HAMMER: MFC to 2.0
[dragonfly.git] / sys / vfs / hammer / hammer_inode.c
blob69b2efcf520cab3f237a8ca101819f807a0ab63d
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_inode.c,v 1.103.2.3 2008/08/02 21:24:28 dillon Exp $
37 #include "hammer.h"
38 #include <vm/vm_extern.h>
39 #include <sys/buf.h>
40 #include <sys/buf2.h>
42 static int hammer_unload_inode(struct hammer_inode *ip);
43 static void hammer_free_inode(hammer_inode_t ip);
44 static void hammer_flush_inode_core(hammer_inode_t ip,
45 hammer_flush_group_t flg, int flags);
46 static int hammer_setup_child_callback(hammer_record_t rec, void *data);
47 #if 0
48 static int hammer_syncgrp_child_callback(hammer_record_t rec, void *data);
49 #endif
50 static int hammer_setup_parent_inodes(hammer_inode_t ip,
51 hammer_flush_group_t flg);
52 static int hammer_setup_parent_inodes_helper(hammer_record_t record,
53 hammer_flush_group_t flg);
54 static void hammer_inode_wakereclaims(hammer_inode_t ip);
56 #ifdef DEBUG_TRUNCATE
57 extern struct hammer_inode *HammerTruncIp;
58 #endif
61 * RB-Tree support for inode structures
63 int
64 hammer_ino_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
66 if (ip1->obj_localization < ip2->obj_localization)
67 return(-1);
68 if (ip1->obj_localization > ip2->obj_localization)
69 return(1);
70 if (ip1->obj_id < ip2->obj_id)
71 return(-1);
72 if (ip1->obj_id > ip2->obj_id)
73 return(1);
74 if (ip1->obj_asof < ip2->obj_asof)
75 return(-1);
76 if (ip1->obj_asof > ip2->obj_asof)
77 return(1);
78 return(0);
82 * RB-Tree support for inode structures / special LOOKUP_INFO
84 static int
85 hammer_inode_info_cmp(hammer_inode_info_t info, hammer_inode_t ip)
87 if (info->obj_localization < ip->obj_localization)
88 return(-1);
89 if (info->obj_localization > ip->obj_localization)
90 return(1);
91 if (info->obj_id < ip->obj_id)
92 return(-1);
93 if (info->obj_id > ip->obj_id)
94 return(1);
95 if (info->obj_asof < ip->obj_asof)
96 return(-1);
97 if (info->obj_asof > ip->obj_asof)
98 return(1);
99 return(0);
103 * Used by hammer_scan_inode_snapshots() to locate all of an object's
104 * snapshots. Note that the asof field is not tested, which we can get
105 * away with because it is the lowest-priority field.
107 static int
108 hammer_inode_info_cmp_all_history(hammer_inode_t ip, void *data)
110 hammer_inode_info_t info = data;
112 if (ip->obj_localization > info->obj_localization)
113 return(1);
114 if (ip->obj_localization < info->obj_localization)
115 return(-1);
116 if (ip->obj_id > info->obj_id)
117 return(1);
118 if (ip->obj_id < info->obj_id)
119 return(-1);
120 return(0);
124 * Used by hammer_unload_pseudofs() to locate all inodes associated with
125 * a particular PFS.
127 static int
128 hammer_inode_pfs_cmp(hammer_inode_t ip, void *data)
130 u_int32_t localization = *(u_int32_t *)data;
131 if (ip->obj_localization > localization)
132 return(1);
133 if (ip->obj_localization < localization)
134 return(-1);
135 return(0);
139 * RB-Tree support for pseudofs structures
141 static int
142 hammer_pfs_rb_compare(hammer_pseudofs_inmem_t p1, hammer_pseudofs_inmem_t p2)
144 if (p1->localization < p2->localization)
145 return(-1);
146 if (p1->localization > p2->localization)
147 return(1);
148 return(0);
152 RB_GENERATE(hammer_ino_rb_tree, hammer_inode, rb_node, hammer_ino_rb_compare);
153 RB_GENERATE_XLOOKUP(hammer_ino_rb_tree, INFO, hammer_inode, rb_node,
154 hammer_inode_info_cmp, hammer_inode_info_t);
155 RB_GENERATE2(hammer_pfs_rb_tree, hammer_pseudofs_inmem, rb_node,
156 hammer_pfs_rb_compare, u_int32_t, localization);
159 * The kernel is not actively referencing this vnode but is still holding
160 * it cached.
162 * This is called from the frontend.
165 hammer_vop_inactive(struct vop_inactive_args *ap)
167 struct hammer_inode *ip = VTOI(ap->a_vp);
170 * Degenerate case
172 if (ip == NULL) {
173 vrecycle(ap->a_vp);
174 return(0);
178 * If the inode no longer has visibility in the filesystem try to
179 * recycle it immediately, even if the inode is dirty. Recycling
180 * it quickly allows the system to reclaim buffer cache and VM
181 * resources which can matter a lot in a heavily loaded system.
183 * This can deadlock in vfsync() if we aren't careful.
185 * Do not queue the inode to the flusher if we still have visibility,
186 * otherwise namespace calls such as chmod will unnecessarily generate
187 * multiple inode updates.
189 hammer_inode_unloadable_check(ip, 0);
190 if (ip->ino_data.nlinks == 0) {
191 if (ip->flags & HAMMER_INODE_MODMASK)
192 hammer_flush_inode(ip, 0);
193 vrecycle(ap->a_vp);
195 return(0);
199 * Release the vnode association. This is typically (but not always)
200 * the last reference on the inode.
202 * Once the association is lost we are on our own with regards to
203 * flushing the inode.
206 hammer_vop_reclaim(struct vop_reclaim_args *ap)
208 struct hammer_inode *ip;
209 hammer_mount_t hmp;
210 struct vnode *vp;
212 vp = ap->a_vp;
214 if ((ip = vp->v_data) != NULL) {
215 hmp = ip->hmp;
216 vp->v_data = NULL;
217 ip->vp = NULL;
219 if ((ip->flags & HAMMER_INODE_RECLAIM) == 0) {
220 ++hammer_count_reclaiming;
221 ++hmp->inode_reclaims;
222 ip->flags |= HAMMER_INODE_RECLAIM;
225 * Poke the flusher. If we don't do this programs
226 * will start to stall on the reclaiming count.
228 if (hmp->inode_reclaims > HAMMER_RECLAIM_FLUSH &&
229 (hmp->inode_reclaims & 255) == 0) {
230 hammer_flusher_async(hmp, NULL);
233 hammer_rel_inode(ip, 1);
235 return(0);
239 * Return a locked vnode for the specified inode. The inode must be
240 * referenced but NOT LOCKED on entry and will remain referenced on
241 * return.
243 * Called from the frontend.
246 hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
248 hammer_mount_t hmp;
249 struct vnode *vp;
250 int error = 0;
251 u_int8_t obj_type;
253 hmp = ip->hmp;
255 for (;;) {
256 if ((vp = ip->vp) == NULL) {
257 error = getnewvnode(VT_HAMMER, hmp->mp, vpp, 0, 0);
258 if (error)
259 break;
260 hammer_lock_ex(&ip->lock);
261 if (ip->vp != NULL) {
262 hammer_unlock(&ip->lock);
263 vp->v_type = VBAD;
264 vx_put(vp);
265 continue;
267 hammer_ref(&ip->lock);
268 vp = *vpp;
269 ip->vp = vp;
271 obj_type = ip->ino_data.obj_type;
272 vp->v_type = hammer_get_vnode_type(obj_type);
274 hammer_inode_wakereclaims(ip);
276 switch(ip->ino_data.obj_type) {
277 case HAMMER_OBJTYPE_CDEV:
278 case HAMMER_OBJTYPE_BDEV:
279 vp->v_ops = &hmp->mp->mnt_vn_spec_ops;
280 addaliasu(vp, ip->ino_data.rmajor,
281 ip->ino_data.rminor);
282 break;
283 case HAMMER_OBJTYPE_FIFO:
284 vp->v_ops = &hmp->mp->mnt_vn_fifo_ops;
285 break;
286 default:
287 break;
291 * Only mark as the root vnode if the ip is not
292 * historical, otherwise the VFS cache will get
293 * confused. The other half of the special handling
294 * is in hammer_vop_nlookupdotdot().
296 * Pseudo-filesystem roots also do not count.
298 if (ip->obj_id == HAMMER_OBJID_ROOT &&
299 ip->obj_asof == hmp->asof &&
300 ip->obj_localization == 0) {
301 vp->v_flag |= VROOT;
304 vp->v_data = (void *)ip;
305 /* vnode locked by getnewvnode() */
306 /* make related vnode dirty if inode dirty? */
307 hammer_unlock(&ip->lock);
308 if (vp->v_type == VREG)
309 vinitvmio(vp, ip->ino_data.size);
310 break;
314 * loop if the vget fails (aka races), or if the vp
315 * no longer matches ip->vp.
317 if (vget(vp, LK_EXCLUSIVE) == 0) {
318 if (vp == ip->vp)
319 break;
320 vput(vp);
323 *vpp = vp;
324 return(error);
328 * Locate all copies of the inode for obj_id compatible with the specified
329 * asof, reference, and issue the related call-back. This routine is used
330 * for direct-io invalidation and does not create any new inodes.
332 void
333 hammer_scan_inode_snapshots(hammer_mount_t hmp, hammer_inode_info_t iinfo,
334 int (*callback)(hammer_inode_t ip, void *data),
335 void *data)
337 hammer_ino_rb_tree_RB_SCAN(&hmp->rb_inos_root,
338 hammer_inode_info_cmp_all_history,
339 callback, iinfo);
343 * Acquire a HAMMER inode. The returned inode is not locked. These functions
344 * do not attach or detach the related vnode (use hammer_get_vnode() for
345 * that).
347 * The flags argument is only applied for newly created inodes, and only
348 * certain flags are inherited.
350 * Called from the frontend.
352 struct hammer_inode *
353 hammer_get_inode(hammer_transaction_t trans, hammer_inode_t dip,
354 int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
355 int flags, int *errorp)
357 hammer_mount_t hmp = trans->hmp;
358 struct hammer_inode_info iinfo;
359 struct hammer_cursor cursor;
360 struct hammer_inode *ip;
364 * Determine if we already have an inode cached. If we do then
365 * we are golden.
367 iinfo.obj_id = obj_id;
368 iinfo.obj_asof = asof;
369 iinfo.obj_localization = localization;
370 loop:
371 ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
372 if (ip) {
373 hammer_ref(&ip->lock);
374 *errorp = 0;
375 return(ip);
379 * Allocate a new inode structure and deal with races later.
