nlookup - introduce nlookup_init_root
[dragonfly.git] / sys / kern / subr_blist.c
blob8a2895b9e4b249fece175deef49eb02fc111a920
1 /*
2 * BLIST.C - Bitmap allocator/deallocator, using a radix tree with hinting
3 *
4 * Copyright (c) 1998,2004 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon@backplane.com>
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
37 * This module implements a general bitmap allocator/deallocator. The
38 * allocator eats around 2 bits per 'block'. The module does not
39 * try to interpret the meaning of a 'block' other then to return
40 * SWAPBLK_NONE on an allocation failure.
42 * A radix tree is used to maintain the bitmap. Two radix constants are
43 * involved: One for the bitmaps contained in the leaf nodes (typically
44 * 32), and one for the meta nodes (typically 16). Both meta and leaf
45 * nodes have a hint field. This field gives us a hint as to the largest
46 * free contiguous range of blocks under the node. It may contain a
47 * value that is too high, but will never contain a value that is too
48 * low. When the radix tree is searched, allocation failures in subtrees
49 * update the hint.
51 * The radix tree also implements two collapsed states for meta nodes:
52 * the ALL-ALLOCATED state and the ALL-FREE state. If a meta node is
53 * in either of these two states, all information contained underneath
54 * the node is considered stale. These states are used to optimize
55 * allocation and freeing operations.
57 * The hinting greatly increases code efficiency for allocations while
58 * the general radix structure optimizes both allocations and frees. The
59 * radix tree should be able to operate well no matter how much
60 * fragmentation there is and no matter how large a bitmap is used.
62 * Unlike the rlist code, the blist code wires all necessary memory at
63 * creation time. Neither allocations nor frees require interaction with
64 * the memory subsystem. In contrast, the rlist code may allocate memory
65 * on an rlist_free() call. The non-blocking features of the blist code
66 * are used to great advantage in the swap code (vm/nswap_pager.c). The
67 * rlist code uses a little less overall memory then the blist code (but
68 * due to swap interleaving not all that much less), but the blist code
69 * scales much, much better.
71 * LAYOUT: The radix tree is layed out recursively using a
72 * linear array. Each meta node is immediately followed (layed out
73 * sequentially in memory) by BLIST_META_RADIX lower level nodes. This
74 * is a recursive structure but one that can be easily scanned through
75 * a very simple 'skip' calculation. In order to support large radixes,
76 * portions of the tree may reside outside our memory allocation. We
77 * handle this with an early-termination optimization (when bighint is
78 * set to -1) on the scan. The memory allocation is only large enough
79 * to cover the number of blocks requested at creation time even if it
80 * must be encompassed in larger root-node radix.
82 * NOTE: The allocator cannot currently allocate more then
83 * BLIST_BMAP_RADIX blocks per call. It will panic with 'allocation too
84 * large' if you try. This is an area that could use improvement. The
85 * radix is large enough that this restriction does not effect the swap
86 * system, though. Currently only the allocation code is effected by
87 * this algorithmic unfeature. The freeing code can handle arbitrary
88 * ranges.
90 * NOTE: The radix may exceed 32 bits in order to support up to 2^31
91 * blocks. The first divison will drop the radix down and fit
92 * it within a signed 32 bit integer.
94 * This code can be compiled stand-alone for debugging.
