Fix acpi (loading it failed).
[dragonfly.git] / sys / dev / acpica5 / acpi_cpu_cstate.c
blob934380f4408a475d4c0b082e01c68dd8f7425f85
1 /*-
2 * Copyright (c) 2003-2005 Nate Lawson (SDG)
3 * Copyright (c) 2001 Michael Smith
4 * All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
27 * $FreeBSD: src/sys/dev/acpica/acpi_cpu.c,v 1.72 2008/04/12 12:06:00 rpaulo Exp $
28 * $DragonFly: src/sys/dev/acpica5/acpi_cpu.c,v 1.21 2008/09/05 10:28:35 hasso Exp $
31 #include "opt_acpi.h"
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/globaldata.h>
37 #include <sys/power.h>
38 #include <sys/proc.h>
39 #include <sys/sbuf.h>
40 #include <sys/thread2.h>
41 #include <sys/mplock2.h>
43 #include <bus/pci/pcivar.h>
44 #include <machine/atomic.h>
45 #include <machine/globaldata.h>
46 #include <machine/md_var.h>
47 #include <machine/smp.h>
48 #include <sys/rman.h>
50 #include "acpi.h"
51 #include "acpivar.h"
52 #include "acpi_cpu.h"
55 * Support for ACPI Processor devices, including C[1-3] sleep states.
58 /* Hooks for the ACPI CA debugging infrastructure */
59 #define _COMPONENT ACPI_PROCESSOR
60 ACPI_MODULE_NAME("PROCESSOR")
62 struct acpi_cx {
63 struct resource *p_lvlx; /* Register to read to enter state. */
64 int rid; /* rid of p_lvlx */
65 uint32_t type; /* C1-3 (C4 and up treated as C3). */
66 uint32_t trans_lat; /* Transition latency (usec). */
67 uint32_t power; /* Power consumed (mW). */
68 int res_type; /* Resource type for p_lvlx. */
70 #define MAX_CX_STATES 8
72 struct acpi_cpu_softc {
73 device_t cpu_dev;
74 struct acpi_cpux_softc *cpu_parent;
75 ACPI_HANDLE cpu_handle;
76 struct mdglobaldata *md;
77 uint32_t cpu_acpi_id; /* ACPI processor id */
78 uint32_t cpu_p_blk; /* ACPI P_BLK location */
79 uint32_t cpu_p_blk_len; /* P_BLK length (must be 6). */
80 struct acpi_cx cpu_cx_states[MAX_CX_STATES];
81 int cpu_cx_count; /* Number of valid Cx states. */
82 int cpu_prev_sleep;/* Last idle sleep duration. */
83 int cpu_features; /* Child driver supported features. */
84 /* Runtime state. */
85 int cpu_non_c3; /* Index of lowest non-C3 state. */
86 u_int cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
87 /* Values for sysctl. */
88 int cpu_cx_lowest;
89 char cpu_cx_supported[64];
92 struct acpi_cpu_device {
93 struct resource_list ad_rl;
96 #define CPU_GET_REG(reg, width) \
97 (bus_space_read_ ## width(rman_get_bustag((reg)), \
98 rman_get_bushandle((reg)), 0))
99 #define CPU_SET_REG(reg, width, val) \
100 (bus_space_write_ ## width(rman_get_bustag((reg)), \
101 rman_get_bushandle((reg)), 0, (val)))
103 #define PM_USEC(x) ((x) >> 2) /* ~4 clocks per usec (3.57955 Mhz) */
105 #define ACPI_NOTIFY_CX_STATES 0x81 /* _CST changed. */
107 #define CPU_QUIRK_NO_C3 (1<<0) /* C3-type states are not usable. */
108 #define CPU_QUIRK_NO_BM_CTRL (1<<2) /* No bus mastering control. */
110 #define PCI_VENDOR_INTEL 0x8086
111 #define PCI_DEVICE_82371AB_3 0x7113 /* PIIX4 chipset for quirks. */
112 #define PCI_REVISION_A_STEP 0
113 #define PCI_REVISION_B_STEP 1
114 #define PCI_REVISION_4E 2
115 #define PCI_REVISION_4M 3
116 #define PIIX4_DEVACTB_REG 0x58
117 #define PIIX4_BRLD_EN_IRQ0 (1<<0)
118 #define PIIX4_BRLD_EN_IRQ (1<<1)
119 #define PIIX4_BRLD_EN_IRQ8 (1<<5)
120 #define PIIX4_STOP_BREAK_MASK (PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
121 #define PIIX4_PCNTRL_BST_EN (1<<10)
123 /* Platform hardware resource information. */
124 static uint32_t cpu_smi_cmd; /* Value to write to SMI_CMD. */
125 static uint8_t cpu_cst_cnt; /* Indicate we are _CST aware. */
126 static int cpu_quirks; /* Indicate any hardware bugs. */
128 /* Runtime state. */
129 static int cpu_disable_idle; /* Disable entry to idle function */
130 static int cpu_cx_count; /* Number of valid Cx states */
132 /* Values for sysctl. */
133 static int cpu_cx_generic;
134 static int cpu_cx_lowest;
136 /* C3 state transition */
137 static int cpu_c3_ncpus;
139 static device_t *cpu_devices;
140 static int cpu_ndevices;
141 static struct acpi_cpu_softc **cpu_softc;
143 static int acpi_cpu_cst_probe(device_t dev);
144 static int acpi_cpu_cst_attach(device_t dev);
145 static int acpi_cpu_cst_suspend(device_t dev);
146 static int acpi_cpu_cst_resume(device_t dev);
147 static struct resource_list *acpi_cpu_cst_get_rlist(device_t dev,
148 device_t child);
149 static device_t acpi_cpu_cst_add_child(device_t bus, device_t parent,
150 int order, const char *name, int unit);
151 static int acpi_cpu_cst_read_ivar(device_t dev, device_t child,
152 int index, uintptr_t *result);
153 static int acpi_cpu_cst_shutdown(device_t dev);
154 static void acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
