sbin/hammer: Rename hammer_parsedevs() to hammer_parse_blkdevs()
[dragonfly.git] / sys / vm / vm_map.c
blob9b003f6c8ca3abd735fa57095347c7c6d12f7526
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 * Carnegie Mellon requests users of this software to return to
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
62 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
66 * Virtual memory mapping module.
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/proc.h>
73 #include <sys/serialize.h>
74 #include <sys/lock.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/resourcevar.h>
79 #include <sys/shm.h>
80 #include <sys/tree.h>
81 #include <sys/malloc.h>
82 #include <sys/objcache.h>
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_zone.h>
96 #include <sys/random.h>
97 #include <sys/sysctl.h>
98 #include <sys/spinlock.h>
100 #include <sys/thread2.h>
101 #include <sys/spinlock2.h>
104 * Virtual memory maps provide for the mapping, protection, and sharing
105 * of virtual memory objects. In addition, this module provides for an
106 * efficient virtual copy of memory from one map to another.
108 * Synchronization is required prior to most operations.
110 * Maps consist of an ordered doubly-linked list of simple entries.
111 * A hint and a RB tree is used to speed-up lookups.
113 * Callers looking to modify maps specify start/end addresses which cause
114 * the related map entry to be clipped if necessary, and then later
115 * recombined if the pieces remained compatible.
117 * Virtual copy operations are performed by copying VM object references
118 * from one map to another, and then marking both regions as copy-on-write.
120 static boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags);
121 static void vmspace_dtor(void *obj, void *privdata);
122 static void vmspace_terminate(struct vmspace *vm, int final);
124 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
125 static struct objcache *vmspace_cache;
128 * per-cpu page table cross mappings are initialized in early boot
129 * and might require a considerable number of vm_map_entry structures.
131 #define MAPENTRYBSP_CACHE (MAXCPU+1)
132 #define MAPENTRYAP_CACHE 8
134 static struct vm_zone mapentzone_store;
135 static vm_zone_t mapentzone;
137 static struct vm_map_entry map_entry_init[MAX_MAPENT];
138 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE];
139 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE];
141 static int randomize_mmap;
142 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
143 "Randomize mmap offsets");
144 static int vm_map_relock_enable = 1;
145 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
146 &vm_map_relock_enable, 0, "Randomize mmap offsets");
148 static void vmspace_drop_notoken(struct vmspace *vm);
149 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
150 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
151 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
152 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
153 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
154 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
155 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
156 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
157 vm_map_entry_t);
158 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
161 * Initialize the vm_map module. Must be called before any other vm_map
162 * routines.
164 * Map and entry structures are allocated from the general purpose
165 * memory pool with some exceptions:
167 * - The kernel map is allocated statically.
168 * - Initial kernel map entries are allocated out of a static pool.
169 * - We must set ZONE_SPECIAL here or the early boot code can get
170 * stuck if there are >63 cores.
172 * These restrictions are necessary since malloc() uses the
173 * maps and requires map entries.
175 * Called from the low level boot code only.
177 void
178 vm_map_startup(void)
180 mapentzone = &mapentzone_store;
181 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
182 map_entry_init, MAX_MAPENT);
183 mapentzone_store.zflags |= ZONE_SPECIAL;
187 * Called prior to any vmspace allocations.
189 * Called from the low level boot code only.
191 void
192 vm_init2(void)
194 vmspace_cache = objcache_create_mbacked(M_VMSPACE,
195 sizeof(struct vmspace),
196 0, ncpus * 4,
197 vmspace_ctor, vmspace_dtor,
198 NULL);
199 zinitna(mapentzone, NULL, 0, 0, ZONE_USE_RESERVE | ZONE_SPECIAL);
200 pmap_init2();
201 vm_object_init2();
205 * objcache support. We leave the pmap root cached as long as possible
206 * for performance reasons.
208 static
209 boolean_t
210 vmspace_ctor(void *obj, void *privdata, int ocflags)
212 struct vmspace *vm = obj;
214 bzero(vm, sizeof(*vm));
215 vm->vm_refcnt = VM_REF_DELETED;
217 return 1;
220 static
221 void
222 vmspace_dtor(void *obj, void *privdata)
224 struct vmspace *vm = obj;
226 KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
227 pmap_puninit(vmspace_pmap(vm));
231 * Red black tree functions
233 * The caller must hold the related map lock.
235 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
236 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
238 /* a->start is address, and the only field has to be initialized */
239 static int
240 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
242 if (a->start < b->start)
243 return(-1);
244 else if (a->start > b->start)
245 return(1);
246 return(0);
250 * Initialize vmspace ref/hold counts vmspace0. There is a holdcnt for
251 * every refcnt.
253 void
254 vmspace_initrefs(struct vmspace *vm)
256 vm->vm_refcnt = 1;
257 vm->vm_holdcnt = 1;
261 * Allocate a vmspace structure, including a vm_map and pmap.
262 * Initialize numerous fields. While the initial allocation is zerod,
263 * subsequence reuse from the objcache leaves elements of the structure
264 * intact (particularly the pmap), so portions must be zerod.
266 * Returns a referenced vmspace.
268 * No requirements.
270 struct vmspace *
271 vmspace_alloc(vm_offset_t min, vm_offset_t max)
273 struct vmspace *vm;
275 vm = objcache_get(vmspace_cache, M_WAITOK);
277 bzero(&vm->vm_startcopy,
278 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
279 vm_map_init(&vm->vm_map, min, max, NULL); /* initializes token */
282 * NOTE: hold to acquires token for safety.
284 * On return vmspace is referenced (refs=1, hold=1). That is,
285 * each refcnt also has a holdcnt. There can be additional holds
286 * (holdcnt) above and beyond the refcnt. Finalization is handled in
287 * two stages, one on refs 1->0, and the the second on hold 1->0.
289 KKASSERT(vm->vm_holdcnt == 0);
290 KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
291 vmspace_initrefs(vm);
292 vmspace_hold(vm);
293 pmap_pinit(vmspace_pmap(vm)); /* (some fields reused) */
294 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */
295 vm->vm_shm = NULL;
296 vm->vm_flags = 0;
297 cpu_vmspace_alloc(vm);
298 vmspace_drop(vm);
300 return (vm);
304 * NOTE: Can return 0 if the vmspace is exiting.
307 vmspace_getrefs(struct vmspace *vm)
309 int32_t n;
311 n = vm->vm_refcnt;
312 cpu_ccfence();
313 if (n & VM_REF_DELETED)
314 n = -1;
315 return n;
318 void
319 vmspace_hold(struct vmspace *vm)
321 atomic_add_int(&vm->vm_holdcnt, 1);
322 lwkt_gettoken(&vm->vm_map.token);
326 * Drop with final termination interlock.
328 void
329 vmspace_drop(struct vmspace *vm)
331 lwkt_reltoken(&vm->vm_map.token);
332 vmspace_drop_notoken(vm);
335 static void
336 vmspace_drop_notoken(struct vmspace *vm)
338 if (atomic_fetchadd_int(&vm->vm_holdcnt, -1) == 1) {
339 if (vm->vm_refcnt & VM_REF_DELETED)
340 vmspace_terminate(vm, 1);
345 * A vmspace object must not be in a terminated state to be able to obtain
346 * additional refs on it.
348 * These are official references to the vmspace, the count is used to check
349 * for vmspace sharing. Foreign accessors should use 'hold' and not 'ref'.
351 * XXX we need to combine hold & ref together into one 64-bit field to allow
352 * holds to prevent stage-1 termination.
354 void
355 vmspace_ref(struct vmspace *vm)
357 uint32_t n;
359 atomic_add_int(&vm->vm_holdcnt, 1);
360 n = atomic_fetchadd_int(&vm->vm_refcnt, 1);
361 KKASSERT((n & VM_REF_DELETED) == 0);
365 * Release a ref on the vmspace. On the 1->0 transition we do stage-1
366 * termination of the vmspace. Then, on the final drop of the hold we
367 * will do stage-2 final termination.
369 void
370 vmspace_rel(struct vmspace *vm)
372 uint32_t n;
375 * Drop refs. Each ref also has a hold which is also dropped.
377 * When refs hits 0 compete to get the VM_REF_DELETED flag (hold
378 * prevent finalization) to start termination processing.
379 * Finalization occurs when the last hold count drops to 0.
381 n = atomic_fetchadd_int(&vm->vm_refcnt, -1) - 1;
382 while (n == 0) {
383 if (atomic_cmpset_int(&vm->vm_refcnt, 0, VM_REF_DELETED)) {
384 vmspace_terminate(vm, 0);
385 break;
387 n = vm->vm_refcnt;
388 cpu_ccfence();
390 vmspace_drop_notoken(vm);
394 * This is called during exit indicating that the vmspace is no
395 * longer in used by an exiting process, but the process has not yet
396 * been reaped.
398 * We drop refs, allowing for stage-1 termination, but maintain a holdcnt
399 * to prevent stage-2 until the process is reaped. Note hte order of
400 * operation, we must hold first.
402 * No requirements.
404 void
405 vmspace_relexit(struct vmspace *vm)
407 atomic_add_int(&vm->vm_holdcnt, 1);
408 vmspace_rel(vm);
412 * Called during reap to disconnect the remainder of the vmspace from
413 * the process. On the hold drop the vmspace termination is finalized.
415 * No requirements.
417 void
418 vmspace_exitfree(struct proc *p)
420 struct vmspace *vm;
422 vm = p->p_vmspace;
423 p->p_vmspace = NULL;
424 vmspace_drop_notoken(vm);
428 * Called in two cases:
430 * (1) When the last refcnt is dropped and the vmspace becomes inactive,
431 * called with final == 0. refcnt will be (u_int)-1 at this point,
432 * and holdcnt will still be non-zero.
434 * (2) When holdcnt becomes 0, called with final == 1. There should no
435 * longer be anyone with access to the vmspace.
437 * VMSPACE_EXIT1 flags the primary deactivation
438 * VMSPACE_EXIT2 flags the last reap
440 static void
441 vmspace_terminate(struct vmspace *vm, int final)
443 int count;
445 lwkt_gettoken(&vm->vm_map.token);
446 if (final == 0) {
447 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0);
448 vm->vm_flags |= VMSPACE_EXIT1;
451 * Get rid of most of the resources. Leave the kernel pmap
452 * intact.
454 * If the pmap does not contain wired pages we can bulk-delete
455 * the pmap as a performance optimization before removing the
456 * related mappings.
458 * If the pmap contains wired pages we cannot do this
459 * pre-optimization because currently vm_fault_unwire()
460 * expects the pmap pages to exist and will not decrement
461 * p->wire_count if they do not.
463 shmexit(vm);
464 if (vmspace_pmap(vm)->pm_stats.wired_count) {
465 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
466 VM_MAX_USER_ADDRESS);
467 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
468 VM_MAX_USER_ADDRESS);
469 } else {
470 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
471 VM_MAX_USER_ADDRESS);
472 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
473 VM_MAX_USER_ADDRESS);
475 lwkt_reltoken(&vm->vm_map.token);
476 } else {
477 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0);
478 KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0);
481 * Get rid of remaining basic resources.
483 vm->vm_flags |= VMSPACE_EXIT2;
484 shmexit(vm);
486 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
487 vm_map_lock(&vm->vm_map);
488 cpu_vmspace_free(vm);
491 * Lock the map, to wait out all other references to it.
492 * Delete all of the mappings and pages they hold, then call
493 * the pmap module to reclaim anything left.
495 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
496 vm->vm_map.max_offset, &count);
497 vm_map_unlock(&vm->vm_map);
498 vm_map_entry_release(count);
500 pmap_release(vmspace_pmap(vm));
501 lwkt_reltoken(&vm->vm_map.token);
502 objcache_put(vmspace_cache, vm);
507 * Swap useage is determined by taking the proportional swap used by
508 * VM objects backing the VM map. To make up for fractional losses,
509 * if the VM object has any swap use at all the associated map entries
510 * count for at least 1 swap page.
512 * No requirements.
514 vm_offset_t
515 vmspace_swap_count(struct vmspace *vm)
517 vm_map_t map = &vm->vm_map;
518 vm_map_entry_t cur;
519 vm_object_t object;
520 vm_offset_t count = 0;
521 vm_offset_t n;
523 vmspace_hold(vm);
524 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
525 switch(cur->maptype) {
526 case VM_MAPTYPE_NORMAL:
527 case VM_MAPTYPE_VPAGETABLE:
528 if ((object = cur->object.vm_object) == NULL)
529 break;
530 if (object->swblock_count) {
531 n = (cur->end - cur->start) / PAGE_SIZE;
532 count += object->swblock_count *
533 SWAP_META_PAGES * n / object->size + 1;
535 break;
536 default:
537 break;
540 vmspace_drop(vm);
542 return(count);
546 * Calculate the approximate number of anonymous pages in use by
547 * this vmspace. To make up for fractional losses, we count each
548 * VM object as having at least 1 anonymous page.
550 * No requirements.
552 vm_offset_t
553 vmspace_anonymous_count(struct vmspace *vm)
555 vm_map_t map = &vm->vm_map;
556 vm_map_entry_t cur;
557 vm_object_t object;
558 vm_offset_t count = 0;
560 vmspace_hold(vm);
561 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
562 switch(cur->maptype) {
563 case VM_MAPTYPE_NORMAL:
564 case VM_MAPTYPE_VPAGETABLE:
565 if ((object = cur->object.vm_object) == NULL)
566 break;
567 if (object->type != OBJT_DEFAULT &&
568 object->type != OBJT_SWAP) {
569 break;
571 count += object->resident_page_count;
572 break;
573 default:
574 break;
577 vmspace_drop(vm);
579 return(count);
583 * Initialize an existing vm_map structure such as that in the vmspace
584 * structure. The pmap is initialized elsewhere.
586 * No requirements.
588 void
589 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
591 map->header.next = map->header.prev = &map->header;
592 RB_INIT(&map->rb_root);
593 spin_init(&map->ilock_spin, "ilock");
594 map->ilock_base = NULL;
595 map->nentries = 0;
596 map->size = 0;
597 map->system_map = 0;
598 map->min_offset = min;
599 map->max_offset = max;
600 map->pmap = pmap;
601 map->first_free = &map->header;
602 map->hint = &map->header;
603 map->timestamp = 0;
604 map->flags = 0;
605 lwkt_token_init(&map->token, "vm_map");
606 lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0);
610 * Shadow the vm_map_entry's object. This typically needs to be done when
611 * a write fault is taken on an entry which had previously been cloned by
612 * fork(). The shared object (which might be NULL) must become private so
613 * we add a shadow layer above it.
615 * Object allocation for anonymous mappings is defered as long as possible.
616 * When creating a shadow, however, the underlying object must be instantiated
617 * so it can be shared.
619 * If the map segment is governed by a virtual page table then it is
620 * possible to address offsets beyond the mapped area. Just allocate
621 * a maximally sized object for this case.
623 * If addref is non-zero an additional reference is added to the returned
624 * entry. This mechanic exists because the additional reference might have
625 * to be added atomically and not after return to prevent a premature
626 * collapse.
628 * The vm_map must be exclusively locked.
629 * No other requirements.
631 static
632 void
633 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
635 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
636 vm_object_shadow(&entry->object.vm_object, &entry->offset,
637 0x7FFFFFFF, addref); /* XXX */
638 } else {
639 vm_object_shadow(&entry->object.vm_object, &entry->offset,
640 atop(entry->end - entry->start), addref);
642 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
646 * Allocate an object for a vm_map_entry.