96 * $FreeBSD: src/sys/kern/subr_blist.c,v 1.5.2.2 2003/01/12 09:23:12 dillon Exp $
97 * $DragonFly: src/sys/kern/subr_blist.c,v 1.8 2008/08/10 22:09:50 dillon Exp $
100 #ifdef _KERNEL
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/lock.h>
105 #include <sys/kernel.h>
106 #include <sys/blist.h>
107 #include <sys/malloc.h>
108 #include <vm/vm.h>
109 #include <vm/vm_object.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_extern.h>
112 #include <vm/vm_page.h>
114 #else
116 #ifndef BLIST_NO_DEBUG
117 #define BLIST_DEBUG
118 #endif
120 #define SWAPBLK_NONE ((swblk_t)-1)
122 #include <sys/types.h>
123 #include <stdio.h>
124 #include <string.h>
125 #include <stdlib.h>
126 #include <stdarg.h>
128 #define kmalloc(a,b,c) malloc(a)
129 #define kfree(a,b) free(a)
130 #define kprintf printf
131 #define KKASSERT(exp)
133 #include <sys/blist.h>
135 void panic(const char *ctl, ...);
137 #endif
140 * static support functions
143 static swblk_t blst_leaf_alloc(blmeta_t *scan, swblk_t blk, int count);
144 static swblk_t blst_meta_alloc(blmeta_t *scan, swblk_t blk,
145 swblk_t count, int64_t radix, int skip);
146 static void blst_leaf_free(blmeta_t *scan, swblk_t relblk, int count);
147 static void blst_meta_free(blmeta_t *scan, swblk_t freeBlk, swblk_t count,
148 int64_t radix, int skip, swblk_t blk);
149 static void blst_copy(blmeta_t *scan, swblk_t blk, int64_t radix,
150 swblk_t skip, blist_t dest, swblk_t count);
151 static swblk_t blst_radix_init(blmeta_t *scan, int64_t radix,
152 int skip, swblk_t count);
153 #ifndef _KERNEL
154 static void blst_radix_print(blmeta_t *scan, swblk_t blk,
155 int64_t radix, int skip, int tab);
156 #endif
158 #ifdef _KERNEL
159 static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
160 #endif
163 * blist_create() - create a blist capable of handling up to the specified
164 * number of blocks
166 * blocks must be greater then 0
168 * The smallest blist consists of a single leaf node capable of
169 * managing BLIST_BMAP_RADIX blocks.
172 blist_t
173 blist_create(swblk_t blocks)
175 blist_t bl;
176 int64_t radix;
177 int skip = 0;
180 * Calculate radix and skip field used for scanning.
182 * Radix can exceed 32 bits even if swblk_t is limited to 32 bits.
184 radix = BLIST_BMAP_RADIX;
186 while (radix < blocks) {
187 radix *= BLIST_META_RADIX;
188 skip = (skip + 1) * BLIST_META_RADIX;
189 KKASSERT(skip > 0);
192 bl = kmalloc(sizeof(struct blist), M_SWAP, M_WAITOK);
194 bzero(bl, sizeof(*bl));
196 bl->bl_blocks = blocks;
197 bl->bl_radix = radix;
198 bl->bl_skip = skip;
199 bl->bl_rootblks = 1 +
200 blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
201 bl->bl_root = kmalloc(sizeof(blmeta_t) * bl->bl_rootblks, M_SWAP, M_WAITOK);
203 #if defined(BLIST_DEBUG)
204 kprintf(
205 "BLIST representing %d blocks (%d MB of swap)"
206 ", requiring %dK of ram\n",
207 bl->bl_blocks,
208 bl->bl_blocks * 4 / 1024,
209 (bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
211 kprintf("BLIST raw radix tree contains %d records\n", bl->bl_rootblks);
212 #endif
213 blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
215 return(bl);
218 void
219 blist_destroy(blist_t bl)
221 kfree(bl->bl_root, M_SWAP);
222 kfree(bl, M_SWAP);
226 * blist_alloc() - reserve space in the block bitmap. Return the base
227 * of a contiguous region or SWAPBLK_NONE if space could
228 * not be allocated.
231 swblk_t
232 blist_alloc(blist_t bl, swblk_t count)
234 swblk_t blk = SWAPBLK_NONE;
236 if (bl) {
237 if (bl->bl_radix == BLIST_BMAP_RADIX)
238 blk = blst_leaf_alloc(bl->bl_root, 0, count);
239 else
240 blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
241 if (blk != SWAPBLK_NONE)
242 bl->bl_free -= count;
244 return(blk);
248 * blist_free() - free up space in the block bitmap. Return the base
249 * of a contiguous region. Panic if an inconsistancy is
250 * found.
253 void
254 blist_free(blist_t bl, swblk_t blkno, swblk_t count)
256 if (bl) {
257 if (bl->bl_radix == BLIST_BMAP_RADIX)
258 blst_leaf_free(bl->bl_root, blkno, count);
259 else
260 blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
261 bl->bl_free += count;
266 * blist_resize() - resize an existing radix tree to handle the
267 * specified number of blocks. This will reallocate
268 * the tree and transfer the previous bitmap to the new
269 * one. When extending the tree you can specify whether
270 * the new blocks are to left allocated or freed.