155 static void acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
156 static int acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
157 static void acpi_cpu_startup(void *arg);
158 static void acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
159 static void acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
160 static void acpi_cpu_idle(void);
161 static void acpi_cpu_cst_notify(device_t);
162 static int acpi_cpu_quirks(void);
163 static int acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
164 static int acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val);
165 static int acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
166 static int acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
168 static void acpi_cpu_c1(void); /* XXX */
170 static device_method_t acpi_cpu_cst_methods[] = {
171 /* Device interface */
172 DEVMETHOD(device_probe, acpi_cpu_cst_probe),
173 DEVMETHOD(device_attach, acpi_cpu_cst_attach),
174 DEVMETHOD(device_detach, bus_generic_detach),
175 DEVMETHOD(device_shutdown, acpi_cpu_cst_shutdown),
176 DEVMETHOD(device_suspend, acpi_cpu_cst_suspend),
177 DEVMETHOD(device_resume, acpi_cpu_cst_resume),
179 /* Bus interface */
180 DEVMETHOD(bus_add_child, acpi_cpu_cst_add_child),
181 DEVMETHOD(bus_read_ivar, acpi_cpu_cst_read_ivar),
182 DEVMETHOD(bus_get_resource_list, acpi_cpu_cst_get_rlist),
183 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
184 DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
185 DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
186 DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
187 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
188 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
189 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
190 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
191 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
192 {0, 0}
195 static driver_t acpi_cpu_cst_driver = {
196 "cpu_cst",
197 acpi_cpu_cst_methods,
198 sizeof(struct acpi_cpu_softc),
201 static devclass_t acpi_cpu_cst_devclass;
202 DRIVER_MODULE(cpu_cst, cpu, acpi_cpu_cst_driver, acpi_cpu_cst_devclass, 0, 0);
203 MODULE_DEPEND(cpu_cst, acpi, 1, 1, 1);
205 static int
206 acpi_cpu_cst_probe(device_t dev)
208 int cpu_id;
210 if (acpi_disabled("cpu_cst") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
211 return (ENXIO);
213 cpu_id = acpi_get_magic(dev);
215 if (cpu_softc == NULL)
216 cpu_softc = kmalloc(sizeof(struct acpi_cpu_softc *) *
217 SMP_MAXCPU, M_TEMP /* XXX */, M_INTWAIT | M_ZERO);
220 * Check if we already probed this processor. We scan the bus twice
221 * so it's possible we've already seen this one.
223 if (cpu_softc[cpu_id] != NULL) {
224 device_printf(dev, "CPU%d cstate already exist\n", cpu_id);
225 return (ENXIO);
228 /* Mark this processor as in-use and save our derived id for attach. */
229 cpu_softc[cpu_id] = (void *)1;
230 device_set_desc(dev, "ACPI CPU C-State");
232 return (0);
235 static int
236 acpi_cpu_cst_attach(device_t dev)
238 ACPI_BUFFER buf;
239 ACPI_OBJECT arg[4], *obj;
240 ACPI_OBJECT_LIST arglist;
241 struct mdglobaldata *md;
242 struct acpi_cpu_softc *sc;
243 ACPI_STATUS status;
244 u_int features;
245 int cpu_id, drv_count, i;
246 driver_t **drivers;
247 uint32_t cap_set[3];
249 /* UUID needed by _OSC evaluation */
250 static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
251 0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
252 0x58, 0x71, 0x39, 0x53 };
254 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
256 sc = device_get_softc(dev);
257 sc->cpu_dev = dev;
258 sc->cpu_parent = device_get_softc(device_get_parent(dev));
259 sc->cpu_handle = acpi_get_handle(dev);
260 cpu_id = acpi_get_magic(dev);
261 cpu_softc[cpu_id] = sc;
262 md = (struct mdglobaldata *)globaldata_find(device_get_unit(dev));
263 sc->md = md;
264 cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
265 cpu_cst_cnt = AcpiGbl_FADT.CstControl;
267 buf.Pointer = NULL;
268 buf.Length = ACPI_ALLOCATE_BUFFER;
269 status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
270 if (ACPI_FAILURE(status)) {
271 device_printf(dev, "attach failed to get Processor obj - %s\n",
272 AcpiFormatException(status));
273 return (ENXIO);
275 obj = (ACPI_OBJECT *)buf.Pointer;
276 sc->cpu_p_blk = obj->Processor.PblkAddress;
277 sc->cpu_p_blk_len = obj->Processor.PblkLength;
278 sc->cpu_acpi_id = obj->Processor.ProcId;
279 AcpiOsFree(obj);
280 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
281 device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
284 * If this is the first cpu we attach, create and initialize the generic
285 * resources that will be used by all acpi cpu devices.