648 * Object allocation for anonymous mappings is defered as long as possible.
649 * This function is called when we can defer no longer, generally when a map
650 * entry might be split or forked or takes a page fault.
652 * If the map segment is governed by a virtual page table then it is
653 * possible to address offsets beyond the mapped area. Just allocate
654 * a maximally sized object for this case.
656 * The vm_map must be exclusively locked.
657 * No other requirements.
659 void
660 vm_map_entry_allocate_object(vm_map_entry_t entry)
662 vm_object_t obj;
664 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
665 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
666 } else {
667 obj = vm_object_allocate(OBJT_DEFAULT,
668 atop(entry->end - entry->start));
670 entry->object.vm_object = obj;
671 entry->offset = 0;
675 * Set an initial negative count so the first attempt to reserve
676 * space preloads a bunch of vm_map_entry's for this cpu. Also
677 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
678 * map a new page for vm_map_entry structures. SMP systems are
679 * particularly sensitive.
681 * This routine is called in early boot so we cannot just call
682 * vm_map_entry_reserve().
684 * Called from the low level boot code only (for each cpu)
686 * WARNING! Take care not to have too-big a static/BSS structure here
687 * as MAXCPU can be 256+, otherwise the loader's 64MB heap
688 * can get blown out by the kernel plus the initrd image.
690 void
691 vm_map_entry_reserve_cpu_init(globaldata_t gd)
693 vm_map_entry_t entry;
694 int count;
695 int i;
697 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
698 if (gd->gd_cpuid == 0) {
699 entry = &cpu_map_entry_init_bsp[0];
700 count = MAPENTRYBSP_CACHE;
701 } else {
702 entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0];
703 count = MAPENTRYAP_CACHE;
705 for (i = 0; i < count; ++i, ++entry) {
706 entry->next = gd->gd_vme_base;
707 gd->gd_vme_base = entry;
712 * Reserves vm_map_entry structures so code later on can manipulate
713 * map_entry structures within a locked map without blocking trying
714 * to allocate a new vm_map_entry.
716 * No requirements.
719 vm_map_entry_reserve(int count)
721 struct globaldata *gd = mycpu;
722 vm_map_entry_t entry;
725 * Make sure we have enough structures in gd_vme_base to handle
726 * the reservation request.
728 * The critical section protects access to the per-cpu gd.
730 crit_enter();
731 while (gd->gd_vme_avail < count) {
732 entry = zalloc(mapentzone);
733 entry->next = gd->gd_vme_base;
734 gd->gd_vme_base = entry;
735 ++gd->gd_vme_avail;
737 gd->gd_vme_avail -= count;
738 crit_exit();
740 return(count);
744 * Releases previously reserved vm_map_entry structures that were not
745 * used. If we have too much junk in our per-cpu cache clean some of
746 * it out.
748 * No requirements.
750 void
751 vm_map_entry_release(int count)
753 struct globaldata *gd = mycpu;
754 vm_map_entry_t entry;
756 crit_enter();
757 gd->gd_vme_avail += count;
758 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
759 entry = gd->gd_vme_base;
760 KKASSERT(entry != NULL);
761 gd->gd_vme_base = entry->next;
762 --gd->gd_vme_avail;
763 crit_exit();
764 zfree(mapentzone, entry);
765 crit_enter();
767 crit_exit();
771 * Reserve map entry structures for use in kernel_map itself. These
772 * entries have *ALREADY* been reserved on a per-cpu basis when the map
773 * was inited. This function is used by zalloc() to avoid a recursion
774 * when zalloc() itself needs to allocate additional kernel memory.
776 * This function works like the normal reserve but does not load the
777 * vm_map_entry cache (because that would result in an infinite
778 * recursion). Note that gd_vme_avail may go negative. This is expected.
780 * Any caller of this function must be sure to renormalize after
781 * potentially eating entries to ensure that the reserve supply
782 * remains intact.
784 * No requirements.
787 vm_map_entry_kreserve(int count)
789 struct globaldata *gd = mycpu;
791 crit_enter();
792 gd->gd_vme_avail -= count;
793 crit_exit();
794 KASSERT(gd->gd_vme_base != NULL,
795 ("no reserved entries left, gd_vme_avail = %d",
796 gd->gd_vme_avail));
797 return(count);
801 * Release previously reserved map entries for kernel_map. We do not
802 * attempt to clean up like the normal release function as this would
803 * cause an unnecessary (but probably not fatal) deep procedure call.
805 * No requirements.
807 void
808 vm_map_entry_krelease(int count)
810 struct globaldata *gd = mycpu;
812 crit_enter();
813 gd->gd_vme_avail += count;
814 crit_exit();
818 * Allocates a VM map entry for insertion. No entry fields are filled in.
820 * The entries should have previously been reserved. The reservation count
821 * is tracked in (*countp).
823 * No requirements.
825 static vm_map_entry_t
826 vm_map_entry_create(vm_map_t map, int *countp)
828 struct globaldata *gd = mycpu;
829 vm_map_entry_t entry;
831 KKASSERT(*countp > 0);
832 --*countp;
833 crit_enter();
834 entry = gd->gd_vme_base;
835 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
836 gd->gd_vme_base = entry->next;
837 crit_exit();
839 return(entry);
843 * Dispose of a vm_map_entry that is no longer being referenced.
845 * No requirements.
847 static void
848 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
850 struct globaldata *gd = mycpu;
852 KKASSERT(map->hint != entry);
853 KKASSERT(map->first_free != entry);
855 ++*countp;
856 crit_enter();
857 entry->next = gd->gd_vme_base;
858 gd->gd_vme_base = entry;
859 crit_exit();
864 * Insert/remove entries from maps.
866 * The related map must be exclusively locked.
867 * The caller must hold map->token
868 * No other requirements.
870 static __inline void
871 vm_map_entry_link(vm_map_t map,
872 vm_map_entry_t after_where,
873 vm_map_entry_t entry)
875 ASSERT_VM_MAP_LOCKED(map);
877 map->nentries++;
878 entry->prev = after_where;
879 entry->next = after_where->next;
880 entry->next->prev = entry;
881 after_where->next = entry;
882 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
883 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
886 static __inline void
887 vm_map_entry_unlink(vm_map_t map,
888 vm_map_entry_t entry)
890 vm_map_entry_t prev;
891 vm_map_entry_t next;
893 ASSERT_VM_MAP_LOCKED(map);
895 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
896 panic("vm_map_entry_unlink: attempt to mess with "
897 "locked entry! %p", entry);
899 prev = entry->prev;
900 next = entry->next;
901 next->prev = prev;
902 prev->next = next;
903 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
904 map->nentries--;
908 * Finds the map entry containing (or immediately preceding) the specified
909 * address in the given map. The entry is returned in (*entry).
911 * The boolean result indicates whether the address is actually contained
912 * in the map.
914 * The related map must be locked.
915 * No other requirements.
917 boolean_t
918 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
920 vm_map_entry_t tmp;
921 vm_map_entry_t last;
923 ASSERT_VM_MAP_LOCKED(map);
924 #if 0
926 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive
927 * the hint code with the red-black lookup meets with system crashes
928 * and lockups. We do not yet know why.
930 * It is possible that the problem is related to the setting
931 * of the hint during map_entry deletion, in the code specified
932 * at the GGG comment later on in this file.
934 * YYY More likely it's because this function can be called with
935 * a shared lock on the map, resulting in map->hint updates possibly
936 * racing. Fixed now but untested.
939 * Quickly check the cached hint, there's a good chance of a match.
941 tmp = map->hint;
942 cpu_ccfence();
943 if (tmp != &map->header) {
944 if (address >= tmp->start && address < tmp->end) {
945 *entry = tmp;
946 return(TRUE);
949 #endif
952 * Locate the record from the top of the tree. 'last' tracks the
953 * closest prior record and is returned if no match is found, which
954 * in binary tree terms means tracking the most recent right-branch
955 * taken. If there is no prior record, &map->header is returned.
957 last = &map->header;
958 tmp = RB_ROOT(&map->rb_root);
960 while (tmp) {
961 if (address >= tmp->start) {
962 if (address < tmp->end) {
963 *entry = tmp;
964 map->hint = tmp;
965 return(TRUE);
967 last = tmp;
968 tmp = RB_RIGHT(tmp, rb_entry);
969 } else {
970 tmp = RB_LEFT(tmp, rb_entry);
973 *entry = last;
974 return (FALSE);
978 * Inserts the given whole VM object into the target map at the specified
979 * address range. The object's size should match that of the address range.
981 * The map must be exclusively locked.
982 * The object must be held.
983 * The caller must have reserved sufficient vm_map_entry structures.
985 * If object is non-NULL, ref count must be bumped by caller prior to
986 * making call to account for the new entry.
989 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux,
990 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
991 vm_maptype_t maptype, vm_subsys_t id,
992 vm_prot_t prot, vm_prot_t max, int cow)
994 vm_map_entry_t new_entry;
995 vm_map_entry_t prev_entry;
996 vm_map_entry_t temp_entry;
997 vm_eflags_t protoeflags;
998 int must_drop = 0;
999 vm_object_t object;
1001 if (maptype == VM_MAPTYPE_UKSMAP)
1002 object = NULL;
1003 else
1004 object = map_object;
1006 ASSERT_VM_MAP_LOCKED(map);
1007 if (object)
1008 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1011 * Check that the start and end points are not bogus.
1013 if ((start < map->min_offset) || (end > map->max_offset) ||
1014 (start >= end))
1015 return (KERN_INVALID_ADDRESS);
1018 * Find the entry prior to the proposed starting address; if it's part
1019 * of an existing entry, this range is bogus.
1021 if (vm_map_lookup_entry(map, start, &temp_entry))
1022 return (KERN_NO_SPACE);
1024 prev_entry = temp_entry;
1027 * Assert that the next entry doesn't overlap the end point.
1030 if ((prev_entry->next != &map->header) &&
1031 (prev_entry->next->start < end))
1032 return (KERN_NO_SPACE);
1034 protoeflags = 0;
1036 if (cow & MAP_COPY_ON_WRITE)
1037 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1039 if (cow & MAP_NOFAULT) {
1040 protoeflags |= MAP_ENTRY_NOFAULT;
1042 KASSERT(object == NULL,
1043 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1045 if (cow & MAP_DISABLE_SYNCER)
1046 protoeflags |= MAP_ENTRY_NOSYNC;
1047 if (cow & MAP_DISABLE_COREDUMP)
1048 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1049 if (cow & MAP_IS_STACK)
1050 protoeflags |= MAP_ENTRY_STACK;
1051 if (cow & MAP_IS_KSTACK)
1052 protoeflags |= MAP_ENTRY_KSTACK;
1054 lwkt_gettoken(&map->token);
1056 if (object) {
1058 * When object is non-NULL, it could be shared with another
1059 * process. We have to set or clear OBJ_ONEMAPPING
1060 * appropriately.
1062 * NOTE: This flag is only applicable to DEFAULT and SWAP
1063 * objects and will already be clear in other types
1064 * of objects, so a shared object lock is ok for
1065 * VNODE objects.
1067 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
1068 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1071 else if ((prev_entry != &map->header) &&
1072 (prev_entry->eflags == protoeflags) &&
1073 (prev_entry->end == start) &&
1074 (prev_entry->wired_count == 0) &&
1075 (prev_entry->id == id) &&
1076 prev_entry->maptype == maptype &&
1077 maptype == VM_MAPTYPE_NORMAL &&
1078 ((prev_entry->object.vm_object == NULL) ||
1079 vm_object_coalesce(prev_entry->object.vm_object,
1080 OFF_TO_IDX(prev_entry->offset),
1081 (vm_size_t)(prev_entry->end - prev_entry->start),
1082 (vm_size_t)(end - prev_entry->end)))) {
1084 * We were able to extend the object. Determine if we
1085 * can extend the previous map entry to include the
1086 * new range as well.
1088 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1089 (prev_entry->protection == prot) &&
1090 (prev_entry->max_protection == max)) {
1091 map->size += (end - prev_entry->end);
1092 prev_entry->end = end;
1093 vm_map_simplify_entry(map, prev_entry, countp);
1094 lwkt_reltoken(&map->token);
1095 return (KERN_SUCCESS);
1099 * If we can extend the object but cannot extend the
1100 * map entry, we have to create a new map entry. We
1101 * must bump the ref count on the extended object to
1102 * account for it. object may be NULL.
1104 * XXX if object is NULL should we set offset to 0 here ?
1106 object = prev_entry->object.vm_object;
1107 offset = prev_entry->offset +
1108 (prev_entry->end - prev_entry->start);
1109 if (object) {
1110 vm_object_hold(object);
1111 vm_object_chain_wait(object, 0);
1112 vm_object_reference_locked(object);
1113 must_drop = 1;
1114 map_object = object;
1119 * NOTE: if conditionals fail, object can be NULL here. This occurs
1120 * in things like the buffer map where we manage kva but do not manage
1121 * backing objects.
1125 * Create a new entry
1128 new_entry = vm_map_entry_create(map, countp);
1129 new_entry->start = start;
1130 new_entry->end = end;
1131 new_entry->id = id;
1133 new_entry->maptype = maptype;
1134 new_entry->eflags = protoeflags;
1135 new_entry->object.map_object = map_object;
1136 new_entry->aux.master_pde = 0; /* in case size is different */
1137 new_entry->aux.map_aux = map_aux;
1138 new_entry->offset = offset;
1140 new_entry->inheritance = VM_INHERIT_DEFAULT;
1141 new_entry->protection = prot;
1142 new_entry->max_protection = max;
1143 new_entry->wired_count = 0;
1146 * Insert the new entry into the list
1149 vm_map_entry_link(map, prev_entry, new_entry);
1150 map->size += new_entry->end - new_entry->start;
1153 * Update the free space hint. Entries cannot overlap.
1154 * An exact comparison is needed to avoid matching
1155 * against the map->header.
1157 if ((map->first_free == prev_entry) &&
1158 (prev_entry->end == new_entry->start)) {
1159 map->first_free = new_entry;
1162 #if 0
1164 * Temporarily removed to avoid MAP_STACK panic, due to
1165 * MAP_STACK being a huge hack. Will be added back in
1166 * when MAP_STACK (and the user stack mapping) is fixed.
1169 * It may be possible to simplify the entry
1171 vm_map_simplify_entry(map, new_entry, countp);
1172 #endif
1175 * Try to pre-populate the page table. Mappings governed by virtual
1176 * page tables cannot be prepopulated without a lot of work, so
1177 * don't try.
1179 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1180 maptype != VM_MAPTYPE_VPAGETABLE &&
1181 maptype != VM_MAPTYPE_UKSMAP) {
1182 int dorelock = 0;
1183 if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1184 dorelock = 1;
1185 vm_object_lock_swap();
1186 vm_object_drop(object);
1188 pmap_object_init_pt(map->pmap, start, prot,
1189 object, OFF_TO_IDX(offset), end - start,
1190 cow & MAP_PREFAULT_PARTIAL);
1191 if (dorelock) {
1192 vm_object_hold(object);
1193 vm_object_lock_swap();
1196 if (must_drop)
1197 vm_object_drop(object);
1199 lwkt_reltoken(&map->token);
1200 return (KERN_SUCCESS);
1204 * Find sufficient space for `length' bytes in the given map, starting at
1205 * `start'. Returns 0 on success, 1 on no space.
