sbin/hammer: Rename hammer_parsedevs() to hammer_parse_blkdevs()
[dragonfly.git] / sys / vm / swap_pager.c
blob934c565f9662b8b2cf94b6fba837adc165833190
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1998-2010 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon@backplane.com>
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * Copyright (c) 1994 John S. Dyson
37 * Copyright (c) 1990 University of Utah.
38 * Copyright (c) 1991, 1993
39 * The Regents of the University of California. All rights reserved.
41 * This code is derived from software contributed to Berkeley by
42 * the Systems Programming Group of the University of Utah Computer
43 * Science Department.
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. Neither the name of the University nor the names of its contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
69 * New Swap System
70 * Matthew Dillon
72 * Radix Bitmap 'blists'.
74 * - The new swapper uses the new radix bitmap code. This should scale
75 * to arbitrarily small or arbitrarily large swap spaces and an almost
76 * arbitrary degree of fragmentation.
78 * Features:
80 * - on the fly reallocation of swap during putpages. The new system
81 * does not try to keep previously allocated swap blocks for dirty
82 * pages.
84 * - on the fly deallocation of swap
86 * - No more garbage collection required. Unnecessarily allocated swap
87 * blocks only exist for dirty vm_page_t's now and these are already
88 * cycled (in a high-load system) by the pager. We also do on-the-fly
89 * removal of invalidated swap blocks when a page is destroyed
90 * or renamed.
92 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94
94 * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/kernel.h>
101 #include <sys/proc.h>
102 #include <sys/buf.h>
103 #include <sys/vnode.h>
104 #include <sys/malloc.h>
105 #include <sys/vmmeter.h>
106 #include <sys/sysctl.h>
107 #include <sys/blist.h>
108 #include <sys/lock.h>
109 #include <sys/thread2.h>
111 #include <unistd.h>
112 #include "opt_swap.h"
113 #include <vm/vm.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
116 #include <vm/vm_pager.h>
117 #include <vm/vm_pageout.h>
118 #include <vm/swap_pager.h>
119 #include <vm/vm_extern.h>
120 #include <vm/vm_zone.h>
121 #include <vm/vnode_pager.h>
123 #include <sys/buf2.h>
124 #include <vm/vm_page2.h>
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define MAX_PAGEOUT_CLUSTER SWB_NPAGES
128 #endif
130 #define SWM_FREE 0x02 /* free, period */
131 #define SWM_POP 0x04 /* pop out */
133 #define SWBIO_READ 0x01
134 #define SWBIO_WRITE 0x02
135 #define SWBIO_SYNC 0x04
136 #define SWBIO_TTC 0x08 /* for VM_PAGER_TRY_TO_CACHE */
138 struct swfreeinfo {
139 vm_object_t object;
140 vm_pindex_t basei;
141 vm_pindex_t begi;
142 vm_pindex_t endi; /* inclusive */
145 struct swswapoffinfo {
146 vm_object_t object;
147 int devidx;
148 int shared;
152 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks
153 * in the old system.
156 int swap_pager_full; /* swap space exhaustion (task killing) */
157 int swap_fail_ticks; /* when we became exhausted */
158 int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
159 swblk_t vm_swap_cache_use;
160 swblk_t vm_swap_anon_use;
161 static int vm_report_swap_allocs;
163 static int nsw_rcount; /* free read buffers */
164 static int nsw_wcount_sync; /* limit write buffers / synchronous */
165 static int nsw_wcount_async; /* limit write buffers / asynchronous */
166 static int nsw_wcount_async_max;/* assigned maximum */
167 static int nsw_cluster_max; /* maximum VOP I/O allowed */
169 struct blist *swapblist;
170 static int swap_async_max = 4; /* maximum in-progress async I/O's */
171 static int swap_burst_read = 0; /* allow burst reading */
172 static swblk_t swapiterator; /* linearize allocations */
173 int swap_user_async = 0; /* user swap pager operation can be async */
175 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin");
177 /* from vm_swap.c */
178 extern struct vnode *swapdev_vp;
179 extern struct swdevt *swdevt;
180 extern int nswdev;
182 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / SWB_DMMAX % nswdev : 0)
184 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
185 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
186 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
187 CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
188 SYSCTL_INT(_vm, OID_AUTO, swap_user_async,
189 CTLFLAG_RW, &swap_user_async, 0, "Allow async uuser swap write I/O");
191 #if SWBLK_BITS == 64
192 SYSCTL_LONG(_vm, OID_AUTO, swap_cache_use,
193 CTLFLAG_RD, &vm_swap_cache_use, 0, "");
194 SYSCTL_LONG(_vm, OID_AUTO, swap_anon_use,
195 CTLFLAG_RD, &vm_swap_anon_use, 0, "");
196 SYSCTL_LONG(_vm, OID_AUTO, swap_size,
197 CTLFLAG_RD, &vm_swap_size, 0, "");
198 #else
199 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
200 CTLFLAG_RD, &vm_swap_cache_use, 0, "");
201 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
202 CTLFLAG_RD, &vm_swap_anon_use, 0, "");
203 SYSCTL_INT(_vm, OID_AUTO, swap_size,
204 CTLFLAG_RD, &vm_swap_size, 0, "");
205 #endif
206 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
207 CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
209 vm_zone_t swap_zone;
212 * Red-Black tree for swblock entries
214 * The caller must hold vm_token
216 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
217 vm_pindex_t, swb_index);
220 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
222 if (swb1->swb_index < swb2->swb_index)
223 return(-1);
224 if (swb1->swb_index > swb2->swb_index)
225 return(1);
226 return(0);
229 static
231 rb_swblock_scancmp(struct swblock *swb, void *data)
233 struct swfreeinfo *info = data;
235 if (swb->swb_index < info->basei)
236 return(-1);
237 if (swb->swb_index > info->endi)
238 return(1);
239 return(0);
242 static
244 rb_swblock_condcmp(struct swblock *swb, void *data)
246 struct swfreeinfo *info = data;
248 if (swb->swb_index < info->basei)
249 return(-1);
250 return(0);
254 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure
255 * calls hooked from other parts of the VM system and do not appear here.
256 * (see vm/swap_pager.h).
259 static void swap_pager_dealloc (vm_object_t object);
260 static int swap_pager_getpage (vm_object_t, vm_page_t *, int);
261 static void swap_chain_iodone(struct bio *biox);
263 struct pagerops swappagerops = {
264 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */
265 swap_pager_getpage, /* pagein */
266 swap_pager_putpages, /* pageout */
267 swap_pager_haspage /* get backing store status for page */
271 * SWB_DMMAX is in page-sized chunks with the new swap system. It was
272 * dev-bsized chunks in the old. SWB_DMMAX is always a power of 2.
274 * swap_*() routines are externally accessible. swp_*() routines are
275 * internal.
278 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */
279 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */
281 static __inline void swp_sizecheck (void);
282 static void swp_pager_async_iodone (struct bio *bio);
285 * Swap bitmap functions
288 static __inline void swp_pager_freeswapspace(vm_object_t object,
289 swblk_t blk, int npages);
290 static __inline swblk_t swp_pager_getswapspace(vm_object_t object, int npages);
293 * Metadata functions
296 static void swp_pager_meta_convert(vm_object_t);
297 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
298 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
299 static void swp_pager_meta_free_all(vm_object_t);
300 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
303 * SWP_SIZECHECK() - update swap_pager_full indication
305 * update the swap_pager_almost_full indication and warn when we are
306 * about to run out of swap space, using lowat/hiwat hysteresis.
308 * Clear swap_pager_full ( task killing ) indication when lowat is met.
310 * No restrictions on call
311 * This routine may not block.
312 * SMP races are ok.
314 static __inline void
315 swp_sizecheck(void)
317 if (vm_swap_size < nswap_lowat) {
318 if (swap_pager_almost_full == 0) {
319 kprintf("swap_pager: out of swap space\n");
320 swap_pager_almost_full = 1;
321 swap_fail_ticks = ticks;
323 } else {
324 swap_pager_full = 0;
325 if (vm_swap_size > nswap_hiwat)
326 swap_pager_almost_full = 0;
331 * SWAP_PAGER_INIT() - initialize the swap pager!
333 * Expected to be started from system init. NOTE: This code is run
334 * before much else so be careful what you depend on. Most of the VM
335 * system has yet to be initialized at this point.
337 * Called from the low level boot code only.
339 static void
340 swap_pager_init(void *arg __unused)
343 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL);
346 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
348 * Expected to be started from pageout process once, prior to entering
349 * its main loop.
351 * Called from the low level boot code only.
353 void
354 swap_pager_swap_init(void)
356 int n, n2;
359 * Number of in-transit swap bp operations. Don't
360 * exhaust the pbufs completely. Make sure we
361 * initialize workable values (0 will work for hysteresis
362 * but it isn't very efficient).
