void vm_swapcache_cleaning(vm_object_t marker,
88 struct vm_object_hash **swindexp);
89 static void vm_swapcache_movemarker(vm_object_t marker,
90 struct vm_object_hash *swindex, vm_object_t object);
91 struct thread *swapcached_thread;
93 SYSCTL_NODE(_vm, OID_AUTO, swapcache, CTLFLAG_RW, NULL, NULL);
95 int vm_swapcache_read_enable;
96 int vm_swapcache_inactive_heuristic;
97 static int vm_swapcache_sleep;
98 static int vm_swapcache_maxscan = PQ_L2_SIZE * 8;
99 static int vm_swapcache_maxlaunder = PQ_L2_SIZE * 4;
100 static int vm_swapcache_data_enable = 0;
101 static int vm_swapcache_meta_enable = 0;
102 static int vm_swapcache_maxswappct = 75;
103 static int vm_swapcache_hysteresis;
104 static int vm_swapcache_min_hysteresis;
105 int vm_swapcache_use_chflags = 0; /* require chflags cache */
106 static int64_t vm_swapcache_minburst = 10000000LL; /* 10MB */
107 static int64_t vm_swapcache_curburst = 4000000000LL; /* 4G after boot */
108 static int64_t vm_swapcache_maxburst = 2000000000LL; /* 2G nominal max */
109 static int64_t vm_swapcache_accrate = 100000LL; /* 100K/s */
110 static int64_t vm_swapcache_write_count;
111 static int64_t vm_swapcache_maxfilesize;
112 static int64_t vm_swapcache_cleanperobj = 16*1024*1024;
114 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxlaunder,
115 CTLFLAG_RW, &vm_swapcache_maxlaunder, 0, "");
116 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxscan,
117 CTLFLAG_RW, &vm_swapcache_maxscan, 0, "");
119 SYSCTL_INT(_vm_swapcache, OID_AUTO, data_enable,
120 CTLFLAG_RW, &vm_swapcache_data_enable, 0, "");
121 SYSCTL_INT(_vm_swapcache, OID_AUTO, meta_enable,
122 CTLFLAG_RW, &vm_swapcache_meta_enable, 0, "");
123 SYSCTL_INT(_vm_swapcache, OID_AUTO, read_enable,
124 CTLFLAG_RW, &vm_swapcache_read_enable, 0, "");
125 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxswappct,
126 CTLFLAG_RW, &vm_swapcache_maxswappct, 0, "");
127 SYSCTL_INT(_vm_swapcache, OID_AUTO, hysteresis,
128 CTLFLAG_RD, &vm_swapcache_hysteresis, 0, "");
129 SYSCTL_INT(_vm_swapcache, OID_AUTO, min_hysteresis,
130 CTLFLAG_RW, &vm_swapcache_min_hysteresis, 0, "");
131 SYSCTL_INT(_vm_swapcache, OID_AUTO, use_chflags,
132 CTLFLAG_RW, &vm_swapcache_use_chflags, 0, "");
134 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, minburst,
135 CTLFLAG_RW, &vm_swapcache_minburst, 0, "");
136 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, curburst,
137 CTLFLAG_RW, &vm_swapcache_curburst, 0, "");
138 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxburst,
139 CTLFLAG_RW, &vm_swapcache_maxburst, 0, "");
140 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxfilesize,
141 CTLFLAG_RW, &vm_swapcache_maxfilesize, 0, "");
142 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, accrate,
143 CTLFLAG_RW, &vm_swapcache_accrate, 0, "");
144 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, write_count,
145 CTLFLAG_RW, &vm_swapcache_write_count, 0, "");
146 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, cleanperobj,
147 CTLFLAG_RW, &vm_swapcache_cleanperobj, 0, "");
149 #define SWAPMAX(adj) \
150 ((int64_t)vm_swap_max * (vm_swapcache_maxswappct + (adj)) / 100)
153 * When shutting down the machine we want to stop swapcache operation
154 * immediately so swap is not accessed after devices have been shuttered.
156 static void
157 shutdown_swapcache(void *arg __unused)
159 vm_swapcache_read_enable = 0;
160 vm_swapcache_data_enable = 0;
161 vm_swapcache_meta_enable = 0;
162 wakeup(&vm_swapcache_sleep); /* shortcut 5-second wait */
166 * vm_swapcached is the high level pageout daemon.