381 ip = kmalloc(sizeof(*ip), M_HAMMER_INO, M_WAITOK|M_ZERO);
382 ++hammer_count_inodes;
383 ++hmp->count_inodes;
384 ip->obj_id = obj_id;
385 ip->obj_asof = iinfo.obj_asof;
386 ip->obj_localization = localization;
387 ip->hmp = hmp;
388 ip->flags = flags & HAMMER_INODE_RO;
389 ip->cache[0].ip = ip;
390 ip->cache[1].ip = ip;
391 if (hmp->ronly)
392 ip->flags |= HAMMER_INODE_RO;
393 ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
394 0x7FFFFFFFFFFFFFFFLL;
395 RB_INIT(&ip->rec_tree);
396 TAILQ_INIT(&ip->target_list);
397 hammer_ref(&ip->lock);
400 * Locate the on-disk inode. If this is a PFS root we always
401 * access the current version of the root inode and (if it is not
402 * a master) always access information under it with a snapshot
403 * TID.
405 retry:
406 hammer_init_cursor(trans, &cursor, (dip ? &dip->cache[0] : NULL), NULL);
407 cursor.key_beg.localization = localization + HAMMER_LOCALIZE_INODE;
408 cursor.key_beg.obj_id = ip->obj_id;
409 cursor.key_beg.key = 0;
410 cursor.key_beg.create_tid = 0;
411 cursor.key_beg.delete_tid = 0;
412 cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
413 cursor.key_beg.obj_type = 0;
415 cursor.asof = iinfo.obj_asof;
416 cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
417 HAMMER_CURSOR_ASOF;
419 *errorp = hammer_btree_lookup(&cursor);
420 if (*errorp == EDEADLK) {
421 hammer_done_cursor(&cursor);
422 goto retry;
426 * On success the B-Tree lookup will hold the appropriate
427 * buffer cache buffers and provide a pointer to the requested
428 * information. Copy the information to the in-memory inode
429 * and cache the B-Tree node to improve future operations.
431 if (*errorp == 0) {
432 ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
433 ip->ino_data = cursor.data->inode;
436 * cache[0] tries to cache the location of the object inode.
437 * The assumption is that it is near the directory inode.
439 * cache[1] tries to cache the location of the object data.
440 * The assumption is that it is near the directory data.
442 hammer_cache_node(&ip->cache[0], cursor.node);
443 if (dip && dip->cache[1].node)
444 hammer_cache_node(&ip->cache[1], dip->cache[1].node);
447 * The file should not contain any data past the file size
448 * stored in the inode. Setting save_trunc_off to the
449 * file size instead of max reduces B-Tree lookup overheads
450 * on append by allowing the flusher to avoid checking for
451 * record overwrites.
453 ip->save_trunc_off = ip->ino_data.size;
456 * Locate and assign the pseudofs management structure to
457 * the inode.
459 if (dip && dip->obj_localization == ip->obj_localization) {
460 ip->pfsm = dip->pfsm;
461 hammer_ref(&ip->pfsm->lock);
462 } else {
463 ip->pfsm = hammer_load_pseudofs(trans,
464 ip->obj_localization,
465 errorp);
466 *errorp = 0; /* ignore ENOENT */
471 * The inode is placed on the red-black tree and will be synced to
472 * the media when flushed or by the filesystem sync. If this races
473 * another instantiation/lookup the insertion will fail.
475 if (*errorp == 0) {
476 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
477 hammer_free_inode(ip);
478 hammer_done_cursor(&cursor);
479 goto loop;
481 ip->flags |= HAMMER_INODE_ONDISK;
482 } else {
483 if (ip->flags & HAMMER_INODE_RSV_INODES) {
484 ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
485 --hmp->rsv_inodes;
488 hammer_free_inode(ip);
489 ip = NULL;
491 hammer_done_cursor(&cursor);
492 return (ip);
496 * Create a new filesystem object, returning the inode in *ipp. The
497 * returned inode will be referenced. The inode is created in-memory.
499 * If pfsm is non-NULL the caller wishes to create the root inode for
500 * a master PFS.
503 hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
504 struct ucred *cred, hammer_inode_t dip,
505 hammer_pseudofs_inmem_t pfsm, struct hammer_inode **ipp)
507 hammer_mount_t hmp;
508 hammer_inode_t ip;
509 uid_t xuid;
510 int error;
512 hmp = trans->hmp;
514 ip = kmalloc(sizeof(*ip), M_HAMMER_INO, M_WAITOK|M_ZERO);
515 ++hammer_count_inodes;
516 ++hmp->count_inodes;
518 if (pfsm) {
519 KKASSERT(pfsm->localization != 0);
520 ip->obj_id = HAMMER_OBJID_ROOT;
521 ip->obj_localization = pfsm->localization;
522 } else {
523 KKASSERT(dip != NULL);
524 ip->obj_id = hammer_alloc_objid(hmp, dip);
525 ip->obj_localization = dip->obj_localization;
528 KKASSERT(ip->obj_id != 0);
529 ip->obj_asof = hmp->asof;
530 ip->hmp = hmp;
531 ip->flush_state = HAMMER_FST_IDLE;
532 ip->flags = HAMMER_INODE_DDIRTY |
533 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME;
534 ip->cache[0].ip = ip;
535 ip->cache[1].ip = ip;
537 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
538 /* ip->save_trunc_off = 0; (already zero) */
539 RB_INIT(&ip->rec_tree);
540 TAILQ_INIT(&ip->target_list);
542 ip->ino_data.atime = trans->time;
543 ip->ino_data.mtime = trans->time;
544 ip->ino_data.size = 0;
545 ip->ino_data.nlinks = 0;
548 * A nohistory designator on the parent directory is inherited by
549 * the child. We will do this even for pseudo-fs creation... the
550 * sysad can turn it off.
552 if (dip) {
553 ip->ino_data.uflags = dip->ino_data.uflags &
554 (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
557 ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
558 ip->ino_leaf.base.localization = ip->obj_localization +
559 HAMMER_LOCALIZE_INODE;
560 ip->ino_leaf.base.obj_id = ip->obj_id;
561 ip->ino_leaf.base.key = 0;
562 ip->ino_leaf.base.create_tid = 0;
563 ip->ino_leaf.base.delete_tid = 0;
564 ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
565 ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
567 ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
568 ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
569 ip->ino_data.mode = vap->va_mode;
570 ip->ino_data.ctime = trans->time;
573 * Setup the ".." pointer. This only needs to be done for directories
574 * but we do it for all objects as a recovery aid.
576 if (dip)
577 ip->ino_data.parent_obj_id = dip->ino_leaf.base.obj_id;
578 #if 0
580 * The parent_obj_localization field only applies to pseudo-fs roots.
581 * XXX this is no longer applicable, PFSs are no longer directly
582 * tied into the parent's directory structure.
584 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY &&
585 ip->obj_id == HAMMER_OBJID_ROOT) {
586 ip->ino_data.ext.obj.parent_obj_localization =
587 dip->obj_localization;
589 #endif
591 switch(ip->ino_leaf.base.obj_type) {
592 case HAMMER_OBJTYPE_CDEV:
593 case HAMMER_OBJTYPE_BDEV:
594 ip->ino_data.rmajor = vap->va_rmajor;
595 ip->ino_data.rminor = vap->va_rminor;
596 break;
597 default:
598 break;
602 * Calculate default uid/gid and overwrite with information from
603 * the vap.
605 if (dip) {
606 xuid = hammer_to_unix_xid(&dip->ino_data.uid);
607 xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode,
608 xuid, cred, &vap->va_mode);
609 } else {
610 xuid = 0;
612 ip->ino_data.mode = vap->va_mode;
614 if (vap->va_vaflags & VA_UID_UUID_VALID)
615 ip->ino_data.uid = vap->va_uid_uuid;
616 else if (vap->va_uid != (uid_t)VNOVAL)
617 hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
618 else
619 hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
621 if (vap->va_vaflags & VA_GID_UUID_VALID)
622 ip->ino_data.gid = vap->va_gid_uuid;
623 else if (vap->va_gid != (gid_t)VNOVAL)
624 hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
625 else if (dip)
626 ip->ino_data.gid = dip->ino_data.gid;
628 hammer_ref(&ip->lock);
630 if (pfsm) {
631 ip->pfsm = pfsm;
632 hammer_ref(&pfsm->lock);
633 error = 0;
634 } else if (dip->obj_localization == ip->obj_localization) {
635 ip->pfsm = dip->pfsm;
636 hammer_ref(&ip->pfsm->lock);
637 error = 0;
638 } else {
639 ip->pfsm = hammer_load_pseudofs(trans,
640 ip->obj_localization,
641 &error);
642 error = 0; /* ignore ENOENT */
645 if (error) {
646 hammer_free_inode(ip);
647 ip = NULL;
648 } else if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
649 panic("hammer_create_inode: duplicate obj_id %llx", ip->obj_id);
650 /* not reached */
651 hammer_free_inode(ip);
653 *ipp = ip;
654 return(error);
658 * Final cleanup / freeing of an inode structure
660 static void
661 hammer_free_inode(hammer_inode_t ip)
663 KKASSERT(ip->lock.refs == 1);
664 hammer_uncache_node(&ip->cache[0]);
665 hammer_uncache_node(&ip->cache[1]);
666 hammer_inode_wakereclaims(ip);
667 if (ip->objid_cache)
668 hammer_clear_objid(ip);
669 --hammer_count_inodes;
670 --ip->hmp->count_inodes;
671 if (ip->pfsm) {
672 hammer_rel_pseudofs(ip->hmp, ip->pfsm);
673 ip->pfsm = NULL;
675 kfree(ip, M_HAMMER_INO);
676 ip = NULL;
680 * Retrieve pseudo-fs data. NULL will never be returned.
682 * If an error occurs *errorp will be set and a default template is returned,
683 * otherwise *errorp is set to 0. Typically when an error occurs it will
684 * be ENOENT.
686 hammer_pseudofs_inmem_t
687 hammer_load_pseudofs(hammer_transaction_t trans,
688 u_int32_t localization, int *errorp)
690 hammer_mount_t hmp = trans->hmp;
691 hammer_inode_t ip;
692 hammer_pseudofs_inmem_t pfsm;
693 struct hammer_cursor cursor;
694 int bytes;
696 retry:
697 pfsm = RB_LOOKUP(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, localization);
698 if (pfsm) {
699 hammer_ref(&pfsm->lock);
700 *errorp = 0;
701 return(pfsm);
705 * PFS records are stored in the root inode (not the PFS root inode,
706 * but the real root). Avoid an infinite recursion if loading
707 * the PFS for the real root.
