nlookup - introduce nlookup_init_root
[dragonfly.git] / sys / kern / vfs_mount.c
blob99d6e99a602a6d2f067aa669530ac43329463a15
1 /*
2 * Copyright (c) 2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1989, 1993
35 * The Regents of the University of California. All rights reserved.
36 * (c) UNIX System Laboratories, Inc.
37 * All or some portions of this file are derived from material licensed
38 * to the University of California by American Telephone and Telegraph
39 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40 * the permission of UNIX System Laboratories, Inc.
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
70 * $DragonFly: src/sys/kern/vfs_mount.c,v 1.37 2008/09/17 21:44:18 dillon Exp $
74 * External virtual filesystem routines
76 #include "opt_ddb.h"
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/malloc.h>
82 #include <sys/mount.h>
83 #include <sys/proc.h>
84 #include <sys/vnode.h>
85 #include <sys/buf.h>
86 #include <sys/eventhandler.h>
87 #include <sys/kthread.h>
88 #include <sys/sysctl.h>
90 #include <machine/limits.h>
92 #include <sys/buf2.h>
93 #include <sys/thread2.h>
94 #include <sys/sysref2.h>
96 #include <vm/vm.h>
97 #include <vm/vm_object.h>
99 struct mountscan_info {
100 TAILQ_ENTRY(mountscan_info) msi_entry;
101 int msi_how;
102 struct mount *msi_node;
105 struct vmntvnodescan_info {
106 TAILQ_ENTRY(vmntvnodescan_info) entry;
107 struct vnode *vp;
110 struct vnlru_info {
111 int pass;
114 static int vnlru_nowhere = 0;
115 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
116 &vnlru_nowhere, 0,
117 "Number of times the vnlru process ran without success");
120 static struct lwkt_token mntid_token;
121 static struct mount dummymount;
123 /* note: mountlist exported to pstat */
124 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
125 static TAILQ_HEAD(,mountscan_info) mountscan_list;
126 static struct lwkt_token mountlist_token;
127 static TAILQ_HEAD(,vmntvnodescan_info) mntvnodescan_list;
128 struct lwkt_token mntvnode_token;
130 static TAILQ_HEAD(,bio_ops) bio_ops_list = TAILQ_HEAD_INITIALIZER(bio_ops_list);
133 * Called from vfsinit()
135 void
136 vfs_mount_init(void)
138 lwkt_token_init(&mountlist_token);
139 lwkt_token_init(&mntvnode_token);
140 lwkt_token_init(&mntid_token);
141 TAILQ_INIT(&mountscan_list);
142 TAILQ_INIT(&mntvnodescan_list);
143 mount_init(&dummymount);
144 dummymount.mnt_flag |= MNT_RDONLY;
148 * Support function called with mntvnode_token held to remove a vnode
149 * from the mountlist. We must update any list scans which are in progress.
151 static void
152 vremovevnodemnt(struct vnode *vp)
154 struct vmntvnodescan_info *info;
156 TAILQ_FOREACH(info, &mntvnodescan_list, entry) {
157 if (info->vp == vp)
158 info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
160 TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
164 * Allocate a new vnode and associate it with a tag, mount point, and
165 * operations vector.
167 * A VX locked and refd vnode is returned. The caller should setup the
168 * remaining fields and vx_put() or, if he wishes to leave a vref,
169 * vx_unlock() the vnode.
172 getnewvnode(enum vtagtype tag, struct mount *mp,
173 struct vnode **vpp, int lktimeout, int lkflags)
175 struct vnode *vp;
177 KKASSERT(mp != NULL);
179 vp = allocvnode(lktimeout, lkflags);
180 vp->v_tag = tag;
181 vp->v_data = NULL;
184 * By default the vnode is assigned the mount point's normal
185 * operations vector.
187 vp->v_ops = &mp->mnt_vn_use_ops;
190 * Placing the vnode on the mount point's queue makes it visible.
191 * VNON prevents it from being messed with, however.
193 insmntque(vp, mp);
196 * A VX locked & refd vnode is returned.
198 *vpp = vp;
199 return (0);
203 * This function creates vnodes with special operations vectors. The
204 * mount point is optional.
206 * This routine is being phased out but is still used by vfs_conf to
207 * create vnodes for devices prior to the root mount (with mp == NULL).
210 getspecialvnode(enum vtagtype tag, struct mount *mp,
211 struct vop_ops **ops,
212 struct vnode **vpp, int lktimeout, int lkflags)
214 struct vnode *vp;
216 vp = allocvnode(lktimeout, lkflags);
217 vp->v_tag = tag;
218 vp->v_data = NULL;
219 vp->v_ops = ops;
221 if (mp == NULL)
222 mp = &dummymount;
225 * Placing the vnode on the mount point's queue makes it visible.