1207 * This function will returned an arbitrarily aligned pointer. If no
1208 * particular alignment is required you should pass align as 1. Note that
1209 * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1210 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1211 * argument.
1213 * 'align' should be a power of 2 but is not required to be.
1215 * The map must be exclusively locked.
1216 * No other requirements.
1219 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1220 vm_size_t align, int flags, vm_offset_t *addr)
1222 vm_map_entry_t entry, next;
1223 vm_offset_t end;
1224 vm_offset_t align_mask;
1226 if (start < map->min_offset)
1227 start = map->min_offset;
1228 if (start > map->max_offset)
1229 return (1);
1232 * If the alignment is not a power of 2 we will have to use
1233 * a mod/division, set align_mask to a special value.
1235 if ((align | (align - 1)) + 1 != (align << 1))
1236 align_mask = (vm_offset_t)-1;
1237 else
1238 align_mask = align - 1;
1241 * Look for the first possible address; if there's already something
1242 * at this address, we have to start after it.
1244 if (start == map->min_offset) {
1245 if ((entry = map->first_free) != &map->header)
1246 start = entry->end;
1247 } else {
1248 vm_map_entry_t tmp;
1250 if (vm_map_lookup_entry(map, start, &tmp))
1251 start = tmp->end;
1252 entry = tmp;
1256 * Look through the rest of the map, trying to fit a new region in the
1257 * gap between existing regions, or after the very last region.
1259 for (;; start = (entry = next)->end) {
1261 * Adjust the proposed start by the requested alignment,
1262 * be sure that we didn't wrap the address.
1264 if (align_mask == (vm_offset_t)-1)
1265 end = roundup(start, align);
1266 else
1267 end = (start + align_mask) & ~align_mask;
1268 if (end < start)
1269 return (1);
1270 start = end;
1272 * Find the end of the proposed new region. Be sure we didn't
1273 * go beyond the end of the map, or wrap around the address.
1274 * Then check to see if this is the last entry or if the
1275 * proposed end fits in the gap between this and the next
1276 * entry.
1278 end = start + length;
1279 if (end > map->max_offset || end < start)
1280 return (1);
1281 next = entry->next;
1284 * If the next entry's start address is beyond the desired
1285 * end address we may have found a good entry.
1287 * If the next entry is a stack mapping we do not map into
1288 * the stack's reserved space.
1290 * XXX continue to allow mapping into the stack's reserved
1291 * space if doing a MAP_STACK mapping inside a MAP_STACK
1292 * mapping, for backwards compatibility. But the caller
1293 * really should use MAP_STACK | MAP_TRYFIXED if they
1294 * want to do that.
1296 if (next == &map->header)
1297 break;
1298 if (next->start >= end) {
1299 if ((next->eflags & MAP_ENTRY_STACK) == 0)
1300 break;
1301 if (flags & MAP_STACK)
1302 break;
1303 if (next->start - next->aux.avail_ssize >= end)
1304 break;
1307 map->hint = entry;
1310 * Grow the kernel_map if necessary. pmap_growkernel() will panic
1311 * if it fails. The kernel_map is locked and nothing can steal
1312 * our address space if pmap_growkernel() blocks.
1314 * NOTE: This may be unconditionally called for kldload areas on
1315 * x86_64 because these do not bump kernel_vm_end (which would
1316 * fill 128G worth of page tables!). Therefore we must not
1317 * retry.
1319 if (map == &kernel_map) {
1320 vm_offset_t kstop;
1322 kstop = round_page(start + length);
1323 if (kstop > kernel_vm_end)
1324 pmap_growkernel(start, kstop);
1326 *addr = start;
1327 return (0);
1331 * vm_map_find finds an unallocated region in the target address map with
1332 * the given length and allocates it. The search is defined to be first-fit
1333 * from the specified address; the region found is returned in the same
1334 * parameter.
1336 * If object is non-NULL, ref count must be bumped by caller
1337 * prior to making call to account for the new entry.
1339 * No requirements. This function will lock the map temporarily.
1342 vm_map_find(vm_map_t map, void *map_object, void *map_aux,
1343 vm_ooffset_t offset, vm_offset_t *addr,
1344 vm_size_t length, vm_size_t align, boolean_t fitit,
1345 vm_maptype_t maptype, vm_subsys_t id,
1346 vm_prot_t prot, vm_prot_t max, int cow)
1348 vm_offset_t start;
1349 vm_object_t object;
1350 int result;
1351 int count;
1353 if (maptype == VM_MAPTYPE_UKSMAP)
1354 object = NULL;
1355 else
1356 object = map_object;
1358 start = *addr;
1360 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1361 vm_map_lock(map);
1362 if (object)
1363 vm_object_hold_shared(object);
1364 if (fitit) {
1365 if (vm_map_findspace(map, start, length, align, 0, addr)) {
1366 if (object)
1367 vm_object_drop(object);
1368 vm_map_unlock(map);
1369 vm_map_entry_release(count);
1370 return (KERN_NO_SPACE);
1372 start = *addr;
1374 result = vm_map_insert(map, &count, map_object, map_aux,
1375 offset, start, start + length,
1376 maptype, id, prot, max, cow);
1377 if (object)
1378 vm_object_drop(object);
1379 vm_map_unlock(map);
1380 vm_map_entry_release(count);
1382 return (result);
1386 * Simplify the given map entry by merging with either neighbor. This
1387 * routine also has the ability to merge with both neighbors.
1389 * This routine guarentees that the passed entry remains valid (though
1390 * possibly extended). When merging, this routine may delete one or
1391 * both neighbors. No action is taken on entries which have their
1392 * in-transition flag set.
1394 * The map must be exclusively locked.
1396 void
1397 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1399 vm_map_entry_t next, prev;
1400 vm_size_t prevsize, esize;
1402 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1403 ++mycpu->gd_cnt.v_intrans_coll;
1404 return;
1407 if (entry->maptype == VM_MAPTYPE_SUBMAP)
1408 return;
1409 if (entry->maptype == VM_MAPTYPE_UKSMAP)
1410 return;
1412 prev = entry->prev;
1413 if (prev != &map->header) {
1414 prevsize = prev->end - prev->start;
1415 if ( (prev->end == entry->start) &&
1416 (prev->maptype == entry->maptype) &&
1417 (prev->object.vm_object == entry->object.vm_object) &&
1418 (!prev->object.vm_object ||
1419 (prev->offset + prevsize == entry->offset)) &&
1420 (prev->eflags == entry->eflags) &&
1421 (prev->protection == entry->protection) &&
1422 (prev->max_protection == entry->max_protection) &&
1423 (prev->inheritance == entry->inheritance) &&
1424 (prev->id == entry->id) &&
1425 (prev->wired_count == entry->wired_count)) {
1426 if (map->first_free == prev)
1427 map->first_free = entry;
1428 if (map->hint == prev)
1429 map->hint = entry;
1430 vm_map_entry_unlink(map, prev);
1431 entry->start = prev->start;
1432 entry->offset = prev->offset;
1433 if (prev->object.vm_object)
1434 vm_object_deallocate(prev->object.vm_object);
1435 vm_map_entry_dispose(map, prev, countp);
1439 next = entry->next;
1440 if (next != &map->header) {
1441 esize = entry->end - entry->start;
1442 if ((entry->end == next->start) &&
1443 (next->maptype == entry->maptype) &&
1444 (next->object.vm_object == entry->object.vm_object) &&
1445 (!entry->object.vm_object ||
1446 (entry->offset + esize == next->offset)) &&
1447 (next->eflags == entry->eflags) &&
1448 (next->protection == entry->protection) &&
1449 (next->max_protection == entry->max_protection) &&
1450 (next->inheritance == entry->inheritance) &&
1451 (next->id == entry->id) &&
1452 (next->wired_count == entry->wired_count)) {
1453 if (map->first_free == next)
1454 map->first_free = entry;
1455 if (map->hint == next)
1456 map->hint = entry;
1457 vm_map_entry_unlink(map, next);
1458 entry->end = next->end;
1459 if (next->object.vm_object)
1460 vm_object_deallocate(next->object.vm_object);
1461 vm_map_entry_dispose(map, next, countp);
1467 * Asserts that the given entry begins at or after the specified address.
1468 * If necessary, it splits the entry into two.
1470 #define vm_map_clip_start(map, entry, startaddr, countp) \
1472 if (startaddr > entry->start) \
1473 _vm_map_clip_start(map, entry, startaddr, countp); \
1477 * This routine is called only when it is known that the entry must be split.
1479 * The map must be exclusively locked.
1481 static void
1482 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1483 int *countp)
1485 vm_map_entry_t new_entry;
1488 * Split off the front portion -- note that we must insert the new
1489 * entry BEFORE this one, so that this entry has the specified
1490 * starting address.
1493 vm_map_simplify_entry(map, entry, countp);
1496 * If there is no object backing this entry, we might as well create
1497 * one now. If we defer it, an object can get created after the map
1498 * is clipped, and individual objects will be created for the split-up
1499 * map. This is a bit of a hack, but is also about the best place to
1500 * put this improvement.
1502 if (entry->object.vm_object == NULL && !map->system_map) {
1503 vm_map_entry_allocate_object(entry);
1506 new_entry = vm_map_entry_create(map, countp);
1507 *new_entry = *entry;
1509 new_entry->end = start;
1510 entry->offset += (start - entry->start);
1511 entry->start = start;
1513 vm_map_entry_link(map, entry->prev, new_entry);
1515 switch(entry->maptype) {
1516 case VM_MAPTYPE_NORMAL:
1517 case VM_MAPTYPE_VPAGETABLE:
1518 if (new_entry->object.vm_object) {
1519 vm_object_hold(new_entry->object.vm_object);
1520 vm_object_chain_wait(new_entry->object.vm_object, 0);
1521 vm_object_reference_locked(new_entry->object.vm_object);
1522 vm_object_drop(new_entry->object.vm_object);
1524 break;
1525 default:
1526 break;
1531 * Asserts that the given entry ends at or before the specified address.
1532 * If necessary, it splits the entry into two.
1534 * The map must be exclusively locked.
1536 #define vm_map_clip_end(map, entry, endaddr, countp) \
1538 if (endaddr < entry->end) \
1539 _vm_map_clip_end(map, entry, endaddr, countp); \
1543 * This routine is called only when it is known that the entry must be split.
1545 * The map must be exclusively locked.
1547 static void
1548 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1549 int *countp)
1551 vm_map_entry_t new_entry;
1554 * If there is no object backing this entry, we might as well create
1555 * one now. If we defer it, an object can get created after the map
1556 * is clipped, and individual objects will be created for the split-up
1557 * map. This is a bit of a hack, but is also about the best place to
1558 * put this improvement.
1561 if (entry->object.vm_object == NULL && !map->system_map) {
1562 vm_map_entry_allocate_object(entry);
1566 * Create a new entry and insert it AFTER the specified entry
1569 new_entry = vm_map_entry_create(map, countp);
1570 *new_entry = *entry;
1572 new_entry->start = entry->end = end;
1573 new_entry->offset += (end - entry->start);
1575 vm_map_entry_link(map, entry, new_entry);
1577 switch(entry->maptype) {
1578 case VM_MAPTYPE_NORMAL:
1579 case VM_MAPTYPE_VPAGETABLE:
1580 if (new_entry->object.vm_object) {
1581 vm_object_hold(new_entry->object.vm_object);
1582 vm_object_chain_wait(new_entry->object.vm_object, 0);
1583 vm_object_reference_locked(new_entry->object.vm_object);
1584 vm_object_drop(new_entry->object.vm_object);
1586 break;
1587 default:
1588 break;
1593 * Asserts that the starting and ending region addresses fall within the
1594 * valid range for the map.
1596 #define VM_MAP_RANGE_CHECK(map, start, end) \
1598 if (start < vm_map_min(map)) \
1599 start = vm_map_min(map); \
1600 if (end > vm_map_max(map)) \
1601 end = vm_map_max(map); \
1602 if (start > end) \
1603 start = end; \
1607 * Used to block when an in-transition collison occurs. The map
1608 * is unlocked for the sleep and relocked before the return.
1610 void
1611 vm_map_transition_wait(vm_map_t map)
1613 tsleep_interlock(map, 0);
1614 vm_map_unlock(map);
1615 tsleep(map, PINTERLOCKED, "vment", 0);
1616 vm_map_lock(map);
1620 * When we do blocking operations with the map lock held it is
1621 * possible that a clip might have occured on our in-transit entry,
1622 * requiring an adjustment to the entry in our loop. These macros
1623 * help the pageable and clip_range code deal with the case. The
1624 * conditional costs virtually nothing if no clipping has occured.
1627 #define CLIP_CHECK_BACK(entry, save_start) \
1628 do { \
1629 while (entry->start != save_start) { \
1630 entry = entry->prev; \
1631 KASSERT(entry != &map->header, ("bad entry clip")); \
1633 } while(0)
1635 #define CLIP_CHECK_FWD(entry, save_end) \
1636 do { \
1637 while (entry->end != save_end) { \
1638 entry = entry->next; \
1639 KASSERT(entry != &map->header, ("bad entry clip")); \
1641 } while(0)
1645 * Clip the specified range and return the base entry. The
1646 * range may cover several entries starting at the returned base
1647 * and the first and last entry in the covering sequence will be
1648 * properly clipped to the requested start and end address.
1650 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1651 * flag.
1653 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1654 * covered by the requested range.
1656 * The map must be exclusively locked on entry and will remain locked
1657 * on return. If no range exists or the range contains holes and you
1658 * specified that no holes were allowed, NULL will be returned. This
1659 * routine may temporarily unlock the map in order avoid a deadlock when
1660 * sleeping.
1662 static
1663 vm_map_entry_t
1664 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1665 int *countp, int flags)
1667 vm_map_entry_t start_entry;
1668 vm_map_entry_t entry;
1671 * Locate the entry and effect initial clipping. The in-transition
1672 * case does not occur very often so do not try to optimize it.
1674 again:
1675 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1676 return (NULL);
1677 entry = start_entry;
1678 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1679 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1680 ++mycpu->gd_cnt.v_intrans_coll;
1681 ++mycpu->gd_cnt.v_intrans_wait;
1682 vm_map_transition_wait(map);
1684 * entry and/or start_entry may have been clipped while
1685 * we slept, or may have gone away entirely. We have
1686 * to restart from the lookup.
1688 goto again;
1692 * Since we hold an exclusive map lock we do not have to restart
1693 * after clipping, even though clipping may block in zalloc.
1695 vm_map_clip_start(map, entry, start, countp);
1696 vm_map_clip_end(map, entry, end, countp);
1697 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1700 * Scan entries covered by the range. When working on the next
1701 * entry a restart need only re-loop on the current entry which
1702 * we have already locked, since 'next' may have changed. Also,
1703 * even though entry is safe, it may have been clipped so we
1704 * have to iterate forwards through the clip after sleeping.
1706 while (entry->next != &map->header && entry->next->start < end) {
1707 vm_map_entry_t next = entry->next;
1709 if (flags & MAP_CLIP_NO_HOLES) {
1710 if (next->start > entry->end) {
1711 vm_map_unclip_range(map, start_entry,
1712 start, entry->end, countp, flags);
1713 return(NULL);
1717 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1718 vm_offset_t save_end = entry->end;
1719 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1720 ++mycpu->gd_cnt.v_intrans_coll;
1721 ++mycpu->gd_cnt.v_intrans_wait;
1722 vm_map_transition_wait(map);
1725 * clips might have occured while we blocked.