168 * No requirements.
170 static void
171 vm_swapcached_thread(void)
173 enum { SWAPC_WRITING, SWAPC_CLEANING } state = SWAPC_WRITING;
174 enum { SWAPB_BURSTING, SWAPB_RECOVERING } burst = SWAPB_BURSTING;
175 static struct vm_page page_marker[PQ_L2_SIZE];
176 static struct vm_object swmarker;
177 static struct vm_object_hash *swindex;
178 int q;
181 * Thread setup
183 curthread->td_flags |= TDF_SYSTHREAD;
184 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
185 swapcached_thread, SHUTDOWN_PRI_FIRST);
186 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_swapcache,
187 NULL, SHUTDOWN_PRI_SECOND);
190 * Initialize our marker for the inactive scan (SWAPC_WRITING)
192 bzero(&page_marker, sizeof(page_marker));
193 for (q = 0; q < PQ_L2_SIZE; ++q) {
194 page_marker[q].flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
195 page_marker[q].queue = PQ_INACTIVE + q;
196 page_marker[q].pc = q;
197 page_marker[q].wire_count = 1;
198 vm_page_queues_spin_lock(PQ_INACTIVE + q);
199 TAILQ_INSERT_HEAD(
200 &vm_page_queues[PQ_INACTIVE + q].pl,
201 &page_marker[q], pageq);
202 vm_page_queues_spin_unlock(PQ_INACTIVE + q);
205 vm_swapcache_min_hysteresis = 1024;
206 vm_swapcache_hysteresis = vm_swapcache_min_hysteresis;
207 vm_swapcache_inactive_heuristic = -vm_swapcache_hysteresis;
210 * Initialize our marker for the vm_object scan (SWAPC_CLEANING)
212 bzero(&swmarker, sizeof(swmarker));
213 swmarker.type = OBJT_MARKER;
214 swindex = &vm_object_hash[0];
215 lwkt_gettoken(&swindex->token);
216 TAILQ_INSERT_HEAD(&swindex->list, &swmarker, object_list);
217 lwkt_reltoken(&swindex->token);
219 for (;;) {
220 int reached_end;
221 int scount;
222 int count;
225 * Handle shutdown
227 kproc_suspend_loop();
230 * Check every 5 seconds when not enabled or if no swap
231 * is present.
233 if ((vm_swapcache_data_enable == 0 &&
234 vm_swapcache_meta_enable == 0 &&
235 vm_swap_cache_use <= SWAPMAX(0)) ||
236 vm_swap_max == 0) {
237 tsleep(&vm_swapcache_sleep, 0, "csleep", hz * 5);
238 continue;
242 * Polling rate when enabled is approximately 10 hz.
244 tsleep(&vm_swapcache_sleep, 0, "csleep", hz / 10);
247 * State hysteresis. Generate write activity up to 75% of
248 * swap, then clean out swap assignments down to 70%, then
249 * repeat.
251 if (state == SWAPC_WRITING) {
252 if (vm_swap_cache_use > SWAPMAX(0))
253 state = SWAPC_CLEANING;
254 } else {
255 if (vm_swap_cache_use < SWAPMAX(-10))
256 state = SWAPC_WRITING;
260 * We are allowed to continue accumulating burst value
261 * in either state. Allow the user to set curburst > maxburst
262 * for the initial load-in.
264 if (vm_swapcache_curburst < vm_swapcache_maxburst) {
265 vm_swapcache_curburst += vm_swapcache_accrate / 10;
266 if (vm_swapcache_curburst > vm_swapcache_maxburst)
267 vm_swapcache_curburst = vm_swapcache_maxburst;
271 * We don't want to nickle-and-dime the scan as that will
272 * create unnecessary fragmentation. The minimum burst
273 * is one-seconds worth of accumulation.