226 * VNON prevents it from being messed with, however.
228 insmntque(vp, mp);
231 * A VX locked & refd vnode is returned.
233 *vpp = vp;
234 return (0);
238 * Interlock against an unmount, return 0 on success, non-zero on failure.
240 * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
241 * is in-progress.
243 * If no unmount is in-progress LK_NOWAIT is ignored. No other flag bits
244 * are used. A shared locked will be obtained and the filesystem will not
245 * be unmountable until the lock is released.
248 vfs_busy(struct mount *mp, int flags)
250 int lkflags;
252 if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
253 if (flags & LK_NOWAIT)
254 return (ENOENT);
255 /* XXX not MP safe */
256 mp->mnt_kern_flag |= MNTK_MWAIT;
258 * Since all busy locks are shared except the exclusive
259 * lock granted when unmounting, the only place that a
260 * wakeup needs to be done is at the release of the
261 * exclusive lock at the end of dounmount.
263 tsleep((caddr_t)mp, 0, "vfs_busy", 0);
264 return (ENOENT);
266 lkflags = LK_SHARED;
267 if (lockmgr(&mp->mnt_lock, lkflags))
268 panic("vfs_busy: unexpected lock failure");
269 return (0);
273 * Free a busy filesystem.
275 void
276 vfs_unbusy(struct mount *mp)
278 lockmgr(&mp->mnt_lock, LK_RELEASE);
282 * Lookup a filesystem type, and if found allocate and initialize
283 * a mount structure for it.
285 * Devname is usually updated by mount(8) after booting.
288 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
290 struct vfsconf *vfsp;
291 struct mount *mp;
293 if (fstypename == NULL)
294 return (ENODEV);
296 vfsp = vfsconf_find_by_name(fstypename);
297 if (vfsp == NULL)
298 return (ENODEV);
299 mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
300 mount_init(mp);
301 lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0);
303 vfs_busy(mp, LK_NOWAIT);
304 mp->mnt_vfc = vfsp;
305 mp->mnt_op = vfsp->vfc_vfsops;
306 vfsp->vfc_refcount++;
307 mp->mnt_stat.f_type = vfsp->vfc_typenum;
308 mp->mnt_flag |= MNT_RDONLY;
309 mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
310 strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
311 copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
312 *mpp = mp;
313 return (0);
317 * Basic mount structure initialization
319 void
320 mount_init(struct mount *mp)
322 lockinit(&mp->mnt_lock, "vfslock", 0, 0);
323 lwkt_token_init(&mp->mnt_token);
325 TAILQ_INIT(&mp->mnt_nvnodelist);
326 TAILQ_INIT(&mp->mnt_reservedvnlist);
327 TAILQ_INIT(&mp->mnt_jlist);
328 mp->mnt_nvnodelistsize = 0;
329 mp->mnt_flag = 0;
330 mp->mnt_iosize_max = DFLTPHYS;
334 * Lookup a mount point by filesystem identifier.
336 struct mount *
337 vfs_getvfs(fsid_t *fsid)
339 struct mount *mp;
340 lwkt_tokref ilock;
342 lwkt_gettoken(&ilock, &mountlist_token);
343 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
344 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
345 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
346 break;
349 lwkt_reltoken(&ilock);
350 return (mp);
354 * Get a new unique fsid. Try to make its val[0] unique, since this value
355 * will be used to create fake device numbers for stat(). Also try (but
356 * not so hard) make its val[0] unique mod 2^16, since some emulators only
357 * support 16-bit device numbers. We end up with unique val[0]'s for the
358 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
360 * Keep in mind that several mounts may be running in parallel. Starting
361 * the search one past where the previous search terminated is both a
362 * micro-optimization and a defense against returning the same fsid to
363 * different mounts.
365 void
366 vfs_getnewfsid(struct mount *mp)
368 static u_int16_t mntid_base;
369 lwkt_tokref ilock;
370 fsid_t tfsid;
371 int mtype;
373 lwkt_gettoken(&ilock, &mntid_token);
374 mtype = mp->mnt_vfc->vfc_typenum;
375 tfsid.val[1] = mtype;
376 mtype = (mtype & 0xFF) << 24;
377 for (;;) {
378 tfsid.val[0] = makeudev(255,
379 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
380 mntid_base++;
381 if (vfs_getvfs(&tfsid) == NULL)
382 break;
384 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
385 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
386 lwkt_reltoken(&ilock);
390 * Set the FSID for a new mount point to the template. Adjust
391 * the FSID to avoid collisions.