1727 CLIP_CHECK_FWD(entry, save_end);
1728 CLIP_CHECK_BACK(start_entry, start);
1729 continue;
1732 * No restart necessary even though clip_end may block, we
1733 * are holding the map lock.
1735 vm_map_clip_end(map, next, end, countp);
1736 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1737 entry = next;
1739 if (flags & MAP_CLIP_NO_HOLES) {
1740 if (entry->end != end) {
1741 vm_map_unclip_range(map, start_entry,
1742 start, entry->end, countp, flags);
1743 return(NULL);
1746 return(start_entry);
1750 * Undo the effect of vm_map_clip_range(). You should pass the same
1751 * flags and the same range that you passed to vm_map_clip_range().
1752 * This code will clear the in-transition flag on the entries and
1753 * wake up anyone waiting. This code will also simplify the sequence
1754 * and attempt to merge it with entries before and after the sequence.
1756 * The map must be locked on entry and will remain locked on return.
1758 * Note that you should also pass the start_entry returned by
1759 * vm_map_clip_range(). However, if you block between the two calls
1760 * with the map unlocked please be aware that the start_entry may
1761 * have been clipped and you may need to scan it backwards to find
1762 * the entry corresponding with the original start address. You are
1763 * responsible for this, vm_map_unclip_range() expects the correct
1764 * start_entry to be passed to it and will KASSERT otherwise.
1766 static
1767 void
1768 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1769 vm_offset_t start, vm_offset_t end,
1770 int *countp, int flags)
1772 vm_map_entry_t entry;
1774 entry = start_entry;
1776 KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1777 while (entry != &map->header && entry->start < end) {
1778 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1779 ("in-transition flag not set during unclip on: %p",
1780 entry));
1781 KASSERT(entry->end <= end,
1782 ("unclip_range: tail wasn't clipped"));
1783 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1784 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1785 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1786 wakeup(map);
1788 entry = entry->next;
1792 * Simplification does not block so there is no restart case.
1794 entry = start_entry;
1795 while (entry != &map->header && entry->start < end) {
1796 vm_map_simplify_entry(map, entry, countp);
1797 entry = entry->next;
1802 * Mark the given range as handled by a subordinate map.
1804 * This range must have been created with vm_map_find(), and no other
1805 * operations may have been performed on this range prior to calling
1806 * vm_map_submap().
1808 * Submappings cannot be removed.
1810 * No requirements.
1813 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1815 vm_map_entry_t entry;
1816 int result = KERN_INVALID_ARGUMENT;
1817 int count;
1819 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1820 vm_map_lock(map);
1822 VM_MAP_RANGE_CHECK(map, start, end);
1824 if (vm_map_lookup_entry(map, start, &entry)) {
1825 vm_map_clip_start(map, entry, start, &count);
1826 } else {
1827 entry = entry->next;
1830 vm_map_clip_end(map, entry, end, &count);
1832 if ((entry->start == start) && (entry->end == end) &&
1833 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1834 (entry->object.vm_object == NULL)) {
1835 entry->object.sub_map = submap;
1836 entry->maptype = VM_MAPTYPE_SUBMAP;
1837 result = KERN_SUCCESS;
1839 vm_map_unlock(map);
1840 vm_map_entry_release(count);
1842 return (result);
1846 * Sets the protection of the specified address region in the target map.
1847 * If "set_max" is specified, the maximum protection is to be set;
1848 * otherwise, only the current protection is affected.
1850 * The protection is not applicable to submaps, but is applicable to normal
1851 * maps and maps governed by virtual page tables. For example, when operating
1852 * on a virtual page table our protection basically controls how COW occurs
1853 * on the backing object, whereas the virtual page table abstraction itself
1854 * is an abstraction for userland.
1856 * No requirements.
1859 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1860 vm_prot_t new_prot, boolean_t set_max)
1862 vm_map_entry_t current;
1863 vm_map_entry_t entry;
1864 int count;
1866 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1867 vm_map_lock(map);
1869 VM_MAP_RANGE_CHECK(map, start, end);
1871 if (vm_map_lookup_entry(map, start, &entry)) {
1872 vm_map_clip_start(map, entry, start, &count);
1873 } else {
1874 entry = entry->next;
1878 * Make a first pass to check for protection violations.
1880 current = entry;
1881 while ((current != &map->header) && (current->start < end)) {
1882 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1883 vm_map_unlock(map);
1884 vm_map_entry_release(count);
1885 return (KERN_INVALID_ARGUMENT);
1887 if ((new_prot & current->max_protection) != new_prot) {
1888 vm_map_unlock(map);
1889 vm_map_entry_release(count);
1890 return (KERN_PROTECTION_FAILURE);
1892 current = current->next;
1896 * Go back and fix up protections. [Note that clipping is not
1897 * necessary the second time.]
1899 current = entry;
1901 while ((current != &map->header) && (current->start < end)) {
1902 vm_prot_t old_prot;
1904 vm_map_clip_end(map, current, end, &count);
1906 old_prot = current->protection;
1907 if (set_max) {
1908 current->max_protection = new_prot;
1909 current->protection = new_prot & old_prot;
1910 } else {
1911 current->protection = new_prot;
1915 * Update physical map if necessary. Worry about copy-on-write
1916 * here -- CHECK THIS XXX
1919 if (current->protection != old_prot) {
1920 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1921 VM_PROT_ALL)
1923 pmap_protect(map->pmap, current->start,
1924 current->end,
1925 current->protection & MASK(current));
1926 #undef MASK
1929 vm_map_simplify_entry(map, current, &count);
1931 current = current->next;
1934 vm_map_unlock(map);
1935 vm_map_entry_release(count);
1936 return (KERN_SUCCESS);
1940 * This routine traverses a processes map handling the madvise
1941 * system call. Advisories are classified as either those effecting
1942 * the vm_map_entry structure, or those effecting the underlying
1943 * objects.
1945 * The <value> argument is used for extended madvise calls.
1947 * No requirements.
1950 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1951 int behav, off_t value)
1953 vm_map_entry_t current, entry;
1954 int modify_map = 0;
1955 int error = 0;
1956 int count;
1959 * Some madvise calls directly modify the vm_map_entry, in which case
1960 * we need to use an exclusive lock on the map and we need to perform
1961 * various clipping operations. Otherwise we only need a read-lock
1962 * on the map.
1964 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1966 switch(behav) {
1967 case MADV_NORMAL:
1968 case MADV_SEQUENTIAL:
1969 case MADV_RANDOM:
1970 case MADV_NOSYNC:
1971 case MADV_AUTOSYNC:
1972 case MADV_NOCORE:
1973 case MADV_CORE:
1974 case MADV_SETMAP:
1975 modify_map = 1;
1976 vm_map_lock(map);
1977 break;
1978 case MADV_INVAL:
1979 case MADV_WILLNEED:
1980 case MADV_DONTNEED:
1981 case MADV_FREE:
1982 vm_map_lock_read(map);
1983 break;
1984 default:
1985 vm_map_entry_release(count);
1986 return (EINVAL);
1990 * Locate starting entry and clip if necessary.
1993 VM_MAP_RANGE_CHECK(map, start, end);
1995 if (vm_map_lookup_entry(map, start, &entry)) {
1996 if (modify_map)
1997 vm_map_clip_start(map, entry, start, &count);
1998 } else {
1999 entry = entry->next;
2002 if (modify_map) {
2004 * madvise behaviors that are implemented in the vm_map_entry.
2006 * We clip the vm_map_entry so that behavioral changes are
2007 * limited to the specified address range.
2009 for (current = entry;
2010 (current != &map->header) && (current->start < end);
2011 current = current->next
2013 if (current->maptype == VM_MAPTYPE_SUBMAP)
2014 continue;
2016 vm_map_clip_end(map, current, end, &count);
2018 switch (behav) {
2019 case MADV_NORMAL:
2020 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2021 break;
2022 case MADV_SEQUENTIAL:
2023 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2024 break;
2025 case MADV_RANDOM:
2026 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2027 break;
2028 case MADV_NOSYNC:
2029 current->eflags |= MAP_ENTRY_NOSYNC;
2030 break;
2031 case MADV_AUTOSYNC:
2032 current->eflags &= ~MAP_ENTRY_NOSYNC;
2033 break;
2034 case MADV_NOCORE:
2035 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2036 break;
2037 case MADV_CORE:
2038 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2039 break;
2040 case MADV_SETMAP:
2042 * Set the page directory page for a map
2043 * governed by a virtual page table. Mark
2044 * the entry as being governed by a virtual
2045 * page table if it is not.
2047 * XXX the page directory page is stored
2048 * in the avail_ssize field if the map_entry.
2050 * XXX the map simplification code does not
2051 * compare this field so weird things may
2052 * happen if you do not apply this function
2053 * to the entire mapping governed by the
2054 * virtual page table.
2056 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
2057 error = EINVAL;
2058 break;
2060 current->aux.master_pde = value;
2061 pmap_remove(map->pmap,
2062 current->start, current->end);
2063 break;
2064 case MADV_INVAL:
2066 * Invalidate the related pmap entries, used
2067 * to flush portions of the real kernel's
2068 * pmap when the caller has removed or
2069 * modified existing mappings in a virtual
2070 * page table.
2072 * (exclusive locked map version does not
2073 * need the range interlock).
2075 pmap_remove(map->pmap,
2076 current->start, current->end);
2077 break;
2078 default:
2079 error = EINVAL;
2080 break;
2082 vm_map_simplify_entry(map, current, &count);
2084 vm_map_unlock(map);
2085 } else {
2086 vm_pindex_t pindex;
2087 vm_pindex_t delta;
2090 * madvise behaviors that are implemented in the underlying
2091 * vm_object.
2093 * Since we don't clip the vm_map_entry, we have to clip
2094 * the vm_object pindex and count.
2096 * NOTE! These functions are only supported on normal maps,
2097 * except MADV_INVAL which is also supported on
2098 * virtual page tables.
2100 for (current = entry;
2101 (current != &map->header) && (current->start < end);
2102 current = current->next
2104 vm_offset_t useStart;
2106 if (current->maptype != VM_MAPTYPE_NORMAL &&
2107 (current->maptype != VM_MAPTYPE_VPAGETABLE ||
2108 behav != MADV_INVAL)) {
2109 continue;
2112 pindex = OFF_TO_IDX(current->offset);
2113 delta = atop(current->end - current->start);
2114 useStart = current->start;
2116 if (current->start < start) {
2117 pindex += atop(start - current->start);
2118 delta -= atop(start - current->start);
2119 useStart = start;
2121 if (current->end > end)
2122 delta -= atop(current->end - end);
2124 if ((vm_spindex_t)delta <= 0)
2125 continue;
2127 if (behav == MADV_INVAL) {
2129 * Invalidate the related pmap entries, used
2130 * to flush portions of the real kernel's
2131 * pmap when the caller has removed or
2132 * modified existing mappings in a virtual
2133 * page table.
2135 * (shared locked map version needs the
2136 * interlock, see vm_fault()).
2138 struct vm_map_ilock ilock;
2140 KASSERT(useStart >= VM_MIN_USER_ADDRESS &&
2141 useStart + ptoa(delta) <=
2142 VM_MAX_USER_ADDRESS,
2143 ("Bad range %016jx-%016jx (%016jx)",
2144 useStart, useStart + ptoa(delta),
2145 delta));
2146 vm_map_interlock(map, &ilock,
2147 useStart,
2148 useStart + ptoa(delta));
2149 pmap_remove(map->pmap,
2150 useStart,
2151 useStart + ptoa(delta));
2152 vm_map_deinterlock(map, &ilock);
2153 } else {
2154 vm_object_madvise(current->object.vm_object,
2155 pindex, delta, behav);
2159 * Try to populate the page table. Mappings governed
2160 * by virtual page tables cannot be pre-populated
2161 * without a lot of work so don't try.
2163 if (behav == MADV_WILLNEED &&
2164 current->maptype != VM_MAPTYPE_VPAGETABLE) {
2165 pmap_object_init_pt(
2166 map->pmap,
2167 useStart,
2168 current->protection,
2169 current->object.vm_object,
2170 pindex,
2171 (count << PAGE_SHIFT),
2172 MAP_PREFAULT_MADVISE
2176 vm_map_unlock_read(map);
2178 vm_map_entry_release(count);
2179 return(error);
2184 * Sets the inheritance of the specified address range in the target map.
2185 * Inheritance affects how the map will be shared with child maps at the
2186 * time of vm_map_fork.
2189 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2190 vm_inherit_t new_inheritance)
2192 vm_map_entry_t entry;
2193 vm_map_entry_t temp_entry;
2194 int count;
2196 switch (new_inheritance) {
2197 case VM_INHERIT_NONE:
2198 case VM_INHERIT_COPY:
2199 case VM_INHERIT_SHARE:
2200 break;
2201 default:
2202 return (KERN_INVALID_ARGUMENT);
2205 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2206 vm_map_lock(map);
2208 VM_MAP_RANGE_CHECK(map, start, end);
2210 if (vm_map_lookup_entry(map, start, &temp_entry)) {
2211 entry = temp_entry;
2212 vm_map_clip_start(map, entry, start, &count);
2213 } else
2214 entry = temp_entry->next;
2216 while ((entry != &map->header) && (entry->start < end)) {
2217 vm_map_clip_end(map, entry, end, &count);
2219 entry->inheritance = new_inheritance;
2221 vm_map_simplify_entry(map, entry, &count);
2223 entry = entry->next;
2225 vm_map_unlock(map);
2226 vm_map_entry_release(count);
2227 return (KERN_SUCCESS);
2231 * Implement the semantics of mlock
2234 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2235 boolean_t new_pageable)
2237 vm_map_entry_t entry;
2238 vm_map_entry_t start_entry;
2239 vm_offset_t end;
2240 int rv = KERN_SUCCESS;
2241 int count;
2243 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2244 vm_map_lock(map);
2245 VM_MAP_RANGE_CHECK(map, start, real_end);
2246 end = real_end;
2248 start_entry = vm_map_clip_range(map, start, end, &count,
2249 MAP_CLIP_NO_HOLES);
2250 if (start_entry == NULL) {
2251 vm_map_unlock(map);
2252 vm_map_entry_release(count);
2253 return (KERN_INVALID_ADDRESS);
2256 if (new_pageable == 0) {
2257 entry = start_entry;
2258 while ((entry != &map->header) && (entry->start < end)) {
2259 vm_offset_t save_start;
2260 vm_offset_t save_end;
2263 * Already user wired or hard wired (trivial cases)
2265 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2266 entry = entry->next;
2267 continue;
2269 if (entry->wired_count != 0) {
2270 entry->wired_count++;
2271 entry->eflags |= MAP_ENTRY_USER_WIRED;
2272 entry = entry->next;
2273 continue;
2277 * A new wiring requires instantiation of appropriate
2278 * management structures and the faulting in of the
2279 * page.
2281 if (entry->maptype == VM_MAPTYPE_NORMAL ||
2282 entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2283 int copyflag = entry->eflags &
2284 MAP_ENTRY_NEEDS_COPY;
2285 if (copyflag && ((entry->protection &
2286 VM_PROT_WRITE) != 0)) {
2287 vm_map_entry_shadow(entry, 0);
2288 } else if (entry->object.vm_object == NULL &&
2289 !map->system_map) {
2290 vm_map_entry_allocate_object(entry);
2293 entry->wired_count++;
2294 entry->eflags |= MAP_ENTRY_USER_WIRED;
2297 * Now fault in the area. Note that vm_fault_wire()
2298 * may release the map lock temporarily, it will be
2299 * relocked on return. The in-transition
2300 * flag protects the entries.