273 void
274 blist_resize(blist_t *pbl, swblk_t count, int freenew)
276 blist_t newbl = blist_create(count);
277 blist_t save = *pbl;
279 *pbl = newbl;
280 if (count > save->bl_blocks)
281 count = save->bl_blocks;
282 blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
285 * If resizing upwards, should we free the new space or not?
287 if (freenew && count < newbl->bl_blocks) {
288 blist_free(newbl, count, newbl->bl_blocks - count);
290 blist_destroy(save);
293 #ifdef BLIST_DEBUG
296 * blist_print() - dump radix tree
299 void
300 blist_print(blist_t bl)
302 kprintf("BLIST {\n");
303 blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
304 kprintf("}\n");
307 #endif
309 /************************************************************************
310 * ALLOCATION SUPPORT FUNCTIONS *
311 ************************************************************************
313 * These support functions do all the actual work. They may seem
314 * rather longish, but that's because I've commented them up. The
315 * actual code is straight forward.
320 * blist_leaf_alloc() - allocate at a leaf in the radix tree (a bitmap).
322 * This is the core of the allocator and is optimized for the 1 block
323 * and the BLIST_BMAP_RADIX block allocation cases. Other cases are
324 * somewhat slower. The 1 block allocation case is log2 and extremely
325 * quick.
328 static swblk_t
329 blst_leaf_alloc(blmeta_t *scan, swblk_t blk, int count)
331 u_swblk_t orig = scan->u.bmu_bitmap;
333 if (orig == 0) {
335 * Optimize bitmap all-allocated case. Also, count = 1
336 * case assumes at least 1 bit is free in the bitmap, so
337 * we have to take care of this case here.
339 scan->bm_bighint = 0;
340 return(SWAPBLK_NONE);
342 if (count == 1) {
344 * Optimized code to allocate one bit out of the bitmap
346 u_swblk_t mask;
347 int j = BLIST_BMAP_RADIX/2;
348 int r = 0;
350 mask = (u_swblk_t)-1 >> (BLIST_BMAP_RADIX/2);
352 while (j) {
353 if ((orig & mask) == 0) {
354 r += j;
355 orig >>= j;
357 j >>= 1;
358 mask >>= j;
360 scan->u.bmu_bitmap &= ~(1 << r);
361 return(blk + r);
363 if (count <= BLIST_BMAP_RADIX) {
365 * non-optimized code to allocate N bits out of the bitmap.
366 * The more bits, the faster the code runs. It will run
367 * the slowest allocating 2 bits, but since there aren't any
368 * memory ops in the core loop (or shouldn't be, anyway),
369 * you probably won't notice the difference.
371 int j;
372 int n = BLIST_BMAP_RADIX - count;
373 u_swblk_t mask;
375 mask = (u_swblk_t)-1 >> n;
377 for (j = 0; j <= n; ++j) {
378 if ((orig & mask) == mask) {
379 scan->u.bmu_bitmap &= ~mask;
380 return(blk + j);
382 mask = (mask << 1);
386 * We couldn't allocate count in this subtree, update bighint.
388 scan->bm_bighint = count - 1;
389 return(SWAPBLK_NONE);
393 * blist_meta_alloc() - allocate at a meta in the radix tree.
395 * Attempt to allocate at a meta node. If we can't, we update
396 * bighint and return a failure. Updating bighint optimize future
397 * calls that hit this node. We have to check for our collapse cases
398 * and we have a few optimizations strewn in as well.
401 static swblk_t
402 blst_meta_alloc(blmeta_t *scan, swblk_t blk, swblk_t count,
403 int64_t radix, int skip)
405 int i;
406 int next_skip = ((u_int)skip / BLIST_META_RADIX);
408 if (scan->u.bmu_avail == 0) {
410 * ALL-ALLOCATED special case
412 scan->bm_bighint = count;
413 return(SWAPBLK_NONE);
417 * note: radix may exceed 32 bits until first division.
419 if (scan->u.bmu_avail == radix) {
420 radix /= BLIST_META_RADIX;
423 * ALL-FREE special case, initialize uninitialize
424 * sublevel.