394 vfs_setfsid(struct mount *mp, fsid_t *template)
396 int didmunge = 0;
398 bzero(&mp->mnt_stat.f_fsid, sizeof(mp->mnt_stat.f_fsid));
399 for (;;) {
400 if (vfs_getvfs(template) == NULL)
401 break;
402 didmunge = 1;
403 ++template->val[1];
405 mp->mnt_stat.f_fsid = *template;
406 return(didmunge);
410 * This routine is called when we have too many vnodes. It attempts
411 * to free <count> vnodes and will potentially free vnodes that still
412 * have VM backing store (VM backing store is typically the cause
413 * of a vnode blowout so we want to do this). Therefore, this operation
414 * is not considered cheap.
416 * A number of conditions may prevent a vnode from being reclaimed.
417 * the buffer cache may have references on the vnode, a directory
418 * vnode may still have references due to the namei cache representing
419 * underlying files, or the vnode may be in active use. It is not
420 * desireable to reuse such vnodes. These conditions may cause the
421 * number of vnodes to reach some minimum value regardless of what
422 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
426 * This is a quick non-blocking check to determine if the vnode is a good
427 * candidate for being (eventually) vgone()'d. Returns 0 if the vnode is
428 * not a good candidate, 1 if it is.
430 static __inline int
431 vmightfree(struct vnode *vp, int page_count, int pass)
433 if (vp->v_flag & VRECLAIMED)
434 return (0);
435 #if 0
436 if ((vp->v_flag & VFREE) && TAILQ_EMPTY(&vp->v_namecache))
437 return (0);
438 #endif
439 if (sysref_isactive(&vp->v_sysref))
440 return (0);
441 if (vp->v_object && vp->v_object->resident_page_count >= page_count)
442 return (0);
445 * XXX horrible hack. Up to four passes will be taken. Each pass
446 * makes a larger set of vnodes eligible. For now what this really
447 * means is that we try to recycle files opened only once before
448 * recycling files opened multiple times.
450 switch(vp->v_flag & (VAGE0 | VAGE1)) {
451 case 0:
452 if (pass < 3)
453 return(0);
454 break;
455 case VAGE0:
456 if (pass < 2)
457 return(0);
458 break;
459 case VAGE1:
460 if (pass < 1)
461 return(0);
462 break;
463 case VAGE0 | VAGE1:
464 break;
466 return (1);
470 * The vnode was found to be possibly vgone()able and the caller has locked it
471 * (thus the usecount should be 1 now). Determine if the vnode is actually
472 * vgone()able, doing some cleanups in the process. Returns 1 if the vnode
473 * can be vgone()'d, 0 otherwise.
475 * Note that v_auxrefs may be non-zero because (A) this vnode is not a leaf
476 * in the namecache topology and (B) this vnode has buffer cache bufs.
477 * We cannot remove vnodes with non-leaf namecache associations. We do a
478 * tentitive leaf check prior to attempting to flush out any buffers but the
479 * 'real' test when all is said in done is that v_auxrefs must become 0 for
480 * the vnode to be freeable.
482 * We could theoretically just unconditionally flush when v_auxrefs != 0,
483 * but flushing data associated with non-leaf nodes (which are always
484 * directories), just throws it away for no benefit. It is the buffer
485 * cache's responsibility to choose buffers to recycle from the cached
486 * data point of view.
488 static int
489 visleaf(struct vnode *vp)
491 struct namecache *ncp;
493 spin_lock_wr(&vp->v_spinlock);
494 TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
495 if (!TAILQ_EMPTY(&ncp->nc_list)) {
496 spin_unlock_wr(&vp->v_spinlock);
497 return(0);
500 spin_unlock_wr(&vp->v_spinlock);
501 return(1);
505 * Try to clean up the vnode to the point where it can be vgone()'d, returning
506 * 0 if it cannot be vgone()'d (or already has been), 1 if it can. Unlike
507 * vmightfree() this routine may flush the vnode and block. Vnodes marked
508 * VFREE are still candidates for vgone()ing because they may hold namecache
509 * resources and could be blocking the namecache directory hierarchy (and
510 * related vnodes) from being freed.
512 static int
513 vtrytomakegoneable(struct vnode *vp, int page_count)
515 if (vp->v_flag & VRECLAIMED)
516 return (0);
517 if (vp->v_sysref.refcnt > 1)
518 return (0);
519 if (vp->v_object && vp->v_object->resident_page_count >= page_count)
520 return (0);
521 if (vp->v_auxrefs && visleaf(vp)) {
522 vinvalbuf(vp, V_SAVE, 0, 0);
523 #if 0 /* DEBUG */
524 kprintf((vp->v_auxrefs ? "vrecycle: vp %p failed: %s\n" :
525 "vrecycle: vp %p succeeded: %s\n"), vp,
526 (TAILQ_FIRST(&vp->v_namecache) ?