287 if (device_get_unit(dev) == 0) {
288 /* Assume we won't be using generic Cx mode by default */
289 cpu_cx_generic = FALSE;
291 /* Queue post cpu-probing task handler */
292 AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
296 * Before calling any CPU methods, collect child driver feature hints
297 * and notify ACPI of them. We support unified SMP power control
298 * so advertise this ourselves. Note this is not the same as independent
299 * SMP control where each CPU can have different settings.
301 sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
302 if (devclass_get_drivers(acpi_cpu_cst_devclass,
303 &drivers, &drv_count) == 0) {
304 for (i = 0; i < drv_count; i++) {
305 if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
306 sc->cpu_features |= features;
308 kfree(drivers, M_TEMP);
312 * CPU capabilities are specified as a buffer of 32-bit integers:
313 * revision, count, and one or more capabilities. The revision of
314 * "1" is not specified anywhere but seems to match Linux.
316 if (sc->cpu_features) {
317 arglist.Pointer = arg;
318 arglist.Count = 1;
319 arg[0].Type = ACPI_TYPE_BUFFER;
320 arg[0].Buffer.Length = sizeof(cap_set);
321 arg[0].Buffer.Pointer = (uint8_t *)cap_set;
322 cap_set[0] = 1; /* revision */
323 cap_set[1] = 1; /* number of capabilities integers */
324 cap_set[2] = sc->cpu_features;
325 AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
328 * On some systems we need to evaluate _OSC so that the ASL
329 * loads the _PSS and/or _PDC methods at runtime.
331 * TODO: evaluate failure of _OSC.
333 arglist.Pointer = arg;
334 arglist.Count = 4;
335 arg[0].Type = ACPI_TYPE_BUFFER;
336 arg[0].Buffer.Length = sizeof(cpu_oscuuid);
337 arg[0].Buffer.Pointer = cpu_oscuuid; /* UUID */
338 arg[1].Type = ACPI_TYPE_INTEGER;
339 arg[1].Integer.Value = 1; /* revision */
340 arg[2].Type = ACPI_TYPE_INTEGER;
341 arg[2].Integer.Value = 1; /* count */
342 arg[3].Type = ACPI_TYPE_BUFFER;
343 arg[3].Buffer.Length = sizeof(cap_set); /* Capabilities buffer */
344 arg[3].Buffer.Pointer = (uint8_t *)cap_set;
345 cap_set[0] = 0;
346 AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL);
349 /* Probe for Cx state support. */
350 acpi_cpu_cx_probe(sc);
352 /* Finally, call identify and probe/attach for child devices. */
353 bus_generic_probe(dev);
354 bus_generic_attach(dev);
356 return (0);
360 * Disable any entry to the idle function during suspend and re-enable it
361 * during resume.
363 static int
364 acpi_cpu_cst_suspend(device_t dev)
366 int error;
368 error = bus_generic_suspend(dev);
369 if (error)
370 return (error);
371 cpu_disable_idle = TRUE;
372 return (0);
375 static int
376 acpi_cpu_cst_resume(device_t dev)
379 cpu_disable_idle = FALSE;
380 return (bus_generic_resume(dev));
383 static struct resource_list *
384 acpi_cpu_cst_get_rlist(device_t dev, device_t child)
386 struct acpi_cpu_device *ad;
388 ad = device_get_ivars(child);
389 if (ad == NULL)
390 return (NULL);
391 return (&ad->ad_rl);
394 static device_t
395 acpi_cpu_cst_add_child(device_t bus, device_t parent, int order,
396 const char *name, int unit)
398 struct acpi_cpu_device *ad;
399 device_t child;
401 if ((ad = kmalloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
402 return (NULL);
404 resource_list_init(&ad->ad_rl);
406 child = device_add_child_ordered(parent, order, name, unit);
407 if (child != NULL)
408 device_set_ivars(child, ad);
409 else
410 kfree(ad, M_TEMP);
411 return (child);
414 static int
415 acpi_cpu_cst_read_ivar(device_t dev, device_t child, int index,
416 uintptr_t *result)
418 struct acpi_cpu_softc *sc;
420 sc = device_get_softc(dev);
421 switch (index) {
422 case ACPI_IVAR_HANDLE:
423 *result = (uintptr_t)sc->cpu_handle;
424 break;
425 #if 0
426 case CPU_IVAR_PCPU:
427 *result = (uintptr_t)sc->cpu_pcpu;
428 break;
429 #endif
430 default:
431 return (ENOENT);
433 return (0);
436 static int
437 acpi_cpu_cst_shutdown(device_t dev)
439 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
441 /* Allow children to shutdown first. */
442 bus_generic_shutdown(dev);
445 * Disable any entry to the idle function. There is a small race where
446 * an idle thread have passed this check but not gone to sleep. This
447 * is ok since device_shutdown() does not free the softc, otherwise
448 * we'd have to be sure all threads were evicted before returning.