2302 save_start = entry->start;
2303 save_end = entry->end;
2304 rv = vm_fault_wire(map, entry, TRUE, 0);
2305 if (rv) {
2306 CLIP_CHECK_BACK(entry, save_start);
2307 for (;;) {
2308 KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2309 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2310 entry->wired_count = 0;
2311 if (entry->end == save_end)
2312 break;
2313 entry = entry->next;
2314 KASSERT(entry != &map->header, ("bad entry clip during backout"));
2316 end = save_start; /* unwire the rest */
2317 break;
2320 * note that even though the entry might have been
2321 * clipped, the USER_WIRED flag we set prevents
2322 * duplication so we do not have to do a
2323 * clip check.
2325 entry = entry->next;
2329 * If we failed fall through to the unwiring section to
2330 * unwire what we had wired so far. 'end' has already
2331 * been adjusted.
2333 if (rv)
2334 new_pageable = 1;
2337 * start_entry might have been clipped if we unlocked the
2338 * map and blocked. No matter how clipped it has gotten
2339 * there should be a fragment that is on our start boundary.
2341 CLIP_CHECK_BACK(start_entry, start);
2345 * Deal with the unwiring case.
2347 if (new_pageable) {
2349 * This is the unwiring case. We must first ensure that the
2350 * range to be unwired is really wired down. We know there
2351 * are no holes.
2353 entry = start_entry;
2354 while ((entry != &map->header) && (entry->start < end)) {
2355 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2356 rv = KERN_INVALID_ARGUMENT;
2357 goto done;
2359 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2360 entry = entry->next;
2364 * Now decrement the wiring count for each region. If a region
2365 * becomes completely unwired, unwire its physical pages and
2366 * mappings.
2369 * The map entries are processed in a loop, checking to
2370 * make sure the entry is wired and asserting it has a wired
2371 * count. However, another loop was inserted more-or-less in
2372 * the middle of the unwiring path. This loop picks up the
2373 * "entry" loop variable from the first loop without first
2374 * setting it to start_entry. Naturally, the secound loop
2375 * is never entered and the pages backing the entries are
2376 * never unwired. This can lead to a leak of wired pages.
2378 entry = start_entry;
2379 while ((entry != &map->header) && (entry->start < end)) {
2380 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2381 ("expected USER_WIRED on entry %p", entry));
2382 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2383 entry->wired_count--;
2384 if (entry->wired_count == 0)
2385 vm_fault_unwire(map, entry);
2386 entry = entry->next;
2389 done:
2390 vm_map_unclip_range(map, start_entry, start, real_end, &count,
2391 MAP_CLIP_NO_HOLES);
2392 map->timestamp++;
2393 vm_map_unlock(map);
2394 vm_map_entry_release(count);
2395 return (rv);
2399 * Sets the pageability of the specified address range in the target map.
2400 * Regions specified as not pageable require locked-down physical
2401 * memory and physical page maps.
2403 * The map must not be locked, but a reference must remain to the map
2404 * throughout the call.
2406 * This function may be called via the zalloc path and must properly
2407 * reserve map entries for kernel_map.
2409 * No requirements.
2412 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2414 vm_map_entry_t entry;
2415 vm_map_entry_t start_entry;
2416 vm_offset_t end;
2417 int rv = KERN_SUCCESS;
2418 int count;
2420 if (kmflags & KM_KRESERVE)
2421 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2422 else
2423 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2424 vm_map_lock(map);
2425 VM_MAP_RANGE_CHECK(map, start, real_end);
2426 end = real_end;
2428 start_entry = vm_map_clip_range(map, start, end, &count,
2429 MAP_CLIP_NO_HOLES);
2430 if (start_entry == NULL) {
2431 vm_map_unlock(map);
2432 rv = KERN_INVALID_ADDRESS;
2433 goto failure;
2435 if ((kmflags & KM_PAGEABLE) == 0) {
2437 * Wiring.
2439 * 1. Holding the write lock, we create any shadow or zero-fill
2440 * objects that need to be created. Then we clip each map
2441 * entry to the region to be wired and increment its wiring
2442 * count. We create objects before clipping the map entries
2443 * to avoid object proliferation.
2445 * 2. We downgrade to a read lock, and call vm_fault_wire to
2446 * fault in the pages for any newly wired area (wired_count is
2447 * 1).
2449 * Downgrading to a read lock for vm_fault_wire avoids a
2450 * possible deadlock with another process that may have faulted
2451 * on one of the pages to be wired (it would mark the page busy,
2452 * blocking us, then in turn block on the map lock that we
2453 * hold). Because of problems in the recursive lock package,
2454 * we cannot upgrade to a write lock in vm_map_lookup. Thus,
2455 * any actions that require the write lock must be done
2456 * beforehand. Because we keep the read lock on the map, the
2457 * copy-on-write status of the entries we modify here cannot
2458 * change.
2460 entry = start_entry;
2461 while ((entry != &map->header) && (entry->start < end)) {
2463 * Trivial case if the entry is already wired
2465 if (entry->wired_count) {
2466 entry->wired_count++;
2467 entry = entry->next;
2468 continue;
2472 * The entry is being newly wired, we have to setup
2473 * appropriate management structures. A shadow
2474 * object is required for a copy-on-write region,
2475 * or a normal object for a zero-fill region. We
2476 * do not have to do this for entries that point to sub
2477 * maps because we won't hold the lock on the sub map.
2479 if (entry->maptype == VM_MAPTYPE_NORMAL ||
2480 entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2481 int copyflag = entry->eflags &
2482 MAP_ENTRY_NEEDS_COPY;
2483 if (copyflag && ((entry->protection &
2484 VM_PROT_WRITE) != 0)) {
2485 vm_map_entry_shadow(entry, 0);
2486 } else if (entry->object.vm_object == NULL &&
2487 !map->system_map) {
2488 vm_map_entry_allocate_object(entry);
2492 entry->wired_count++;
2493 entry = entry->next;
2497 * Pass 2.
2501 * HACK HACK HACK HACK
2503 * vm_fault_wire() temporarily unlocks the map to avoid
2504 * deadlocks. The in-transition flag from vm_map_clip_range
2505 * call should protect us from changes while the map is
2506 * unlocked. T
2508 * NOTE: Previously this comment stated that clipping might
2509 * still occur while the entry is unlocked, but from
2510 * what I can tell it actually cannot.
2512 * It is unclear whether the CLIP_CHECK_*() calls
2513 * are still needed but we keep them in anyway.
2515 * HACK HACK HACK HACK
2518 entry = start_entry;
2519 while (entry != &map->header && entry->start < end) {
2521 * If vm_fault_wire fails for any page we need to undo
2522 * what has been done. We decrement the wiring count
2523 * for those pages which have not yet been wired (now)
2524 * and unwire those that have (later).
2526 vm_offset_t save_start = entry->start;
2527 vm_offset_t save_end = entry->end;
2529 if (entry->wired_count == 1)
2530 rv = vm_fault_wire(map, entry, FALSE, kmflags);
2531 if (rv) {
2532 CLIP_CHECK_BACK(entry, save_start);
2533 for (;;) {
2534 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2535 entry->wired_count = 0;
2536 if (entry->end == save_end)
2537 break;
2538 entry = entry->next;
2539 KASSERT(entry != &map->header, ("bad entry clip during backout"));
2541 end = save_start;
2542 break;
2544 CLIP_CHECK_FWD(entry, save_end);
2545 entry = entry->next;
2549 * If a failure occured undo everything by falling through
2550 * to the unwiring code. 'end' has already been adjusted
2551 * appropriately.
2553 if (rv)
2554 kmflags |= KM_PAGEABLE;
2557 * start_entry is still IN_TRANSITION but may have been
2558 * clipped since vm_fault_wire() unlocks and relocks the
2559 * map. No matter how clipped it has gotten there should
2560 * be a fragment that is on our start boundary.
2562 CLIP_CHECK_BACK(start_entry, start);
2565 if (kmflags & KM_PAGEABLE) {
2567 * This is the unwiring case. We must first ensure that the
2568 * range to be unwired is really wired down. We know there
2569 * are no holes.
2571 entry = start_entry;
2572 while ((entry != &map->header) && (entry->start < end)) {
2573 if (entry->wired_count == 0) {
2574 rv = KERN_INVALID_ARGUMENT;
2575 goto done;
2577 entry = entry->next;
2581 * Now decrement the wiring count for each region. If a region
2582 * becomes completely unwired, unwire its physical pages and
2583 * mappings.
2585 entry = start_entry;
2586 while ((entry != &map->header) && (entry->start < end)) {
2587 entry->wired_count--;
2588 if (entry->wired_count == 0)
2589 vm_fault_unwire(map, entry);
2590 entry = entry->next;
2593 done:
2594 vm_map_unclip_range(map, start_entry, start, real_end,
2595 &count, MAP_CLIP_NO_HOLES);
2596 map->timestamp++;
2597 vm_map_unlock(map);
2598 failure:
2599 if (kmflags & KM_KRESERVE)
2600 vm_map_entry_krelease(count);
2601 else
2602 vm_map_entry_release(count);
2603 return (rv);
2607 * Mark a newly allocated address range as wired but do not fault in
2608 * the pages. The caller is expected to load the pages into the object.
2610 * The map must be locked on entry and will remain locked on return.
2611 * No other requirements.
2613 void
2614 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2615 int *countp)
2617 vm_map_entry_t scan;
2618 vm_map_entry_t entry;
2620 entry = vm_map_clip_range(map, addr, addr + size,
2621 countp, MAP_CLIP_NO_HOLES);
2622 for (scan = entry;
2623 scan != &map->header && scan->start < addr + size;
2624 scan = scan->next) {
2625 KKASSERT(scan->wired_count == 0);
2626 scan->wired_count = 1;
2628 vm_map_unclip_range(map, entry, addr, addr + size,
2629 countp, MAP_CLIP_NO_HOLES);
2633 * Push any dirty cached pages in the address range to their pager.
2634 * If syncio is TRUE, dirty pages are written synchronously.
2635 * If invalidate is TRUE, any cached pages are freed as well.
2637 * This routine is called by sys_msync()
2639 * Returns an error if any part of the specified range is not mapped.
2641 * No requirements.
2644 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2645 boolean_t syncio, boolean_t invalidate)
2647 vm_map_entry_t current;
2648 vm_map_entry_t entry;
2649 vm_size_t size;
2650 vm_object_t object;
2651 vm_object_t tobj;
2652 vm_ooffset_t offset;
2654 vm_map_lock_read(map);
2655 VM_MAP_RANGE_CHECK(map, start, end);
2656 if (!vm_map_lookup_entry(map, start, &entry)) {
2657 vm_map_unlock_read(map);
2658 return (KERN_INVALID_ADDRESS);
2660 lwkt_gettoken(&map->token);
2663 * Make a first pass to check for holes.
2665 for (current = entry; current->start < end; current = current->next) {
2666 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2667 lwkt_reltoken(&map->token);
2668 vm_map_unlock_read(map);
2669 return (KERN_INVALID_ARGUMENT);
2671 if (end > current->end &&
2672 (current->next == &map->header ||
2673 current->end != current->next->start)) {
2674 lwkt_reltoken(&map->token);
2675 vm_map_unlock_read(map);
2676 return (KERN_INVALID_ADDRESS);
2680 if (invalidate)
2681 pmap_remove(vm_map_pmap(map), start, end);
2684 * Make a second pass, cleaning/uncaching pages from the indicated
2685 * objects as we go.
2687 for (current = entry; current->start < end; current = current->next) {
2688 offset = current->offset + (start - current->start);
2689 size = (end <= current->end ? end : current->end) - start;
2691 switch(current->maptype) {
2692 case VM_MAPTYPE_SUBMAP:
2694 vm_map_t smap;
2695 vm_map_entry_t tentry;
2696 vm_size_t tsize;
2698 smap = current->object.sub_map;
2699 vm_map_lock_read(smap);
2700 vm_map_lookup_entry(smap, offset, &tentry);
2701 tsize = tentry->end - offset;
2702 if (tsize < size)
2703 size = tsize;
2704 object = tentry->object.vm_object;
2705 offset = tentry->offset + (offset - tentry->start);
2706 vm_map_unlock_read(smap);
2707 break;
2709 case VM_MAPTYPE_NORMAL:
2710 case VM_MAPTYPE_VPAGETABLE:
2711 object = current->object.vm_object;
2712 break;
2713 default:
2714 object = NULL;
2715 break;
2718 if (object)
2719 vm_object_hold(object);
2722 * Note that there is absolutely no sense in writing out
2723 * anonymous objects, so we track down the vnode object
2724 * to write out.
2725 * We invalidate (remove) all pages from the address space
2726 * anyway, for semantic correctness.
2728 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2729 * may start out with a NULL object.
2731 while (object && (tobj = object->backing_object) != NULL) {
2732 vm_object_hold(tobj);
2733 if (tobj == object->backing_object) {
2734 vm_object_lock_swap();
2735 offset += object->backing_object_offset;
2736 vm_object_drop(object);
2737 object = tobj;
2738 if (object->size < OFF_TO_IDX(offset + size))
2739 size = IDX_TO_OFF(object->size) -
2740 offset;
2741 break;
2743 vm_object_drop(tobj);
2745 if (object && (object->type == OBJT_VNODE) &&
2746 (current->protection & VM_PROT_WRITE) &&
2747 (object->flags & OBJ_NOMSYNC) == 0) {
2749 * Flush pages if writing is allowed, invalidate them
2750 * if invalidation requested. Pages undergoing I/O
2751 * will be ignored by vm_object_page_remove().
2753 * We cannot lock the vnode and then wait for paging
2754 * to complete without deadlocking against vm_fault.
2755 * Instead we simply call vm_object_page_remove() and
2756 * allow it to block internally on a page-by-page
2757 * basis when it encounters pages undergoing async
2758 * I/O.
2760 int flags;
2762 /* no chain wait needed for vnode objects */
2763 vm_object_reference_locked(object);
2764 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2765 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2766 flags |= invalidate ? OBJPC_INVAL : 0;
2769 * When operating on a virtual page table just
2770 * flush the whole object. XXX we probably ought
2771 * to
2773 switch(current->maptype) {
2774 case VM_MAPTYPE_NORMAL:
2775 vm_object_page_clean(object,
2776 OFF_TO_IDX(offset),
2777 OFF_TO_IDX(offset + size + PAGE_MASK),
2778 flags);
2779 break;
2780 case VM_MAPTYPE_VPAGETABLE:
2781 vm_object_page_clean(object, 0, 0, flags);
2782 break;
2784 vn_unlock(((struct vnode *)object->handle));
2785 vm_object_deallocate_locked(object);
2787 if (object && invalidate &&
2788 ((object->type == OBJT_VNODE) ||
2789 (object->type == OBJT_DEVICE) ||
2790 (object->type == OBJT_MGTDEVICE))) {
2791 int clean_only =
2792 ((object->type == OBJT_DEVICE) ||
2793 (object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE;
2794 /* no chain wait needed for vnode/device objects */
2795 vm_object_reference_locked(object);
2796 switch(current->maptype) {
2797 case VM_MAPTYPE_NORMAL:
2798 vm_object_page_remove(object,
2799 OFF_TO_IDX(offset),
2800 OFF_TO_IDX(offset + size + PAGE_MASK),
2801 clean_only);
2802 break;
2803 case VM_MAPTYPE_VPAGETABLE:
2804 vm_object_page_remove(object, 0, 0, clean_only);
2805 break;
2807 vm_object_deallocate_locked(object);
2809 start += size;
2810 if (object)
2811 vm_object_drop(object);
2814 lwkt_reltoken(&map->token);
2815 vm_map_unlock_read(map);
2817 return (KERN_SUCCESS);
2821 * Make the region specified by this entry pageable.