709 if (localization) {
710 ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT,
711 HAMMER_MAX_TID,
712 HAMMER_DEF_LOCALIZATION, 0, errorp);
713 } else {
714 ip = NULL;
717 pfsm = kmalloc(sizeof(*pfsm), M_HAMMER, M_WAITOK | M_ZERO);
718 pfsm->localization = localization;
719 pfsm->pfsd.unique_uuid = trans->rootvol->ondisk->vol_fsid;
720 pfsm->pfsd.shared_uuid = pfsm->pfsd.unique_uuid;
722 hammer_init_cursor(trans, &cursor, (ip ? &ip->cache[1] : NULL), ip);
723 cursor.key_beg.localization = HAMMER_DEF_LOCALIZATION +
724 HAMMER_LOCALIZE_MISC;
725 cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
726 cursor.key_beg.create_tid = 0;
727 cursor.key_beg.delete_tid = 0;
728 cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
729 cursor.key_beg.obj_type = 0;
730 cursor.key_beg.key = localization;
731 cursor.asof = HAMMER_MAX_TID;
732 cursor.flags |= HAMMER_CURSOR_ASOF;
734 if (ip)
735 *errorp = hammer_ip_lookup(&cursor);
736 else
737 *errorp = hammer_btree_lookup(&cursor);
738 if (*errorp == 0) {
739 *errorp = hammer_ip_resolve_data(&cursor);
740 if (*errorp == 0) {
741 if (cursor.data->pfsd.mirror_flags &
742 HAMMER_PFSD_DELETED) {
743 *errorp = ENOENT;
744 } else {
745 bytes = cursor.leaf->data_len;
746 if (bytes > sizeof(pfsm->pfsd))
747 bytes = sizeof(pfsm->pfsd);
748 bcopy(cursor.data, &pfsm->pfsd, bytes);
752 hammer_done_cursor(&cursor);
754 pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
755 hammer_ref(&pfsm->lock);
756 if (ip)
757 hammer_rel_inode(ip, 0);
758 if (RB_INSERT(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm)) {
759 kfree(pfsm, M_HAMMER);
760 goto retry;
762 return(pfsm);
766 * Store pseudo-fs data. The backend will automatically delete any prior
767 * on-disk pseudo-fs data but we have to delete in-memory versions.
770 hammer_save_pseudofs(hammer_transaction_t trans, hammer_pseudofs_inmem_t pfsm)
772 struct hammer_cursor cursor;
773 hammer_record_t record;
774 hammer_inode_t ip;
775 int error;
777 ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
778 HAMMER_DEF_LOCALIZATION, 0, &error);
779 retry:
780 pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
781 hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
782 cursor.key_beg.localization = ip->obj_localization +
783 HAMMER_LOCALIZE_MISC;
784 cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
785 cursor.key_beg.create_tid = 0;
786 cursor.key_beg.delete_tid = 0;
787 cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
788 cursor.key_beg.obj_type = 0;
789 cursor.key_beg.key = pfsm->localization;
790 cursor.asof = HAMMER_MAX_TID;
791 cursor.flags |= HAMMER_CURSOR_ASOF;
793 error = hammer_ip_lookup(&cursor);
794 if (error == 0 && hammer_cursor_inmem(&cursor)) {
795 record = cursor.iprec;
796 if (record->flags & HAMMER_RECF_INTERLOCK_BE) {
797 KKASSERT(cursor.deadlk_rec == NULL);
798 hammer_ref(&record->lock);
799 cursor.deadlk_rec = record;
800 error = EDEADLK;
801 } else {
802 record->flags |= HAMMER_RECF_DELETED_FE;
803 error = 0;
806 if (error == 0 || error == ENOENT) {
807 record = hammer_alloc_mem_record(ip, sizeof(pfsm->pfsd));
808 record->type = HAMMER_MEM_RECORD_GENERAL;
810 record->leaf.base.localization = ip->obj_localization +
811 HAMMER_LOCALIZE_MISC;
812 record->leaf.base.rec_type = HAMMER_RECTYPE_PFS;
813 record->leaf.base.key = pfsm->localization;
814 record->leaf.data_len = sizeof(pfsm->pfsd);
815 bcopy(&pfsm->pfsd, record->data, sizeof(pfsm->pfsd));
816 error = hammer_ip_add_record(trans, record);
818 hammer_done_cursor(&cursor);
819 if (error == EDEADLK)
820 goto retry;
821 hammer_rel_inode(ip, 0);
822 return(error);
826 * Create a root directory for a PFS if one does not alredy exist.
828 * The PFS root stands alone so we must also bump the nlinks count
829 * to prevent it from being destroyed on release.
832 hammer_mkroot_pseudofs(hammer_transaction_t trans, struct ucred *cred,
833 hammer_pseudofs_inmem_t pfsm)
835 hammer_inode_t ip;
836 struct vattr vap;
837 int error;
839 ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
840 pfsm->localization, 0, &error);
841 if (ip == NULL) {
842 vattr_null(&vap);
843 vap.va_mode = 0755;
844 vap.va_type = VDIR;
845 error = hammer_create_inode(trans, &vap, cred, NULL, pfsm, &ip);
846 if (error == 0) {
847 ++ip->ino_data.nlinks;
848 hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
851 if (ip)
852 hammer_rel_inode(ip, 0);
853 return(error);
857 * Unload any vnodes & inodes associated with a PFS, return ENOTEMPTY
858 * if we are unable to disassociate all the inodes.
860 static
862 hammer_unload_pseudofs_callback(hammer_inode_t ip, void *data)
864 int res;
866 hammer_ref(&ip->lock);
867 if (ip->lock.refs == 2 && ip->vp)
868 vclean_unlocked(ip->vp);
869 if (ip->lock.refs == 1 && ip->vp == NULL)
870 res = 0;
871 else
872 res = -1; /* stop, someone is using the inode */
873 hammer_rel_inode(ip, 0);
874 return(res);
878 hammer_unload_pseudofs(hammer_transaction_t trans, u_int32_t localization)
880 int res;
881 int try;
883 for (try = res = 0; try < 4; ++try) {
884 res = hammer_ino_rb_tree_RB_SCAN(&trans->hmp->rb_inos_root,
885 hammer_inode_pfs_cmp,
886 hammer_unload_pseudofs_callback,
887 &localization);
888 if (res == 0 && try > 1)
889 break;
890 hammer_flusher_sync(trans->hmp);
892 if (res != 0)
893 res = ENOTEMPTY;
894 return(res);
899 * Release a reference on a PFS
901 void
902 hammer_rel_pseudofs(hammer_mount_t hmp, hammer_pseudofs_inmem_t pfsm)
904 hammer_unref(&pfsm->lock);
905 if (pfsm->lock.refs == 0) {
906 RB_REMOVE(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm);
907 kfree(pfsm, M_HAMMER);
912 * Called by hammer_sync_inode().
914 static int
915 hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
917 hammer_transaction_t trans = cursor->trans;
918 hammer_record_t record;
919 int error;
920 int redirty;
922 retry:
923 error = 0;
926 * If the inode has a presence on-disk then locate it and mark
927 * it deleted, setting DELONDISK.
929 * The record may or may not be physically deleted, depending on
930 * the retention policy.
932 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
933 HAMMER_INODE_ONDISK) {
934 hammer_normalize_cursor(cursor);
935 cursor->key_beg.localization = ip->obj_localization +
936 HAMMER_LOCALIZE_INODE;
937 cursor->key_beg.obj_id = ip->obj_id;
938 cursor->key_beg.key = 0;
939 cursor->key_beg.create_tid = 0;
940 cursor->key_beg.delete_tid = 0;
941 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
942 cursor->key_beg.obj_type = 0;
943 cursor->asof = ip->obj_asof;
944 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
945 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
946 cursor->flags |= HAMMER_CURSOR_BACKEND;
948 error = hammer_btree_lookup(cursor);
949 if (hammer_debug_inode)
950 kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
952 if (error == 0) {
953 error = hammer_ip_delete_record(cursor, ip, trans->tid);
954 if (hammer_debug_inode)
955 kprintf(" error %d\n", error);
956 if (error == 0) {
957 ip->flags |= HAMMER_INODE_DELONDISK;
959 if (cursor->node)
960 hammer_cache_node(&ip->cache[0], cursor->node);
962 if (error == EDEADLK) {
963 hammer_done_cursor(cursor);
964 error = hammer_init_cursor(trans, cursor,
965 &ip->cache[0], ip);
966 if (hammer_debug_inode)
967 kprintf("IPDED %p %d\n", ip, error);
968 if (error == 0)
969 goto retry;
974 * Ok, write out the initial record or a new record (after deleting
975 * the old one), unless the DELETED flag is set. This routine will
976 * clear DELONDISK if it writes out a record.
978 * Update our inode statistics if this is the first application of
979 * the inode on-disk.
981 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
983 * Generate a record and write it to the media. We clean-up
984 * the state before releasing so we do not have to set-up
985 * a flush_group.
987 record = hammer_alloc_mem_record(ip, 0);
988 record->type = HAMMER_MEM_RECORD_INODE;
989 record->flush_state = HAMMER_FST_FLUSH;
990 record->leaf = ip->sync_ino_leaf;
991 record->leaf.base.create_tid = trans->tid;
992 record->leaf.data_len = sizeof(ip->sync_ino_data);
993 record->leaf.create_ts = trans->time32;
994 record->data = (void *)&ip->sync_ino_data;
995 record->flags |= HAMMER_RECF_INTERLOCK_BE;
998 * If this flag is set we cannot sync the new file size
999 * because we haven't finished related truncations. The
1000 * inode will be flushed in another flush group to finish
1001 * the job.
1003 if ((ip->flags & HAMMER_INODE_WOULDBLOCK) &&
1004 ip->sync_ino_data.size != ip->ino_data.size) {
1005 redirty = 1;
1006 ip->sync_ino_data.size = ip->ino_data.size;
1007 } else {
1008 redirty = 0;
1011 for (;;) {
1012 error = hammer_ip_sync_record_cursor(cursor, record);
1013 if (hammer_debug_inode)
1014 kprintf("GENREC %p rec %08x %d\n",
1015 ip, record->flags, error);
1016 if (error != EDEADLK)
1017 break;
1018 hammer_done_cursor(cursor);
1019 error = hammer_init_cursor(trans, cursor,
1020 &ip->cache[0], ip);
1021 if (hammer_debug_inode)
1022 kprintf("GENREC reinit %d\n", error);
1023 if (error)
1024 break;
1028 * The record isn't managed by the inode's record tree,
1029 * destroy it whether we succeed or fail.
1031 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
1032 record->flags |= HAMMER_RECF_DELETED_FE | HAMMER_RECF_COMMITTED;
1033 record->flush_state = HAMMER_FST_IDLE;
1034 hammer_rel_mem_record(record);
1037 * Finish up.
1039 if (error == 0) {
1040 if (hammer_debug_inode)
1041 kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
1042 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1043 HAMMER_INODE_ATIME |
1044 HAMMER_INODE_MTIME);
1045 ip->flags &= ~HAMMER_INODE_DELONDISK;
1046 if (redirty)
1047 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1050 * Root volume count of inodes
1052 hammer_sync_lock_sh(trans);
1053 if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
1054 hammer_modify_volume_field(trans,
1055 trans->rootvol,
1056 vol0_stat_inodes);
1057 ++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
1058 hammer_modify_volume_done(trans->rootvol);
1059 ip->flags |= HAMMER_INODE_ONDISK;
1060 if (hammer_debug_inode)
1061 kprintf("NOWONDISK %p\n", ip);
1063 hammer_sync_unlock(trans);
1068 * If the inode has been destroyed, clean out any left-over flags
1069 * that may have been set by the frontend.
1071 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) {
1072 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1073 HAMMER_INODE_ATIME |
1074 HAMMER_INODE_MTIME);
1076 return(error);
1080 * Update only the itimes fields.