450 cpu_disable_idle = TRUE;
452 return_VALUE (0);
455 static void
456 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
458 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
460 /* Use initial sleep value of 1 sec. to start with lowest idle state. */
461 sc->cpu_prev_sleep = 1000000;
462 sc->cpu_cx_lowest = 0;
465 * Check for the ACPI 2.0 _CST sleep states object. If we can't find
466 * any, we'll revert to generic FADT/P_BLK Cx control method which will
467 * be handled by acpi_cpu_startup. We need to defer to after having
468 * probed all the cpus in the system before probing for generic Cx
469 * states as we may already have found cpus with valid _CST packages
471 if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
473 * We were unable to find a _CST package for this cpu or there
474 * was an error parsing it. Switch back to generic mode.
476 cpu_cx_generic = TRUE;
477 if (bootverbose)
478 device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
482 * TODO: _CSD Package should be checked here.
486 static void
487 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
489 ACPI_GENERIC_ADDRESS gas;
490 struct acpi_cx *cx_ptr;
492 sc->cpu_cx_count = 0;
493 cx_ptr = sc->cpu_cx_states;
495 /* Use initial sleep value of 1 sec. to start with lowest idle state. */
496 sc->cpu_prev_sleep = 1000000;
498 /* C1 has been required since just after ACPI 1.0 */
499 cx_ptr->type = ACPI_STATE_C1;
500 cx_ptr->trans_lat = 0;
501 cx_ptr++;
502 sc->cpu_cx_count++;
505 * The spec says P_BLK must be 6 bytes long. However, some systems
506 * use it to indicate a fractional set of features present so we
507 * take 5 as C2. Some may also have a value of 7 to indicate
508 * another C3 but most use _CST for this (as required) and having
509 * "only" C1-C3 is not a hardship.
511 if (sc->cpu_p_blk_len < 5)
512 return;
514 /* Validate and allocate resources for C2 (P_LVL2). */
515 gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
516 gas.BitWidth = 8;
517 if (AcpiGbl_FADT.C2Latency <= 100) {
518 gas.Address = sc->cpu_p_blk + 4;
520 cx_ptr->rid = sc->cpu_parent->cpux_next_rid;
521 acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->type, &cx_ptr->rid, &gas, &cx_ptr->p_lvlx,
522 RF_SHAREABLE);
523 if (cx_ptr->p_lvlx != NULL) {
524 sc->cpu_parent->cpux_next_rid++;
525 cx_ptr->type = ACPI_STATE_C2;
526 cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
527 cx_ptr++;
528 sc->cpu_cx_count++;
531 if (sc->cpu_p_blk_len < 6)
532 return;
534 /* Validate and allocate resources for C3 (P_LVL3). */
535 if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
536 gas.Address = sc->cpu_p_blk + 5;
538 cx_ptr->rid = sc->cpu_parent->cpux_next_rid;
539 acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->type, &cx_ptr->rid, &gas,
540 &cx_ptr->p_lvlx, RF_SHAREABLE);
541 if (cx_ptr->p_lvlx != NULL) {
542 sc->cpu_parent->cpux_next_rid++;
543 cx_ptr->type = ACPI_STATE_C3;
544 cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
545 cx_ptr++;
546 sc->cpu_cx_count++;
552 * Parse a _CST package and set up its Cx states. Since the _CST object
553 * can change dynamically, our notify handler may call this function
554 * to clean up and probe the new _CST package.