426 for (i = 1; i <= skip; i += next_skip) {
427 if (scan[i].bm_bighint == (swblk_t)-1)
428 break;
429 if (next_skip == 1) {
430 scan[i].u.bmu_bitmap = (u_swblk_t)-1;
431 scan[i].bm_bighint = BLIST_BMAP_RADIX;
432 } else {
433 scan[i].bm_bighint = (swblk_t)radix;
434 scan[i].u.bmu_avail = (swblk_t)radix;
437 } else {
438 radix /= BLIST_META_RADIX;
441 for (i = 1; i <= skip; i += next_skip) {
442 if (count <= scan[i].bm_bighint) {
444 * count fits in object
446 swblk_t r;
447 if (next_skip == 1) {
448 r = blst_leaf_alloc(&scan[i], blk, count);
449 } else {
450 r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
452 if (r != SWAPBLK_NONE) {
453 scan->u.bmu_avail -= count;
454 if (scan->bm_bighint > scan->u.bmu_avail)
455 scan->bm_bighint = scan->u.bmu_avail;
456 return(r);
458 } else if (scan[i].bm_bighint == (swblk_t)-1) {
460 * Terminator
462 break;
463 } else if (count > (swblk_t)radix) {
465 * count does not fit in object even if it were
466 * complete free.
468 panic("blist_meta_alloc: allocation too large");
470 blk += (swblk_t)radix;
474 * We couldn't allocate count in this subtree, update bighint.
476 if (scan->bm_bighint >= count)
477 scan->bm_bighint = count - 1;
478 return(SWAPBLK_NONE);
482 * BLST_LEAF_FREE() - free allocated block from leaf bitmap
486 static void
487 blst_leaf_free(blmeta_t *scan, swblk_t blk, int count)
490 * free some data in this bitmap
492 * e.g.
493 * 0000111111111110000
494 * \_________/\__/
495 * v n
497 int n = blk & (BLIST_BMAP_RADIX - 1);
498 u_swblk_t mask;
500 mask = ((u_swblk_t)-1 << n) &
501 ((u_swblk_t)-1 >> (BLIST_BMAP_RADIX - count - n));
503 if (scan->u.bmu_bitmap & mask)
504 panic("blst_radix_free: freeing free block");
505 scan->u.bmu_bitmap |= mask;
508 * We could probably do a better job here. We are required to make
509 * bighint at least as large as the biggest contiguous block of
510 * data. If we just shoehorn it, a little extra overhead will
511 * be incured on the next allocation (but only that one typically).
513 scan->bm_bighint = BLIST_BMAP_RADIX;
517 * BLST_META_FREE() - free allocated blocks from radix tree meta info
519 * This support routine frees a range of blocks from the bitmap.
520 * The range must be entirely enclosed by this radix node. If a
521 * meta node, we break the range down recursively to free blocks
522 * in subnodes (which means that this code can free an arbitrary
523 * range whereas the allocation code cannot allocate an arbitrary
524 * range).
527 static void
528 blst_meta_free(blmeta_t *scan, swblk_t freeBlk, swblk_t count,
529 int64_t radix, int skip, swblk_t blk)
531 int i;
532 int next_skip = ((u_int)skip / BLIST_META_RADIX);
534 #if 0
535 kprintf("FREE (%x,%d) FROM (%x,%lld)\n",
536 freeBlk, count,
537 blk, (long long)radix
539 #endif
542 * NOTE: radix may exceed 32 bits until first division.
544 if (scan->u.bmu_avail == 0) {
546 * ALL-ALLOCATED special case, with possible
547 * shortcut to ALL-FREE special case.
549 scan->u.bmu_avail = count;
550 scan->bm_bighint = count;
552 if (count != radix) {
553 for (i = 1; i <= skip; i += next_skip) {
554 if (scan[i].bm_bighint == (swblk_t)-1)
555 break;
556 scan[i].bm_bighint = 0;
557 if (next_skip == 1) {
558 scan[i].u.bmu_bitmap = 0;
559 } else {
560 scan[i].u.bmu_avail = 0;
563 /* fall through */
565 } else {
566 scan->u.bmu_avail += count;
567 /* scan->bm_bighint = radix; */
571 * ALL-FREE special case.