2823 * The vm_map must be exclusively locked.
2825 static void
2826 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2828 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2829 entry->wired_count = 0;
2830 vm_fault_unwire(map, entry);
2834 * Deallocate the given entry from the target map.
2836 * The vm_map must be exclusively locked.
2838 static void
2839 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2841 vm_map_entry_unlink(map, entry);
2842 map->size -= entry->end - entry->start;
2844 switch(entry->maptype) {
2845 case VM_MAPTYPE_NORMAL:
2846 case VM_MAPTYPE_VPAGETABLE:
2847 case VM_MAPTYPE_SUBMAP:
2848 vm_object_deallocate(entry->object.vm_object);
2849 break;
2850 case VM_MAPTYPE_UKSMAP:
2851 /* XXX TODO */
2852 break;
2853 default:
2854 break;
2857 vm_map_entry_dispose(map, entry, countp);
2861 * Deallocates the given address range from the target map.
2863 * The vm_map must be exclusively locked.
2866 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2868 vm_object_t object;
2869 vm_map_entry_t entry;
2870 vm_map_entry_t first_entry;
2872 ASSERT_VM_MAP_LOCKED(map);
2873 lwkt_gettoken(&map->token);
2874 again:
2876 * Find the start of the region, and clip it. Set entry to point
2877 * at the first record containing the requested address or, if no
2878 * such record exists, the next record with a greater address. The
2879 * loop will run from this point until a record beyond the termination
2880 * address is encountered.
2882 * map->hint must be adjusted to not point to anything we delete,
2883 * so set it to the entry prior to the one being deleted.
2885 * GGG see other GGG comment.
2887 if (vm_map_lookup_entry(map, start, &first_entry)) {
2888 entry = first_entry;
2889 vm_map_clip_start(map, entry, start, countp);
2890 map->hint = entry->prev; /* possible problem XXX */
2891 } else {
2892 map->hint = first_entry; /* possible problem XXX */
2893 entry = first_entry->next;
2897 * If a hole opens up prior to the current first_free then
2898 * adjust first_free. As with map->hint, map->first_free
2899 * cannot be left set to anything we might delete.
2901 if (entry == &map->header) {
2902 map->first_free = &map->header;
2903 } else if (map->first_free->start >= start) {
2904 map->first_free = entry->prev;
2908 * Step through all entries in this region
2910 while ((entry != &map->header) && (entry->start < end)) {
2911 vm_map_entry_t next;
2912 vm_offset_t s, e;
2913 vm_pindex_t offidxstart, offidxend, count;
2916 * If we hit an in-transition entry we have to sleep and
2917 * retry. It's easier (and not really slower) to just retry
2918 * since this case occurs so rarely and the hint is already
2919 * pointing at the right place. We have to reset the
2920 * start offset so as not to accidently delete an entry
2921 * another process just created in vacated space.
2923 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2924 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2925 start = entry->start;
2926 ++mycpu->gd_cnt.v_intrans_coll;
2927 ++mycpu->gd_cnt.v_intrans_wait;
2928 vm_map_transition_wait(map);
2929 goto again;
2931 vm_map_clip_end(map, entry, end, countp);
2933 s = entry->start;
2934 e = entry->end;
2935 next = entry->next;
2937 offidxstart = OFF_TO_IDX(entry->offset);
2938 count = OFF_TO_IDX(e - s);
2940 switch(entry->maptype) {
2941 case VM_MAPTYPE_NORMAL:
2942 case VM_MAPTYPE_VPAGETABLE:
2943 case VM_MAPTYPE_SUBMAP:
2944 object = entry->object.vm_object;
2945 break;
2946 default:
2947 object = NULL;
2948 break;
2952 * Unwire before removing addresses from the pmap; otherwise,
2953 * unwiring will put the entries back in the pmap.
2955 if (entry->wired_count != 0)
2956 vm_map_entry_unwire(map, entry);
2958 offidxend = offidxstart + count;
2960 if (object == &kernel_object) {
2961 vm_object_hold(object);
2962 vm_object_page_remove(object, offidxstart,
2963 offidxend, FALSE);
2964 vm_object_drop(object);
2965 } else if (object && object->type != OBJT_DEFAULT &&
2966 object->type != OBJT_SWAP) {
2968 * vnode object routines cannot be chain-locked,
2969 * but since we aren't removing pages from the
2970 * object here we can use a shared hold.
2972 vm_object_hold_shared(object);
2973 pmap_remove(map->pmap, s, e);
2974 vm_object_drop(object);
2975 } else if (object) {
2976 vm_object_hold(object);
2977 vm_object_chain_acquire(object, 0);
2978 pmap_remove(map->pmap, s, e);
2980 if (object != NULL &&
2981 object->ref_count != 1 &&
2982 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2983 OBJ_ONEMAPPING &&
2984 (object->type == OBJT_DEFAULT ||
2985 object->type == OBJT_SWAP)) {
2986 vm_object_collapse(object, NULL);
2987 vm_object_page_remove(object, offidxstart,
2988 offidxend, FALSE);
2989 if (object->type == OBJT_SWAP) {
2990 swap_pager_freespace(object,
2991 offidxstart,
2992 count);
2994 if (offidxend >= object->size &&
2995 offidxstart < object->size) {
2996 object->size = offidxstart;
2999 vm_object_chain_release(object);
3000 vm_object_drop(object);
3001 } else if (entry->maptype == VM_MAPTYPE_UKSMAP) {
3002 pmap_remove(map->pmap, s, e);
3006 * Delete the entry (which may delete the object) only after
3007 * removing all pmap entries pointing to its pages.
3008 * (Otherwise, its page frames may be reallocated, and any
3009 * modify bits will be set in the wrong object!)
3011 vm_map_entry_delete(map, entry, countp);
3012 entry = next;
3014 lwkt_reltoken(&map->token);
3015 return (KERN_SUCCESS);
3019 * Remove the given address range from the target map.
3020 * This is the exported form of vm_map_delete.
3022 * No requirements.
3025 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3027 int result;
3028 int count;
3030 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3031 vm_map_lock(map);
3032 VM_MAP_RANGE_CHECK(map, start, end);
3033 result = vm_map_delete(map, start, end, &count);
3034 vm_map_unlock(map);
3035 vm_map_entry_release(count);
3037 return (result);
3041 * Assert that the target map allows the specified privilege on the
3042 * entire address region given. The entire region must be allocated.
3044 * The caller must specify whether the vm_map is already locked or not.
3046 boolean_t
3047 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3048 vm_prot_t protection, boolean_t have_lock)
3050 vm_map_entry_t entry;
3051 vm_map_entry_t tmp_entry;
3052 boolean_t result;
3054 if (have_lock == FALSE)
3055 vm_map_lock_read(map);
3057 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
3058 if (have_lock == FALSE)
3059 vm_map_unlock_read(map);
3060 return (FALSE);
3062 entry = tmp_entry;
3064 result = TRUE;
3065 while (start < end) {
3066 if (entry == &map->header) {
3067 result = FALSE;
3068 break;
3071 * No holes allowed!
3074 if (start < entry->start) {
3075 result = FALSE;
3076 break;
3079 * Check protection associated with entry.
3082 if ((entry->protection & protection) != protection) {
3083 result = FALSE;
3084 break;
3086 /* go to next entry */
3088 start = entry->end;
3089 entry = entry->next;
3091 if (have_lock == FALSE)
3092 vm_map_unlock_read(map);
3093 return (result);
3097 * If appropriate this function shadows the original object with a new object
3098 * and moves the VM pages from the original object to the new object.
3099 * The original object will also be collapsed, if possible.
3101 * We can only do this for normal memory objects with a single mapping, and
3102 * it only makes sense to do it if there are 2 or more refs on the original
3103 * object. i.e. typically a memory object that has been extended into
3104 * multiple vm_map_entry's with non-overlapping ranges.
3106 * This makes it easier to remove unused pages and keeps object inheritance
3107 * from being a negative impact on memory usage.
3109 * On return the (possibly new) entry->object.vm_object will have an
3110 * additional ref on it for the caller to dispose of (usually by cloning
3111 * the vm_map_entry). The additional ref had to be done in this routine
3112 * to avoid racing a collapse. The object's ONEMAPPING flag will also be
3113 * cleared.
3115 * The vm_map must be locked and its token held.
3117 static void
3118 vm_map_split(vm_map_entry_t entry)
3120 /* OPTIMIZED */
3121 vm_object_t oobject, nobject, bobject;
3122 vm_offset_t s, e;
3123 vm_page_t m;
3124 vm_pindex_t offidxstart, offidxend, idx;
3125 vm_size_t size;
3126 vm_ooffset_t offset;
3127 int useshadowlist;
3130 * Optimize away object locks for vnode objects. Important exit/exec
3131 * critical path.
3133 * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag
3134 * anyway.
3136 oobject = entry->object.vm_object;
3137 if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) {
3138 vm_object_reference_quick(oobject);
3139 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3140 return;
3144 * Setup. Chain lock the original object throughout the entire
3145 * routine to prevent new page faults from occuring.
3147 * XXX can madvise WILLNEED interfere with us too?
3149 vm_object_hold(oobject);
3150 vm_object_chain_acquire(oobject, 0);
3153 * Original object cannot be split? Might have also changed state.
3155 if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT &&
3156 oobject->type != OBJT_SWAP)) {
3157 vm_object_chain_release(oobject);
3158 vm_object_reference_locked(oobject);
3159 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3160 vm_object_drop(oobject);
3161 return;
3165 * Collapse original object with its backing store as an
3166 * optimization to reduce chain lengths when possible.
3168 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3169 * for oobject, so there's no point collapsing it.
3171 * Then re-check whether the object can be split.
3173 vm_object_collapse(oobject, NULL);
3175 if (oobject->ref_count <= 1 ||
3176 (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3177 (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3178 vm_object_chain_release(oobject);
3179 vm_object_reference_locked(oobject);
3180 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3181 vm_object_drop(oobject);
3182 return;
3186 * Acquire the chain lock on the backing object.
3188 * Give bobject an additional ref count for when it will be shadowed
3189 * by nobject.
3191 useshadowlist = 0;
3192 if ((bobject = oobject->backing_object) != NULL) {
3193 if (bobject->type != OBJT_VNODE) {
3194 useshadowlist = 1;
3195 vm_object_hold(bobject);
3196 vm_object_chain_wait(bobject, 0);
3197 /* ref for shadowing below */
3198 vm_object_reference_locked(bobject);
3199 vm_object_chain_acquire(bobject, 0);
3200 KKASSERT(bobject->backing_object == bobject);
3201 KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3202 } else {
3204 * vnodes are not placed on the shadow list but
3205 * they still get another ref for the backing_object
3206 * reference.
3208 vm_object_reference_quick(bobject);
3213 * Calculate the object page range and allocate the new object.
3215 offset = entry->offset;
3216 s = entry->start;
3217 e = entry->end;
3219 offidxstart = OFF_TO_IDX(offset);
3220 offidxend = offidxstart + OFF_TO_IDX(e - s);
3221 size = offidxend - offidxstart;
3223 switch(oobject->type) {
3224 case OBJT_DEFAULT:
3225 nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3226 VM_PROT_ALL, 0);
3227 break;
3228 case OBJT_SWAP:
3229 nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3230 VM_PROT_ALL, 0);
3231 break;
3232 default:
3233 /* not reached */
3234 nobject = NULL;
3235 KKASSERT(0);
3238 if (nobject == NULL) {
3239 if (bobject) {
3240 if (useshadowlist) {
3241 vm_object_chain_release(bobject);
3242 vm_object_deallocate(bobject);
3243 vm_object_drop(bobject);
3244 } else {
3245 vm_object_deallocate(bobject);
3248 vm_object_chain_release(oobject);
3249 vm_object_reference_locked(oobject);
3250 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3251 vm_object_drop(oobject);
3252 return;
3256 * The new object will replace entry->object.vm_object so it needs
3257 * a second reference (the caller expects an additional ref).
3259 vm_object_hold(nobject);
3260 vm_object_reference_locked(nobject);
3261 vm_object_chain_acquire(nobject, 0);
3264 * nobject shadows bobject (oobject already shadows bobject).
3266 * Adding an object to bobject's shadow list requires refing bobject
3267 * which we did above in the useshadowlist case.
3269 if (bobject) {
3270 nobject->backing_object_offset =
3271 oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3272 nobject->backing_object = bobject;
3273 if (useshadowlist) {
3274 bobject->shadow_count++;
3275 atomic_add_int(&bobject->generation, 1);
3276 LIST_INSERT_HEAD(&bobject->shadow_head,
3277 nobject, shadow_list);
3278 vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/
3279 vm_object_chain_release(bobject);
3280 vm_object_drop(bobject);
3281 vm_object_set_flag(nobject, OBJ_ONSHADOW);
3286 * Move the VM pages from oobject to nobject
3288 for (idx = 0; idx < size; idx++) {
3289 vm_page_t m;
3291 m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3292 TRUE, "vmpg");
3293 if (m == NULL)
3294 continue;
3297 * We must wait for pending I/O to complete before we can
3298 * rename the page.
3300 * We do not have to VM_PROT_NONE the page as mappings should
3301 * not be changed by this operation.
3303 * NOTE: The act of renaming a page updates chaingen for both
3304 * objects.
3306 vm_page_rename(m, nobject, idx);
3307 /* page automatically made dirty by rename and cache handled */
3308 /* page remains busy */
3311 if (oobject->type == OBJT_SWAP) {
3312 vm_object_pip_add(oobject, 1);
3314 * copy oobject pages into nobject and destroy unneeded
3315 * pages in shadow object.
3317 swap_pager_copy(oobject, nobject, offidxstart, 0);
3318 vm_object_pip_wakeup(oobject);
3322 * Wakeup the pages we played with. No spl protection is needed
3323 * for a simple wakeup.
3325 for (idx = 0; idx < size; idx++) {
3326 m = vm_page_lookup(nobject, idx);
3327 if (m) {
3328 KKASSERT(m->flags & PG_BUSY);
3329 vm_page_wakeup(m);
3332 entry->object.vm_object = nobject;
3333 entry->offset = 0LL;
3336 * Cleanup
3338 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3339 * related pages were moved and are no longer applicable to the
3340 * original object.
3342 * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3343 * replaced by nobject).
3345 vm_object_chain_release(nobject);
3346 vm_object_drop(nobject);
3347 if (bobject && useshadowlist) {
3348 vm_object_chain_release(bobject);
3349 vm_object_drop(bobject);
3351 vm_object_chain_release(oobject);
3352 /*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3353 vm_object_deallocate_locked(oobject);
3354 vm_object_drop(oobject);
3358 * Copies the contents of the source entry to the destination
3359 * entry. The entries *must* be aligned properly.
3361 * The vm_maps must be exclusively locked.
3362 * The vm_map's token must be held.
3364 * Because the maps are locked no faults can be in progress during the
3365 * operation.