275 if (state != SWAPC_WRITING) {
276 vm_swapcache_cleaning(&swmarker, &swindex);
277 continue;
279 if (vm_swapcache_curburst < vm_swapcache_accrate)
280 continue;
282 reached_end = 0;
283 count = vm_swapcache_maxlaunder / PQ_L2_SIZE + 2;
284 scount = vm_swapcache_maxscan / PQ_L2_SIZE + 2;
286 if (burst == SWAPB_BURSTING) {
287 if (vm_swapcache_writing_heuristic()) {
288 for (q = 0; q < PQ_L2_SIZE; ++q) {
289 reached_end +=
290 vm_swapcache_writing(
291 &page_marker[q],
292 count,
293 scount);
296 if (vm_swapcache_curburst <= 0)
297 burst = SWAPB_RECOVERING;
298 } else if (vm_swapcache_curburst > vm_swapcache_minburst) {
299 if (vm_swapcache_writing_heuristic()) {
300 for (q = 0; q < PQ_L2_SIZE; ++q) {
301 reached_end +=
302 vm_swapcache_writing(
303 &page_marker[q],
304 count,
305 scount);
308 burst = SWAPB_BURSTING;
310 if (reached_end == PQ_L2_SIZE) {
311 vm_swapcache_inactive_heuristic =
312 -vm_swapcache_hysteresis;
317 * Cleanup (NOT REACHED)
319 for (q = 0; q < PQ_L2_SIZE; ++q) {
320 vm_page_queues_spin_lock(PQ_INACTIVE + q);
321 TAILQ_REMOVE(
322 &vm_page_queues[PQ_INACTIVE + q].pl,
323 &page_marker[q], pageq);
324 vm_page_queues_spin_unlock(PQ_INACTIVE + q);
327 lwkt_gettoken(&swindex->token);
328 TAILQ_REMOVE(&swindex->list, &swmarker, object_list);
329 lwkt_reltoken(&swindex->token);
332 static struct kproc_desc swpc_kp = {
333 "swapcached",
334 vm_swapcached_thread,
335 &swapcached_thread
337 SYSINIT(swapcached, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, &swpc_kp);
340 * Deal with an overflow of the heuristic counter or if the user
341 * manually changes the hysteresis.
343 * Try to avoid small incremental pageouts by waiting for enough
344 * pages to buildup in the inactive queue to hopefully get a good
345 * burst in. This heuristic is bumped by the VM system and reset
346 * when our scan hits the end of the queue.
348 * Return TRUE if we need to take a writing pass.
350 static int
351 vm_swapcache_writing_heuristic(void)
353 int hyst;
355 hyst = vmstats.v_inactive_count / 4;
356 if (hyst < vm_swapcache_min_hysteresis)
357 hyst = vm_swapcache_min_hysteresis;
358 cpu_ccfence();
359 vm_swapcache_hysteresis = hyst;
361 if (vm_swapcache_inactive_heuristic < -hyst)
362 vm_swapcache_inactive_heuristic = -hyst;
364 return (vm_swapcache_inactive_heuristic >= 0);
368 * Take a writing pass on one of the inactive queues, return non-zero if
369 * we hit the end of the queue.
371 static int
372 vm_swapcache_writing(vm_page_t marker, int count, int scount)
374 vm_object_t object;
375 struct vnode *vp;
376 vm_page_t m;
377 int isblkdev;
380 * Scan the inactive queue from our marker to locate
381 * suitable pages to push to the swap cache.
383 * We are looking for clean vnode-backed pages.
385 vm_page_queues_spin_lock(marker->queue);
386 while ((m = TAILQ_NEXT(marker, pageq)) != NULL &&
387 count > 0 && scount-- > 0) {
388 KKASSERT(m->queue == marker->queue);
391 * Stop using swap if paniced, dumping, or dumped.
392 * Don't try to write if our curburst has been exhausted.
394 if (panicstr || dumping)
395 break;
396 if (vm_swapcache_curburst < 0)
397 break;
400 * Move marker
402 TAILQ_REMOVE(
403 &vm_page_queues[marker->queue].pl, marker, pageq);
404 TAILQ_INSERT_AFTER(
405 &vm_page_queues[marker->queue].pl, m, marker, pageq);
408 * Ignore markers and ignore pages that already have a swap
409 * assignment.