364 * The nsw_cluster_max is constrained by the number of pages an XIO
365 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
366 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are
367 * constrained by the swap device interleave stripe size.
369 * Currently we hardwire nsw_wcount_async to 4. This limit is
370 * designed to prevent other I/O from having high latencies due to
371 * our pageout I/O. The value 4 works well for one or two active swap
372 * devices but is probably a little low if you have more. Even so,
373 * a higher value would probably generate only a limited improvement
374 * with three or four active swap devices since the system does not
375 * typically have to pageout at extreme bandwidths. We will want
376 * at least 2 per swap devices, and 4 is a pretty good value if you
377 * have one NFS swap device due to the command/ack latency over NFS.
378 * So it all works out pretty well.
381 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
383 nsw_rcount = (nswbuf_kva + 1) / 2;
384 nsw_wcount_sync = (nswbuf_kva + 3) / 4;
385 nsw_wcount_async = 4;
386 nsw_wcount_async_max = nsw_wcount_async;
389 * The zone is dynamically allocated so generally size it to
390 * maxswzone (32MB to 256GB of KVM). Set a minimum size based
391 * on physical memory of around 8x (each swblock can hold 16 pages).
393 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
394 * has increased dramatically.
396 n = vmstats.v_page_count / 2;
397 if (maxswzone && n < maxswzone / sizeof(struct swblock))
398 n = maxswzone / sizeof(struct swblock);
399 n2 = n;
401 do {
402 swap_zone = zinit(
403 "SWAPMETA",
404 sizeof(struct swblock),
406 ZONE_INTERRUPT);
407 if (swap_zone != NULL)
408 break;
410 * if the allocation failed, try a zone two thirds the
411 * size of the previous attempt.
413 n -= ((n + 2) / 3);
414 } while (n > 0);
416 if (swap_zone == NULL)
417 panic("swap_pager_swap_init: swap_zone == NULL");
418 if (n2 != n)
419 kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
423 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
424 * its metadata structures.
426 * This routine is called from the mmap and fork code to create a new
427 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object
428 * and then converting it with swp_pager_meta_convert().
430 * We only support unnamed objects.
432 * No restrictions.
434 vm_object_t
435 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
437 vm_object_t object;
439 KKASSERT(handle == NULL);
440 object = vm_object_allocate_hold(OBJT_DEFAULT,
441 OFF_TO_IDX(offset + PAGE_MASK + size));
442 swp_pager_meta_convert(object);
443 vm_object_drop(object);
445 return (object);
449 * SWAP_PAGER_DEALLOC() - remove swap metadata from object
451 * The swap backing for the object is destroyed. The code is
452 * designed such that we can reinstantiate it later, but this
453 * routine is typically called only when the entire object is
454 * about to be destroyed.
456 * The object must be locked or unreferenceable.
457 * No other requirements.
459 static void
460 swap_pager_dealloc(vm_object_t object)
462 vm_object_hold(object);
463 vm_object_pip_wait(object, "swpdea");
466 * Free all remaining metadata. We only bother to free it from
467 * the swap meta data. We do not attempt to free swapblk's still
468 * associated with vm_page_t's for this object. We do not care
469 * if paging is still in progress on some objects.
471 swp_pager_meta_free_all(object);
472 vm_object_drop(object);
475 /************************************************************************
476 * SWAP PAGER BITMAP ROUTINES *
477 ************************************************************************/
480 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space
482 * Allocate swap for the requested number of pages. The starting
483 * swap block number (a page index) is returned or SWAPBLK_NONE
484 * if the allocation failed.
486 * Also has the side effect of advising that somebody made a mistake
487 * when they configured swap and didn't configure enough.
489 * The caller must hold the object.
490 * This routine may not block.
492 static __inline swblk_t
493 swp_pager_getswapspace(vm_object_t object, int npages)
495 swblk_t blk;
497 lwkt_gettoken(&vm_token);
498 blk = blist_allocat(swapblist, npages, swapiterator);
499 if (blk == SWAPBLK_NONE)
500 blk = blist_allocat(swapblist, npages, 0);
501 if (blk == SWAPBLK_NONE) {
502 if (swap_pager_full != 2) {
503 if (vm_swap_max == 0)
504 kprintf("Warning: The system would like to "
505 "page to swap but no swap space "
506 "is configured!\n");
507 else
508 kprintf("swap_pager_getswapspace: "
509 "swap full allocating %d pages\n",
510 npages);
511 swap_pager_full = 2;
512 if (swap_pager_almost_full == 0)
513 swap_fail_ticks = ticks;
514 swap_pager_almost_full = 1;
516 } else {
517 /* swapiterator = blk; disable for now, doesn't work well */
518 swapacctspace(blk, -npages);
519 if (object->type == OBJT_SWAP)
520 vm_swap_anon_use += npages;
521 else
522 vm_swap_cache_use += npages;
523 swp_sizecheck();
525 lwkt_reltoken(&vm_token);
526 return(blk);
530 * SWP_PAGER_FREESWAPSPACE() - free raw swap space
532 * This routine returns the specified swap blocks back to the bitmap.
534 * Note: This routine may not block (it could in the old swap code),
535 * and through the use of the new blist routines it does not block.
537 * This routine may not block.
540 static __inline void
541 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
543 struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
545 lwkt_gettoken(&vm_token);
546 sp->sw_nused -= npages;
547 if (object->type == OBJT_SWAP)
548 vm_swap_anon_use -= npages;
549 else
550 vm_swap_cache_use -= npages;
552 if (sp->sw_flags & SW_CLOSING) {
553 lwkt_reltoken(&vm_token);
554 return;
557 blist_free(swapblist, blk, npages);
558 vm_swap_size += npages;
559 swp_sizecheck();
560 lwkt_reltoken(&vm_token);
564 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page
565 * range within an object.
567 * This is a globally accessible routine.
569 * This routine removes swapblk assignments from swap metadata.
571 * The external callers of this routine typically have already destroyed
572 * or renamed vm_page_t's associated with this range in the object so
573 * we should be ok.
575 * No requirements.
577 void
578 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
580 vm_object_hold(object);
581 swp_pager_meta_free(object, start, size);
582 vm_object_drop(object);
586 * No requirements.
588 void
589 swap_pager_freespace_all(vm_object_t object)
591 vm_object_hold(object);
592 swp_pager_meta_free_all(object);
593 vm_object_drop(object);
597 * This function conditionally frees swap cache swap starting at
598 * (*basei) in the object. (count) swap blocks will be nominally freed.
599 * The actual number of blocks freed can be more or less than the
600 * requested number.
602 * This function nominally returns the number of blocks freed. However,
603 * the actual number of blocks freed may be less then the returned value.
604 * If the function is unable to exhaust the object or if it is able to
605 * free (approximately) the requested number of blocks it returns
606 * a value n > count.
608 * If we exhaust the object we will return a value n <= count.
610 * The caller must hold the object.
612 * WARNING! If count == 0 then -1 can be returned as a degenerate case,
613 * callers should always pass a count value > 0.
615 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
618 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
620 struct swfreeinfo info;
621 int n;
622 int t;
624 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
626 info.object = object;
627 info.basei = *basei; /* skip up to this page index */
628 info.begi = count; /* max swap pages to destroy */
629 info.endi = count * 8; /* max swblocks to scan */
631 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
632 swap_pager_condfree_callback, &info);
633 *basei = info.basei;
636 * Take the higher difference swblocks vs pages
638 n = count - (int)info.begi;
639 t = count * 8 - (int)info.endi;
640 if (n < t)
641 n = t;
642 if (n < 1)
643 n = 1;
644 return(n);
648 * The idea is to free whole meta-block to avoid fragmenting
649 * the swap space or disk I/O. We only do this if NO VM pages
650 * are present.
652 * We do not have to deal with clearing PG_SWAPPED in related VM
653 * pages because there are no related VM pages.
655 * The caller must hold the object.
657 static int
658 swap_pager_condfree_callback(struct swblock *swap, void *data)
660 struct swfreeinfo *info = data;
661 vm_object_t object = info->object;
662 int i;
664 for (i = 0; i < SWAP_META_PAGES; ++i) {
665 if (vm_page_lookup(object, swap->swb_index + i))
666 break;
668 info->basei = swap->swb_index + SWAP_META_PAGES;
669 if (i == SWAP_META_PAGES) {
670 info->begi -= swap->swb_count;
671 swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
673 --info->endi;
674 if ((int)info->begi < 0 || (int)info->endi < 0)
675 return(-1);
676 lwkt_yield();
677 return(0);
681 * Called by vm_page_alloc() when a new VM page is inserted
682 * into a VM object. Checks whether swap has been assigned to
683 * the page and sets PG_SWAPPED as necessary.
685 * (m) must be busied by caller and remains busied on return.