527 TAILQ_FIRST(&vp->v_namecache)->nc_name : "?"));
528 #endif
532 * This sequence may seem a little strange, but we need to optimize
533 * the critical path a bit. We can't recycle vnodes with other
534 * references and because we are trying to recycle an otherwise
535 * perfectly fine vnode we have to invalidate the namecache in a
536 * way that avoids possible deadlocks (since the vnode lock is being
537 * held here). Finally, we have to check for other references one
538 * last time in case something snuck in during the inval.
540 if (vp->v_sysref.refcnt > 1 || vp->v_auxrefs != 0)
541 return (0);
542 if (cache_inval_vp_nonblock(vp))
543 return (0);
544 return (vp->v_sysref.refcnt <= 1 && vp->v_auxrefs == 0);
548 * Reclaim up to 1/10 of the vnodes associated with a mount point. Try
549 * to avoid vnodes which have lots of resident pages (we are trying to free
550 * vnodes, not memory).
552 * This routine is a callback from the mountlist scan. The mount point
553 * in question will be busied.
555 * NOTE: The 1/10 reclamation also ensures that the inactive data set
556 * (the vnodes being recycled by the one-time use) does not degenerate
557 * into too-small a set. This is important because once a vnode is
558 * marked as not being one-time-use (VAGE0/VAGE1 both 0) that vnode
559 * will not be destroyed EXCEPT by this mechanism. VM pages can still
560 * be cleaned/freed by the pageout daemon.
562 static int
563 vlrureclaim(struct mount *mp, void *data)
565 struct vnlru_info *info = data;
566 struct vnode *vp;
567 lwkt_tokref ilock;
568 int done;
569 int trigger;
570 int usevnodes;
571 int count;
572 int trigger_mult = vnlru_nowhere;
575 * Calculate the trigger point for the resident pages check. The
576 * minimum trigger value is approximately the number of pages in
577 * the system divded by the number of vnodes. However, due to
578 * various other system memory overheads unrelated to data caching
579 * it is a good idea to double the trigger (at least).
581 * trigger_mult starts at 0. If the recycler is having problems
582 * finding enough freeable vnodes it will increase trigger_mult.
583 * This should not happen in normal operation, even on machines with
584 * low amounts of memory, but extraordinary memory use by the system
585 * verses the amount of cached data can trigger it.
587 usevnodes = desiredvnodes;
588 if (usevnodes <= 0)
589 usevnodes = 1;
590 trigger = vmstats.v_page_count * (trigger_mult + 2) / usevnodes;
592 done = 0;
593 lwkt_gettoken(&ilock, &mntvnode_token);
594 count = mp->mnt_nvnodelistsize / 10 + 1;
596 while (count && mp->mnt_syncer) {
598 * Next vnode. Use the special syncer vnode to placemark
599 * the LRU. This way the LRU code does not interfere with
600 * vmntvnodescan().
602 vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
603 TAILQ_REMOVE(&mp->mnt_nvnodelist, mp->mnt_syncer, v_nmntvnodes);
604 if (vp) {
605 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp,
606 mp->mnt_syncer, v_nmntvnodes);
607 } else {
608 TAILQ_INSERT_HEAD(&mp->mnt_nvnodelist, mp->mnt_syncer,
609 v_nmntvnodes);
610 vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
611 if (vp == NULL)
612 break;
616 * __VNODESCAN__
618 * The VP will stick around while we hold mntvnode_token,
619 * at least until we block, so we can safely do an initial
620 * check, and then must check again after we lock the vnode.
622 if (vp->v_type == VNON || /* syncer or indeterminant */
623 !vmightfree(vp, trigger, info->pass) /* critical path opt */
625 --count;
626 continue;
630 * VX get the candidate vnode. If the VX get fails the
631 * vnode might still be on the mountlist. Our loop depends
632 * on us at least cycling the vnode to the end of the
633 * mountlist.
635 if (vx_get_nonblock(vp) != 0) {
636 --count;
637 continue;
641 * Since we blocked locking the vp, make sure it is still
642 * a candidate for reclamation. That is, it has not already
643 * been reclaimed and only has our VX reference associated
644 * with it.
646 if (vp->v_type == VNON || /* syncer or indeterminant */
647 (vp->v_flag & VRECLAIMED) ||
648 vp->v_mount != mp ||
649 !vtrytomakegoneable(vp, trigger) /* critical path opt */
651 --count;
652 vx_put(vp);
653 continue;
657 * All right, we are good, move the vp to the end of the
658 * mountlist and clean it out. The vget will have returned
659 * an error if the vnode was destroyed (VRECLAIMED set), so we
660 * do not have to check again. The vput() will move the
661 * vnode to the free list if the vgone() was successful.
