nlookup - introduce nlookup_init_root
[dragonfly.git] / sys / kern / kern_slaballoc.c
blob4623277835f8352c69da4781aa282f8c4107764d
1 /*
2 * KERN_SLABALLOC.C - Kernel SLAB memory allocator
3 *
4 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon@backplane.com>
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.55 2008/10/22 01:42:17 dillon Exp $
38 * This module implements a slab allocator drop-in replacement for the
39 * kernel malloc().
41 * A slab allocator reserves a ZONE for each chunk size, then lays the
42 * chunks out in an array within the zone. Allocation and deallocation
43 * is nearly instantanious, and fragmentation/overhead losses are limited
44 * to a fixed worst-case amount.
46 * The downside of this slab implementation is in the chunk size
47 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu.
48 * In a kernel implementation all this memory will be physical so
49 * the zone size is adjusted downward on machines with less physical
50 * memory. The upside is that overhead is bounded... this is the *worst*
51 * case overhead.
53 * Slab management is done on a per-cpu basis and no locking or mutexes
54 * are required, only a critical section. When one cpu frees memory
55 * belonging to another cpu's slab manager an asynchronous IPI message
56 * will be queued to execute the operation. In addition, both the
57 * high level slab allocator and the low level zone allocator optimize
58 * M_ZERO requests, and the slab allocator does not have to pre initialize
59 * the linked list of chunks.
61 * XXX Balancing is needed between cpus. Balance will be handled through
62 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
64 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65 * the new zone should be restricted to M_USE_RESERVE requests only.
67 * Alloc Size Chunking Number of zones
68 * 0-127 8 16
69 * 128-255 16 8
70 * 256-511 32 8
71 * 512-1023 64 8
72 * 1024-2047 128 8
73 * 2048-4095 256 8
74 * 4096-8191 512 8
75 * 8192-16383 1024 8
76 * 16384-32767 2048 8
77 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383)
79 * Allocations >= ZoneLimit go directly to kmem.
81 * API REQUIREMENTS AND SIDE EFFECTS
83 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
84 * have remained compatible with the following API requirements:
86 * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
87 * + all power-of-2 sized allocations are power-of-2 aligned (twe)
88 * + malloc(0) is allowed and returns non-NULL (ahc driver)
89 * + ability to allocate arbitrarily large chunks of memory
92 #include "opt_vm.h"
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/slaballoc.h>
98 #include <sys/mbuf.h>
99 #include <sys/vmmeter.h>
100 #include <sys/lock.h>
101 #include <sys/thread.h>
102 #include <sys/globaldata.h>
103 #include <sys/sysctl.h>
104 #include <sys/ktr.h>
106 #include <vm/vm.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_object.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_map.h>
113 #include <vm/vm_page.h>
114 #include <vm/vm_pageout.h>
116 #include <machine/cpu.h>
118 #include <sys/thread2.h>
119 #include <sys/mplock2.h>
121 #define arysize(ary) (sizeof(ary)/sizeof((ary)[0]))
123 #define MEMORY_STRING "ptr=%p type=%p size=%d flags=%04x"
124 #define MEMORY_ARG_SIZE (sizeof(void *) * 2 + sizeof(unsigned long) + \
125 sizeof(int))
127 #if !defined(KTR_MEMORY)
128 #define KTR_MEMORY KTR_ALL
129 #endif
130 KTR_INFO_MASTER(memory);
131 KTR_INFO(KTR_MEMORY, memory, malloc, 0, MEMORY_STRING, MEMORY_ARG_SIZE);
132 KTR_INFO(KTR_MEMORY, memory, free_zero, 1, MEMORY_STRING, MEMORY_ARG_SIZE);
133 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 2, MEMORY_STRING, MEMORY_ARG_SIZE);
134 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 3, MEMORY_STRING, MEMORY_ARG_SIZE);
135 KTR_INFO(KTR_MEMORY, memory, free_chunk, 4, MEMORY_STRING, MEMORY_ARG_SIZE);
136 #ifdef SMP
137 KTR_INFO(KTR_MEMORY, memory, free_request, 5, MEMORY_STRING, MEMORY_ARG_SIZE);
138 KTR_INFO(KTR_MEMORY, memory, free_remote, 6, MEMORY_STRING, MEMORY_ARG_SIZE);
139 #endif
140 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0);
141 KTR_INFO(KTR_MEMORY, memory, free_beg, 0, "free begin", 0);
142 KTR_INFO(KTR_MEMORY, memory, free_end, 0, "free end", 0);
144 #define logmemory(name, ptr, type, size, flags) \
145 KTR_LOG(memory_ ## name, ptr, type, size, flags)
146 #define logmemory_quick(name) \
147 KTR_LOG(memory_ ## name)
150 * Fixed globals (not per-cpu)
152 static int ZoneSize;
153 static int ZoneLimit;
154 static int ZonePageCount;
155 static int ZoneMask;
156 static int ZoneBigAlloc; /* in KB */
157 static int ZoneGenAlloc; /* in KB */
158 struct malloc_type *kmemstatistics; /* exported to vmstat */
159 static struct kmemusage *kmemusage;
160 static int32_t weirdary[16];
162 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
163 static void kmem_slab_free(void *ptr, vm_size_t bytes);
164 #if defined(INVARIANTS)
165 static void chunk_mark_allocated(SLZone *z, void *chunk);
166 static void chunk_mark_free(SLZone *z, void *chunk);
167 #endif
170 * Misc constants. Note that allocations that are exact multiples of
171 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
172 * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
174 #define MIN_CHUNK_SIZE 8 /* in bytes */
175 #define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1)
176 #define ZONE_RELS_THRESH 2 /* threshold number of zones */
177 #define IN_SAME_PAGE_MASK (~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
180 * The WEIRD_ADDR is used as known text to copy into free objects to
181 * try to create deterministic failure cases if the data is accessed after
182 * free.