1082 * ATIME can be updated without generating any UNDO. MTIME is updated
1083 * with UNDO so it is guaranteed to be synchronized properly in case of
1084 * a crash.
1086 * Neither field is included in the B-Tree leaf element's CRC, which is how
1087 * we can get away with updating ATIME the way we do.
1089 static int
1090 hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
1092 hammer_transaction_t trans = cursor->trans;
1093 int error;
1095 retry:
1096 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) !=
1097 HAMMER_INODE_ONDISK) {
1098 return(0);
1101 hammer_normalize_cursor(cursor);
1102 cursor->key_beg.localization = ip->obj_localization +
1103 HAMMER_LOCALIZE_INODE;
1104 cursor->key_beg.obj_id = ip->obj_id;
1105 cursor->key_beg.key = 0;
1106 cursor->key_beg.create_tid = 0;
1107 cursor->key_beg.delete_tid = 0;
1108 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1109 cursor->key_beg.obj_type = 0;
1110 cursor->asof = ip->obj_asof;
1111 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1112 cursor->flags |= HAMMER_CURSOR_ASOF;
1113 cursor->flags |= HAMMER_CURSOR_GET_LEAF;
1114 cursor->flags |= HAMMER_CURSOR_GET_DATA;
1115 cursor->flags |= HAMMER_CURSOR_BACKEND;
1117 error = hammer_btree_lookup(cursor);
1118 if (error == 0) {
1119 hammer_cache_node(&ip->cache[0], cursor->node);
1120 if (ip->sync_flags & HAMMER_INODE_MTIME) {
1122 * Updating MTIME requires an UNDO. Just cover
1123 * both atime and mtime.
1125 hammer_sync_lock_sh(trans);
1126 hammer_modify_buffer(trans, cursor->data_buffer,
1127 HAMMER_ITIMES_BASE(&cursor->data->inode),
1128 HAMMER_ITIMES_BYTES);
1129 cursor->data->inode.atime = ip->sync_ino_data.atime;
1130 cursor->data->inode.mtime = ip->sync_ino_data.mtime;
1131 hammer_modify_buffer_done(cursor->data_buffer);
1132 hammer_sync_unlock(trans);
1133 } else if (ip->sync_flags & HAMMER_INODE_ATIME) {
1135 * Updating atime only can be done in-place with
1136 * no UNDO.
1138 hammer_sync_lock_sh(trans);
1139 hammer_modify_buffer(trans, cursor->data_buffer,
1140 NULL, 0);
1141 cursor->data->inode.atime = ip->sync_ino_data.atime;
1142 hammer_modify_buffer_done(cursor->data_buffer);
1143 hammer_sync_unlock(trans);
1145 ip->sync_flags &= ~(HAMMER_INODE_ATIME | HAMMER_INODE_MTIME);
1147 if (error == EDEADLK) {
1148 hammer_done_cursor(cursor);
1149 error = hammer_init_cursor(trans, cursor,
1150 &ip->cache[0], ip);
1151 if (error == 0)
1152 goto retry;
1154 return(error);
1158 * Release a reference on an inode, flush as requested.
1160 * On the last reference we queue the inode to the flusher for its final
1161 * disposition.
1163 void
1164 hammer_rel_inode(struct hammer_inode *ip, int flush)
1166 hammer_mount_t hmp = ip->hmp;
1169 * Handle disposition when dropping the last ref.
1171 for (;;) {
1172 if (ip->lock.refs == 1) {
1174 * Determine whether on-disk action is needed for
1175 * the inode's final disposition.
1177 KKASSERT(ip->vp == NULL);
1178 hammer_inode_unloadable_check(ip, 0);
1179 if (ip->flags & HAMMER_INODE_MODMASK) {
1180 if (hmp->rsv_inodes > desiredvnodes) {
1181 hammer_flush_inode(ip,
1182 HAMMER_FLUSH_SIGNAL);
1183 } else {
1184 hammer_flush_inode(ip, 0);
1186 } else if (ip->lock.refs == 1) {
1187 hammer_unload_inode(ip);
1188 break;
1190 } else {
1191 if (flush)
1192 hammer_flush_inode(ip, 0);
1195 * The inode still has multiple refs, try to drop
1196 * one ref.
1198 KKASSERT(ip->lock.refs >= 1);
1199 if (ip->lock.refs > 1) {
1200 hammer_unref(&ip->lock);
1201 break;
1208 * Unload and destroy the specified inode. Must be called with one remaining
1209 * reference. The reference is disposed of.
1211 * The inode must be completely clean.
1213 static int
1214 hammer_unload_inode(struct hammer_inode *ip)
1216 hammer_mount_t hmp = ip->hmp;
1218 KASSERT(ip->lock.refs == 1,
1219 ("hammer_unload_inode: %d refs\n", ip->lock.refs));
1220 KKASSERT(ip->vp == NULL);
1221 KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
1222 KKASSERT(ip->cursor_ip_refs == 0);
1223 KKASSERT(ip->lock.lockcount == 0);
1224 KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
1226 KKASSERT(RB_EMPTY(&ip->rec_tree));
1227 KKASSERT(TAILQ_EMPTY(&ip->target_list));
1229 RB_REMOVE(hammer_ino_rb_tree, &hmp->rb_inos_root, ip);
1231 hammer_free_inode(ip);
1232 return(0);
1236 * Called during unmounting if a critical error occured. The in-memory
1237 * inode and all related structures are destroyed.
1239 * If a critical error did not occur the unmount code calls the standard
1240 * release and asserts that the inode is gone.
1243 hammer_destroy_inode_callback(struct hammer_inode *ip, void *data __unused)
1245 hammer_record_t rec;
1248 * Get rid of the inodes in-memory records, regardless of their
1249 * state, and clear the mod-mask.
1251 while ((rec = TAILQ_FIRST(&ip->target_list)) != NULL) {
1252 TAILQ_REMOVE(&ip->target_list, rec, target_entry);
1253 rec->target_ip = NULL;
1254 if (rec->flush_state == HAMMER_FST_SETUP)
1255 rec->flush_state = HAMMER_FST_IDLE;
1257 while ((rec = RB_ROOT(&ip->rec_tree)) != NULL) {
1258 if (rec->flush_state == HAMMER_FST_FLUSH)
1259 --rec->flush_group->refs;
1260 else
1261 hammer_ref(&rec->lock);
1262 KKASSERT(rec->lock.refs == 1);
1263 rec->flush_state = HAMMER_FST_IDLE;
1264 rec->flush_group = NULL;
1265 rec->flags |= HAMMER_RECF_DELETED_FE;
1266 rec->flags |= HAMMER_RECF_DELETED_BE;
1267 hammer_rel_mem_record(rec);
1269 ip->flags &= ~HAMMER_INODE_MODMASK;
1270 ip->sync_flags &= ~HAMMER_INODE_MODMASK;
1271 KKASSERT(ip->vp == NULL);
1274 * Remove the inode from any flush group, force it idle. FLUSH
1275 * and SETUP states have an inode ref.
1277 switch(ip->flush_state) {
1278 case HAMMER_FST_FLUSH:
1279 TAILQ_REMOVE(&ip->flush_group->flush_list, ip, flush_entry);
1280 --ip->flush_group->refs;
1281 ip->flush_group = NULL;
1282 /* fall through */
1283 case HAMMER_FST_SETUP:
1284 hammer_unref(&ip->lock);
1285 ip->flush_state = HAMMER_FST_IDLE;
1286 /* fall through */
1287 case HAMMER_FST_IDLE:
1288 break;
1292 * There shouldn't be any associated vnode. The unload needs at
1293 * least one ref, if we do have a vp steal its ip ref.
1295 if (ip->vp) {
1296 kprintf("hammer_destroy_inode_callback: Unexpected "
1297 "vnode association ip %p vp %p\n", ip, ip->vp);
1298 ip->vp->v_data = NULL;
1299 ip->vp = NULL;
1300 } else {
1301 hammer_ref(&ip->lock);
1303 hammer_unload_inode(ip);
1304 return(0);
1308 * Called on mount -u when switching from RW to RO or vise-versa. Adjust
1309 * the read-only flag for cached inodes.
1311 * This routine is called from a RB_SCAN().
1314 hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
1316 hammer_mount_t hmp = ip->hmp;
1318 if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
1319 ip->flags |= HAMMER_INODE_RO;
1320 else
1321 ip->flags &= ~HAMMER_INODE_RO;
1322 return(0);
1326 * A transaction has modified an inode, requiring updates as specified by
1327 * the passed flags.
1329 * HAMMER_INODE_DDIRTY: Inode data has been updated
1330 * HAMMER_INODE_XDIRTY: Dirty in-memory records
1331 * HAMMER_INODE_BUFS: Dirty buffer cache buffers
1332 * HAMMER_INODE_DELETED: Inode record/data must be deleted
1333 * HAMMER_INODE_ATIME/MTIME: mtime/atime has been updated
1335 void
1336 hammer_modify_inode(hammer_inode_t ip, int flags)
1339 * ronly of 0 or 2 does not trigger assertion.
1340 * 2 is a special error state
1342 KKASSERT(ip->hmp->ronly != 1 ||
1343 (flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
1344 HAMMER_INODE_BUFS | HAMMER_INODE_DELETED |
1345 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) == 0);
1346 if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
1347 ip->flags |= HAMMER_INODE_RSV_INODES;
1348 ++ip->hmp->rsv_inodes;
1351 ip->flags |= flags;
1355 * Request that an inode be flushed. This whole mess cannot block and may
1356 * recurse (if not synchronous). Once requested HAMMER will attempt to
1357 * actively flush the inode until the flush can be done.
1359 * The inode may already be flushing, or may be in a setup state. We can
1360 * place the inode in a flushing state if it is currently idle and flag it
1361 * to reflush if it is currently flushing.
1363 * Upon return if the inode could not be flushed due to a setup
1364 * dependancy, then it will be automatically flushed when the dependancy
1365 * is satisfied.
1367 void
1368 hammer_flush_inode(hammer_inode_t ip, int flags)
1370 hammer_mount_t hmp;
1371 hammer_flush_group_t flg;
1372 int good;
1375 * next_flush_group is the first flush group we can place the inode
1376 * in. It may be NULL. If it becomes full we append a new flush
1377 * group and make that the next_flush_group.
1379 hmp = ip->hmp;
1380 while ((flg = hmp->next_flush_group) != NULL) {
1381 KKASSERT(flg->running == 0);
1382 if (flg->total_count + flg->refs <= ip->hmp->undo_rec_limit)
1383 break;
1384 hmp->next_flush_group = TAILQ_NEXT(flg, flush_entry);
1385 hammer_flusher_async(ip->hmp, flg);
1387 if (flg == NULL) {
1388 flg = kmalloc(sizeof(*flg), M_HAMMER, M_WAITOK|M_ZERO);
1389 hmp->next_flush_group = flg;
1390 TAILQ_INIT(&flg->flush_list);
1391 TAILQ_INSERT_TAIL(&hmp->flush_group_list, flg, flush_entry);
1395 * Trivial 'nothing to flush' case. If the inode is in a SETUP
1396 * state we have to put it back into an IDLE state so we can
1397 * drop the extra ref.