663 KKASSERT(vp->v_mount == mp);
664 vgone_vxlocked(vp);
665 vx_put(vp);
666 ++done;
667 --count;
669 lwkt_reltoken(&ilock);
670 return (done);
674 * Attempt to recycle vnodes in a context that is always safe to block.
675 * Calling vlrurecycle() from the bowels of file system code has some
676 * interesting deadlock problems.
678 static struct thread *vnlruthread;
679 static int vnlruproc_sig;
681 void
682 vnlru_proc_wait(void)
684 if (vnlruproc_sig == 0) {
685 vnlruproc_sig = 1; /* avoid unnecessary wakeups */
686 wakeup(vnlruthread);
688 tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
691 static void
692 vnlru_proc(void)
694 struct thread *td = curthread;
695 struct vnlru_info info;
696 int done;
698 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
699 SHUTDOWN_PRI_FIRST);
701 crit_enter();
702 for (;;) {
703 kproc_suspend_loop();
706 * Try to free some vnodes if we have too many
708 if (numvnodes > desiredvnodes &&
709 freevnodes > desiredvnodes * 2 / 10) {
710 int count = numvnodes - desiredvnodes;
712 if (count > freevnodes / 100)
713 count = freevnodes / 100;
714 if (count < 5)
715 count = 5;
716 freesomevnodes(count);
720 * Nothing to do if most of our vnodes are already on
721 * the free list.
723 if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
724 vnlruproc_sig = 0;
725 wakeup(&vnlruproc_sig);
726 tsleep(td, 0, "vlruwt", hz);
727 continue;
729 cache_hysteresis();
732 * The pass iterates through the four combinations of
733 * VAGE0/VAGE1. We want to get rid of aged small files
734 * first.
736 info.pass = 0;
737 done = 0;
738 while (done == 0 && info.pass < 4) {
739 done = mountlist_scan(vlrureclaim, &info,
740 MNTSCAN_FORWARD);
741 ++info.pass;
745 * The vlrureclaim() call only processes 1/10 of the vnodes
746 * on each mount. If we couldn't find any repeat the loop
747 * at least enough times to cover all available vnodes before
748 * we start sleeping. Complain if the failure extends past
749 * 30 second, every 30 seconds.
751 if (done == 0) {
752 ++vnlru_nowhere;
753 if (vnlru_nowhere % 10 == 0)
754 tsleep(td, 0, "vlrup", hz * 3);
755 if (vnlru_nowhere % 100 == 0)
756 kprintf("vnlru_proc: vnode recycler stopped working!\n");
757 if (vnlru_nowhere == 1000)
758 vnlru_nowhere = 900;
759 } else {
760 vnlru_nowhere = 0;
763 crit_exit();
767 * MOUNTLIST FUNCTIONS
771 * mountlist_insert (MP SAFE)
773 * Add a new mount point to the mount list.
775 void
776 mountlist_insert(struct mount *mp, int how)
778 lwkt_tokref ilock;
780 lwkt_gettoken(&ilock, &mountlist_token);
781 if (how == MNTINS_FIRST)
782 TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
783 else
784 TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
785 lwkt_reltoken(&ilock);
789 * mountlist_interlock (MP SAFE)
791 * Execute the specified interlock function with the mountlist token
792 * held. The function will be called in a serialized fashion verses
793 * other functions called through this mechanism.
796 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
798 lwkt_tokref ilock;
799 int error;
801 lwkt_gettoken(&ilock, &mountlist_token);
802 error = callback(mp);
803 lwkt_reltoken(&ilock);
804 return (error);
808 * mountlist_boot_getfirst (DURING BOOT ONLY)
810 * This function returns the first mount on the mountlist, which is
811 * expected to be the root mount. Since no interlocks are obtained
812 * this function is only safe to use during booting.
815 struct mount *
816 mountlist_boot_getfirst(void)
818 return(TAILQ_FIRST(&mountlist));
822 * mountlist_remove (MP SAFE)
824 * Remove a node from the mountlist. If this node is the next scan node
825 * for any active mountlist scans, the active mountlist scan will be
826 * adjusted to skip the node, thus allowing removals during mountlist
827 * scans.