687 void
688 swap_pager_page_inserted(vm_page_t m)
690 if (m->object->swblock_count) {
691 vm_object_hold(m->object);
692 if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
693 vm_page_flag_set(m, PG_SWAPPED);
694 vm_object_drop(m->object);
699 * SWAP_PAGER_RESERVE() - reserve swap blocks in object
701 * Assigns swap blocks to the specified range within the object. The
702 * swap blocks are not zerod. Any previous swap assignment is destroyed.
704 * Returns 0 on success, -1 on failure.
706 * The caller is responsible for avoiding races in the specified range.
707 * No other requirements.
710 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
712 int n = 0;
713 swblk_t blk = SWAPBLK_NONE;
714 vm_pindex_t beg = start; /* save start index */
716 vm_object_hold(object);
718 while (size) {
719 if (n == 0) {
720 n = BLIST_MAX_ALLOC;
721 while ((blk = swp_pager_getswapspace(object, n)) ==
722 SWAPBLK_NONE)
724 n >>= 1;
725 if (n == 0) {
726 swp_pager_meta_free(object, beg,
727 start - beg);
728 vm_object_drop(object);
729 return(-1);
733 swp_pager_meta_build(object, start, blk);
734 --size;
735 ++start;
736 ++blk;
737 --n;
739 swp_pager_meta_free(object, start, n);
740 vm_object_drop(object);
741 return(0);
745 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager
746 * and destroy the source.
748 * Copy any valid swapblks from the source to the destination. In
749 * cases where both the source and destination have a valid swapblk,
750 * we keep the destination's.
752 * This routine is allowed to block. It may block allocating metadata
753 * indirectly through swp_pager_meta_build() or if paging is still in
754 * progress on the source.
756 * XXX vm_page_collapse() kinda expects us not to block because we
757 * supposedly do not need to allocate memory, but for the moment we
758 * *may* have to get a little memory from the zone allocator, but
759 * it is taken from the interrupt memory. We should be ok.
761 * The source object contains no vm_page_t's (which is just as well)
762 * The source object is of type OBJT_SWAP.
764 * The source and destination objects must be held by the caller.
766 void
767 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
768 vm_pindex_t base_index, int destroysource)
770 vm_pindex_t i;
772 ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
773 ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
776 * transfer source to destination.
778 for (i = 0; i < dstobject->size; ++i) {
779 swblk_t dstaddr;
782 * Locate (without changing) the swapblk on the destination,
783 * unless it is invalid in which case free it silently, or
784 * if the destination is a resident page, in which case the
785 * source is thrown away.
787 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
789 if (dstaddr == SWAPBLK_NONE) {
791 * Destination has no swapblk and is not resident,
792 * copy source.
794 swblk_t srcaddr;
796 srcaddr = swp_pager_meta_ctl(srcobject,
797 base_index + i, SWM_POP);
799 if (srcaddr != SWAPBLK_NONE)
800 swp_pager_meta_build(dstobject, i, srcaddr);
801 } else {
803 * Destination has valid swapblk or it is represented
804 * by a resident page. We destroy the sourceblock.
806 swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
811 * Free left over swap blocks in source.
813 * We have to revert the type to OBJT_DEFAULT so we do not accidently
814 * double-remove the object from the swap queues.
816 if (destroysource) {
818 * Reverting the type is not necessary, the caller is going
819 * to destroy srcobject directly, but I'm doing it here
820 * for consistency since we've removed the object from its
821 * queues.
823 swp_pager_meta_free_all(srcobject);
824 if (srcobject->type == OBJT_SWAP)
825 srcobject->type = OBJT_DEFAULT;
830 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for
831 * the requested page.
833 * We determine whether good backing store exists for the requested
834 * page and return TRUE if it does, FALSE if it doesn't.
836 * If TRUE, we also try to determine how much valid, contiguous backing
837 * store exists before and after the requested page within a reasonable
838 * distance. We do not try to restrict it to the swap device stripe
839 * (that is handled in getpages/putpages). It probably isn't worth
840 * doing here.
842 * No requirements.
844 boolean_t
845 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
847 swblk_t blk0;
850 * do we have good backing store at the requested index ?
852 vm_object_hold(object);
853 blk0 = swp_pager_meta_ctl(object, pindex, 0);
855 if (blk0 == SWAPBLK_NONE) {
856 vm_object_drop(object);
857 return (FALSE);
859 vm_object_drop(object);
860 return (TRUE);
864 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
866 * This removes any associated swap backing store, whether valid or
867 * not, from the page. This operates on any VM object, not just OBJT_SWAP
868 * objects.
870 * This routine is typically called when a page is made dirty, at
871 * which point any associated swap can be freed. MADV_FREE also
872 * calls us in a special-case situation
874 * NOTE!!! If the page is clean and the swap was valid, the caller
875 * should make the page dirty before calling this routine.
876 * This routine does NOT change the m->dirty status of the page.
877 * Also: MADV_FREE depends on it.
879 * The page must be busied.
880 * The caller can hold the object to avoid blocking, else we might block.
881 * No other requirements.
883 void
884 swap_pager_unswapped(vm_page_t m)
886 if (m->flags & PG_SWAPPED) {
887 vm_object_hold(m->object);
888 KKASSERT(m->flags & PG_SWAPPED);
889 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
890 vm_page_flag_clear(m, PG_SWAPPED);
891 vm_object_drop(m->object);
896 * SWAP_PAGER_STRATEGY() - read, write, free blocks
898 * This implements a VM OBJECT strategy function using swap backing store.
899 * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
900 * types.
902 * This is intended to be a cacheless interface (i.e. caching occurs at
903 * higher levels), and is also used as a swap-based SSD cache for vnode
904 * and device objects.
906 * All I/O goes directly to and from the swap device.
908 * We currently attempt to run I/O synchronously or asynchronously as
909 * the caller requests. This isn't perfect because we loose error
910 * sequencing when we run multiple ops in parallel to satisfy a request.
911 * But this is swap, so we let it all hang out.
913 * No requirements.
915 void
916 swap_pager_strategy(vm_object_t object, struct bio *bio)
918 struct buf *bp = bio->bio_buf;
919 struct bio *nbio;
920 vm_pindex_t start;
921 vm_pindex_t biox_blkno = 0;
922 int count;
923 char *data;
924 struct bio *biox;
925 struct buf *bufx;
926 #if 0
927 struct bio_track *track;
928 #endif
930 #if 0
932 * tracking for swapdev vnode I/Os
934 if (bp->b_cmd == BUF_CMD_READ)
935 track = &swapdev_vp->v_track_read;
936 else
937 track = &swapdev_vp->v_track_write;
938 #endif
940 if (bp->b_bcount & PAGE_MASK) {
941 bp->b_error = EINVAL;
942 bp->b_flags |= B_ERROR | B_INVAL;
943 biodone(bio);
944 kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
945 "not page bounded\n",
946 bp, (long long)bio->bio_offset, (int)bp->b_bcount);
947 return;
951 * Clear error indication, initialize page index, count, data pointer.
953 bp->b_error = 0;
954 bp->b_flags &= ~B_ERROR;
955 bp->b_resid = bp->b_bcount;
957 start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
958 count = howmany(bp->b_bcount, PAGE_SIZE);
959 data = bp->b_data;
962 * Deal with BUF_CMD_FREEBLKS
964 if (bp->b_cmd == BUF_CMD_FREEBLKS) {
966 * FREE PAGE(s) - destroy underlying swap that is no longer
967 * needed.
969 vm_object_hold(object);
970 swp_pager_meta_free(object, start, count);
971 vm_object_drop(object);
972 bp->b_resid = 0;
973 biodone(bio);
974 return;
978 * We need to be able to create a new cluster of I/O's. We cannot
979 * use the caller fields of the passed bio so push a new one.
981 * Because nbio is just a placeholder for the cluster links,
982 * we can biodone() the original bio instead of nbio to make
983 * things a bit more efficient.
985 nbio = push_bio(bio);
986 nbio->bio_offset = bio->bio_offset;
987 nbio->bio_caller_info1.cluster_head = NULL;
988 nbio->bio_caller_info2.cluster_tail = NULL;
990 biox = NULL;
991 bufx = NULL;
994 * Execute read or write
996 vm_object_hold(object);
998 while (count > 0) {
999 swblk_t blk;
1002 * Obtain block. If block not found and writing, allocate a
1003 * new block and build it into the object.
1005 blk = swp_pager_meta_ctl(object, start, 0);
1006 if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
1007 blk = swp_pager_getswapspace(object, 1);
1008 if (blk == SWAPBLK_NONE) {
1009 bp->b_error = ENOMEM;
1010 bp->b_flags |= B_ERROR;
1011 break;
1013 swp_pager_meta_build(object, start, blk);
1017 * Do we have to flush our current collection? Yes if:
1019 * - no swap block at this index
1020 * - swap block is not contiguous
1021 * - we cross a physical disk boundry in the
1022 * stripe.