574 if (scan->u.bmu_avail == radix)
575 return;
576 if (scan->u.bmu_avail > radix)
577 panic("blst_meta_free: freeing already free blocks (%d) %d/%lld", count, scan->u.bmu_avail, (long long)radix);
580 * Break the free down into its components
583 radix /= BLIST_META_RADIX;
585 i = (freeBlk - blk) / (swblk_t)radix;
586 blk += i * (swblk_t)radix;
587 i = i * next_skip + 1;
589 while (i <= skip && blk < freeBlk + count) {
590 swblk_t v;
592 v = blk + (swblk_t)radix - freeBlk;
593 if (v > count)
594 v = count;
596 if (scan->bm_bighint == (swblk_t)-1)
597 panic("blst_meta_free: freeing unexpected range");
599 if (next_skip == 1) {
600 blst_leaf_free(&scan[i], freeBlk, v);
601 } else {
602 blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
604 if (scan->bm_bighint < scan[i].bm_bighint)
605 scan->bm_bighint = scan[i].bm_bighint;
606 count -= v;
607 freeBlk += v;
608 blk += (swblk_t)radix;
609 i += next_skip;
614 * BLIST_RADIX_COPY() - copy one radix tree to another
616 * Locates free space in the source tree and frees it in the destination
617 * tree. The space may not already be free in the destination.
620 static void
621 blst_copy(blmeta_t *scan, swblk_t blk, int64_t radix,
622 swblk_t skip, blist_t dest, swblk_t count)
624 int next_skip;
625 int i;
628 * Leaf node
631 if (radix == BLIST_BMAP_RADIX) {
632 u_swblk_t v = scan->u.bmu_bitmap;
634 if (v == (u_swblk_t)-1) {
635 blist_free(dest, blk, count);
636 } else if (v != 0) {
637 int i;
639 for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
640 if (v & (1 << i))
641 blist_free(dest, blk + i, 1);
644 return;
648 * Meta node
651 if (scan->u.bmu_avail == 0) {
653 * Source all allocated, leave dest allocated
655 return;
657 if (scan->u.bmu_avail == radix) {
659 * Source all free, free entire dest
661 if (count < radix)
662 blist_free(dest, blk, count);
663 else
664 blist_free(dest, blk, (swblk_t)radix);
665 return;
669 radix /= BLIST_META_RADIX;
670 next_skip = ((u_int)skip / BLIST_META_RADIX);
672 for (i = 1; count && i <= skip; i += next_skip) {
673 if (scan[i].bm_bighint == (swblk_t)-1)
674 break;
676 if (count >= (swblk_t)radix) {
677 blst_copy(
678 &scan[i],
679 blk,
680 radix,
681 next_skip - 1,
682 dest,
683 (swblk_t)radix
685 count -= (swblk_t)radix;
686 } else {
687 if (count) {
688 blst_copy(
689 &scan[i],
690 blk,
691 radix,
692 next_skip - 1,
693 dest,
694 count
697 count = 0;
699 blk += (swblk_t)radix;
704 * BLST_RADIX_INIT() - initialize radix tree
706 * Initialize our meta structures and bitmaps and calculate the exact
707 * amount of space required to manage 'count' blocks - this space may
708 * be considerably less then the calculated radix due to the large
709 * RADIX values we use.
712 static swblk_t
713 blst_radix_init(blmeta_t *scan, int64_t radix, int skip, swblk_t count)
715 int i;
716 int next_skip;
717 swblk_t memindex = 0;
720 * Leaf node
723 if (radix == BLIST_BMAP_RADIX) {
724 if (scan) {
725 scan->bm_bighint = 0;
726 scan->u.bmu_bitmap = 0;
728 return(memindex);
732 * Meta node. If allocating the entire object we can special
733 * case it. However, we need to figure out how much memory
734 * is required to manage 'count' blocks, so we continue on anyway.