829 void
830 mountlist_remove(struct mount *mp)
832 struct mountscan_info *msi;
833 lwkt_tokref ilock;
835 lwkt_gettoken(&ilock, &mountlist_token);
836 TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
837 if (msi->msi_node == mp) {
838 if (msi->msi_how & MNTSCAN_FORWARD)
839 msi->msi_node = TAILQ_NEXT(mp, mnt_list);
840 else
841 msi->msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
844 TAILQ_REMOVE(&mountlist, mp, mnt_list);
845 lwkt_reltoken(&ilock);
849 * mountlist_scan (MP SAFE)
851 * Safely scan the mount points on the mount list. Unless otherwise
852 * specified each mount point will be busied prior to the callback and
853 * unbusied afterwords. The callback may safely remove any mount point
854 * without interfering with the scan. If the current callback
855 * mount is removed the scanner will not attempt to unbusy it.
857 * If a mount node cannot be busied it is silently skipped.
859 * The callback return value is aggregated and a total is returned. A return
860 * value of < 0 is not aggregated and will terminate the scan.
862 * MNTSCAN_FORWARD - the mountlist is scanned in the forward direction
863 * MNTSCAN_REVERSE - the mountlist is scanned in reverse
864 * MNTSCAN_NOBUSY - the scanner will make the callback without busying
865 * the mount node.
868 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
870 struct mountscan_info info;
871 lwkt_tokref ilock;
872 struct mount *mp;
873 thread_t td;
874 int count;
875 int res;
877 lwkt_gettoken(&ilock, &mountlist_token);
879 info.msi_how = how;
880 info.msi_node = NULL; /* paranoia */
881 TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
883 res = 0;
884 td = curthread;
886 if (how & MNTSCAN_FORWARD) {
887 info.msi_node = TAILQ_FIRST(&mountlist);
888 while ((mp = info.msi_node) != NULL) {
889 if (how & MNTSCAN_NOBUSY) {
890 count = callback(mp, data);
891 } else if (vfs_busy(mp, LK_NOWAIT) == 0) {
892 count = callback(mp, data);
893 if (mp == info.msi_node)
894 vfs_unbusy(mp);
895 } else {
896 count = 0;
898 if (count < 0)
899 break;
900 res += count;
901 if (mp == info.msi_node)
902 info.msi_node = TAILQ_NEXT(mp, mnt_list);
904 } else if (how & MNTSCAN_REVERSE) {
905 info.msi_node = TAILQ_LAST(&mountlist, mntlist);
906 while ((mp = info.msi_node) != NULL) {
907 if (how & MNTSCAN_NOBUSY) {
908 count = callback(mp, data);
909 } else if (vfs_busy(mp, LK_NOWAIT) == 0) {
910 count = callback(mp, data);
911 if (mp == info.msi_node)
912 vfs_unbusy(mp);
913 } else {
914 count = 0;
916 if (count < 0)
917 break;
918 res += count;
919 if (mp == info.msi_node)
920 info.msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
923 TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
924 lwkt_reltoken(&ilock);
925 return(res);
929 * MOUNT RELATED VNODE FUNCTIONS
932 static struct kproc_desc vnlru_kp = {
933 "vnlru",
934 vnlru_proc,
935 &vnlruthread
937 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
940 * Move a vnode from one mount queue to another.
942 * MPSAFE
944 void
945 insmntque(struct vnode *vp, struct mount *mp)
947 lwkt_tokref ilock;
949 lwkt_gettoken(&ilock, &mntvnode_token);
951 * Delete from old mount point vnode list, if on one.
953 if (vp->v_mount != NULL) {
954 KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
955 ("bad mount point vnode list size"));
956 vremovevnodemnt(vp);
957 vp->v_mount->mnt_nvnodelistsize--;
960 * Insert into list of vnodes for the new mount point, if available.
961 * The 'end' of the LRU list is the vnode prior to mp->mnt_syncer.
963 if ((vp->v_mount = mp) == NULL) {
964 lwkt_reltoken(&ilock);
965 return;
967 if (mp->mnt_syncer) {
968 TAILQ_INSERT_BEFORE(mp->mnt_syncer, vp, v_nmntvnodes);
969 } else {
970 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
972 mp->mnt_nvnodelistsize++;
973 lwkt_reltoken(&ilock);
978 * Scan the vnodes under a mount point and issue appropriate callbacks.
980 * The fastfunc() callback is called with just the mountlist token held
981 * (no vnode lock). It may not block and the vnode may be undergoing
982 * modifications while the caller is processing it. The vnode will
983 * not be entirely destroyed, however, due to the fact that the mountlist
984 * token is held. A return value < 0 skips to the next vnode without calling
985 * the slowfunc(), a return value > 0 terminates the loop.