1024 if (
1025 biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
1026 ((biox_blkno ^ blk) & ~SWB_DMMASK)
1029 if (bp->b_cmd == BUF_CMD_READ) {
1030 ++mycpu->gd_cnt.v_swapin;
1031 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1032 } else {
1033 ++mycpu->gd_cnt.v_swapout;
1034 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1035 bufx->b_dirtyend = bufx->b_bcount;
1039 * Finished with this buf.
1041 KKASSERT(bufx->b_bcount != 0);
1042 if (bufx->b_cmd != BUF_CMD_READ)
1043 bufx->b_dirtyend = bufx->b_bcount;
1044 biox = NULL;
1045 bufx = NULL;
1049 * Add new swapblk to biox, instantiating biox if necessary.
1050 * Zero-fill reads are able to take a shortcut.
1052 if (blk == SWAPBLK_NONE) {
1054 * We can only get here if we are reading.
1056 bzero(data, PAGE_SIZE);
1057 bp->b_resid -= PAGE_SIZE;
1058 } else {
1059 if (biox == NULL) {
1060 /* XXX chain count > 4, wait to <= 4 */
1062 bufx = getpbuf(NULL);
1063 biox = &bufx->b_bio1;
1064 cluster_append(nbio, bufx);
1065 bufx->b_cmd = bp->b_cmd;
1066 biox->bio_done = swap_chain_iodone;
1067 biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1068 biox->bio_caller_info1.cluster_parent = nbio;
1069 biox_blkno = blk;
1070 bufx->b_bcount = 0;
1071 bufx->b_data = data;
1073 bufx->b_bcount += PAGE_SIZE;
1075 --count;
1076 ++start;
1077 data += PAGE_SIZE;
1080 vm_object_drop(object);
1083 * Flush out last buffer
1085 if (biox) {
1086 if (bufx->b_cmd == BUF_CMD_READ) {
1087 ++mycpu->gd_cnt.v_swapin;
1088 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1089 } else {
1090 ++mycpu->gd_cnt.v_swapout;
1091 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1092 bufx->b_dirtyend = bufx->b_bcount;
1094 KKASSERT(bufx->b_bcount);
1095 if (bufx->b_cmd != BUF_CMD_READ)
1096 bufx->b_dirtyend = bufx->b_bcount;
1097 /* biox, bufx = NULL */
1101 * Now initiate all the I/O. Be careful looping on our chain as
1102 * I/O's may complete while we are still initiating them.
1104 * If the request is a 100% sparse read no bios will be present
1105 * and we just biodone() the buffer.
1107 nbio->bio_caller_info2.cluster_tail = NULL;
1108 bufx = nbio->bio_caller_info1.cluster_head;
1110 if (bufx) {
1111 while (bufx) {
1112 biox = &bufx->b_bio1;
1113 BUF_KERNPROC(bufx);
1114 bufx = bufx->b_cluster_next;
1115 vn_strategy(swapdev_vp, biox);
1117 } else {
1118 biodone(bio);
1122 * Completion of the cluster will also call biodone_chain(nbio).
1123 * We never call biodone(nbio) so we don't have to worry about
1124 * setting up a bio_done callback. It's handled in the sub-IO.
1126 /**/
1130 * biodone callback
1132 * No requirements.
1134 static void
1135 swap_chain_iodone(struct bio *biox)
1137 struct buf **nextp;
1138 struct buf *bufx; /* chained sub-buffer */
1139 struct bio *nbio; /* parent nbio with chain glue */
1140 struct buf *bp; /* original bp associated with nbio */
1141 int chain_empty;
1143 bufx = biox->bio_buf;
1144 nbio = biox->bio_caller_info1.cluster_parent;
1145 bp = nbio->bio_buf;
1148 * Update the original buffer
1150 KKASSERT(bp != NULL);
1151 if (bufx->b_flags & B_ERROR) {
1152 atomic_set_int(&bufx->b_flags, B_ERROR);
1153 bp->b_error = bufx->b_error; /* race ok */
1154 } else if (bufx->b_resid != 0) {
1155 atomic_set_int(&bufx->b_flags, B_ERROR);
1156 bp->b_error = EINVAL; /* race ok */
1157 } else {
1158 atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1162 * Remove us from the chain.
1164 spin_lock(&swapbp_spin);
1165 nextp = &nbio->bio_caller_info1.cluster_head;
1166 while (*nextp != bufx) {
1167 KKASSERT(*nextp != NULL);
1168 nextp = &(*nextp)->b_cluster_next;
1170 *nextp = bufx->b_cluster_next;
1171 chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1172 spin_unlock(&swapbp_spin);
1175 * Clean up bufx. If the chain is now empty we finish out
1176 * the parent. Note that we may be racing other completions
1177 * so we must use the chain_empty status from above.
1179 if (chain_empty) {
1180 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1181 atomic_set_int(&bp->b_flags, B_ERROR);
1182 bp->b_error = EINVAL;
1184 biodone_chain(nbio);
1186 relpbuf(bufx, NULL);
1190 * SWAP_PAGER_GETPAGES() - bring page in from swap
1192 * The requested page may have to be brought in from swap. Calculate the
1193 * swap block and bring in additional pages if possible. All pages must
1194 * have contiguous swap block assignments and reside in the same object.
1196 * The caller has a single vm_object_pip_add() reference prior to
1197 * calling us and we should return with the same.
1199 * The caller has BUSY'd the page. We should return with (*mpp) left busy,
1200 * and any additinal pages unbusied.
1202 * If the caller encounters a PG_RAM page it will pass it to us even though
1203 * it may be valid and dirty. We cannot overwrite the page in this case!
1204 * The case is used to allow us to issue pure read-aheads.
1206 * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1207 * the PG_RAM page is validated at the same time as mreq. What we
1208 * really need to do is issue a separate read-ahead pbuf.
1210 * No requirements.
1212 static int
1213 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1215 struct buf *bp;
1216 struct bio *bio;
1217 vm_page_t mreq;
1218 vm_page_t m;
1219 vm_offset_t kva;
1220 swblk_t blk;
1221 int i;
1222 int j;
1223 int raonly;
1224 int error;
1225 u_int32_t flags;
1226 vm_page_t marray[XIO_INTERNAL_PAGES];
1228 mreq = *mpp;
1230 vm_object_hold(object);
1231 if (mreq->object != object) {
1232 panic("swap_pager_getpages: object mismatch %p/%p",
1233 object,
1234 mreq->object
1239 * We don't want to overwrite a fully valid page as it might be
1240 * dirty. This case can occur when e.g. vm_fault hits a perfectly
1241 * valid page with PG_RAM set.
1243 * In this case we see if the next page is a suitable page-in
1244 * candidate and if it is we issue read-ahead. PG_RAM will be
1245 * set on the last page of the read-ahead to continue the pipeline.
1247 if (mreq->valid == VM_PAGE_BITS_ALL) {
1248 if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1249 vm_object_drop(object);
1250 return(VM_PAGER_OK);
1252 blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1253 if (blk == SWAPBLK_NONE) {
1254 vm_object_drop(object);
1255 return(VM_PAGER_OK);
1257 m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1258 TRUE, &error);
1259 if (error) {
1260 vm_object_drop(object);
1261 return(VM_PAGER_OK);
1262 } else if (m == NULL) {
1264 * Use VM_ALLOC_QUICK to avoid blocking on cache
1265 * page reuse.
1267 m = vm_page_alloc(object, mreq->pindex + 1,
1268 VM_ALLOC_QUICK);
1269 if (m == NULL) {
1270 vm_object_drop(object);
1271 return(VM_PAGER_OK);
1273 } else {
1274 if (m->valid) {
1275 vm_page_wakeup(m);
1276 vm_object_drop(object);
1277 return(VM_PAGER_OK);
1279 vm_page_unqueue_nowakeup(m);
1281 /* page is busy */
1282 mreq = m;
1283 raonly = 1;
1284 } else {
1285 raonly = 0;
1289 * Try to block-read contiguous pages from swap if sequential,
1290 * otherwise just read one page. Contiguous pages from swap must
1291 * reside within a single device stripe because the I/O cannot be
1292 * broken up across multiple stripes.
1294 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1295 * set up such that the case(s) are handled implicitly.
1297 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1298 marray[0] = mreq;
1300 for (i = 1; i <= swap_burst_read &&
1301 i < XIO_INTERNAL_PAGES &&
1302 mreq->pindex + i < object->size; ++i) {
1303 swblk_t iblk;
1305 iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1306 if (iblk != blk + i)
1307 break;
1308 if ((blk ^ iblk) & ~SWB_DMMASK)
1309 break;
1310 m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1311 TRUE, &error);
1312 if (error) {
1313 break;
1314 } else if (m == NULL) {
1316 * Use VM_ALLOC_QUICK to avoid blocking on cache
1317 * page reuse.