556 static int
557 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
559 struct acpi_cx *cx_ptr;
560 ACPI_STATUS status;
561 ACPI_BUFFER buf;
562 ACPI_OBJECT *top;
563 ACPI_OBJECT *pkg;
564 uint32_t count;
565 int i;
567 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
569 buf.Pointer = NULL;
570 buf.Length = ACPI_ALLOCATE_BUFFER;
571 status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
572 if (ACPI_FAILURE(status))
573 return (ENXIO);
575 /* _CST is a package with a count and at least one Cx package. */
576 top = (ACPI_OBJECT *)buf.Pointer;
577 if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
578 device_printf(sc->cpu_dev, "invalid _CST package\n");
579 AcpiOsFree(buf.Pointer);
580 return (ENXIO);
582 if (count != top->Package.Count - 1) {
583 device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
584 count, top->Package.Count - 1);
585 count = top->Package.Count - 1;
587 if (count > MAX_CX_STATES) {
588 device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
589 count = MAX_CX_STATES;
592 /* Set up all valid states. */
593 sc->cpu_cx_count = 0;
594 cx_ptr = sc->cpu_cx_states;
595 for (i = 0; i < count; i++) {
596 pkg = &top->Package.Elements[i + 1];
597 if (!ACPI_PKG_VALID(pkg, 4) ||
598 acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
599 acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
600 acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
602 device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
603 continue;
606 /* Validate the state to see if we should use it. */
607 switch (cx_ptr->type) {
608 case ACPI_STATE_C1:
609 sc->cpu_non_c3 = i;
610 cx_ptr++;
611 sc->cpu_cx_count++;
612 continue;
613 case ACPI_STATE_C2:
614 if (cx_ptr->trans_lat > 100) {
615 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
616 "acpi_cpu%d: C2[%d] not available.\n",
617 device_get_unit(sc->cpu_dev), i));
618 continue;
620 sc->cpu_non_c3 = i;
621 break;
622 case ACPI_STATE_C3:
623 default:
624 if (cx_ptr->trans_lat > 1000 ||
625 (cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
627 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
628 "acpi_cpu%d: C3[%d] not available.\n",
629 device_get_unit(sc->cpu_dev), i));
630 continue;
632 break;
635 #ifdef notyet
636 /* Free up any previous register. */
637 if (cx_ptr->p_lvlx != NULL) {
638 bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
639 cx_ptr->p_lvlx = NULL;
641 #endif
643 /* Allocate the control register for C2 or C3. */
644 cx_ptr->rid = sc->cpu_parent->cpux_next_rid;
645 acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &cx_ptr->rid, &cx_ptr->p_lvlx,
646 RF_SHAREABLE);
647 if (cx_ptr->p_lvlx) {
648 sc->cpu_parent->cpux_next_rid++;
649 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
650 "acpi_cpu%d: Got C%d - %d latency\n",
651 device_get_unit(sc->cpu_dev), cx_ptr->type,
652 cx_ptr->trans_lat));
653 cx_ptr++;
654 sc->cpu_cx_count++;
657 AcpiOsFree(buf.Pointer);
659 return (0);
663 * Call this *after* all CPUs have been attached.
665 static void
666 acpi_cpu_startup(void *arg)
668 struct acpi_cpu_softc *sc;
669 int i;
671 /* Get set of CPU devices */
672 devclass_get_devices(acpi_cpu_cst_devclass, &cpu_devices, &cpu_ndevices);
675 * Setup any quirks that might necessary now that we have probed
676 * all the CPUs
678 acpi_cpu_quirks();
680 cpu_cx_count = 0;
681 if (cpu_cx_generic) {
683 * We are using generic Cx mode, probe for available Cx states
684 * for all processors.
686 for (i = 0; i < cpu_ndevices; i++) {
687 sc = device_get_softc(cpu_devices[i]);
688 acpi_cpu_generic_cx_probe(sc);
689 if (sc->cpu_cx_count > cpu_cx_count)
690 cpu_cx_count = sc->cpu_cx_count;
694 * Find the highest Cx state common to all CPUs
695 * in the system, taking quirks into account.
697 for (i = 0; i < cpu_ndevices; i++) {
698 sc = device_get_softc(cpu_devices[i]);
699 if (sc->cpu_cx_count < cpu_cx_count)
700 cpu_cx_count = sc->cpu_cx_count;
702 } else {
704 * We are using _CST mode, remove C3 state if necessary.
705 * Update the largest Cx state supported in the global cpu_cx_count.
706 * It will be used in the global Cx sysctl handler.
707 * As we now know for sure that we will be using _CST mode
708 * install our notify handler.