184 #define WEIRD_ADDR 0xdeadc0de
185 #define MAX_COPY sizeof(weirdary)
186 #define ZERO_LENGTH_PTR ((void *)-8)
189 * Misc global malloc buckets
192 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
193 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
194 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
196 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
197 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
200 * Initialize the slab memory allocator. We have to choose a zone size based
201 * on available physical memory. We choose a zone side which is approximately
202 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
203 * 128K. The zone size is limited to the bounds set in slaballoc.h
204 * (typically 32K min, 128K max).
206 static void kmeminit(void *dummy);
208 char *ZeroPage;
210 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL)
212 #ifdef INVARIANTS
214 * If enabled any memory allocated without M_ZERO is initialized to -1.
216 static int use_malloc_pattern;
217 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
218 &use_malloc_pattern, 0, "");
219 #endif
221 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
222 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
224 static void
225 kmeminit(void *dummy)
227 size_t limsize;
228 int usesize;
229 int i;
230 vm_offset_t npg;
232 limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
233 if (limsize > KvaSize)
234 limsize = KvaSize;
236 usesize = (int)(limsize / 1024); /* convert to KB */
238 ZoneSize = ZALLOC_MIN_ZONE_SIZE;
239 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
240 ZoneSize <<= 1;
241 ZoneLimit = ZoneSize / 4;
242 if (ZoneLimit > ZALLOC_ZONE_LIMIT)
243 ZoneLimit = ZALLOC_ZONE_LIMIT;
244 ZoneMask = ZoneSize - 1;
245 ZonePageCount = ZoneSize / PAGE_SIZE;
247 npg = KvaSize / PAGE_SIZE;
248 kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage),
249 PAGE_SIZE, M_WAITOK|M_ZERO);
251 for (i = 0; i < arysize(weirdary); ++i)
252 weirdary[i] = WEIRD_ADDR;
254 ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
256 if (bootverbose)
257 kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
261 * Initialize a malloc type tracking structure.
263 void
264 malloc_init(void *data)
266 struct malloc_type *type = data;
267 size_t limsize;
269 if (type->ks_magic != M_MAGIC)
270 panic("malloc type lacks magic");
272 if (type->ks_limit != 0)
273 return;
275 if (vmstats.v_page_count == 0)
276 panic("malloc_init not allowed before vm init");
278 limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
279 if (limsize > KvaSize)
280 limsize = KvaSize;
281 type->ks_limit = limsize / 10;
283 type->ks_next = kmemstatistics;
284 kmemstatistics = type;
287 void
288 malloc_uninit(void *data)
290 struct malloc_type *type = data;
291 struct malloc_type *t;
292 #ifdef INVARIANTS
293 int i;
294 long ttl;
295 #endif
297 if (type->ks_magic != M_MAGIC)
298 panic("malloc type lacks magic");
300 if (vmstats.v_page_count == 0)
301 panic("malloc_uninit not allowed before vm init");
303 if (type->ks_limit == 0)
304 panic("malloc_uninit on uninitialized type");
306 #ifdef SMP
307 /* Make sure that all pending kfree()s are finished. */
308 lwkt_synchronize_ipiqs("muninit");
309 #endif
311 #ifdef INVARIANTS
313 * memuse is only correct in aggregation. Due to memory being allocated
314 * on one cpu and freed on another individual array entries may be
315 * negative or positive (canceling each other out).