1319 m = vm_page_alloc(object, mreq->pindex + i,
1320 VM_ALLOC_QUICK);
1321 if (m == NULL)
1322 break;
1323 } else {
1324 if (m->valid) {
1325 vm_page_wakeup(m);
1326 break;
1328 vm_page_unqueue_nowakeup(m);
1330 /* page is busy */
1331 marray[i] = m;
1333 if (i > 1)
1334 vm_page_flag_set(marray[i - 1], PG_RAM);
1337 * If mreq is the requested page and we have nothing to do return
1338 * VM_PAGER_FAIL. If raonly is set mreq is just another read-ahead
1339 * page and must be cleaned up.
1341 if (blk == SWAPBLK_NONE) {
1342 KKASSERT(i == 1);
1343 if (raonly) {
1344 vnode_pager_freepage(mreq);
1345 vm_object_drop(object);
1346 return(VM_PAGER_OK);
1347 } else {
1348 vm_object_drop(object);
1349 return(VM_PAGER_FAIL);
1354 * map our page(s) into kva for input
1356 bp = getpbuf_kva(&nsw_rcount);
1357 bio = &bp->b_bio1;
1358 kva = (vm_offset_t) bp->b_kvabase;
1359 bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1360 pmap_qenter(kva, bp->b_xio.xio_pages, i);
1362 bp->b_data = (caddr_t)kva;
1363 bp->b_bcount = PAGE_SIZE * i;
1364 bp->b_xio.xio_npages = i;
1365 bio->bio_done = swp_pager_async_iodone;
1366 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1367 bio->bio_caller_info1.index = SWBIO_READ;
1370 * Set index. If raonly set the index beyond the array so all
1371 * the pages are treated the same, otherwise the original mreq is
1372 * at index 0.
1374 if (raonly)
1375 bio->bio_driver_info = (void *)(intptr_t)i;
1376 else
1377 bio->bio_driver_info = (void *)(intptr_t)0;
1379 for (j = 0; j < i; ++j)
1380 vm_page_flag_set(bp->b_xio.xio_pages[j], PG_SWAPINPROG);
1382 mycpu->gd_cnt.v_swapin++;
1383 mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1386 * We still hold the lock on mreq, and our automatic completion routine
1387 * does not remove it.
1389 vm_object_pip_add(object, bp->b_xio.xio_npages);
1392 * perform the I/O. NOTE!!! bp cannot be considered valid after
1393 * this point because we automatically release it on completion.
1394 * Instead, we look at the one page we are interested in which we
1395 * still hold a lock on even through the I/O completion.
1397 * The other pages in our m[] array are also released on completion,
1398 * so we cannot assume they are valid anymore either.
1400 bp->b_cmd = BUF_CMD_READ;
1401 BUF_KERNPROC(bp);
1402 vn_strategy(swapdev_vp, bio);
1405 * Wait for the page we want to complete. PG_SWAPINPROG is always
1406 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE
1407 * is set in the meta-data.
1409 * If this is a read-ahead only we return immediately without
1410 * waiting for I/O.
1412 if (raonly) {
1413 vm_object_drop(object);
1414 return(VM_PAGER_OK);
1418 * Read-ahead includes originally requested page case.
1420 for (;;) {
1421 flags = mreq->flags;
1422 cpu_ccfence();
1423 if ((flags & PG_SWAPINPROG) == 0)
1424 break;
1425 tsleep_interlock(mreq, 0);
1426 if (!atomic_cmpset_int(&mreq->flags, flags,
1427 flags | PG_WANTED | PG_REFERENCED)) {
1428 continue;
1430 mycpu->gd_cnt.v_intrans++;
1431 if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1432 kprintf(
1433 "swap_pager: indefinite wait buffer: "
1434 " bp %p offset: %lld, size: %ld\n",
1436 (long long)bio->bio_offset,
1437 (long)bp->b_bcount
1443 * Disallow speculative reads prior to the PG_SWAPINPROG test.
1445 cpu_lfence();
1448 * mreq is left busied after completion, but all the other pages
1449 * are freed. If we had an unrecoverable read error the page will
1450 * not be valid.
1452 vm_object_drop(object);
1453 if (mreq->valid != VM_PAGE_BITS_ALL)
1454 return(VM_PAGER_ERROR);
1455 else
1456 return(VM_PAGER_OK);
1459 * A final note: in a low swap situation, we cannot deallocate swap
1460 * and mark a page dirty here because the caller is likely to mark
1461 * the page clean when we return, causing the page to possibly revert
1462 * to all-zero's later.
1467 * swap_pager_putpages:
1469 * Assign swap (if necessary) and initiate I/O on the specified pages.
1471 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects
1472 * are automatically converted to SWAP objects.
1474 * In a low memory situation we may block in vn_strategy(), but the new
1475 * vm_page reservation system coupled with properly written VFS devices
1476 * should ensure that no low-memory deadlock occurs. This is an area
1477 * which needs work.
1479 * The parent has N vm_object_pip_add() references prior to
1480 * calling us and will remove references for rtvals[] that are
1481 * not set to VM_PAGER_PEND. We need to remove the rest on I/O
1482 * completion.
1484 * The parent has soft-busy'd the pages it passes us and will unbusy
1485 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1486 * We need to unbusy the rest on I/O completion.
1488 * No requirements.
1490 void
1491 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1492 int flags, int *rtvals)
1494 int i;
1495 int n = 0;
1497 vm_object_hold(object);
1499 if (count && m[0]->object != object) {
1500 panic("swap_pager_getpages: object mismatch %p/%p",
1501 object,
1502 m[0]->object
1507 * Step 1
1509 * Turn object into OBJT_SWAP
1510 * Check for bogus sysops
1512 * Force sync if not pageout process, we don't want any single
1513 * non-pageout process to be able to hog the I/O subsystem! This
1514 * can be overridden by setting.
1516 if (object->type == OBJT_DEFAULT) {
1517 if (object->type == OBJT_DEFAULT)
1518 swp_pager_meta_convert(object);
1522 * Normally we force synchronous swap I/O if this is not the
1523 * pageout daemon to prevent any single user process limited
1524 * via RLIMIT_RSS from hogging swap write bandwidth.
1526 if (curthread != pagethread && swap_user_async == 0)
1527 flags |= VM_PAGER_PUT_SYNC;
1530 * Step 2
1532 * Update nsw parameters from swap_async_max sysctl values.
1533 * Do not let the sysop crash the machine with bogus numbers.
1535 if (swap_async_max != nsw_wcount_async_max) {
1536 int n;
1539 * limit range
1541 if ((n = swap_async_max) > nswbuf_kva / 2)
1542 n = nswbuf_kva / 2;
1543 if (n < 1)
1544 n = 1;
1545 swap_async_max = n;
1548 * Adjust difference ( if possible ). If the current async
1549 * count is too low, we may not be able to make the adjustment
1550 * at this time.
1552 * vm_token needed for nsw_wcount sleep interlock
1554 lwkt_gettoken(&vm_token);
1555 n -= nsw_wcount_async_max;
1556 if (nsw_wcount_async + n >= 0) {
1557 nsw_wcount_async_max += n;
1558 pbuf_adjcount(&nsw_wcount_async, n);
1560 lwkt_reltoken(&vm_token);
1564 * Step 3
1566 * Assign swap blocks and issue I/O. We reallocate swap on the fly.
1567 * The page is left dirty until the pageout operation completes
1568 * successfully.
1571 for (i = 0; i < count; i += n) {
1572 struct buf *bp;
1573 struct bio *bio;
1574 swblk_t blk;
1575 int j;
1578 * Maximum I/O size is limited by a number of factors.
1581 n = min(BLIST_MAX_ALLOC, count - i);
1582 n = min(n, nsw_cluster_max);
1584 lwkt_gettoken(&vm_token);
1587 * Get biggest block of swap we can. If we fail, fall
1588 * back and try to allocate a smaller block. Don't go
1589 * overboard trying to allocate space if it would overly
1590 * fragment swap.
1592 while (
1593 (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1594 n > 4
1596 n >>= 1;
1598 if (blk == SWAPBLK_NONE) {
1599 for (j = 0; j < n; ++j)
1600 rtvals[i+j] = VM_PAGER_FAIL;
1601 lwkt_reltoken(&vm_token);
1602 continue;
1604 if (vm_report_swap_allocs > 0) {
1605 kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1606 --vm_report_swap_allocs;
1610 * The I/O we are constructing cannot cross a physical
1611 * disk boundry in the swap stripe.
1613 if ((blk ^ (blk + n)) & ~SWB_DMMASK) {
1614 j = ((blk + SWB_DMMAX) & ~SWB_DMMASK) - blk;
1615 swp_pager_freeswapspace(object, blk + j, n - j);
1616 n = j;
1620 * All I/O parameters have been satisfied, build the I/O
1621 * request and assign the swap space.