411 if (m->flags & (PG_MARKER | PG_SWAPPED))
412 continue;
413 if (vm_page_busy_try(m, TRUE))
414 continue;
415 vm_page_queues_spin_unlock(marker->queue);
417 if ((object = m->object) == NULL) {
418 vm_page_wakeup(m);
419 vm_page_queues_spin_lock(marker->queue);
420 continue;
422 vm_object_hold(object);
423 if (m->object != object) {
424 vm_object_drop(object);
425 vm_page_wakeup(m);
426 vm_page_queues_spin_lock(marker->queue);
427 continue;
429 if (vm_swapcache_test(m)) {
430 vm_object_drop(object);
431 vm_page_wakeup(m);
432 vm_page_queues_spin_lock(marker->queue);
433 continue;
436 vp = object->handle;
437 if (vp == NULL) {
438 vm_object_drop(object);
439 vm_page_wakeup(m);
440 vm_page_queues_spin_lock(marker->queue);
441 continue;
444 switch(vp->v_type) {
445 case VREG:
447 * PG_NOTMETA generically means 'don't swapcache this',
448 * and HAMMER will set this for regular data buffers
449 * (and leave it unset for meta-data buffers) as
450 * appropriate when double buffering is enabled.
452 if (m->flags & PG_NOTMETA) {
453 vm_object_drop(object);
454 vm_page_wakeup(m);
455 vm_page_queues_spin_lock(marker->queue);
456 continue;
460 * If data_enable is 0 do not try to swapcache data.
461 * If use_chflags is set then only swapcache data for
462 * VSWAPCACHE marked vnodes, otherwise any vnode.
464 if (vm_swapcache_data_enable == 0 ||
465 ((vp->v_flag & VSWAPCACHE) == 0 &&
466 vm_swapcache_use_chflags)) {
467 vm_object_drop(object);
468 vm_page_wakeup(m);
469 vm_page_queues_spin_lock(marker->queue);
470 continue;
472 if (vm_swapcache_maxfilesize &&
473 object->size >
474 (vm_swapcache_maxfilesize >> PAGE_SHIFT)) {
475 vm_object_drop(object);
476 vm_page_wakeup(m);
477 vm_page_queues_spin_lock(marker->queue);
478 continue;
480 isblkdev = 0;
481 break;
482 case VCHR:
484 * PG_NOTMETA generically means 'don't swapcache this',
485 * and HAMMER will set this for regular data buffers
486 * (and leave it unset for meta-data buffers) as
487 * appropriate when double buffering is enabled.
489 if (m->flags & PG_NOTMETA) {
490 vm_object_drop(object);
491 vm_page_wakeup(m);
492 vm_page_queues_spin_lock(marker->queue);
493 continue;
495 if (vm_swapcache_meta_enable == 0) {
496 vm_object_drop(object);
497 vm_page_wakeup(m);
498 vm_page_queues_spin_lock(marker->queue);
499 continue;
501 isblkdev = 1;
502 break;
503 default:
504 vm_object_drop(object);
505 vm_page_wakeup(m);
506 vm_page_queues_spin_lock(marker->queue);
507 continue;
512 * Assign swap and initiate I/O.
514 * (adjust for the --count which also occurs in the loop)
516 count -= vm_swapcached_flush(m, isblkdev);
519 * Setup for next loop using marker.
521 vm_object_drop(object);
522 vm_page_queues_spin_lock(marker->queue);
526 * The marker could wind up at the end, which is ok. If we hit the
527 * end of the list adjust the heuristic.
529 * Earlier inactive pages that were dirty and become clean
530 * are typically moved to the end of PQ_INACTIVE by virtue
531 * of vfs_vmio_release() when they become unwired from the
532 * buffer cache.
534 vm_page_queues_spin_unlock(marker->queue);
537 * m invalid but can be used to test for NULL
539 return (m == NULL);
543 * Flush the specified page using the swap_pager. The page
544 * must be busied by the caller and its disposition will become
545 * the responsibility of this function.
547 * Try to collect surrounding pages, including pages which may
548 * have already been assigned swap. Try to cluster within a
549 * contiguous aligned SMAP_META_PAGES (typ 16 x PAGE_SIZE) block
550 * to match what swap_pager_putpages() can do.
552 * We also want to try to match against the buffer cache blocksize
553 * but we don't really know what it is here. Since the buffer cache
554 * wires and unwires pages in groups the fact that we skip wired pages
555 * should be sufficient.