3367 static void
3368 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3369 vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3371 vm_object_t src_object;
3373 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP ||
3374 dst_entry->maptype == VM_MAPTYPE_UKSMAP)
3375 return;
3376 if (src_entry->maptype == VM_MAPTYPE_SUBMAP ||
3377 src_entry->maptype == VM_MAPTYPE_UKSMAP)
3378 return;
3380 if (src_entry->wired_count == 0) {
3382 * If the source entry is marked needs_copy, it is already
3383 * write-protected.
3385 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3386 pmap_protect(src_map->pmap,
3387 src_entry->start,
3388 src_entry->end,
3389 src_entry->protection & ~VM_PROT_WRITE);
3393 * Make a copy of the object.
3395 * The object must be locked prior to checking the object type
3396 * and for the call to vm_object_collapse() and vm_map_split().
3397 * We cannot use *_hold() here because the split code will
3398 * probably try to destroy the object. The lock is a pool
3399 * token and doesn't care.
3401 * We must bump src_map->timestamp when setting
3402 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3403 * to retry, otherwise the concurrent fault might improperly
3404 * install a RW pte when its supposed to be a RO(COW) pte.
3405 * This race can occur because a vnode-backed fault may have
3406 * to temporarily release the map lock.
3408 if (src_entry->object.vm_object != NULL) {
3409 vm_map_split(src_entry);
3410 src_object = src_entry->object.vm_object;
3411 dst_entry->object.vm_object = src_object;
3412 src_entry->eflags |= (MAP_ENTRY_COW |
3413 MAP_ENTRY_NEEDS_COPY);
3414 dst_entry->eflags |= (MAP_ENTRY_COW |
3415 MAP_ENTRY_NEEDS_COPY);
3416 dst_entry->offset = src_entry->offset;
3417 ++src_map->timestamp;
3418 } else {
3419 dst_entry->object.vm_object = NULL;
3420 dst_entry->offset = 0;
3423 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3424 dst_entry->end - dst_entry->start, src_entry->start);
3425 } else {
3427 * Of course, wired down pages can't be set copy-on-write.
3428 * Cause wired pages to be copied into the new map by
3429 * simulating faults (the new pages are pageable)
3431 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3436 * vmspace_fork:
3437 * Create a new process vmspace structure and vm_map
3438 * based on those of an existing process. The new map
3439 * is based on the old map, according to the inheritance
3440 * values on the regions in that map.
3442 * The source map must not be locked.
3443 * No requirements.
3445 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3446 vm_map_entry_t old_entry, int *countp);
3447 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3448 vm_map_entry_t old_entry, int *countp);
3450 struct vmspace *
3451 vmspace_fork(struct vmspace *vm1)
3453 struct vmspace *vm2;
3454 vm_map_t old_map = &vm1->vm_map;
3455 vm_map_t new_map;
3456 vm_map_entry_t old_entry;
3457 int count;
3459 lwkt_gettoken(&vm1->vm_map.token);
3460 vm_map_lock(old_map);
3462 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3463 lwkt_gettoken(&vm2->vm_map.token);
3464 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3465 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3466 new_map = &vm2->vm_map; /* XXX */
3467 new_map->timestamp = 1;
3469 vm_map_lock(new_map);
3471 count = 0;
3472 old_entry = old_map->header.next;
3473 while (old_entry != &old_map->header) {
3474 ++count;
3475 old_entry = old_entry->next;
3478 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3480 old_entry = old_map->header.next;
3481 while (old_entry != &old_map->header) {
3482 switch(old_entry->maptype) {
3483 case VM_MAPTYPE_SUBMAP:
3484 panic("vm_map_fork: encountered a submap");
3485 break;
3486 case VM_MAPTYPE_UKSMAP:
3487 vmspace_fork_uksmap_entry(old_map, new_map,
3488 old_entry, &count);
3489 break;
3490 case VM_MAPTYPE_NORMAL:
3491 case VM_MAPTYPE_VPAGETABLE:
3492 vmspace_fork_normal_entry(old_map, new_map,
3493 old_entry, &count);
3494 break;
3496 old_entry = old_entry->next;
3499 new_map->size = old_map->size;
3500 vm_map_unlock(old_map);
3501 vm_map_unlock(new_map);
3502 vm_map_entry_release(count);
3504 lwkt_reltoken(&vm2->vm_map.token);
3505 lwkt_reltoken(&vm1->vm_map.token);
3507 return (vm2);
3510 static
3511 void
3512 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3513 vm_map_entry_t old_entry, int *countp)
3515 vm_map_entry_t new_entry;
3516 vm_object_t object;
3518 switch (old_entry->inheritance) {
3519 case VM_INHERIT_NONE:
3520 break;
3521 case VM_INHERIT_SHARE:
3523 * Clone the entry, creating the shared object if
3524 * necessary.
3526 if (old_entry->object.vm_object == NULL)
3527 vm_map_entry_allocate_object(old_entry);
3529 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3531 * Shadow a map_entry which needs a copy,
3532 * replacing its object with a new object
3533 * that points to the old one. Ask the
3534 * shadow code to automatically add an
3535 * additional ref. We can't do it afterwords
3536 * because we might race a collapse. The call
3537 * to vm_map_entry_shadow() will also clear
3538 * OBJ_ONEMAPPING.
3540 vm_map_entry_shadow(old_entry, 1);
3541 } else if (old_entry->object.vm_object) {
3543 * We will make a shared copy of the object,
3544 * and must clear OBJ_ONEMAPPING.
3546 * Optimize vnode objects. OBJ_ONEMAPPING
3547 * is non-applicable but clear it anyway,
3548 * and its terminal so we don'th ave to deal
3549 * with chains. Reduces SMP conflicts.
3551 * XXX assert that object.vm_object != NULL
3552 * since we allocate it above.
3554 object = old_entry->object.vm_object;
3555 if (object->type == OBJT_VNODE) {
3556 vm_object_reference_quick(object);
3557 vm_object_clear_flag(object,
3558 OBJ_ONEMAPPING);
3559 } else {
3560 vm_object_hold(object);
3561 vm_object_chain_wait(object, 0);
3562 vm_object_reference_locked(object);
3563 vm_object_clear_flag(object,
3564 OBJ_ONEMAPPING);
3565 vm_object_drop(object);
3570 * Clone the entry. We've already bumped the ref on
3571 * any vm_object.
3573 new_entry = vm_map_entry_create(new_map, countp);
3574 *new_entry = *old_entry;
3575 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3576 new_entry->wired_count = 0;
3579 * Insert the entry into the new map -- we know we're
3580 * inserting at the end of the new map.
3583 vm_map_entry_link(new_map, new_map->header.prev,
3584 new_entry);
3587 * Update the physical map
3589 pmap_copy(new_map->pmap, old_map->pmap,
3590 new_entry->start,
3591 (old_entry->end - old_entry->start),
3592 old_entry->start);
3593 break;
3594 case VM_INHERIT_COPY:
3596 * Clone the entry and link into the map.
3598 new_entry = vm_map_entry_create(new_map, countp);
3599 *new_entry = *old_entry;
3600 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3601 new_entry->wired_count = 0;
3602 new_entry->object.vm_object = NULL;
3603 vm_map_entry_link(new_map, new_map->header.prev,
3604 new_entry);
3605 vm_map_copy_entry(old_map, new_map, old_entry,
3606 new_entry);
3607 break;
3612 * When forking user-kernel shared maps, the map might change in the
3613 * child so do not try to copy the underlying pmap entries.
3615 static
3616 void
3617 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3618 vm_map_entry_t old_entry, int *countp)
3620 vm_map_entry_t new_entry;
3622 new_entry = vm_map_entry_create(new_map, countp);
3623 *new_entry = *old_entry;
3624 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3625 new_entry->wired_count = 0;
3626 vm_map_entry_link(new_map, new_map->header.prev,
3627 new_entry);
3631 * Create an auto-grow stack entry
3633 * No requirements.
3636 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3637 int flags, vm_prot_t prot, vm_prot_t max, int cow)
3639 vm_map_entry_t prev_entry;
3640 vm_map_entry_t new_stack_entry;
3641 vm_size_t init_ssize;
3642 int rv;
3643 int count;
3644 vm_offset_t tmpaddr;
3646 cow |= MAP_IS_STACK;
3648 if (max_ssize < sgrowsiz)
3649 init_ssize = max_ssize;
3650 else
3651 init_ssize = sgrowsiz;
3653 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3654 vm_map_lock(map);
3657 * Find space for the mapping
3659 if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3660 if (vm_map_findspace(map, addrbos, max_ssize, 1,
3661 flags, &tmpaddr)) {
3662 vm_map_unlock(map);
3663 vm_map_entry_release(count);
3664 return (KERN_NO_SPACE);
3666 addrbos = tmpaddr;
3669 /* If addr is already mapped, no go */
3670 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3671 vm_map_unlock(map);
3672 vm_map_entry_release(count);
3673 return (KERN_NO_SPACE);
3676 #if 0
3677 /* XXX already handled by kern_mmap() */
3678 /* If we would blow our VMEM resource limit, no go */
3679 if (map->size + init_ssize >
3680 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3681 vm_map_unlock(map);
3682 vm_map_entry_release(count);
3683 return (KERN_NO_SPACE);
3685 #endif
3688 * If we can't accomodate max_ssize in the current mapping,
3689 * no go. However, we need to be aware that subsequent user
3690 * mappings might map into the space we have reserved for
3691 * stack, and currently this space is not protected.
3693 * Hopefully we will at least detect this condition
3694 * when we try to grow the stack.
3696 if ((prev_entry->next != &map->header) &&
3697 (prev_entry->next->start < addrbos + max_ssize)) {
3698 vm_map_unlock(map);
3699 vm_map_entry_release(count);
3700 return (KERN_NO_SPACE);
3704 * We initially map a stack of only init_ssize. We will
3705 * grow as needed later. Since this is to be a grow
3706 * down stack, we map at the top of the range.
3708 * Note: we would normally expect prot and max to be
3709 * VM_PROT_ALL, and cow to be 0. Possibly we should
3710 * eliminate these as input parameters, and just
3711 * pass these values here in the insert call.
3713 rv = vm_map_insert(map, &count, NULL, NULL,
3714 0, addrbos + max_ssize - init_ssize,
3715 addrbos + max_ssize,
3716 VM_MAPTYPE_NORMAL,
3717 VM_SUBSYS_STACK, prot, max, cow);
3719 /* Now set the avail_ssize amount */
3720 if (rv == KERN_SUCCESS) {
3721 if (prev_entry != &map->header)
3722 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3723 new_stack_entry = prev_entry->next;
3724 if (new_stack_entry->end != addrbos + max_ssize ||
3725 new_stack_entry->start != addrbos + max_ssize - init_ssize)
3726 panic ("Bad entry start/end for new stack entry");
3727 else
3728 new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3731 vm_map_unlock(map);
3732 vm_map_entry_release(count);
3733 return (rv);
3737 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
3738 * desired address is already mapped, or if we successfully grow
3739 * the stack. Also returns KERN_SUCCESS if addr is outside the
3740 * stack range (this is strange, but preserves compatibility with
3741 * the grow function in vm_machdep.c).
3743 * No requirements.
3746 vm_map_growstack (vm_map_t map, vm_offset_t addr)
3748 vm_map_entry_t prev_entry;
3749 vm_map_entry_t stack_entry;
3750 vm_map_entry_t new_stack_entry;
3751 struct vmspace *vm;
3752 struct lwp *lp;
3753 struct proc *p;
3754 vm_offset_t end;
3755 int grow_amount;
3756 int rv = KERN_SUCCESS;
3757 int is_procstack;
3758 int use_read_lock = 1;
3759 int count;
3762 * Find the vm
3764 lp = curthread->td_lwp;
3765 p = curthread->td_proc;
3766 KKASSERT(lp != NULL);
3767 vm = lp->lwp_vmspace;
3770 * Growstack is only allowed on the current process. We disallow
3771 * other use cases, e.g. trying to access memory via procfs that
3772 * the stack hasn't grown into.
3774 if (map != &vm->vm_map) {
3775 return KERN_FAILURE;
3778 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3779 Retry:
3780 if (use_read_lock)
3781 vm_map_lock_read(map);
3782 else
3783 vm_map_lock(map);
3785 /* If addr is already in the entry range, no need to grow.*/
3786 if (vm_map_lookup_entry(map, addr, &prev_entry))
3787 goto done;
3789 if ((stack_entry = prev_entry->next) == &map->header)
3790 goto done;
3791 if (prev_entry == &map->header)
3792 end = stack_entry->start - stack_entry->aux.avail_ssize;
3793 else
3794 end = prev_entry->end;
3797 * This next test mimics the old grow function in vm_machdep.c.
3798 * It really doesn't quite make sense, but we do it anyway
3799 * for compatibility.
3801 * If not growable stack, return success. This signals the
3802 * caller to proceed as he would normally with normal vm.
3804 if (stack_entry->aux.avail_ssize < 1 ||
3805 addr >= stack_entry->start ||
3806 addr < stack_entry->start - stack_entry->aux.avail_ssize) {
3807 goto done;
3810 /* Find the minimum grow amount */
3811 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3812 if (grow_amount > stack_entry->aux.avail_ssize) {
3813 rv = KERN_NO_SPACE;
3814 goto done;
3818 * If there is no longer enough space between the entries
3819 * nogo, and adjust the available space. Note: this
3820 * should only happen if the user has mapped into the
3821 * stack area after the stack was created, and is
3822 * probably an error.
3824 * This also effectively destroys any guard page the user
3825 * might have intended by limiting the stack size.
3827 if (grow_amount > stack_entry->start - end) {
3828 if (use_read_lock && vm_map_lock_upgrade(map)) {
3829 /* lost lock */
3830 use_read_lock = 0;
3831 goto Retry;
3833 use_read_lock = 0;
3834 stack_entry->aux.avail_ssize = stack_entry->start - end;
3835 rv = KERN_NO_SPACE;
3836 goto done;
3839 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3841 /* If this is the main process stack, see if we're over the
3842 * stack limit.
3844 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3845 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3846 rv = KERN_NO_SPACE;
3847 goto done;
3850 /* Round up the grow amount modulo SGROWSIZ */
3851 grow_amount = roundup (grow_amount, sgrowsiz);
3852 if (grow_amount > stack_entry->aux.avail_ssize) {
3853 grow_amount = stack_entry->aux.avail_ssize;
3855 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3856 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3857 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3858 ctob(vm->vm_ssize);
3861 /* If we would blow our VMEM resource limit, no go */
3862 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3863 rv = KERN_NO_SPACE;
3864 goto done;
3867 if (use_read_lock && vm_map_lock_upgrade(map)) {
3868 /* lost lock */
3869 use_read_lock = 0;
3870 goto Retry;
3872 use_read_lock = 0;
3874 /* Get the preliminary new entry start value */
3875 addr = stack_entry->start - grow_amount;
3877 /* If this puts us into the previous entry, cut back our growth
3878 * to the available space. Also, see the note above.