1623 if ((flags & VM_PAGER_PUT_SYNC))
1624 bp = getpbuf_kva(&nsw_wcount_sync);
1625 else
1626 bp = getpbuf_kva(&nsw_wcount_async);
1627 bio = &bp->b_bio1;
1629 lwkt_reltoken(&vm_token);
1631 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1633 bp->b_bcount = PAGE_SIZE * n;
1634 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1636 for (j = 0; j < n; ++j) {
1637 vm_page_t mreq = m[i+j];
1639 swp_pager_meta_build(mreq->object, mreq->pindex,
1640 blk + j);
1641 if (object->type == OBJT_SWAP)
1642 vm_page_dirty(mreq);
1643 rtvals[i+j] = VM_PAGER_OK;
1645 vm_page_flag_set(mreq, PG_SWAPINPROG);
1646 bp->b_xio.xio_pages[j] = mreq;
1648 bp->b_xio.xio_npages = n;
1650 mycpu->gd_cnt.v_swapout++;
1651 mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1653 bp->b_dirtyoff = 0; /* req'd for NFS */
1654 bp->b_dirtyend = bp->b_bcount; /* req'd for NFS */
1655 bp->b_cmd = BUF_CMD_WRITE;
1656 bio->bio_caller_info1.index = SWBIO_WRITE;
1658 #if 0
1659 /* PMAP TESTING CODE (useful, keep it in but #if 0'd) */
1660 bio->bio_crc = iscsi_crc32(bp->b_data, bp->b_bcount);
1662 uint32_t crc = 0;
1663 for (j = 0; j < n; ++j) {
1664 vm_page_t mm = bp->b_xio.xio_pages[j];
1665 char *p = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mm));
1666 crc = iscsi_crc32_ext(p, PAGE_SIZE, crc);
1668 if (bio->bio_crc != crc) {
1669 kprintf("PREWRITE MISMATCH-A "
1670 "bdata=%08x dmap=%08x bdata=%08x (%d)\n",
1671 bio->bio_crc,
1672 crc,
1673 iscsi_crc32(bp->b_data, bp->b_bcount),
1674 bp->b_bcount);
1675 #ifdef _KERNEL_VIRTUAL
1676 madvise(bp->b_data, bp->b_bcount, MADV_INVAL);
1677 #endif
1678 crc = 0;
1679 for (j = 0; j < n; ++j) {
1680 vm_page_t mm = bp->b_xio.xio_pages[j];
1681 char *p = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mm));
1682 crc = iscsi_crc32_ext(p, PAGE_SIZE, crc);
1684 kprintf("PREWRITE MISMATCH-B "
1685 "bdata=%08x dmap=%08x\n",
1686 iscsi_crc32(bp->b_data, bp->b_bcount),
1687 crc);
1690 #endif
1693 * asynchronous
1695 if ((flags & VM_PAGER_PUT_SYNC) == 0) {
1696 bio->bio_done = swp_pager_async_iodone;
1697 BUF_KERNPROC(bp);
1698 vn_strategy(swapdev_vp, bio);
1700 for (j = 0; j < n; ++j)
1701 rtvals[i+j] = VM_PAGER_PEND;
1702 continue;
1706 * Issue synchrnously.
1708 * Wait for the sync I/O to complete, then update rtvals.
1709 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1710 * our async completion routine at the end, thus avoiding a
1711 * double-free.
1713 bio->bio_caller_info1.index |= SWBIO_SYNC;
1714 if (flags & VM_PAGER_TRY_TO_CACHE)
1715 bio->bio_caller_info1.index |= SWBIO_TTC;
1716 bio->bio_done = biodone_sync;
1717 bio->bio_flags |= BIO_SYNC;
1718 vn_strategy(swapdev_vp, bio);
1719 biowait(bio, "swwrt");
1721 for (j = 0; j < n; ++j)
1722 rtvals[i+j] = VM_PAGER_PEND;
1725 * Now that we are through with the bp, we can call the
1726 * normal async completion, which frees everything up.
1728 swp_pager_async_iodone(bio);
1730 vm_object_drop(object);
1734 * No requirements.
1736 * Recalculate the low and high-water marks.
1738 void
1739 swap_pager_newswap(void)
1742 * NOTE: vm_swap_max cannot exceed 1 billion blocks, which is the
1743 * limitation imposed by the blist code. Remember that this
1744 * will be divided by NSWAP_MAX (4), so each swap device is
1745 * limited to around a terrabyte.
1747 if (vm_swap_max) {
1748 nswap_lowat = (int64_t)vm_swap_max * 4 / 100; /* 4% left */
1749 nswap_hiwat = (int64_t)vm_swap_max * 6 / 100; /* 6% left */
1750 kprintf("swap low/high-water marks set to %d/%d\n",
1751 nswap_lowat, nswap_hiwat);
1752 } else {
1753 nswap_lowat = 128;
1754 nswap_hiwat = 512;
1756 swp_sizecheck();
1760 * swp_pager_async_iodone:
1762 * Completion routine for asynchronous reads and writes from/to swap.
1763 * Also called manually by synchronous code to finish up a bp.
1765 * For READ operations, the pages are PG_BUSY'd. For WRITE operations,
1766 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY
1767 * unbusy all pages except the 'main' request page. For WRITE
1768 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1769 * because we marked them all VM_PAGER_PEND on return from putpages ).
1771 * This routine may not block.
1773 * No requirements.
1775 static void
1776 swp_pager_async_iodone(struct bio *bio)
1778 struct buf *bp = bio->bio_buf;
1779 vm_object_t object = NULL;
1780 int i;
1781 int *nswptr;
1784 * report error
1786 if (bp->b_flags & B_ERROR) {
1787 kprintf(
1788 "swap_pager: I/O error - %s failed; offset %lld,"
1789 "size %ld, error %d\n",
1790 ((bio->bio_caller_info1.index & SWBIO_READ) ?
1791 "pagein" : "pageout"),
1792 (long long)bio->bio_offset,
1793 (long)bp->b_bcount,
1794 bp->b_error
1799 * set object.
1801 if (bp->b_xio.xio_npages)
1802 object = bp->b_xio.xio_pages[0]->object;
1804 #if 0
1805 /* PMAP TESTING CODE (useful, keep it in but #if 0'd) */
1806 if (bio->bio_caller_info1.index & SWBIO_WRITE) {
1807 if (bio->bio_crc != iscsi_crc32(bp->b_data, bp->b_bcount)) {
1808 kprintf("SWAPOUT: BADCRC %08x %08x\n",
1809 bio->bio_crc,
1810 iscsi_crc32(bp->b_data, bp->b_bcount));
1811 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1812 vm_page_t m = bp->b_xio.xio_pages[i];
1813 if (m->flags & PG_WRITEABLE)
1814 kprintf("SWAPOUT: "
1815 "%d/%d %p writable\n",
1816 i, bp->b_xio.xio_npages, m);
1820 #endif
1823 * remove the mapping for kernel virtual
1825 pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1828 * cleanup pages. If an error occurs writing to swap, we are in
1829 * very serious trouble. If it happens to be a disk error, though,
1830 * we may be able to recover by reassigning the swap later on. So
1831 * in this case we remove the m->swapblk assignment for the page
1832 * but do not free it in the rlist. The errornous block(s) are thus
1833 * never reallocated as swap. Redirty the page and continue.
1835 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1836 vm_page_t m = bp->b_xio.xio_pages[i];
1838 if (bp->b_flags & B_ERROR) {
1840 * If an error occurs I'd love to throw the swapblk
1841 * away without freeing it back to swapspace, so it
1842 * can never be used again. But I can't from an
1843 * interrupt.
1846 if (bio->bio_caller_info1.index & SWBIO_READ) {
1848 * When reading, reqpage needs to stay
1849 * locked for the parent, but all other
1850 * pages can be freed. We still want to
1851 * wakeup the parent waiting on the page,
1852 * though. ( also: pg_reqpage can be -1 and
1853 * not match anything ).
1855 * We have to wake specifically requested pages
1856 * up too because we cleared PG_SWAPINPROG and
1857 * someone may be waiting for that.
1859 * NOTE: For reads, m->dirty will probably
1860 * be overridden by the original caller
1861 * of getpages so don't play cute tricks
1862 * here.
1864 * NOTE: We can't actually free the page from
1865 * here, because this is an interrupt.
1866 * It is not legal to mess with
1867 * object->memq from an interrupt.
1868 * Deactivate the page instead.
1870 * WARNING! The instant PG_SWAPINPROG is
1871 * cleared another cpu may start
1872 * using the mreq page (it will
1873 * check m->valid immediately).
1876 m->valid = 0;
1877 vm_page_flag_clear(m, PG_SWAPINPROG);
1880 * bio_driver_info holds the requested page
1881 * index.