710 for (i = 0; i < cpu_ndevices; i++) {
711 sc = device_get_softc(cpu_devices[i]);
712 if (cpu_quirks & CPU_QUIRK_NO_C3) {
713 sc->cpu_cx_count = sc->cpu_non_c3 + 1;
715 if (sc->cpu_cx_count > cpu_cx_count)
716 cpu_cx_count = sc->cpu_cx_count;
717 sc->cpu_parent->cpux_cst_notify = acpi_cpu_cst_notify;
721 /* Perform Cx final initialization. */
722 for (i = 0; i < cpu_ndevices; i++) {
723 sc = device_get_softc(cpu_devices[i]);
724 acpi_cpu_startup_cx(sc);
726 if (sc->cpu_parent->glob_sysctl_tree != NULL) {
727 struct acpi_cpux_softc *cpux = sc->cpu_parent;
729 /* Add a sysctl handler to handle global Cx lowest setting */
730 SYSCTL_ADD_PROC(&cpux->glob_sysctl_ctx,
731 SYSCTL_CHILDREN(cpux->glob_sysctl_tree),
732 OID_AUTO, "cx_lowest",
733 CTLTYPE_STRING | CTLFLAG_RW, NULL, 0,
734 acpi_cpu_global_cx_lowest_sysctl, "A",
735 "Global lowest Cx sleep state to use");
739 /* Take over idling from cpu_idle_default(). */
740 cpu_cx_lowest = 0;
741 cpu_disable_idle = FALSE;
742 cpu_idle_hook = acpi_cpu_idle;
745 static void
746 acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
748 struct sbuf sb;
749 int i;
752 * Set up the list of Cx states
754 sc->cpu_non_c3 = 0;
755 sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
756 SBUF_FIXEDLEN);
757 for (i = 0; i < sc->cpu_cx_count; i++) {
758 sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
759 if (sc->cpu_cx_states[i].type < ACPI_STATE_C3)
760 sc->cpu_non_c3 = i;
762 sbuf_trim(&sb);
763 sbuf_finish(&sb);
766 static void
767 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
769 struct acpi_cpux_softc *cpux = sc->cpu_parent;
771 acpi_cpu_cx_list(sc);
773 SYSCTL_ADD_STRING(&cpux->pcpu_sysctl_ctx,
774 SYSCTL_CHILDREN(cpux->pcpu_sysctl_tree),
775 OID_AUTO, "cx_supported", CTLFLAG_RD,
776 sc->cpu_cx_supported, 0,
777 "Cx/microsecond values for supported Cx states");
778 SYSCTL_ADD_PROC(&cpux->pcpu_sysctl_ctx,
779 SYSCTL_CHILDREN(cpux->pcpu_sysctl_tree),
780 OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
781 (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
782 "lowest Cx sleep state to use");
783 SYSCTL_ADD_PROC(&cpux->pcpu_sysctl_ctx,
784 SYSCTL_CHILDREN(cpux->pcpu_sysctl_tree),
785 OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
786 (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
787 "percent usage for each Cx state");
789 #ifdef notyet
790 /* Signal platform that we can handle _CST notification. */
791 if (!cpu_cx_generic && cpu_cst_cnt != 0) {
792 ACPI_LOCK(acpi);
793 AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
794 ACPI_UNLOCK(acpi);
796 #endif
800 * Idle the CPU in the lowest state possible. This function is called with
801 * interrupts disabled. Note that once it re-enables interrupts, a task
802 * switch can occur so do not access shared data (i.e. the softc) after
803 * interrupts are re-enabled.
805 static void
806 acpi_cpu_idle(void)
808 struct acpi_cpu_softc *sc;
809 struct acpi_cx *cx_next;
810 uint32_t start_time, end_time;
811 int bm_active, cx_next_idx, i;
813 /* If disabled, return immediately. */
814 if (cpu_disable_idle) {
815 ACPI_ENABLE_IRQS();
816 return;
820 * Look up our CPU id to get our softc. If it's NULL, we'll use C1
821 * since there is no ACPI processor object for this CPU. This occurs
822 * for logical CPUs in the HTT case.
824 sc = cpu_softc[mdcpu->mi.gd_cpuid];
825 if (sc == NULL) {
826 acpi_cpu_c1();
827 return;
830 /* Find the lowest state that has small enough latency. */
831 cx_next_idx = 0;
832 for (i = sc->cpu_cx_lowest; i >= 0; i--) {
833 if (sc->cpu_cx_states[i].trans_lat * 3 <= sc->cpu_prev_sleep) {
834 cx_next_idx = i;
835 break;
840 * Check for bus master activity. If there was activity, clear
841 * the bit and use the lowest non-C3 state. Note that the USB
842 * driver polling for new devices keeps this bit set all the
843 * time if USB is loaded.
845 if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
846 AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
847 if (bm_active != 0) {
848 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
849 cx_next_idx = min(cx_next_idx, sc->cpu_non_c3);
853 /* Select the next state and update statistics. */
854 cx_next = &sc->cpu_cx_states[cx_next_idx];
855 sc->cpu_cx_stats[cx_next_idx]++;
856 KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
859 * Execute HLT (or equivalent) and wait for an interrupt. We can't
860 * calculate the time spent in C1 since the place we wake up is an
861 * ISR. Assume we slept half of quantum and return.
863 if (cx_next->type == ACPI_STATE_C1) {
864 sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + 500000 / hz) / 4;
865 acpi_cpu_c1();
866 return;
870 * For C3, disable bus master arbitration and enable bus master wake
871 * if BM control is available, otherwise flush the CPU cache.