557 * Returns a count of pages we might have flushed (minimum 1)
559 static
561 vm_swapcached_flush(vm_page_t m, int isblkdev)
563 vm_object_t object;
564 vm_page_t marray[SWAP_META_PAGES];
565 vm_pindex_t basei;
566 int rtvals[SWAP_META_PAGES];
567 int x;
568 int i;
569 int j;
570 int count;
571 int error;
573 vm_page_io_start(m);
574 vm_page_protect(m, VM_PROT_READ);
575 object = m->object;
576 vm_object_hold(object);
579 * Try to cluster around (m), keeping in mind that the swap pager
580 * can only do SMAP_META_PAGES worth of continguous write.
582 x = (int)m->pindex & SWAP_META_MASK;
583 marray[x] = m;
584 basei = m->pindex;
585 vm_page_wakeup(m);
587 for (i = x - 1; i >= 0; --i) {
588 m = vm_page_lookup_busy_try(object, basei - x + i,
589 TRUE, &error);
590 if (error || m == NULL)
591 break;
592 if (vm_swapcache_test(m)) {
593 vm_page_wakeup(m);
594 break;
596 if (isblkdev && (m->flags & PG_NOTMETA)) {
597 vm_page_wakeup(m);
598 break;
600 vm_page_io_start(m);
601 vm_page_protect(m, VM_PROT_READ);
602 if (m->queue - m->pc == PQ_CACHE) {
603 vm_page_unqueue_nowakeup(m);
604 vm_page_deactivate(m);
606 marray[i] = m;
607 vm_page_wakeup(m);
609 ++i;
611 for (j = x + 1; j < SWAP_META_PAGES; ++j) {
612 m = vm_page_lookup_busy_try(object, basei - x + j,
613 TRUE, &error);
614 if (error || m == NULL)
615 break;
616 if (vm_swapcache_test(m)) {
617 vm_page_wakeup(m);
618 break;
620 if (isblkdev && (m->flags & PG_NOTMETA)) {
621 vm_page_wakeup(m);
622 break;
624 vm_page_io_start(m);
625 vm_page_protect(m, VM_PROT_READ);
626 if (m->queue - m->pc == PQ_CACHE) {
627 vm_page_unqueue_nowakeup(m);
628 vm_page_deactivate(m);
630 marray[j] = m;
631 vm_page_wakeup(m);
634 count = j - i;
635 vm_object_pip_add(object, count);
636 swap_pager_putpages(object, marray + i, count, FALSE, rtvals + i);
637 vm_swapcache_write_count += count * PAGE_SIZE;
638 vm_swapcache_curburst -= count * PAGE_SIZE;
640 while (i < j) {
641 if (rtvals[i] != VM_PAGER_PEND) {
642 vm_page_busy_wait(marray[i], FALSE, "swppgfd");
643 vm_page_io_finish(marray[i]);
644 vm_page_wakeup(marray[i]);
645 vm_object_pip_wakeup(object);
647 ++i;
649 vm_object_drop(object);
650 return(count);
654 * Test whether a VM page is suitable for writing to the swapcache.
655 * Does not test m->queue, PG_MARKER, or PG_SWAPPED.
657 * Returns 0 on success, 1 on failure
659 static int
660 vm_swapcache_test(vm_page_t m)
662 vm_object_t object;
664 if (m->flags & PG_UNMANAGED)
665 return(1);
666 if (m->hold_count || m->wire_count)
667 return(1);
668 if (m->valid != VM_PAGE_BITS_ALL)
669 return(1);
670 if (m->dirty & m->valid)
671 return(1);
672 if ((object = m->object) == NULL)
673 return(1);
674 if (object->type != OBJT_VNODE ||
675 (object->flags & OBJ_DEAD)) {
676 return(1);
678 vm_page_test_dirty(m);
679 if (m->dirty & m->valid)
680 return(1);
681 return(0);
685 * Cleaning pass.