1399 * If we have a parent dependancy we must still fall through
1400 * so we can run it.
1402 if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
1403 if (ip->flush_state == HAMMER_FST_SETUP &&
1404 TAILQ_EMPTY(&ip->target_list)) {
1405 ip->flush_state = HAMMER_FST_IDLE;
1406 hammer_rel_inode(ip, 0);
1408 if (ip->flush_state == HAMMER_FST_IDLE)
1409 return;
1413 * Our flush action will depend on the current state.
1415 switch(ip->flush_state) {
1416 case HAMMER_FST_IDLE:
1418 * We have no dependancies and can flush immediately. Some
1419 * our children may not be flushable so we have to re-test
1420 * with that additional knowledge.
1422 hammer_flush_inode_core(ip, flg, flags);
1423 break;
1424 case HAMMER_FST_SETUP:
1426 * Recurse upwards through dependancies via target_list
1427 * and start their flusher actions going if possible.
1429 * 'good' is our connectivity. -1 means we have none and
1430 * can't flush, 0 means there weren't any dependancies, and
1431 * 1 means we have good connectivity.
1433 good = hammer_setup_parent_inodes(ip, flg);
1435 if (good >= 0) {
1437 * We can continue if good >= 0. Determine how
1438 * many records under our inode can be flushed (and
1439 * mark them).
1441 hammer_flush_inode_core(ip, flg, flags);
1442 } else {
1444 * Parent has no connectivity, tell it to flush
1445 * us as soon as it does.
1447 * The REFLUSH flag is also needed to trigger
1448 * dependancy wakeups.
1450 ip->flags |= HAMMER_INODE_CONN_DOWN |
1451 HAMMER_INODE_REFLUSH;
1452 if (flags & HAMMER_FLUSH_SIGNAL) {
1453 ip->flags |= HAMMER_INODE_RESIGNAL;
1454 hammer_flusher_async(ip->hmp, flg);
1457 break;
1458 case HAMMER_FST_FLUSH:
1460 * We are already flushing, flag the inode to reflush
1461 * if needed after it completes its current flush.
1463 * The REFLUSH flag is also needed to trigger
1464 * dependancy wakeups.
1466 if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
1467 ip->flags |= HAMMER_INODE_REFLUSH;
1468 if (flags & HAMMER_FLUSH_SIGNAL) {
1469 ip->flags |= HAMMER_INODE_RESIGNAL;
1470 hammer_flusher_async(ip->hmp, flg);
1472 break;
1477 * Scan ip->target_list, which is a list of records owned by PARENTS to our
1478 * ip which reference our ip.
1480 * XXX This is a huge mess of recursive code, but not one bit of it blocks
1481 * so for now do not ref/deref the structures. Note that if we use the
1482 * ref/rel code later, the rel CAN block.
1484 static int
1485 hammer_setup_parent_inodes(hammer_inode_t ip, hammer_flush_group_t flg)
1487 hammer_record_t depend;
1488 int good;
1489 int r;
1491 good = 0;
1492 TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
1493 r = hammer_setup_parent_inodes_helper(depend, flg);
1494 KKASSERT(depend->target_ip == ip);
1495 if (r < 0 && good == 0)
1496 good = -1;
1497 if (r > 0)
1498 good = 1;
1500 return(good);
1504 * This helper function takes a record representing the dependancy between
1505 * the parent inode and child inode.
1507 * record->ip = parent inode
1508 * record->target_ip = child inode
1510 * We are asked to recurse upwards and convert the record from SETUP
1511 * to FLUSH if possible.
1513 * Return 1 if the record gives us connectivity
1515 * Return 0 if the record is not relevant
1517 * Return -1 if we can't resolve the dependancy and there is no connectivity.
1519 static int
1520 hammer_setup_parent_inodes_helper(hammer_record_t record,
1521 hammer_flush_group_t flg)
1523 hammer_mount_t hmp;
1524 hammer_inode_t pip;
1525 int good;
1527 KKASSERT(record->flush_state != HAMMER_FST_IDLE);
1528 pip = record->ip;
1529 hmp = pip->hmp;
1532 * If the record is already flushing, is it in our flush group?
1534 * If it is in our flush group but it is a general record or a
1535 * delete-on-disk, it does not improve our connectivity (return 0),
1536 * and if the target inode is not trying to destroy itself we can't
1537 * allow the operation yet anyway (the second return -1).
1539 if (record->flush_state == HAMMER_FST_FLUSH) {
1541 * If not in our flush group ask the parent to reflush
1542 * us as soon as possible.
1544 if (record->flush_group != flg) {
1545 pip->flags |= HAMMER_INODE_REFLUSH;
1546 record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1547 return(-1);
1551 * If in our flush group everything is already set up,
1552 * just return whether the record will improve our
1553 * visibility or not.
1555 if (record->type == HAMMER_MEM_RECORD_ADD)
1556 return(1);
1557 return(0);
1561 * It must be a setup record. Try to resolve the setup dependancies
1562 * by recursing upwards so we can place ip on the flush list.
1564 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1566 good = hammer_setup_parent_inodes(pip, flg);
1569 * If good < 0 the parent has no connectivity and we cannot safely
1570 * flush the directory entry, which also means we can't flush our
1571 * ip. Flag the parent and us for downward recursion once the
1572 * parent's connectivity is resolved.
1574 if (good < 0) {
1575 /* pip->flags |= HAMMER_INODE_CONN_DOWN; set by recursion */
1576 record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1577 return(good);
1581 * We are go, place the parent inode in a flushing state so we can
1582 * place its record in a flushing state. Note that the parent
1583 * may already be flushing. The record must be in the same flush
1584 * group as the parent.
1586 if (pip->flush_state != HAMMER_FST_FLUSH)
1587 hammer_flush_inode_core(pip, flg, HAMMER_FLUSH_RECURSION);
1588 KKASSERT(pip->flush_state == HAMMER_FST_FLUSH);
1589 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1591 #if 0
1592 if (record->type == HAMMER_MEM_RECORD_DEL &&
1593 (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
1595 * Regardless of flushing state we cannot sync this path if the
1596 * record represents a delete-on-disk but the target inode
1597 * is not ready to sync its own deletion.
1599 * XXX need to count effective nlinks to determine whether
1600 * the flush is ok, otherwise removing a hardlink will
1601 * just leave the DEL record to rot.
1603 record->target_ip->flags |= HAMMER_INODE_REFLUSH;
1604 return(-1);
1605 } else
1606 #endif
1607 if (pip->flush_group == flg) {
1609 * If the parent is in the same flush group as us we can
1610 * just set the record to a flushing state and we are
1611 * done.
1613 record->flush_state = HAMMER_FST_FLUSH;
1614 record->flush_group = flg;
1615 ++record->flush_group->refs;
1616 hammer_ref(&record->lock);
1619 * A general directory-add contributes to our visibility.
1621 * Otherwise it is probably a directory-delete or
1622 * delete-on-disk record and does not contribute to our
1623 * visbility (but we can still flush it).
1625 if (record->type == HAMMER_MEM_RECORD_ADD)
1626 return(1);
1627 return(0);
1628 } else {
1630 * If the parent is not in our flush group we cannot
1631 * flush this record yet, there is no visibility.
1632 * We tell the parent to reflush and mark ourselves
1633 * so the parent knows it should flush us too.
1635 pip->flags |= HAMMER_INODE_REFLUSH;
1636 record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1637 return(-1);
1642 * This is the core routine placing an inode into the FST_FLUSH state.
1644 static void
1645 hammer_flush_inode_core(hammer_inode_t ip, hammer_flush_group_t flg, int flags)
1647 int go_count;
1650 * Set flush state and prevent the flusher from cycling into
1651 * the next flush group. Do not place the ip on the list yet.
1652 * Inodes not in the idle state get an extra reference.
1654 KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
1655 if (ip->flush_state == HAMMER_FST_IDLE)
1656 hammer_ref(&ip->lock);
1657 ip->flush_state = HAMMER_FST_FLUSH;
1658 ip->flush_group = flg;
1659 ++ip->hmp->flusher.group_lock;
1660 ++ip->hmp->count_iqueued;
1661 ++hammer_count_iqueued;
1662 ++flg->total_count;
1665 * We need to be able to vfsync/truncate from the backend.
1667 KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
1668 if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
1669 ip->flags |= HAMMER_INODE_VHELD;
1670 vref(ip->vp);
1674 * Figure out how many in-memory records we can actually flush
1675 * (not including inode meta-data, buffers, etc).
1677 if (flags & HAMMER_FLUSH_RECURSION) {
1679 * If this is a upwards recursion we do not want to
1680 * recurse down again!
1682 go_count = 1;
1683 } else if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
1685 * No new records are added if we must complete a flush
1686 * from a previous cycle, but we do have to move the records
1687 * from the previous cycle to the current one.
1689 #if 0
1690 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1691 hammer_syncgrp_child_callback, NULL);
1692 #endif
1693 go_count = 1;
1694 } else {
1696 * Normal flush, scan records and bring them into the flush.
1697 * Directory adds and deletes are usually skipped (they are
1698 * grouped with the related inode rather then with the
1699 * directory).
1701 * go_count can be negative, which means the scan aborted
1702 * due to the flush group being over-full and we should
1703 * flush what we have.
1705 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1706 hammer_setup_child_callback, NULL);
1710 * This is a more involved test that includes go_count. If we
1711 * can't flush, flag the inode and return. If go_count is 0 we
1712 * were are unable to flush any records in our rec_tree and
1713 * must ignore the XDIRTY flag.
1715 if (go_count == 0) {
1716 if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
1717 --ip->hmp->count_iqueued;
1718 --hammer_count_iqueued;
1720 --flg->total_count;
1721 ip->flush_state = HAMMER_FST_SETUP;
1722 ip->flush_group = NULL;
1723 if (ip->flags & HAMMER_INODE_VHELD) {
1724 ip->flags &= ~HAMMER_INODE_VHELD;
1725 vrele(ip->vp);
1729 * REFLUSH is needed to trigger dependancy wakeups
1730 * when an inode is in SETUP.
1732 ip->flags |= HAMMER_INODE_REFLUSH;
1733 if (flags & HAMMER_FLUSH_SIGNAL) {
1734 ip->flags |= HAMMER_INODE_RESIGNAL;
1735 hammer_flusher_async(ip->hmp, flg);
1737 if (--ip->hmp->flusher.group_lock == 0)
1738 wakeup(&ip->hmp->flusher.group_lock);
1739 return;
1744 * Snapshot the state of the inode for the backend flusher.
1746 * We continue to retain save_trunc_off even when all truncations
1747 * have been resolved as an optimization to determine if we can
1748 * skip the B-Tree lookup for overwrite deletions.
1750 * NOTE: The DELETING flag is a mod flag, but it is also sticky,
1751 * and stays in ip->flags. Once set, it stays set until the
1752 * inode is destroyed.