873 if (cx_next->type == ACPI_STATE_C3) {
874 if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
875 AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
876 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
877 } else
878 ACPI_FLUSH_CPU_CACHE();
882 * Read from P_LVLx to enter C2(+), checking time spent asleep.
883 * Use the ACPI timer for measuring sleep time. Since we need to
884 * get the time very close to the CPU start/stop clock logic, this
885 * is the only reliable time source.
887 AcpiRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
888 CPU_GET_REG(cx_next->p_lvlx, 1);
891 * Read the end time twice. Since it may take an arbitrary time
892 * to enter the idle state, the first read may be executed before
893 * the processor has stopped. Doing it again provides enough
894 * margin that we are certain to have a correct value.
896 AcpiRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
897 AcpiRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
899 /* Enable bus master arbitration and disable bus master wakeup. */
900 if (cx_next->type == ACPI_STATE_C3) {
901 if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
902 AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
903 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
906 ACPI_ENABLE_IRQS();
908 /* Find the actual time asleep in microseconds. */
909 end_time = acpi_TimerDelta(end_time, start_time);
910 sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
914 * Re-evaluate the _CST object when we are notified that it changed.
916 * XXX Re-evaluation disabled until locking is done.
918 static void
919 acpi_cpu_cst_notify(device_t dev)
921 struct acpi_cpu_softc *sc = device_get_softc(dev);
922 struct acpi_cpu_softc *isc;
923 int i;
925 /* Update the list of Cx states. */
926 acpi_cpu_cx_cst(sc);
927 acpi_cpu_cx_list(sc);
929 /* Update the new lowest useable Cx state for all CPUs. */
930 crit_enter();
931 cpu_cx_count = 0;
932 for (i = 0; i < cpu_ndevices; i++) {
933 isc = device_get_softc(cpu_devices[i]);
934 if (isc->cpu_cx_count > cpu_cx_count)
935 cpu_cx_count = isc->cpu_cx_count;
937 crit_exit();
940 static int
941 acpi_cpu_quirks(void)
943 device_t acpi_dev;
944 uint32_t val;
946 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
949 * Bus mastering arbitration control is needed to keep caches coherent
950 * while sleeping in C3. If it's not present but a working flush cache
951 * instruction is present, flush the caches before entering C3 instead.
952 * Otherwise, just disable C3 completely.
954 if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
955 AcpiGbl_FADT.Pm2ControlLength == 0) {
956 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
957 (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
958 cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
959 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
960 "acpi_cpu: no BM control, using flush cache method\n"));
961 } else {
962 cpu_quirks |= CPU_QUIRK_NO_C3;
963 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
964 "acpi_cpu: no BM control, C3 not available\n"));
969 * If we are using generic Cx mode, C3 on multiple CPUs requires using
970 * the expensive flush cache instruction.
972 if (cpu_cx_generic && ncpus > 1) {
973 cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
974 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
975 "acpi_cpu: SMP, using flush cache mode for C3\n"));
978 /* Look for various quirks of the PIIX4 part. */
979 acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
980 if (acpi_dev != NULL) {
981 switch (pci_get_revid(acpi_dev)) {
983 * Disable C3 support for all PIIX4 chipsets. Some of these parts
984 * do not report the BMIDE status to the BM status register and
985 * others have a livelock bug if Type-F DMA is enabled. Linux
986 * works around the BMIDE bug by reading the BM status directly
987 * but we take the simpler approach of disabling C3 for these
988 * parts.
990 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
991 * Livelock") from the January 2002 PIIX4 specification update.
992 * Applies to all PIIX4 models.
994 * Also, make sure that all interrupts cause a "Stop Break"
995 * event to exit from C2 state.
996 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
997 * should be set to zero, otherwise it causes C2 to short-sleep.
998 * PIIX4 doesn't properly support C3 and bus master activity
999 * need not break out of C2.