3880 if (addr < end) {
3881 stack_entry->aux.avail_ssize = stack_entry->start - end;
3882 addr = end;
3885 rv = vm_map_insert(map, &count, NULL, NULL,
3886 0, addr, stack_entry->start,
3887 VM_MAPTYPE_NORMAL,
3888 VM_SUBSYS_STACK, VM_PROT_ALL, VM_PROT_ALL, 0);
3890 /* Adjust the available stack space by the amount we grew. */
3891 if (rv == KERN_SUCCESS) {
3892 if (prev_entry != &map->header)
3893 vm_map_clip_end(map, prev_entry, addr, &count);
3894 new_stack_entry = prev_entry->next;
3895 if (new_stack_entry->end != stack_entry->start ||
3896 new_stack_entry->start != addr)
3897 panic ("Bad stack grow start/end in new stack entry");
3898 else {
3899 new_stack_entry->aux.avail_ssize =
3900 stack_entry->aux.avail_ssize -
3901 (new_stack_entry->end - new_stack_entry->start);
3902 if (is_procstack)
3903 vm->vm_ssize += btoc(new_stack_entry->end -
3904 new_stack_entry->start);
3907 if (map->flags & MAP_WIREFUTURE)
3908 vm_map_unwire(map, new_stack_entry->start,
3909 new_stack_entry->end, FALSE);
3912 done:
3913 if (use_read_lock)
3914 vm_map_unlock_read(map);
3915 else
3916 vm_map_unlock(map);
3917 vm_map_entry_release(count);
3918 return (rv);
3922 * Unshare the specified VM space for exec. If other processes are
3923 * mapped to it, then create a new one. The new vmspace is null.
3925 * No requirements.
3927 void
3928 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3930 struct vmspace *oldvmspace = p->p_vmspace;
3931 struct vmspace *newvmspace;
3932 vm_map_t map = &p->p_vmspace->vm_map;
3935 * If we are execing a resident vmspace we fork it, otherwise
3936 * we create a new vmspace. Note that exitingcnt is not
3937 * copied to the new vmspace.
3939 lwkt_gettoken(&oldvmspace->vm_map.token);
3940 if (vmcopy) {
3941 newvmspace = vmspace_fork(vmcopy);
3942 lwkt_gettoken(&newvmspace->vm_map.token);
3943 } else {
3944 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3945 lwkt_gettoken(&newvmspace->vm_map.token);
3946 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3947 (caddr_t)&oldvmspace->vm_endcopy -
3948 (caddr_t)&oldvmspace->vm_startcopy);
3952 * Finish initializing the vmspace before assigning it
3953 * to the process. The vmspace will become the current vmspace
3954 * if p == curproc.
3956 pmap_pinit2(vmspace_pmap(newvmspace));
3957 pmap_replacevm(p, newvmspace, 0);
3958 lwkt_reltoken(&newvmspace->vm_map.token);
3959 lwkt_reltoken(&oldvmspace->vm_map.token);
3960 vmspace_rel(oldvmspace);
3964 * Unshare the specified VM space for forcing COW. This
3965 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3967 void
3968 vmspace_unshare(struct proc *p)
3970 struct vmspace *oldvmspace = p->p_vmspace;
3971 struct vmspace *newvmspace;
3973 lwkt_gettoken(&oldvmspace->vm_map.token);
3974 if (vmspace_getrefs(oldvmspace) == 1) {
3975 lwkt_reltoken(&oldvmspace->vm_map.token);
3976 return;
3978 newvmspace = vmspace_fork(oldvmspace);
3979 lwkt_gettoken(&newvmspace->vm_map.token);
3980 pmap_pinit2(vmspace_pmap(newvmspace));
3981 pmap_replacevm(p, newvmspace, 0);
3982 lwkt_reltoken(&newvmspace->vm_map.token);
3983 lwkt_reltoken(&oldvmspace->vm_map.token);
3984 vmspace_rel(oldvmspace);
3988 * vm_map_hint: return the beginning of the best area suitable for
3989 * creating a new mapping with "prot" protection.
3991 * No requirements.
3993 vm_offset_t
3994 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3996 struct vmspace *vms = p->p_vmspace;
3998 if (!randomize_mmap || addr != 0) {
4000 * Set a reasonable start point for the hint if it was
4001 * not specified or if it falls within the heap space.
4002 * Hinted mmap()s do not allocate out of the heap space.
4004 if (addr == 0 ||
4005 (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
4006 addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
4007 addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
4010 return addr;
4012 addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
4013 addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
4015 return (round_page(addr));
4019 * Finds the VM object, offset, and protection for a given virtual address
4020 * in the specified map, assuming a page fault of the type specified.
4022 * Leaves the map in question locked for read; return values are guaranteed
4023 * until a vm_map_lookup_done call is performed. Note that the map argument
4024 * is in/out; the returned map must be used in the call to vm_map_lookup_done.
4026 * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
4027 * that fast.
4029 * If a lookup is requested with "write protection" specified, the map may
4030 * be changed to perform virtual copying operations, although the data
4031 * referenced will remain the same.
4033 * No requirements.
4036 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
4037 vm_offset_t vaddr,
4038 vm_prot_t fault_typea,
4039 vm_map_entry_t *out_entry, /* OUT */
4040 vm_object_t *object, /* OUT */
4041 vm_pindex_t *pindex, /* OUT */
4042 vm_prot_t *out_prot, /* OUT */
4043 boolean_t *wired) /* OUT */
4045 vm_map_entry_t entry;
4046 vm_map_t map = *var_map;
4047 vm_prot_t prot;
4048 vm_prot_t fault_type = fault_typea;
4049 int use_read_lock = 1;
4050 int rv = KERN_SUCCESS;
4052 RetryLookup:
4053 if (use_read_lock)
4054 vm_map_lock_read(map);
4055 else
4056 vm_map_lock(map);
4059 * If the map has an interesting hint, try it before calling full
4060 * blown lookup routine.
4062 entry = map->hint;
4063 cpu_ccfence();
4064 *out_entry = entry;
4065 *object = NULL;
4067 if ((entry == &map->header) ||
4068 (vaddr < entry->start) || (vaddr >= entry->end)) {
4069 vm_map_entry_t tmp_entry;
4072 * Entry was either not a valid hint, or the vaddr was not
4073 * contained in the entry, so do a full lookup.
4075 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
4076 rv = KERN_INVALID_ADDRESS;
4077 goto done;
4080 entry = tmp_entry;
4081 *out_entry = entry;
4085 * Handle submaps.
4087 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4088 vm_map_t old_map = map;
4090 *var_map = map = entry->object.sub_map;
4091 if (use_read_lock)
4092 vm_map_unlock_read(old_map);
4093 else
4094 vm_map_unlock(old_map);
4095 use_read_lock = 1;
4096 goto RetryLookup;
4100 * Check whether this task is allowed to have this page.
4101 * Note the special case for MAP_ENTRY_COW pages with an override.
4102 * This is to implement a forced COW for debuggers.
4104 if (fault_type & VM_PROT_OVERRIDE_WRITE)
4105 prot = entry->max_protection;
4106 else
4107 prot = entry->protection;
4109 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4110 if ((fault_type & prot) != fault_type) {
4111 rv = KERN_PROTECTION_FAILURE;
4112 goto done;
4115 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4116 (entry->eflags & MAP_ENTRY_COW) &&
4117 (fault_type & VM_PROT_WRITE) &&
4118 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
4119 rv = KERN_PROTECTION_FAILURE;
4120 goto done;
4124 * If this page is not pageable, we have to get it for all possible
4125 * accesses.
4127 *wired = (entry->wired_count != 0);
4128 if (*wired)
4129 prot = fault_type = entry->protection;
4132 * Virtual page tables may need to update the accessed (A) bit
4133 * in a page table entry. Upgrade the fault to a write fault for
4134 * that case if the map will support it. If the map does not support
4135 * it the page table entry simply will not be updated.
4137 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
4138 if (prot & VM_PROT_WRITE)
4139 fault_type |= VM_PROT_WRITE;
4142 if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
4143 pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
4144 if ((prot & VM_PROT_WRITE) == 0)
4145 fault_type |= VM_PROT_WRITE;
4149 * Only NORMAL and VPAGETABLE maps are object-based. UKSMAPs are not.
4151 if (entry->maptype != VM_MAPTYPE_NORMAL &&
4152 entry->maptype != VM_MAPTYPE_VPAGETABLE) {
4153 *object = NULL;
4154 goto skip;
4158 * If the entry was copy-on-write, we either ...
4160 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4162 * If we want to write the page, we may as well handle that
4163 * now since we've got the map locked.
4165 * If we don't need to write the page, we just demote the
4166 * permissions allowed.
4169 if (fault_type & VM_PROT_WRITE) {
4171 * Not allowed if TDF_NOFAULT is set as the shadowing
4172 * operation can deadlock against the faulting
4173 * function due to the copy-on-write.
4175 if (curthread->td_flags & TDF_NOFAULT) {
4176 rv = KERN_FAILURE_NOFAULT;
4177 goto done;
4181 * Make a new object, and place it in the object
4182 * chain. Note that no new references have appeared
4183 * -- one just moved from the map to the new
4184 * object.
4187 if (use_read_lock && vm_map_lock_upgrade(map)) {
4188 /* lost lock */
4189 use_read_lock = 0;
4190 goto RetryLookup;
4192 use_read_lock = 0;
4194 vm_map_entry_shadow(entry, 0);
4195 } else {
4197 * We're attempting to read a copy-on-write page --
4198 * don't allow writes.
4201 prot &= ~VM_PROT_WRITE;
4206 * Create an object if necessary.
4208 if (entry->object.vm_object == NULL && !map->system_map) {
4209 if (use_read_lock && vm_map_lock_upgrade(map)) {
4210 /* lost lock */
4211 use_read_lock = 0;
4212 goto RetryLookup;
4214 use_read_lock = 0;
4215 vm_map_entry_allocate_object(entry);
4219 * Return the object/offset from this entry. If the entry was
4220 * copy-on-write or empty, it has been fixed up.
4222 *object = entry->object.vm_object;
4224 skip:
4225 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4228 * Return whether this is the only map sharing this data. On
4229 * success we return with a read lock held on the map. On failure
4230 * we return with the map unlocked.
4232 *out_prot = prot;
4233 done:
4234 if (rv == KERN_SUCCESS) {
4235 if (use_read_lock == 0)
4236 vm_map_lock_downgrade(map);
4237 } else if (use_read_lock) {
4238 vm_map_unlock_read(map);
4239 } else {
4240 vm_map_unlock(map);
4242 return (rv);
4246 * Releases locks acquired by a vm_map_lookup()
4247 * (according to the handle returned by that lookup).
4249 * No other requirements.
4251 void
4252 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4255 * Unlock the main-level map
4257 vm_map_unlock_read(map);
4258 if (count)
4259 vm_map_entry_release(count);
4263 * Quick hack, needs some help to make it more SMP friendly.
4265 void
4266 vm_map_interlock(vm_map_t map, struct vm_map_ilock *ilock,
4267 vm_offset_t ran_beg, vm_offset_t ran_end)
4269 struct vm_map_ilock *scan;
4271 ilock->ran_beg = ran_beg;
4272 ilock->ran_end = ran_end;
4273 ilock->flags = 0;
4275 spin_lock(&map->ilock_spin);
4276 restart:
4277 for (scan = map->ilock_base; scan; scan = scan->next) {
4278 if (ran_end > scan->ran_beg && ran_beg < scan->ran_end) {
4279 scan->flags |= ILOCK_WAITING;
4280 ssleep(scan, &map->ilock_spin, 0, "ilock", 0);
4281 goto restart;
4284 ilock->next = map->ilock_base;
4285 map->ilock_base = ilock;
4286 spin_unlock(&map->ilock_spin);
4289 void
4290 vm_map_deinterlock(vm_map_t map, struct vm_map_ilock *ilock)
4292 struct vm_map_ilock *scan;
4293 struct vm_map_ilock **scanp;
4295 spin_lock(&map->ilock_spin);
4296 scanp = &map->ilock_base;
4297 while ((scan = *scanp) != NULL) {
4298 if (scan == ilock) {
4299 *scanp = ilock->next;
4300 spin_unlock(&map->ilock_spin);
4301 if (ilock->flags & ILOCK_WAITING)
4302 wakeup(ilock);
4303 return;
4305 scanp = &scan->next;
4307 spin_unlock(&map->ilock_spin);
4308 panic("vm_map_deinterlock: missing ilock!");
4311 #include "opt_ddb.h"
4312 #ifdef DDB
4313 #include <ddb/ddb.h>
4316 * Debugging only
4318 DB_SHOW_COMMAND(map, vm_map_print)
4320 static int nlines;
4321 /* XXX convert args. */
4322 vm_map_t map = (vm_map_t)addr;
4323 boolean_t full = have_addr;
4325 vm_map_entry_t entry;
4327 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4328 (void *)map,
4329 (void *)map->pmap, map->nentries, map->timestamp);
4330 nlines++;
4332 if (!full && db_indent)
4333 return;
4335 db_indent += 2;
4336 for (entry = map->header.next; entry != &map->header;
4337 entry = entry->next) {
4338 db_iprintf("map entry %p: start=%p, end=%p\n",
4339 (void *)entry, (void *)entry->start, (void *)entry->end);
4340 nlines++;
4342 static char *inheritance_name[4] =
4343 {"share", "copy", "none", "donate_copy"};
4345 db_iprintf(" prot=%x/%x/%s",
4346 entry->protection,
4347 entry->max_protection,
4348 inheritance_name[(int)(unsigned char)
4349 entry->inheritance]);
4350 if (entry->wired_count != 0)
4351 db_printf(", wired");
4353 switch(entry->maptype) {
4354 case VM_MAPTYPE_SUBMAP:
4355 /* XXX no %qd in kernel. Truncate entry->offset. */
4356 db_printf(", share=%p, offset=0x%lx\n",
4357 (void *)entry->object.sub_map,
4358 (long)entry->offset);
4359 nlines++;
4360 if ((entry->prev == &map->header) ||
4361 (entry->prev->object.sub_map !=
4362 entry->object.sub_map)) {
4363 db_indent += 2;
4364 vm_map_print((db_expr_t)(intptr_t)
4365 entry->object.sub_map,
4366 full, 0, NULL);
4367 db_indent -= 2;
4369 break;
4370 case VM_MAPTYPE_NORMAL:
4371 case VM_MAPTYPE_VPAGETABLE:
4372 /* XXX no %qd in kernel. Truncate entry->offset. */
4373 db_printf(", object=%p, offset=0x%lx",
4374 (void *)entry->object.vm_object,
4375 (long)entry->offset);
4376 if (entry->eflags & MAP_ENTRY_COW)
4377 db_printf(", copy (%s)",
4378 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4379 db_printf("\n");
4380 nlines++;
4382 if ((entry->prev == &map->header) ||
4383 (entry->prev->object.vm_object !=
4384 entry->object.vm_object)) {
4385 db_indent += 2;
4386 vm_object_print((db_expr_t)(intptr_t)
4387 entry->object.vm_object,
4388 full, 0, NULL);
4389 nlines += 4;
4390 db_indent -= 2;
4392 break;
4393 case VM_MAPTYPE_UKSMAP:
4394 db_printf(", uksmap=%p, offset=0x%lx",
4395 (void *)entry->object.uksmap,
4396 (long)entry->offset);
4397 if (entry->eflags & MAP_ENTRY_COW)
4398 db_printf(", copy (%s)",
4399 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4400 db_printf("\n");
4401 nlines++;
4402 break;
4403 default:
4404 break;
4407 db_indent -= 2;
4408 if (db_indent == 0)
4409 nlines = 0;
4413 * Debugging only
4415 DB_SHOW_COMMAND(procvm, procvm)
4417 struct proc *p;
4419 if (have_addr) {
4420 p = (struct proc *) addr;
4421 } else {
4422 p = curproc;
4425 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4426 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4427 (void *)vmspace_pmap(p->p_vmspace));
4429 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4432 #endif /* DDB */