1754 * NOTE: If a truncation from a previous flush cycle had to be
1755 * continued into this one, the TRUNCATED flag will still be
1756 * set in sync_flags as will WOULDBLOCK. When this occurs
1757 * we CANNOT safely integrate a new truncation from the front-end
1758 * because there may be data records in-memory assigned a flush
1759 * state from the previous cycle that are supposed to be flushed
1760 * before the next frontend truncation.
1762 if ((ip->flags & (HAMMER_INODE_TRUNCATED | HAMMER_INODE_WOULDBLOCK)) ==
1763 HAMMER_INODE_TRUNCATED) {
1764 KKASSERT((ip->sync_flags & HAMMER_INODE_TRUNCATED) == 0);
1765 ip->sync_trunc_off = ip->trunc_off;
1766 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
1767 ip->flags &= ~HAMMER_INODE_TRUNCATED;
1768 ip->sync_flags |= HAMMER_INODE_TRUNCATED;
1771 * The save_trunc_off used to cache whether the B-Tree
1772 * holds any records past that point is not used until
1773 * after the truncation has succeeded, so we can safely
1774 * set it now.
1776 if (ip->save_trunc_off > ip->sync_trunc_off)
1777 ip->save_trunc_off = ip->sync_trunc_off;
1779 ip->sync_flags |= (ip->flags & HAMMER_INODE_MODMASK &
1780 ~HAMMER_INODE_TRUNCATED);
1781 ip->sync_ino_leaf = ip->ino_leaf;
1782 ip->sync_ino_data = ip->ino_data;
1783 ip->flags &= ~HAMMER_INODE_MODMASK | HAMMER_INODE_TRUNCATED;
1784 #ifdef DEBUG_TRUNCATE
1785 if ((ip->sync_flags & HAMMER_INODE_TRUNCATED) && ip == HammerTruncIp)
1786 kprintf("truncateS %016llx\n", ip->sync_trunc_off);
1787 #endif
1790 * The flusher list inherits our inode and reference.
1792 KKASSERT(flg->running == 0);
1793 TAILQ_INSERT_TAIL(&flg->flush_list, ip, flush_entry);
1794 if (--ip->hmp->flusher.group_lock == 0)
1795 wakeup(&ip->hmp->flusher.group_lock);
1797 if (flags & HAMMER_FLUSH_SIGNAL) {
1798 hammer_flusher_async(ip->hmp, flg);
1803 * Callback for scan of ip->rec_tree. Try to include each record in our
1804 * flush. ip->flush_group has been set but the inode has not yet been
1805 * moved into a flushing state.
1807 * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
1808 * both inodes.
1810 * We return 1 for any record placed or found in FST_FLUSH, which prevents
1811 * the caller from shortcutting the flush.
1813 static int
1814 hammer_setup_child_callback(hammer_record_t rec, void *data)
1816 hammer_flush_group_t flg;
1817 hammer_inode_t target_ip;
1818 hammer_inode_t ip;
1819 int r;
1822 * Deleted records are ignored. Note that the flush detects deleted
1823 * front-end records at multiple points to deal with races. This is
1824 * just the first line of defense. The only time DELETED_FE cannot
1825 * be set is when HAMMER_RECF_INTERLOCK_BE is set.
1827 * Don't get confused between record deletion and, say, directory
1828 * entry deletion. The deletion of a directory entry that is on
1829 * the media has nothing to do with the record deletion flags.
1831 if (rec->flags & (HAMMER_RECF_DELETED_FE|HAMMER_RECF_DELETED_BE)) {
1832 if (rec->flush_state == HAMMER_FST_FLUSH) {
1833 KKASSERT(rec->flush_group == rec->ip->flush_group);
1834 r = 1;
1835 } else {
1836 r = 0;
1838 return(r);
1842 * If the record is in an idle state it has no dependancies and
1843 * can be flushed.
1845 ip = rec->ip;
1846 flg = ip->flush_group;
1847 r = 0;
1849 switch(rec->flush_state) {
1850 case HAMMER_FST_IDLE:
1852 * The record has no setup dependancy, we can flush it.
1854 KKASSERT(rec->target_ip == NULL);
1855 rec->flush_state = HAMMER_FST_FLUSH;
1856 rec->flush_group = flg;
1857 ++flg->refs;
1858 hammer_ref(&rec->lock);
1859 r = 1;
1860 break;
1861 case HAMMER_FST_SETUP:
1863 * The record has a setup dependancy. These are typically
1864 * directory entry adds and deletes. Such entries will be
1865 * flushed when their inodes are flushed so we do not
1866 * usually have to add them to the flush here. However,
1867 * if the target_ip has set HAMMER_INODE_CONN_DOWN then
1868 * it is asking us to flush this record (and it).
1870 target_ip = rec->target_ip;
1871 KKASSERT(target_ip != NULL);
1872 KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
1875 * If the target IP is already flushing in our group
1876 * we are golden, otherwise make sure the target
1877 * reflushes.
1879 if (target_ip->flush_state == HAMMER_FST_FLUSH) {
1880 if (target_ip->flush_group == flg) {
1881 rec->flush_state = HAMMER_FST_FLUSH;
1882 rec->flush_group = flg;
1883 ++flg->refs;
1884 hammer_ref(&rec->lock);
1885 r = 1;
1886 } else {
1887 target_ip->flags |= HAMMER_INODE_REFLUSH;
1889 break;
1893 * Target IP is not yet flushing. This can get complex
1894 * because we have to be careful about the recursion.
1896 * Directories create an issue for us in that if a flush
1897 * of a directory is requested the expectation is to flush
1898 * any pending directory entries, but this will cause the
1899 * related inodes to recursively flush as well. We can't
1900 * really defer the operation so just get as many as we
1901 * can and
1903 #if 0
1904 if ((target_ip->flags & HAMMER_INODE_RECLAIM) == 0 &&
1905 (target_ip->flags & HAMMER_INODE_CONN_DOWN) == 0) {
1907 * We aren't reclaiming and the target ip was not
1908 * previously prevented from flushing due to this
1909 * record dependancy. Do not flush this record.
1911 /*r = 0;*/
1912 } else
1913 #endif
1914 if (flg->total_count + flg->refs >
1915 ip->hmp->undo_rec_limit) {
1917 * Our flush group is over-full and we risk blowing
1918 * out the UNDO FIFO. Stop the scan, flush what we
1919 * have, then reflush the directory.
1921 * The directory may be forced through multiple
1922 * flush groups before it can be completely
1923 * flushed.
1925 ip->flags |= HAMMER_INODE_RESIGNAL |
1926 HAMMER_INODE_REFLUSH;
1927 r = -1;
1928 } else if (rec->type == HAMMER_MEM_RECORD_ADD) {
1930 * If the target IP is not flushing we can force
1931 * it to flush, even if it is unable to write out
1932 * any of its own records we have at least one in
1933 * hand that we CAN deal with.
1935 rec->flush_state = HAMMER_FST_FLUSH;
1936 rec->flush_group = flg;
1937 ++flg->refs;
1938 hammer_ref(&rec->lock);
1939 hammer_flush_inode_core(target_ip, flg,
1940 HAMMER_FLUSH_RECURSION);
1941 r = 1;
1942 } else {
1944 * General or delete-on-disk record.
1946 * XXX this needs help. If a delete-on-disk we could
1947 * disconnect the target. If the target has its own
1948 * dependancies they really need to be flushed.
1950 * XXX
1952 rec->flush_state = HAMMER_FST_FLUSH;
1953 rec->flush_group = flg;
1954 ++flg->refs;
1955 hammer_ref(&rec->lock);
1956 hammer_flush_inode_core(target_ip, flg,
1957 HAMMER_FLUSH_RECURSION);
1958 r = 1;
1960 break;
1961 case HAMMER_FST_FLUSH:
1963 * If the WOULDBLOCK flag is set records may have been left
1964 * over from a previous flush attempt. The flush group will
1965 * have been left intact - we are probably reflushing it
1966 * now.
1968 * If a flush error occured ip->error will be non-zero.
1970 KKASSERT(rec->flush_group == flg);
1971 r = 1;
1972 break;
1974 return(r);
1977 #if 0
1979 * This version just moves records already in a flush state to the new
1980 * flush group and that is it.
1982 static int
1983 hammer_syncgrp_child_callback(hammer_record_t rec, void *data)
1985 hammer_inode_t ip = rec->ip;
1987 switch(rec->flush_state) {
1988 case HAMMER_FST_FLUSH:
1989 KKASSERT(rec->flush_group == ip->flush_group);
1990 break;
1991 default:
1992 break;
1994 return(0);
1996 #endif
1999 * Wait for a previously queued flush to complete.
2001 * If a critical error occured we don't try to wait.
2003 void
2004 hammer_wait_inode(hammer_inode_t ip)
2006 hammer_flush_group_t flg;
2008 flg = NULL;
2009 if ((ip->hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) == 0) {
2010 while (ip->flush_state != HAMMER_FST_IDLE &&
2011 (ip->hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) == 0) {
2012 if (ip->flush_state == HAMMER_FST_SETUP)
2013 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2014 if (ip->flush_state != HAMMER_FST_IDLE) {
2015 ip->flags |= HAMMER_INODE_FLUSHW;
2016 tsleep(&ip->flags, 0, "hmrwin", 0);
2023 * Called by the backend code when a flush has been completed.
2024 * The inode has already been removed from the flush list.
2026 * A pipelined flush can occur, in which case we must re-enter the
2027 * inode on the list and re-copy its fields.
2029 void
2030 hammer_flush_inode_done(hammer_inode_t ip, int error)
2032 hammer_mount_t hmp;
2033 int dorel;
2035 KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
2037 hmp = ip->hmp;
2040 * Merge left-over flags back into the frontend and fix the state.
2041 * Incomplete truncations are retained by the backend.
2043 ip->error = error;
2044 ip->flags |= ip->sync_flags & ~HAMMER_INODE_TRUNCATED;
2045 ip->sync_flags &= HAMMER_INODE_TRUNCATED;
2048 * The backend may have adjusted nlinks, so if the adjusted nlinks
2049 * does not match the fronttend set the frontend's RDIRTY flag again.
2051 if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
2052 ip->flags |= HAMMER_INODE_DDIRTY;
2055 * Fix up the dirty buffer status.
2057 if (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree)) {
2058 ip->flags |= HAMMER_INODE_BUFS;
2062 * Re-set the XDIRTY flag if some of the inode's in-memory records
2063 * could not be flushed.
2065 KKASSERT((RB_EMPTY(&ip->rec_tree) &&
2066 (ip->flags & HAMMER_INODE_XDIRTY) == 0) ||
2067 (!RB_EMPTY(&ip->rec_tree) &&
2068 (ip->flags & HAMMER_INODE_XDIRTY) != 0));
2071 * Do not lose track of inodes which no longer have vnode
2072 * assocations, otherwise they may never get flushed again.