1883 if (i != (int)(intptr_t)bio->bio_driver_info) {
1884 vm_page_deactivate(m);
1885 vm_page_wakeup(m);
1886 } else {
1887 vm_page_flash(m);
1890 * If i == bp->b_pager.pg_reqpage, do not wake
1891 * the page up. The caller needs to.
1893 } else {
1895 * If a write error occurs remove the swap
1896 * assignment (note that PG_SWAPPED may or
1897 * may not be set depending on prior activity).
1899 * Re-dirty OBJT_SWAP pages as there is no
1900 * other backing store, we can't throw the
1901 * page away.
1903 * Non-OBJT_SWAP pages (aka swapcache) must
1904 * not be dirtied since they may not have
1905 * been dirty in the first place, and they
1906 * do have backing store (the vnode).
1908 vm_page_busy_wait(m, FALSE, "swadpg");
1909 vm_object_hold(m->object);
1910 swp_pager_meta_ctl(m->object, m->pindex,
1911 SWM_FREE);
1912 vm_page_flag_clear(m, PG_SWAPPED);
1913 vm_object_drop(m->object);
1914 if (m->object->type == OBJT_SWAP) {
1915 vm_page_dirty(m);
1916 vm_page_activate(m);
1918 vm_page_io_finish(m);
1919 vm_page_flag_clear(m, PG_SWAPINPROG);
1920 vm_page_wakeup(m);
1922 } else if (bio->bio_caller_info1.index & SWBIO_READ) {
1924 * NOTE: for reads, m->dirty will probably be
1925 * overridden by the original caller of getpages so
1926 * we cannot set them in order to free the underlying
1927 * swap in a low-swap situation. I don't think we'd
1928 * want to do that anyway, but it was an optimization
1929 * that existed in the old swapper for a time before
1930 * it got ripped out due to precisely this problem.
1932 * If not the requested page then deactivate it.
1934 * Note that the requested page, reqpage, is left
1935 * busied, but we still have to wake it up. The
1936 * other pages are released (unbusied) by
1937 * vm_page_wakeup(). We do not set reqpage's
1938 * valid bits here, it is up to the caller.
1942 * NOTE: Can't call pmap_clear_modify(m) from an
1943 * interrupt thread, the pmap code may have to
1944 * map non-kernel pmaps and currently asserts
1945 * the case.
1947 * WARNING! The instant PG_SWAPINPROG is
1948 * cleared another cpu may start
1949 * using the mreq page (it will
1950 * check m->valid immediately).
1952 /*pmap_clear_modify(m);*/
1953 m->valid = VM_PAGE_BITS_ALL;
1954 vm_page_undirty(m);
1955 vm_page_flag_set(m, PG_SWAPPED);
1956 vm_page_flag_clear(m, PG_SWAPINPROG);
1959 * We have to wake specifically requested pages
1960 * up too because we cleared PG_SWAPINPROG and
1961 * could be waiting for it in getpages. However,
1962 * be sure to not unbusy getpages specifically
1963 * requested page - getpages expects it to be
1964 * left busy.
1966 * bio_driver_info holds the requested page
1968 if (i != (int)(intptr_t)bio->bio_driver_info) {
1969 vm_page_deactivate(m);
1970 vm_page_wakeup(m);
1971 } else {
1972 vm_page_flash(m);
1974 } else {
1976 * Mark the page clean but do not mess with the
1977 * pmap-layer's modified state. That state should
1978 * also be clear since the caller protected the
1979 * page VM_PROT_READ, but allow the case.
1981 * We are in an interrupt, avoid pmap operations.
1983 * If we have a severe page deficit, deactivate the
1984 * page. Do not try to cache it (which would also
1985 * involve a pmap op), because the page might still
1986 * be read-heavy.
1988 * When using the swap to cache clean vnode pages
1989 * we do not mess with the page dirty bits.
1991 * NOTE! Nobody is waiting for the key mreq page
1992 * on write completion.
1994 vm_page_busy_wait(m, FALSE, "swadpg");
1995 if (m->object->type == OBJT_SWAP)
1996 vm_page_undirty(m);
1997 vm_page_flag_set(m, PG_SWAPPED);
1998 vm_page_flag_clear(m, PG_SWAPINPROG);
1999 if (vm_page_count_severe())
2000 vm_page_deactivate(m);
2001 vm_page_io_finish(m);
2002 if (bio->bio_caller_info1.index & SWBIO_TTC)
2003 vm_page_try_to_cache(m);
2004 else
2005 vm_page_wakeup(m);
2010 * adjust pip. NOTE: the original parent may still have its own
2011 * pip refs on the object.
2014 if (object)
2015 vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
2018 * Release the physical I/O buffer.
2020 * NOTE: Due to synchronous operations in the write case b_cmd may
2021 * already be set to BUF_CMD_DONE and BIO_SYNC may have already
2022 * been cleared.
2024 * Use vm_token to interlock nsw_rcount/wcount wakeup?
2026 lwkt_gettoken(&vm_token);
2027 if (bio->bio_caller_info1.index & SWBIO_READ)
2028 nswptr = &nsw_rcount;
2029 else if (bio->bio_caller_info1.index & SWBIO_SYNC)
2030 nswptr = &nsw_wcount_sync;
2031 else
2032 nswptr = &nsw_wcount_async;
2033 bp->b_cmd = BUF_CMD_DONE;
2034 relpbuf(bp, nswptr);
2035 lwkt_reltoken(&vm_token);
2039 * Fault-in a potentially swapped page and remove the swap reference.
2040 * (used by swapoff code)
2042 * object must be held.
2044 static __inline void
2045 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
2047 struct vnode *vp;
2048 vm_page_t m;
2049 int error;
2051 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2053 if (object->type == OBJT_VNODE) {
2055 * Any swap related to a vnode is due to swapcache. We must
2056 * vget() the vnode in case it is not active (otherwise
2057 * vref() will panic). Calling vm_object_page_remove() will
2058 * ensure that any swap ref is removed interlocked with the
2059 * page. clean_only is set to TRUE so we don't throw away
2060 * dirty pages.
2062 vp = object->handle;
2063 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
2064 if (error == 0) {
2065 vm_object_page_remove(object, pindex, pindex + 1, TRUE);
2066 vput(vp);
2068 } else {
2070 * Otherwise it is a normal OBJT_SWAP object and we can
2071 * fault the page in and remove the swap.
2073 m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
2074 VM_PROT_NONE,
2075 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
2076 sharedp, &error);
2077 if (m)
2078 vm_page_unhold(m);
2083 * This removes all swap blocks related to a particular device. We have
2084 * to be careful of ripups during the scan.
2086 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
2089 swap_pager_swapoff(int devidx)
2091 struct vm_object_hash *hash;
2092 struct swswapoffinfo info;
2093 struct vm_object marker;
2094 vm_object_t object;
2095 int n;
2097 bzero(&marker, sizeof(marker));
2098 marker.type = OBJT_MARKER;
2100 for (n = 0; n < VMOBJ_HSIZE; ++n) {
2101 hash = &vm_object_hash[n];
2103 lwkt_gettoken(&hash->token);
2104 TAILQ_INSERT_HEAD(&hash->list, &marker, object_list);
2106 while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) {
2107 if (object->type == OBJT_MARKER)
2108 goto skip;
2109 if (object->type != OBJT_SWAP &&
2110 object->type != OBJT_VNODE)
2111 goto skip;
2112 vm_object_hold(object);
2113 if (object->type != OBJT_SWAP &&
2114 object->type != OBJT_VNODE) {
2115 vm_object_drop(object);
2116 goto skip;
2118 info.object = object;
2119 info.shared = 0;
2120 info.devidx = devidx;
2121 swblock_rb_tree_RB_SCAN(&object->swblock_root,
2122 NULL, swp_pager_swapoff_callback,
2123 &info);
2124 vm_object_drop(object);
2125 skip:
2126 if (object == TAILQ_NEXT(&marker, object_list)) {
2127 TAILQ_REMOVE(&hash->list, &marker, object_list);
2128 TAILQ_INSERT_AFTER(&hash->list, object,
2129 &marker, object_list);
2132 TAILQ_REMOVE(&hash->list, &marker, object_list);
2133 lwkt_reltoken(&hash->token);
2137 * If we fail to locate all swblocks we just fail gracefully and
2138 * do not bother to restore paging on the swap device. If the
2139 * user wants to retry the user can retry.
2141 if (swdevt[devidx].sw_nused)
2142 return (1);
2143 else
2144 return (0);
2147 static
2149 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2151 struct swswapoffinfo *info = data;
2152 vm_object_t object = info->object;
2153 vm_pindex_t index;
2154 swblk_t v;
2155 int i;
2157 index = swap->swb_index;
2158 for (i = 0; i < SWAP_META_PAGES; ++i) {
2160 * Make sure we don't race a dying object. This will
2161 * kill the scan of the object's swap blocks entirely.