987 * The slowfunc() callback is called after the vnode has been successfully
988 * locked based on passed flags. The vnode is skipped if it gets rearranged
989 * or destroyed while blocking on the lock. A non-zero return value from
990 * the slow function terminates the loop. The slow function is allowed to
991 * arbitrarily block. The scanning code guarentees consistency of operation
992 * even if the slow function deletes or moves the node, or blocks and some
993 * other thread deletes or moves the node.
996 vmntvnodescan(
997 struct mount *mp,
998 int flags,
999 int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
1000 int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
1001 void *data
1003 struct vmntvnodescan_info info;
1004 lwkt_tokref ilock;
1005 struct vnode *vp;
1006 int r = 0;
1007 int maxcount = 1000000;
1008 int stopcount = 0;
1009 int count = 0;
1011 lwkt_gettoken(&ilock, &mntvnode_token);
1014 * If asked to do one pass stop after iterating available vnodes.
1015 * Under heavy loads new vnodes can be added while we are scanning,
1016 * so this isn't perfect. Create a slop factor of 2x.
1018 if (flags & VMSC_ONEPASS)
1019 stopcount = mp->mnt_nvnodelistsize * 2;
1021 info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
1022 TAILQ_INSERT_TAIL(&mntvnodescan_list, &info, entry);
1023 while ((vp = info.vp) != NULL) {
1024 if (--maxcount == 0)
1025 panic("maxcount reached during vmntvnodescan");
1028 * Skip if visible but not ready, or special (e.g.
1029 * mp->mnt_syncer)
1031 if (vp->v_type == VNON)
1032 goto next;
1033 KKASSERT(vp->v_mount == mp);
1036 * Quick test. A negative return continues the loop without
1037 * calling the slow test. 0 continues onto the slow test.
1038 * A positive number aborts the loop.
1040 if (fastfunc) {
1041 if ((r = fastfunc(mp, vp, data)) < 0) {
1042 r = 0;
1043 goto next;
1045 if (r)
1046 break;
1050 * Get a vxlock on the vnode, retry if it has moved or isn't
1051 * in the mountlist where we expect it.
1053 if (slowfunc) {
1054 int error;
1056 switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
1057 case VMSC_GETVP:
1058 error = vget(vp, LK_EXCLUSIVE);
1059 break;
1060 case VMSC_GETVP|VMSC_NOWAIT:
1061 error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
1062 break;
1063 case VMSC_GETVX:
1064 vx_get(vp);
1065 error = 0;
1066 break;
1067 default:
1068 error = 0;
1069 break;
1071 if (error)
1072 goto next;
1074 * Do not call the slow function if the vnode is
1075 * invalid or if it was ripped out from under us
1076 * while we (potentially) blocked.
1078 if (info.vp == vp && vp->v_type != VNON)
1079 r = slowfunc(mp, vp, data);
1082 * Cleanup
1084 switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
1085 case VMSC_GETVP:
1086 case VMSC_GETVP|VMSC_NOWAIT:
1087 vput(vp);
1088 break;
1089 case VMSC_GETVX:
1090 vx_put(vp);
1091 break;
1092 default:
1093 break;
1095 if (r != 0)
1096 break;
1099 next:
1101 * Yield after some processing. Depending on the number
1102 * of vnodes, we might wind up running for a long time.
1103 * Because threads are not preemptable, time critical
1104 * userland processes might starve. Give them a chance
1105 * now and then.
1107 if (++count == 10000) {
1108 /* We really want to yield a bit, so we simply sleep a tick */
1109 tsleep(mp, 0, "vnodescn", 1);
1110 count = 0;
1114 * If doing one pass this decrements to zero. If it starts
1115 * at zero it is effectively unlimited for the purposes of
1116 * this loop.
1118 if (--stopcount == 0)
1119 break;
1122 * Iterate. If the vnode was ripped out from under us
1123 * info.vp will already point to the next vnode, otherwise
1124 * we have to obtain the next valid vnode ourselves.
1126 if (info.vp == vp)
1127 info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
1129 TAILQ_REMOVE(&mntvnodescan_list, &info, entry);
1130 lwkt_reltoken(&ilock);
1131 return(r);
1135 * Remove any vnodes in the vnode table belonging to mount point mp.
1137 * If FORCECLOSE is not specified, there should not be any active ones,
1138 * return error if any are found (nb: this is a user error, not a
1139 * system error). If FORCECLOSE is specified, detach any active vnodes
1140 * that are found.
1142 * If WRITECLOSE is set, only flush out regular file vnodes open for
1143 * writing.
1145 * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1147 * `rootrefs' specifies the base reference count for the root vnode
1148 * of this filesystem. The root vnode is considered busy if its
1149 * v_sysref.refcnt exceeds this value. On a successful return, vflush()
1150 * will call vrele() on the root vnode exactly rootrefs times.