2074 if ((ip->flags & HAMMER_INODE_MODMASK) && ip->vp == NULL)
2075 ip->flags |= HAMMER_INODE_REFLUSH;
2078 * Adjust the flush state.
2080 if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
2082 * We were unable to flush out all our records, leave the
2083 * inode in a flush state and in the current flush group.
2085 * This occurs if the UNDO block gets too full
2086 * or there is too much dirty meta-data and allows the
2087 * flusher to finalize the UNDO block and then re-flush.
2089 ip->flags &= ~HAMMER_INODE_WOULDBLOCK;
2090 dorel = 0;
2091 } else {
2093 * Remove from the flush_group
2095 TAILQ_REMOVE(&ip->flush_group->flush_list, ip, flush_entry);
2096 ip->flush_group = NULL;
2099 * Clean up the vnode ref and tracking counts.
2101 if (ip->flags & HAMMER_INODE_VHELD) {
2102 ip->flags &= ~HAMMER_INODE_VHELD;
2103 vrele(ip->vp);
2105 --hmp->count_iqueued;
2106 --hammer_count_iqueued;
2109 * And adjust the state.
2111 if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
2112 ip->flush_state = HAMMER_FST_IDLE;
2113 dorel = 1;
2114 } else {
2115 ip->flush_state = HAMMER_FST_SETUP;
2116 dorel = 0;
2120 * If the frontend is waiting for a flush to complete,
2121 * wake it up.
2123 if (ip->flags & HAMMER_INODE_FLUSHW) {
2124 ip->flags &= ~HAMMER_INODE_FLUSHW;
2125 wakeup(&ip->flags);
2130 * If the frontend made more changes and requested another flush,
2131 * then try to get it running.
2133 * Reflushes are aborted when the inode is errored out.
2135 if (ip->flags & HAMMER_INODE_REFLUSH) {
2136 ip->flags &= ~HAMMER_INODE_REFLUSH;
2137 if (ip->flags & HAMMER_INODE_RESIGNAL) {
2138 ip->flags &= ~HAMMER_INODE_RESIGNAL;
2139 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2140 } else {
2141 hammer_flush_inode(ip, 0);
2146 * If we have no parent dependancies we can clear CONN_DOWN
2148 if (TAILQ_EMPTY(&ip->target_list))
2149 ip->flags &= ~HAMMER_INODE_CONN_DOWN;
2152 * If the inode is now clean drop the space reservation.
2154 if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
2155 (ip->flags & HAMMER_INODE_RSV_INODES)) {
2156 ip->flags &= ~HAMMER_INODE_RSV_INODES;
2157 --hmp->rsv_inodes;
2160 if (dorel)
2161 hammer_rel_inode(ip, 0);
2165 * Called from hammer_sync_inode() to synchronize in-memory records
2166 * to the media.
2168 static int
2169 hammer_sync_record_callback(hammer_record_t record, void *data)
2171 hammer_cursor_t cursor = data;
2172 hammer_transaction_t trans = cursor->trans;
2173 hammer_mount_t hmp = trans->hmp;
2174 int error;
2177 * Skip records that do not belong to the current flush.
2179 ++hammer_stats_record_iterations;
2180 if (record->flush_state != HAMMER_FST_FLUSH)
2181 return(0);
2183 #if 1
2184 if (record->flush_group != record->ip->flush_group) {
2185 kprintf("sync_record %p ip %p bad flush group %p %p\n", record, record->ip, record->flush_group ,record->ip->flush_group);
2186 Debugger("blah2");
2187 return(0);
2189 #endif
2190 KKASSERT(record->flush_group == record->ip->flush_group);
2193 * Interlock the record using the BE flag. Once BE is set the
2194 * frontend cannot change the state of FE.
2196 * NOTE: If FE is set prior to us setting BE we still sync the
2197 * record out, but the flush completion code converts it to
2198 * a delete-on-disk record instead of destroying it.
2200 KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
2201 record->flags |= HAMMER_RECF_INTERLOCK_BE;
2204 * The backend may have already disposed of the record.
2206 if (record->flags & HAMMER_RECF_DELETED_BE) {
2207 error = 0;
2208 goto done;
2212 * If the whole inode is being deleting all on-disk records will
2213 * be deleted very soon, we can't sync any new records to disk
2214 * because they will be deleted in the same transaction they were
2215 * created in (delete_tid == create_tid), which will assert.
2217 * XXX There may be a case with RECORD_ADD with DELETED_FE set
2218 * that we currently panic on.
2220 if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
2221 switch(record->type) {
2222 case HAMMER_MEM_RECORD_DATA:
2224 * We don't have to do anything, if the record was
2225 * committed the space will have been accounted for
2226 * in the blockmap.
2228 /* fall through */
2229 case HAMMER_MEM_RECORD_GENERAL:
2230 record->flags |= HAMMER_RECF_DELETED_FE;
2231 record->flags |= HAMMER_RECF_DELETED_BE;
2232 error = 0;
2233 goto done;
2234 case HAMMER_MEM_RECORD_ADD:
2235 panic("hammer_sync_record_callback: illegal add "
2236 "during inode deletion record %p", record);
2237 break; /* NOT REACHED */
2238 case HAMMER_MEM_RECORD_INODE:
2239 panic("hammer_sync_record_callback: attempt to "
2240 "sync inode record %p?", record);
2241 break; /* NOT REACHED */
2242 case HAMMER_MEM_RECORD_DEL:
2244 * Follow through and issue the on-disk deletion
2246 break;
2251 * If DELETED_FE is set special handling is needed for directory
2252 * entries. Dependant pieces related to the directory entry may
2253 * have already been synced to disk. If this occurs we have to
2254 * sync the directory entry and then change the in-memory record
2255 * from an ADD to a DELETE to cover the fact that it's been
2256 * deleted by the frontend.
2258 * A directory delete covering record (MEM_RECORD_DEL) can never
2259 * be deleted by the frontend.
2261 * Any other record type (aka DATA) can be deleted by the frontend.
2262 * XXX At the moment the flusher must skip it because there may
2263 * be another data record in the flush group for the same block,
2264 * meaning that some frontend data changes can leak into the backend's
2265 * synchronization point.
2267 if (record->flags & HAMMER_RECF_DELETED_FE) {
2268 if (record->type == HAMMER_MEM_RECORD_ADD) {
2269 record->flags |= HAMMER_RECF_CONVERT_DELETE;
2270 } else {
2271 KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
2272 record->flags |= HAMMER_RECF_DELETED_BE;
2273 error = 0;
2274 goto done;
2279 * Assign the create_tid for new records. Deletions already
2280 * have the record's entire key properly set up.
2282 if (record->type != HAMMER_MEM_RECORD_DEL)
2283 record->leaf.base.create_tid = trans->tid;
2284 record->leaf.create_ts = trans->time32;
2285 for (;;) {
2286 error = hammer_ip_sync_record_cursor(cursor, record);
2287 if (error != EDEADLK)
2288 break;
2289 hammer_done_cursor(cursor);
2290 error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
2291 record->ip);
2292 if (error)
2293 break;
2295 record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
2297 if (error)
2298 error = -error;
2299 done:
2300 hammer_flush_record_done(record, error);
2303 * Do partial finalization if we have built up too many dirty
2304 * buffers. Otherwise a buffer cache deadlock can occur when
2305 * doing things like creating tens of thousands of tiny files.
2307 * We must release our cursor lock to avoid a 3-way deadlock
2308 * due to the exclusive sync lock the finalizer must get.
2310 if (hammer_flusher_meta_limit(hmp)) {
2311 hammer_unlock_cursor(cursor, 0);
2312 hammer_flusher_finalize(trans, 0);
2313 hammer_lock_cursor(cursor, 0);
2316 return(error);
2320 * XXX error handling
2323 hammer_sync_inode(hammer_transaction_t trans, hammer_inode_t ip)
2325 struct hammer_cursor cursor;
2326 hammer_node_t tmp_node;
2327 hammer_record_t depend;
2328 hammer_record_t next;
2329 int error, tmp_error;
2330 u_int64_t nlinks;
2332 if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
2333 return(0);
2335 error = hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2336 if (error)
2337 goto done;
2340 * Any directory records referencing this inode which are not in
2341 * our current flush group must adjust our nlink count for the
2342 * purposes of synchronization to disk.
2344 * Records which are in our flush group can be unlinked from our
2345 * inode now, potentially allowing the inode to be physically
2346 * deleted.
2348 * This cannot block.
2350 nlinks = ip->ino_data.nlinks;
2351 next = TAILQ_FIRST(&ip->target_list);
2352 while ((depend = next) != NULL) {
2353 next = TAILQ_NEXT(depend, target_entry);
2354 if (depend->flush_state == HAMMER_FST_FLUSH &&
2355 depend->flush_group == ip->flush_group) {
2357 * If this is an ADD that was deleted by the frontend
2358 * the frontend nlinks count will have already been
2359 * decremented, but the backend is going to sync its
2360 * directory entry and must account for it. The
2361 * record will be converted to a delete-on-disk when
2362 * it gets synced.
2364 * If the ADD was not deleted by the frontend we
2365 * can remove the dependancy from our target_list.
2367 if (depend->flags & HAMMER_RECF_DELETED_FE) {
2368 ++nlinks;
2369 } else {
2370 TAILQ_REMOVE(&ip->target_list, depend,
2371 target_entry);
2372 depend->target_ip = NULL;
2374 } else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
2376 * Not part of our flush group
2378 KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
2379 switch(depend->type) {
2380 case HAMMER_MEM_RECORD_ADD:
2381 --nlinks;
2382 break;
2383 case HAMMER_MEM_RECORD_DEL:
2384 ++nlinks;
2385 break;
2386 default:
2387 break;
2393 * Set dirty if we had to modify the link count.
2395 if (ip->sync_ino_data.nlinks != nlinks) {
2396 KKASSERT((int64_t)nlinks >= 0);
2397 ip->sync_ino_data.nlinks = nlinks;
2398 ip->sync_flags |= HAMMER_INODE_DDIRTY;
2402 * If there is a trunction queued destroy any data past the (aligned)
2403 * truncation point. Userland will have dealt with the buffer
2404 * containing the truncation point for us.
2406 * We don't flush pending frontend data buffers until after we've
2407 * dealt with the truncation.
2409 if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
2411 * Interlock trunc_off. The VOP front-end may continue to
2412 * make adjustments to it while we are blocked.
2414 off_t trunc_off;
2415 off_t aligned_trunc_off;
2416 int blkmask;
2418 trunc_off = ip->sync_trunc_off;
2419 blkmask = hammer_blocksize(trunc_off) - 1;
2420 aligned_trunc_off = (trunc_off + blkmask) & ~(int64_t)blkmask;
2423 * Delete any whole blocks on-media. The front-end has
2424 * already cleaned out any partial block and made it
2425 * pending. The front-end may have updated trunc_off
2426 * while we were blocked so we only use sync_trunc_off.
2428 * This operation can blow out the buffer cache, EWOULDBLOCK
2429 * means we were unable to complete the deletion. The
2430 * deletion will update sync_trunc_off in that case.