2163 if (object->flags & OBJ_DEAD)
2164 return(-1);
2167 * Fault the page, which can obviously block. If the swap
2168 * structure disappears break out.
2170 v = swap->swb_pages[i];
2171 if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2172 swp_pager_fault_page(object, &info->shared,
2173 swap->swb_index + i);
2174 /* swap ptr might go away */
2175 if (RB_LOOKUP(swblock_rb_tree,
2176 &object->swblock_root, index) != swap) {
2177 break;
2181 return(0);
2184 /************************************************************************
2185 * SWAP META DATA *
2186 ************************************************************************
2188 * These routines manipulate the swap metadata stored in the
2189 * OBJT_SWAP object.
2191 * Swap metadata is implemented with a global hash and not directly
2192 * linked into the object. Instead the object simply contains
2193 * appropriate tracking counters.
2197 * Lookup the swblock containing the specified swap block index.
2199 * The caller must hold the object.
2201 static __inline
2202 struct swblock *
2203 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2205 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2206 index &= ~(vm_pindex_t)SWAP_META_MASK;
2207 return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2211 * Remove a swblock from the RB tree.
2213 * The caller must hold the object.
2215 static __inline
2216 void
2217 swp_pager_remove(vm_object_t object, struct swblock *swap)
2219 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2220 RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2224 * Convert default object to swap object if necessary
2226 * The caller must hold the object.
2228 static void
2229 swp_pager_meta_convert(vm_object_t object)
2231 if (object->type == OBJT_DEFAULT) {
2232 object->type = OBJT_SWAP;
2233 KKASSERT(object->swblock_count == 0);
2238 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object
2240 * We first convert the object to a swap object if it is a default
2241 * object. Vnode objects do not need to be converted.
2243 * The specified swapblk is added to the object's swap metadata. If
2244 * the swapblk is not valid, it is freed instead. Any previously
2245 * assigned swapblk is freed.
2247 * The caller must hold the object.
2249 static void
2250 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2252 struct swblock *swap;
2253 struct swblock *oswap;
2254 vm_pindex_t v;
2256 KKASSERT(swapblk != SWAPBLK_NONE);
2257 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2260 * Convert object if necessary
2262 if (object->type == OBJT_DEFAULT)
2263 swp_pager_meta_convert(object);
2266 * Locate swblock. If not found create, but if we aren't adding
2267 * anything just return. If we run out of space in the map we wait
2268 * and, since the hash table may have changed, retry.
2270 retry:
2271 swap = swp_pager_lookup(object, index);
2273 if (swap == NULL) {
2274 int i;
2276 swap = zalloc(swap_zone);
2277 if (swap == NULL) {
2278 vm_wait(0);
2279 goto retry;
2281 swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2282 swap->swb_count = 0;
2284 ++object->swblock_count;
2286 for (i = 0; i < SWAP_META_PAGES; ++i)
2287 swap->swb_pages[i] = SWAPBLK_NONE;
2288 oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2289 KKASSERT(oswap == NULL);
2293 * Delete prior contents of metadata.
2295 * NOTE: Decrement swb_count after the freeing operation (which
2296 * might block) to prevent racing destruction of the swblock.
2298 index &= SWAP_META_MASK;
2300 while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2301 swap->swb_pages[index] = SWAPBLK_NONE;
2302 /* can block */
2303 swp_pager_freeswapspace(object, v, 1);
2304 --swap->swb_count;
2305 --mycpu->gd_vmtotal.t_vm;
2309 * Enter block into metadata
2311 swap->swb_pages[index] = swapblk;
2312 if (swapblk != SWAPBLK_NONE) {
2313 ++swap->swb_count;
2314 ++mycpu->gd_vmtotal.t_vm;
2319 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2321 * The requested range of blocks is freed, with any associated swap
2322 * returned to the swap bitmap.
2324 * This routine will free swap metadata structures as they are cleaned
2325 * out. This routine does *NOT* operate on swap metadata associated
2326 * with resident pages.
2328 * The caller must hold the object.
2330 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2332 static void
2333 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2335 struct swfreeinfo info;
2337 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2340 * Nothing to do
2342 if (object->swblock_count == 0) {
2343 KKASSERT(RB_EMPTY(&object->swblock_root));
2344 return;
2346 if (count == 0)
2347 return;
2350 * Setup for RB tree scan. Note that the pindex range can be huge
2351 * due to the 64 bit page index space so we cannot safely iterate.
2353 info.object = object;
2354 info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2355 info.begi = index;
2356 info.endi = index + count - 1;
2357 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2358 swp_pager_meta_free_callback, &info);
2362 * The caller must hold the object.
2364 static
2366 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2368 struct swfreeinfo *info = data;
2369 vm_object_t object = info->object;
2370 int index;
2371 int eindex;
2374 * Figure out the range within the swblock. The wider scan may
2375 * return edge-case swap blocks when the start and/or end points
2376 * are in the middle of a block.
2378 if (swap->swb_index < info->begi)
2379 index = (int)info->begi & SWAP_META_MASK;
2380 else
2381 index = 0;
2383 if (swap->swb_index + SWAP_META_PAGES > info->endi)
2384 eindex = (int)info->endi & SWAP_META_MASK;
2385 else
2386 eindex = SWAP_META_MASK;
2389 * Scan and free the blocks. The loop terminates early
2390 * if (swap) runs out of blocks and could be freed.
2392 * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2393 * to deal with a zfree race.
2395 while (index <= eindex) {
2396 swblk_t v = swap->swb_pages[index];
2398 if (v != SWAPBLK_NONE) {
2399 swap->swb_pages[index] = SWAPBLK_NONE;
2400 /* can block */
2401 swp_pager_freeswapspace(object, v, 1);
2402 --mycpu->gd_vmtotal.t_vm;
2403 if (--swap->swb_count == 0) {
2404 swp_pager_remove(object, swap);
2405 zfree(swap_zone, swap);
2406 --object->swblock_count;
2407 break;
2410 ++index;
2413 /* swap may be invalid here due to zfree above */
2414 lwkt_yield();
2416 return(0);
2420 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2422 * This routine locates and destroys all swap metadata associated with
2423 * an object.
2425 * NOTE: Decrement swb_count after the freeing operation (which
2426 * might block) to prevent racing destruction of the swblock.
2428 * The caller must hold the object.
2430 static void
2431 swp_pager_meta_free_all(vm_object_t object)
2433 struct swblock *swap;
2434 int i;
2436 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2438 while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2439 swp_pager_remove(object, swap);
2440 for (i = 0; i < SWAP_META_PAGES; ++i) {
2441 swblk_t v = swap->swb_pages[i];
2442 if (v != SWAPBLK_NONE) {
2443 /* can block */
2444 swp_pager_freeswapspace(object, v, 1);
2445 --swap->swb_count;
2446 --mycpu->gd_vmtotal.t_vm;
2449 if (swap->swb_count != 0)
2450 panic("swap_pager_meta_free_all: swb_count != 0");
2451 zfree(swap_zone, swap);
2452 --object->swblock_count;
2453 lwkt_yield();
2455 KKASSERT(object->swblock_count == 0);
2459 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data.
2461 * This routine is capable of looking up, popping, or freeing
2462 * swapblk assignments in the swap meta data or in the vm_page_t.
2463 * The routine typically returns the swapblk being looked-up, or popped,
2464 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2465 * was invalid. This routine will automatically free any invalid
2466 * meta-data swapblks.
2468 * It is not possible to store invalid swapblks in the swap meta data
2469 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2471 * When acting on a busy resident page and paging is in progress, we
2472 * have to wait until paging is complete but otherwise can act on the
2473 * busy page.
2475 * SWM_FREE remove and free swap block from metadata
2476 * SWM_POP remove from meta data but do not free.. pop it out
2478 * The caller must hold the object.
2480 static swblk_t
2481 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2483 struct swblock *swap;
2484 swblk_t r1;
2486 if (object->swblock_count == 0)
2487 return(SWAPBLK_NONE);
2489 r1 = SWAPBLK_NONE;
2490 swap = swp_pager_lookup(object, index);
2492 if (swap != NULL) {
2493 index &= SWAP_META_MASK;
2494 r1 = swap->swb_pages[index];
2496 if (r1 != SWAPBLK_NONE) {
2497 if (flags & (SWM_FREE|SWM_POP)) {
2498 swap->swb_pages[index] = SWAPBLK_NONE;
2499 --mycpu->gd_vmtotal.t_vm;
2500 if (--swap->swb_count == 0) {
2501 swp_pager_remove(object, swap);
2502 zfree(swap_zone, swap);
2503 --object->swblock_count;
2506 /* swap ptr may be invalid */
2507 if (flags & SWM_FREE) {
2508 swp_pager_freeswapspace(object, r1, 1);
2509 r1 = SWAPBLK_NONE;
2512 /* swap ptr may be invalid */
2514 return(r1);