1151 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1152 * be zero.
1154 #ifdef DIAGNOSTIC
1155 static int busyprt = 0; /* print out busy vnodes */
1156 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1157 #endif
1159 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
1161 struct vflush_info {
1162 int flags;
1163 int busy;
1164 thread_t td;
1168 vflush(struct mount *mp, int rootrefs, int flags)
1170 struct thread *td = curthread; /* XXX */
1171 struct vnode *rootvp = NULL;
1172 int error;
1173 struct vflush_info vflush_info;
1175 if (rootrefs > 0) {
1176 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1177 ("vflush: bad args"));
1179 * Get the filesystem root vnode. We can vput() it
1180 * immediately, since with rootrefs > 0, it won't go away.
1182 if ((error = VFS_ROOT(mp, &rootvp)) != 0) {
1183 if ((flags & FORCECLOSE) == 0)
1184 return (error);
1185 rootrefs = 0;
1186 /* continue anyway */
1188 if (rootrefs)
1189 vput(rootvp);
1192 vflush_info.busy = 0;
1193 vflush_info.flags = flags;
1194 vflush_info.td = td;
1195 vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
1197 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1199 * If just the root vnode is busy, and if its refcount
1200 * is equal to `rootrefs', then go ahead and kill it.
1202 KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
1203 KASSERT(rootvp->v_sysref.refcnt >= rootrefs, ("vflush: rootrefs"));
1204 if (vflush_info.busy == 1 && rootvp->v_sysref.refcnt == rootrefs) {
1205 vx_lock(rootvp);
1206 vgone_vxlocked(rootvp);
1207 vx_unlock(rootvp);
1208 vflush_info.busy = 0;
1211 if (vflush_info.busy)
1212 return (EBUSY);
1213 for (; rootrefs > 0; rootrefs--)
1214 vrele(rootvp);
1215 return (0);
1219 * The scan callback is made with an VX locked vnode.
1221 static int
1222 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
1224 struct vflush_info *info = data;
1225 struct vattr vattr;
1228 * Skip over a vnodes marked VSYSTEM.
1230 if ((info->flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1231 return(0);
1235 * If WRITECLOSE is set, flush out unlinked but still open
1236 * files (even if open only for reading) and regular file
1237 * vnodes open for writing.
1239 if ((info->flags & WRITECLOSE) &&
1240 (vp->v_type == VNON ||
1241 (VOP_GETATTR(vp, &vattr) == 0 &&
1242 vattr.va_nlink > 0)) &&
1243 (vp->v_writecount == 0 || vp->v_type != VREG)) {
1244 return(0);
1248 * If we are the only holder (refcnt of 1) or the vnode is in
1249 * termination (refcnt < 0), we can vgone the vnode.
1251 if (vp->v_sysref.refcnt <= 1) {
1252 vgone_vxlocked(vp);
1253 return(0);
1257 * If FORCECLOSE is set, forcibly close the vnode. For block
1258 * or character devices we just clean and leave the vp
1259 * associated with devfs. For all other files, just kill them.
1261 * XXX we need to do something about devfs here, I'd rather not
1262 * blow away device associations.
1264 if (info->flags & FORCECLOSE) {
1265 vgone_vxlocked(vp);
1266 #if 0
1267 if (vp->v_type != VBLK && vp->v_type != VCHR) {
1268 vgone_vxlocked(vp);
1269 } else {
1270 vclean_vxlocked(vp, 0);
1271 /*vp->v_ops = &devfs_vnode_dev_vops_p;*/
1272 insmntque(vp, NULL);
1274 #endif
1275 return(0);
1277 #ifdef DIAGNOSTIC
1278 if (busyprt)
1279 vprint("vflush: busy vnode", vp);
1280 #endif
1281 ++info->busy;
1282 return(0);
1285 void
1286 add_bio_ops(struct bio_ops *ops)
1288 TAILQ_INSERT_TAIL(&bio_ops_list, ops, entry);
1291 void
1292 rem_bio_ops(struct bio_ops *ops)
1294 TAILQ_REMOVE(&bio_ops_list, ops, entry);
1298 * This calls the bio_ops io_sync function either for a mount point
1299 * or generally.
1301 * WARNING: softdeps is weirdly coded and just isn't happy unless
1302 * io_sync is called with a NULL mount from the general syncing code.
1304 void
1305 bio_ops_sync(struct mount *mp)
1307 struct bio_ops *ops;
1309 if (mp) {
1310 if ((ops = mp->mnt_bioops) != NULL)
1311 ops->io_sync(mp);
1312 } else {
1313 TAILQ_FOREACH(ops, &bio_ops_list, entry) {
1314 ops->io_sync(NULL);