737 if (scan) {
738 scan->bm_bighint = 0;
739 scan->u.bmu_avail = 0;
742 radix /= BLIST_META_RADIX;
743 next_skip = ((u_int)skip / BLIST_META_RADIX);
745 for (i = 1; i <= skip; i += next_skip) {
746 if (count >= (swblk_t)radix) {
748 * Allocate the entire object
750 memindex = i + blst_radix_init(
751 ((scan) ? &scan[i] : NULL),
752 radix,
753 next_skip - 1,
754 (swblk_t)radix
756 count -= (swblk_t)radix;
757 } else if (count > 0) {
759 * Allocate a partial object
761 memindex = i + blst_radix_init(
762 ((scan) ? &scan[i] : NULL),
763 radix,
764 next_skip - 1,
765 count
767 count = 0;
768 } else {
770 * Add terminator and break out
772 if (scan)
773 scan[i].bm_bighint = (swblk_t)-1;
774 break;
777 if (memindex < i)
778 memindex = i;
779 return(memindex);
782 #ifdef BLIST_DEBUG
784 static void
785 blst_radix_print(blmeta_t *scan, swblk_t blk, int64_t radix, int skip, int tab)
787 int i;
788 int next_skip;
789 int lastState = 0;
791 if (radix == BLIST_BMAP_RADIX) {
792 kprintf(
793 "%*.*s(%04x,%lld): bitmap %08x big=%d\n",
794 tab, tab, "",
795 blk, (long long)radix,
796 scan->u.bmu_bitmap,
797 scan->bm_bighint
799 return;
802 if (scan->u.bmu_avail == 0) {
803 kprintf(
804 "%*.*s(%04x,%lld) ALL ALLOCATED\n",
805 tab, tab, "",
806 blk,
807 (long long)radix
809 return;
811 if (scan->u.bmu_avail == radix) {
812 kprintf(
813 "%*.*s(%04x,%lld) ALL FREE\n",
814 tab, tab, "",
815 blk,
816 (long long)radix
818 return;
821 kprintf(
822 "%*.*s(%04x,%lld): subtree (%d/%lld) big=%d {\n",
823 tab, tab, "",
824 blk, (long long)radix,
825 scan->u.bmu_avail,
826 (long long)radix,
827 scan->bm_bighint
830 radix /= BLIST_META_RADIX;
831 next_skip = ((u_int)skip / BLIST_META_RADIX);
832 tab += 4;
834 for (i = 1; i <= skip; i += next_skip) {
835 if (scan[i].bm_bighint == (swblk_t)-1) {
836 kprintf(
837 "%*.*s(%04x,%lld): Terminator\n",
838 tab, tab, "",
839 blk, (long long)radix
841 lastState = 0;
842 break;
844 blst_radix_print(
845 &scan[i],
846 blk,
847 radix,
848 next_skip - 1,
851 blk += (swblk_t)radix;
853 tab -= 4;
855 kprintf(
856 "%*.*s}\n",
857 tab, tab, ""
861 #endif
863 #ifdef BLIST_DEBUG
866 main(int ac, char **av)
868 int size = 1024;
869 int i;
870 blist_t bl;
872 for (i = 1; i < ac; ++i) {
873 const char *ptr = av[i];
874 if (*ptr != '-') {
875 size = strtol(ptr, NULL, 0);
876 continue;
878 ptr += 2;
879 fprintf(stderr, "Bad option: %s\n", ptr - 2);
880 exit(1);
882 bl = blist_create(size);
883 blist_free(bl, 0, size);
885 for (;;) {
886 char buf[1024];
887 swblk_t da = 0;
888 swblk_t count = 0;
891 kprintf("%d/%d/%lld> ",
892 bl->bl_free, size, (long long)bl->bl_radix);
893 fflush(stdout);
894 if (fgets(buf, sizeof(buf), stdin) == NULL)
895 break;
896 switch(buf[0]) {
897 case 'r':
898 if (sscanf(buf + 1, "%d", &count) == 1) {
899 blist_resize(&bl, count, 1);
900 } else {
901 kprintf("?\n");
903 case 'p':
904 blist_print(bl);
905 break;
906 case 'a':
907 if (sscanf(buf + 1, "%d", &count) == 1) {
908 swblk_t blk = blist_alloc(bl, count);
909 kprintf(" R=%04x\n", blk);
910 } else {
911 kprintf("?\n");
913 break;
914 case 'f':
915 if (sscanf(buf + 1, "%x %d", &da, &count) == 2) {
916 blist_free(bl, da, count);
917 } else {
918 kprintf("?\n");
920 break;
921 case '?':
922 case 'h':
923 puts(
924 "p -print\n"
925 "a %d -allocate\n"
926 "f %x %d -free\n"
927 "r %d -resize\n"
928 "h/? -help"
930 break;
931 default:
932 kprintf("?\n");
933 break;
936 return(0);
939 void
940 panic(const char *ctl, ...)
942 __va_list va;
944 __va_start(va, ctl);
945 vfprintf(stderr, ctl, va);
946 fprintf(stderr, "\n");
947 __va_end(va);
948 exit(1);
951 #endif