1001 case PCI_REVISION_A_STEP:
1002 case PCI_REVISION_B_STEP:
1003 case PCI_REVISION_4E:
1004 case PCI_REVISION_4M:
1005 cpu_quirks |= CPU_QUIRK_NO_C3;
1006 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1007 "acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1009 val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
1010 if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
1011 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1012 "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
1013 val |= PIIX4_STOP_BREAK_MASK;
1014 pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
1016 AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
1017 if (val) {
1018 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1019 "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
1020 AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1022 break;
1023 default:
1024 break;
1028 return (0);
1031 static int
1032 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1034 struct acpi_cpu_softc *sc;
1035 struct sbuf sb;
1036 char buf[128];
1037 int i;
1038 uintmax_t fract, sum, whole;
1040 sc = (struct acpi_cpu_softc *) arg1;
1041 sum = 0;
1042 for (i = 0; i < sc->cpu_cx_count; i++)
1043 sum += sc->cpu_cx_stats[i];
1044 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1045 for (i = 0; i < sc->cpu_cx_count; i++) {
1046 if (sum > 0) {
1047 whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1048 fract = (whole % sum) * 100;
1049 sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1050 (u_int)(fract / sum));
1051 } else
1052 sbuf_printf(&sb, "0.00%% ");
1054 sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
1055 sbuf_trim(&sb);
1056 sbuf_finish(&sb);
1057 sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1058 sbuf_delete(&sb);
1060 return (0);
1063 static int
1064 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val)
1066 int i, old_lowest, error = 0;
1067 uint32_t old_type, type;
1069 get_mplock();
1071 old_lowest = atomic_swap_int(&sc->cpu_cx_lowest, val);
1073 old_type = sc->cpu_cx_states[old_lowest].type;
1074 type = sc->cpu_cx_states[val].type;
1075 if (old_type == ACPI_STATE_C3 && type != ACPI_STATE_C3) {
1076 KKASSERT(cpu_c3_ncpus > 0);
1077 if (atomic_fetchadd_int(&cpu_c3_ncpus, -1) == 1) {
1079 * All of the CPUs exit C3 state, use a better
1080 * one shot timer.
1082 error = cputimer_intr_select_caps(CPUTIMER_INTR_CAP_NONE);
1083 KKASSERT(!error);
1084 cputimer_intr_restart();
1086 } else if (type == ACPI_STATE_C3 && old_type != ACPI_STATE_C3) {
1087 if (atomic_fetchadd_int(&cpu_c3_ncpus, 1) == 0) {
1089 * When the first CPU enters C3 state, switch
1090 * to an one shot timer, which could handle
1091 * C3 state, i.e. the timer will not hang.
1093 error = cputimer_intr_select_caps(CPUTIMER_INTR_CAP_PS);
1094 if (!error) {
1095 cputimer_intr_restart();
1096 } else {
1097 kprintf("no suitable intr cuptimer found\n");
1099 /* Restore */
1100 sc->cpu_cx_lowest = old_lowest;
1101 atomic_fetchadd_int(&cpu_c3_ncpus, -1);
1106 rel_mplock();
1108 if (error)
1109 return error;
1111 /* If not disabling, cache the new lowest non-C3 state. */
1112 sc->cpu_non_c3 = 0;
1113 for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1114 if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1115 sc->cpu_non_c3 = i;
1116 break;
1120 /* Reset the statistics counters. */
1121 bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1122 return (0);
1125 static int
1126 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1128 struct acpi_cpu_softc *sc;
1129 char state[8];
1130 int val, error;
1132 sc = (struct acpi_cpu_softc *) arg1;
1133 ksnprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest + 1);
1134 error = sysctl_handle_string(oidp, state, sizeof(state), req);
1135 if (error != 0 || req->newptr == NULL)
1136 return (error);
1137 if (strlen(state) < 2 || toupper(state[0]) != 'C')
1138 return (EINVAL);
1139 val = (int) strtol(state + 1, NULL, 10) - 1;
1140 if (val < 0 || val > sc->cpu_cx_count - 1)
1141 return (EINVAL);
1143 crit_enter();
1144 error = acpi_cpu_set_cx_lowest(sc, val);
1145 crit_exit();
1147 return error;
1150 static int
1151 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1153 struct acpi_cpu_softc *sc;
1154 char state[8];
1155 int val, error, i;
1157 ksnprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
1158 error = sysctl_handle_string(oidp, state, sizeof(state), req);
1159 if (error != 0 || req->newptr == NULL)
1160 return (error);
1161 if (strlen(state) < 2 || toupper(state[0]) != 'C')
1162 return (EINVAL);
1163 val = (int) strtol(state + 1, NULL, 10) - 1;
1164 if (val < 0 || val > cpu_cx_count - 1)
1165 return (EINVAL);
1166 cpu_cx_lowest = val;
1168 /* Update the new lowest useable Cx state for all CPUs. */
1169 crit_enter();
1170 for (i = 0; i < cpu_ndevices; i++) {
1171 sc = device_get_softc(cpu_devices[i]);
1172 error = acpi_cpu_set_cx_lowest(sc, val);
1173 if (error) {
1174 KKASSERT(i == 0);
1175 break;
1178 crit_exit();
1180 return error;
1184 * Put the CPU in C1 in a machine-dependant way.
1185 * XXX: shouldn't be here!
1187 static void
1188 acpi_cpu_c1(void)
1190 #ifdef __ia64__
1191 ia64_call_pal_static(PAL_HALT_LIGHT, 0, 0, 0);
1192 #else
1193 splz();
1194 #ifdef SMP
1195 if (!lwkt_runnable())
1196 __asm __volatile("sti; hlt");
1197 else
1198 __asm __volatile("sti; pause");
1199 #else
1200 if (!lwkt_runnable())
1201 __asm __volatile("sti; hlt");
1202 else
1203 __asm __volatile("sti");
1204 #endif
1205 #endif /* !__ia64__ */