687 * We clean whole objects up to 16MB
689 static
690 void
691 vm_swapcache_cleaning(vm_object_t marker, struct vm_object_hash **swindexp)
693 vm_object_t object;
694 struct vnode *vp;
695 int count;
696 int scount;
697 int n;
699 count = vm_swapcache_maxlaunder;
700 scount = vm_swapcache_maxscan;
703 * Look for vnode objects
705 lwkt_gettoken(&(*swindexp)->token);
707 outerloop:
708 while ((object = TAILQ_NEXT(marker, object_list)) != NULL) {
710 * We have to skip markers. We cannot hold/drop marker
711 * objects!
713 if (object->type == OBJT_MARKER) {
714 vm_swapcache_movemarker(marker, *swindexp, object);
715 continue;
719 * Safety, or in case there are millions of VM objects
720 * without swapcache backing.
722 if (--scount <= 0)
723 goto breakout;
726 * We must hold the object before potentially yielding.
728 vm_object_hold(object);
729 lwkt_yield();
732 * Only operate on live VNODE objects that are either
733 * VREG or VCHR (VCHR for meta-data).
735 if ((object->type != OBJT_VNODE) ||
736 ((object->flags & OBJ_DEAD) ||
737 object->swblock_count == 0) ||
738 ((vp = object->handle) == NULL) ||
739 (vp->v_type != VREG && vp->v_type != VCHR)) {
740 vm_object_drop(object);
741 /* object may be invalid now */
742 vm_swapcache_movemarker(marker, *swindexp, object);
743 continue;
747 * Reset the object pindex stored in the marker if the
748 * working object has changed.
750 if (marker->backing_object != object) {
751 marker->size = 0;
752 marker->backing_object_offset = 0;
753 marker->backing_object = object;
757 * Look for swblocks starting at our iterator.
759 * The swap_pager_condfree() function attempts to free
760 * swap space starting at the specified index. The index
761 * will be updated on return. The function will return
762 * a scan factor (NOT the number of blocks freed).
764 * If it must cut its scan of the object short due to an
765 * excessive number of swblocks, or is able to free the
766 * requested number of blocks, it will return n >= count
767 * and we break and pick it back up on a future attempt.
769 * Scan the object linearly and try to batch large sets of
770 * blocks that are likely to clean out entire swap radix
771 * tree leafs.
773 lwkt_token_swap();
774 lwkt_reltoken(&(*swindexp)->token);
776 n = swap_pager_condfree(object, &marker->size,
777 (count + SWAP_META_MASK) & ~SWAP_META_MASK);
779 vm_object_drop(object); /* object may be invalid now */
780 lwkt_gettoken(&(*swindexp)->token);
783 * If we have exhausted the object or deleted our per-pass
784 * page limit then move us to the next object. Note that
785 * the current object may no longer be on the vm_object_list.
787 if (n <= 0 ||
788 marker->backing_object_offset > vm_swapcache_cleanperobj) {
789 vm_swapcache_movemarker(marker, *swindexp, object);
793 * If we have exhausted our max-launder stop for now.
795 count -= n;
796 marker->backing_object_offset += n * PAGE_SIZE;
797 if (count < 0)
798 goto breakout;
802 * Iterate vm_object_lists[] hash table
804 TAILQ_REMOVE(&(*swindexp)->list, marker, object_list);
805 lwkt_reltoken(&(*swindexp)->token);
806 if (++*swindexp >= &vm_object_hash[VMOBJ_HSIZE])
807 *swindexp = &vm_object_hash[0];
808 lwkt_gettoken(&(*swindexp)->token);
809 TAILQ_INSERT_HEAD(&(*swindexp)->list, marker, object_list);
811 if (*swindexp != &vm_object_hash[0])
812 goto outerloop;
814 breakout:
815 lwkt_reltoken(&(*swindexp)->token);
819 * Move the marker past the current object. Object can be stale, but we
820 * still need it to determine if the marker has to be moved. If the object
821 * is still the 'current object' (object after the marker), we hop-scotch
822 * the marker past it.
824 static void
825 vm_swapcache_movemarker(vm_object_t marker, struct vm_object_hash *swindex,
826 vm_object_t object)
828 if (TAILQ_NEXT(marker, object_list) == object) {
829 TAILQ_REMOVE(&swindex->list, marker, object_list);
830 TAILQ_INSERT_AFTER(&swindex->list, object, marker, object_list);