2432 error = hammer_ip_delete_range(&cursor, ip,
2433 aligned_trunc_off,
2434 0x7FFFFFFFFFFFFFFFLL, 2);
2435 if (error == EWOULDBLOCK) {
2436 ip->flags |= HAMMER_INODE_WOULDBLOCK;
2437 error = 0;
2438 goto defer_buffer_flush;
2441 if (error)
2442 goto done;
2445 * Clear the truncation flag on the backend after we have
2446 * complete the deletions. Backend data is now good again
2447 * (including new records we are about to sync, below).
2449 * Leave sync_trunc_off intact. As we write additional
2450 * records the backend will update sync_trunc_off. This
2451 * tells the backend whether it can skip the overwrite
2452 * test. This should work properly even when the backend
2453 * writes full blocks where the truncation point straddles
2454 * the block because the comparison is against the base
2455 * offset of the record.
2457 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2458 /* ip->sync_trunc_off = 0x7FFFFFFFFFFFFFFFLL; */
2459 } else {
2460 error = 0;
2464 * Now sync related records. These will typically be directory
2465 * entries, records tracking direct-writes, or delete-on-disk records.
2467 if (error == 0) {
2468 tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2469 hammer_sync_record_callback, &cursor);
2470 if (tmp_error < 0)
2471 tmp_error = -error;
2472 if (tmp_error)
2473 error = tmp_error;
2475 hammer_cache_node(&ip->cache[1], cursor.node);
2478 * Re-seek for inode update, assuming our cache hasn't been ripped
2479 * out from under us.
2481 if (error == 0) {
2482 tmp_node = hammer_ref_node_safe(ip->hmp, &ip->cache[0], &error);
2483 if (tmp_node) {
2484 hammer_cursor_downgrade(&cursor);
2485 hammer_lock_sh(&tmp_node->lock);
2486 if ((tmp_node->flags & HAMMER_NODE_DELETED) == 0)
2487 hammer_cursor_seek(&cursor, tmp_node, 0);
2488 hammer_unlock(&tmp_node->lock);
2489 hammer_rel_node(tmp_node);
2491 error = 0;
2495 * If we are deleting the inode the frontend had better not have
2496 * any active references on elements making up the inode.
2498 * The call to hammer_ip_delete_clean() cleans up auxillary records
2499 * but not DB or DATA records. Those must have already been deleted
2500 * by the normal truncation mechanic.
2502 if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
2503 RB_EMPTY(&ip->rec_tree) &&
2504 (ip->sync_flags & HAMMER_INODE_DELETING) &&
2505 (ip->flags & HAMMER_INODE_DELETED) == 0) {
2506 int count1 = 0;
2508 error = hammer_ip_delete_clean(&cursor, ip, &count1);
2509 if (error == 0) {
2510 ip->flags |= HAMMER_INODE_DELETED;
2511 ip->sync_flags &= ~HAMMER_INODE_DELETING;
2512 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2513 KKASSERT(RB_EMPTY(&ip->rec_tree));
2516 * Set delete_tid in both the frontend and backend
2517 * copy of the inode record. The DELETED flag handles
2518 * this, do not set RDIRTY.
2520 ip->ino_leaf.base.delete_tid = trans->tid;
2521 ip->sync_ino_leaf.base.delete_tid = trans->tid;
2522 ip->ino_leaf.delete_ts = trans->time32;
2523 ip->sync_ino_leaf.delete_ts = trans->time32;
2527 * Adjust the inode count in the volume header
2529 hammer_sync_lock_sh(trans);
2530 if (ip->flags & HAMMER_INODE_ONDISK) {
2531 hammer_modify_volume_field(trans,
2532 trans->rootvol,
2533 vol0_stat_inodes);
2534 --ip->hmp->rootvol->ondisk->vol0_stat_inodes;
2535 hammer_modify_volume_done(trans->rootvol);
2537 hammer_sync_unlock(trans);
2541 if (error)
2542 goto done;
2543 ip->sync_flags &= ~HAMMER_INODE_BUFS;
2545 defer_buffer_flush:
2547 * Now update the inode's on-disk inode-data and/or on-disk record.
2548 * DELETED and ONDISK are managed only in ip->flags.
2550 * In the case of a defered buffer flush we still update the on-disk
2551 * inode to satisfy visibility requirements if there happen to be
2552 * directory dependancies.
2554 switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
2555 case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
2557 * If deleted and on-disk, don't set any additional flags.
2558 * the delete flag takes care of things.
2560 * Clear flags which may have been set by the frontend.
2562 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2563 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2564 HAMMER_INODE_DELETING);
2565 break;
2566 case HAMMER_INODE_DELETED:
2568 * Take care of the case where a deleted inode was never
2569 * flushed to the disk in the first place.
2571 * Clear flags which may have been set by the frontend.
2573 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2574 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2575 HAMMER_INODE_DELETING);
2576 while (RB_ROOT(&ip->rec_tree)) {
2577 hammer_record_t record = RB_ROOT(&ip->rec_tree);
2578 hammer_ref(&record->lock);
2579 KKASSERT(record->lock.refs == 1);
2580 record->flags |= HAMMER_RECF_DELETED_FE;
2581 record->flags |= HAMMER_RECF_DELETED_BE;
2582 hammer_rel_mem_record(record);
2584 break;
2585 case HAMMER_INODE_ONDISK:
2587 * If already on-disk, do not set any additional flags.
2589 break;
2590 default:
2592 * If not on-disk and not deleted, set DDIRTY to force
2593 * an initial record to be written.
2595 * Also set the create_tid in both the frontend and backend
2596 * copy of the inode record.
2598 ip->ino_leaf.base.create_tid = trans->tid;
2599 ip->ino_leaf.create_ts = trans->time32;
2600 ip->sync_ino_leaf.base.create_tid = trans->tid;
2601 ip->sync_ino_leaf.create_ts = trans->time32;
2602 ip->sync_flags |= HAMMER_INODE_DDIRTY;
2603 break;
2607 * If RDIRTY or DDIRTY is set, write out a new record. If the inode
2608 * is already on-disk the old record is marked as deleted.
2610 * If DELETED is set hammer_update_inode() will delete the existing
2611 * record without writing out a new one.
2613 * If *ONLY* the ITIMES flag is set we can update the record in-place.
2615 if (ip->flags & HAMMER_INODE_DELETED) {
2616 error = hammer_update_inode(&cursor, ip);
2617 } else
2618 if ((ip->sync_flags & HAMMER_INODE_DDIRTY) == 0 &&
2619 (ip->sync_flags & (HAMMER_INODE_ATIME | HAMMER_INODE_MTIME))) {
2620 error = hammer_update_itimes(&cursor, ip);
2621 } else
2622 if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) {
2623 error = hammer_update_inode(&cursor, ip);
2625 done:
2626 if (error) {
2627 hammer_critical_error(ip->hmp, ip, error,
2628 "while syncing inode");
2630 hammer_done_cursor(&cursor);
2631 return(error);
2635 * This routine is called when the OS is no longer actively referencing
2636 * the inode (but might still be keeping it cached), or when releasing
2637 * the last reference to an inode.
2639 * At this point if the inode's nlinks count is zero we want to destroy
2640 * it, which may mean destroying it on-media too.
2642 void
2643 hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
2645 struct vnode *vp;
2648 * Set the DELETING flag when the link count drops to 0 and the
2649 * OS no longer has any opens on the inode.
2651 * The backend will clear DELETING (a mod flag) and set DELETED
2652 * (a state flag) when it is actually able to perform the
2653 * operation.
2655 if (ip->ino_data.nlinks == 0 &&
2656 (ip->flags & (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
2657 ip->flags |= HAMMER_INODE_DELETING;
2658 ip->flags |= HAMMER_INODE_TRUNCATED;
2659 ip->trunc_off = 0;
2660 vp = NULL;
2661 if (getvp) {
2662 if (hammer_get_vnode(ip, &vp) != 0)
2663 return;
2667 * Final cleanup
2669 if (ip->vp) {
2670 vtruncbuf(ip->vp, 0, HAMMER_BUFSIZE);
2671 vnode_pager_setsize(ip->vp, 0);
2673 if (getvp) {
2674 vput(vp);
2680 * After potentially resolving a dependancy the inode is tested
2681 * to determine whether it needs to be reflushed.
2683 void
2684 hammer_test_inode(hammer_inode_t ip)
2686 if (ip->flags & HAMMER_INODE_REFLUSH) {
2687 ip->flags &= ~HAMMER_INODE_REFLUSH;
2688 hammer_ref(&ip->lock);
2689 if (ip->flags & HAMMER_INODE_RESIGNAL) {
2690 ip->flags &= ~HAMMER_INODE_RESIGNAL;
2691 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2692 } else {
2693 hammer_flush_inode(ip, 0);
2695 hammer_rel_inode(ip, 0);
2700 * Clear the RECLAIM flag on an inode. This occurs when the inode is
2701 * reassociated with a vp or just before it gets freed.
2703 * Wakeup one thread blocked waiting on reclaims to complete. Note that
2704 * the inode the thread is waiting on behalf of is a different inode then
2705 * the inode we are called with. This is to create a pipeline.
2707 static void
2708 hammer_inode_wakereclaims(hammer_inode_t ip)
2710 struct hammer_reclaim *reclaim;
2711 hammer_mount_t hmp = ip->hmp;
2713 if ((ip->flags & HAMMER_INODE_RECLAIM) == 0)
2714 return;
2716 --hammer_count_reclaiming;
2717 --hmp->inode_reclaims;
2718 ip->flags &= ~HAMMER_INODE_RECLAIM;
2720 if ((reclaim = TAILQ_FIRST(&hmp->reclaim_list)) != NULL) {
2721 TAILQ_REMOVE(&hmp->reclaim_list, reclaim, entry);
2722 reclaim->okydoky = 1;
2723 wakeup(reclaim);
2728 * Setup our reclaim pipeline. We only let so many detached (and dirty)
2729 * inodes build up before we start blocking.
2731 * When we block we don't care *which* inode has finished reclaiming,
2732 * as lone as one does. This is somewhat heuristical... we also put a
2733 * cap on how long we are willing to wait.
2735 void
2736 hammer_inode_waitreclaims(hammer_mount_t hmp)
2738 struct hammer_reclaim reclaim;
2739 int delay;
2741 if (hmp->inode_reclaims > HAMMER_RECLAIM_WAIT) {
2742 reclaim.okydoky = 0;
2743 TAILQ_INSERT_TAIL(&hmp->reclaim_list,
2744 &reclaim, entry);
2745 } else {
2746 reclaim.okydoky = 1;
2749 if (reclaim.okydoky == 0) {
2750 delay = (hmp->inode_reclaims - HAMMER_RECLAIM_WAIT) * hz /
2751 HAMMER_RECLAIM_WAIT;
2752 if (delay >= 0)
2753 tsleep(&reclaim, 0, "hmrrcm", delay + 1);
2754 if (reclaim.okydoky == 0)
2755 TAILQ_REMOVE(&hmp->reclaim_list, &reclaim, entry);