317 for (i = ttl = 0; i < ncpus; ++i)
318 ttl += type->ks_memuse[i];
319 if (ttl) {
320 kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
321 ttl, type->ks_shortdesc, i);
323 #endif
324 if (type == kmemstatistics) {
325 kmemstatistics = type->ks_next;
326 } else {
327 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
328 if (t->ks_next == type) {
329 t->ks_next = type->ks_next;
330 break;
334 type->ks_next = NULL;
335 type->ks_limit = 0;
339 * Increase the kmalloc pool limit for the specified pool. No changes
340 * are the made if the pool would shrink.
342 void
343 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
345 if (type->ks_limit == 0)
346 malloc_init(type);
347 if (bytes == 0)
348 bytes = KvaSize;
349 if (type->ks_limit < bytes)
350 type->ks_limit = bytes;
354 * Dynamically create a malloc pool. This function is a NOP if *typep is
355 * already non-NULL.
357 void
358 kmalloc_create(struct malloc_type **typep, const char *descr)
360 struct malloc_type *type;
362 if (*typep == NULL) {
363 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
364 type->ks_magic = M_MAGIC;
365 type->ks_shortdesc = descr;
366 malloc_init(type);
367 *typep = type;
372 * Destroy a dynamically created malloc pool. This function is a NOP if
373 * the pool has already been destroyed.
375 void
376 kmalloc_destroy(struct malloc_type **typep)
378 if (*typep != NULL) {
379 malloc_uninit(*typep);
380 kfree(*typep, M_TEMP);
381 *typep = NULL;
386 * Calculate the zone index for the allocation request size and set the
387 * allocation request size to that particular zone's chunk size.
389 static __inline int
390 zoneindex(unsigned long *bytes)
392 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */
393 if (n < 128) {
394 *bytes = n = (n + 7) & ~7;
395 return(n / 8 - 1); /* 8 byte chunks, 16 zones */
397 if (n < 256) {
398 *bytes = n = (n + 15) & ~15;
399 return(n / 16 + 7);
401 if (n < 8192) {
402 if (n < 512) {
403 *bytes = n = (n + 31) & ~31;
404 return(n / 32 + 15);
406 if (n < 1024) {
407 *bytes = n = (n + 63) & ~63;
408 return(n / 64 + 23);
410 if (n < 2048) {
411 *bytes = n = (n + 127) & ~127;
412 return(n / 128 + 31);
414 if (n < 4096) {
415 *bytes = n = (n + 255) & ~255;
416 return(n / 256 + 39);
418 *bytes = n = (n + 511) & ~511;
419 return(n / 512 + 47);
421 #if ZALLOC_ZONE_LIMIT > 8192
422 if (n < 16384) {
423 *bytes = n = (n + 1023) & ~1023;
424 return(n / 1024 + 55);
426 #endif
427 #if ZALLOC_ZONE_LIMIT > 16384
428 if (n < 32768) {
429 *bytes = n = (n + 2047) & ~2047;
430 return(n / 2048 + 63);
432 #endif
433 panic("Unexpected byte count %d", n);
434 return(0);
438 * malloc() (SLAB ALLOCATOR)
440 * Allocate memory via the slab allocator. If the request is too large,
441 * or if it page-aligned beyond a certain size, we fall back to the
442 * KMEM subsystem. A SLAB tracking descriptor must be specified, use
443 * &SlabMisc if you don't care.
445 * M_RNOWAIT - don't block.
446 * M_NULLOK - return NULL instead of blocking.
447 * M_ZERO - zero the returned memory.
448 * M_USE_RESERVE - allow greater drawdown of the free list
449 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
451 * MPSAFE
454 void *
455 kmalloc(unsigned long size, struct malloc_type *type, int flags)
457 SLZone *z;
458 SLChunk *chunk;
459 SLGlobalData *slgd;
460 struct globaldata *gd;
461 int zi;
462 #ifdef INVARIANTS
463 int i;
464 #endif
466 logmemory_quick(malloc_beg);
467 gd = mycpu;
468 slgd = &gd->gd_slab;
471 * XXX silly to have this in the critical path.
473 if (type->ks_limit == 0) {
474 crit_enter();
475 if (type->ks_limit == 0)
476 malloc_init(type);
477 crit_exit();
479 ++type->ks_calls;
482 * Handle the case where the limit is reached. Panic if we can't return
483 * NULL. The original malloc code looped, but this tended to
484 * simply deadlock the computer.
486 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
487 * to determine if a more complete limit check should be done. The
488 * actual memory use is tracked via ks_memuse[cpu].
490 while (type->ks_loosememuse >= type->ks_limit) {
491 int i;
492 long ttl;
494 for (i = ttl = 0; i < ncpus; ++i)
495 ttl += type->ks_memuse[i];
496 type->ks_loosememuse = ttl; /* not MP synchronized */
497 if (ttl >= type->ks_limit) {
498 if (flags & M_NULLOK) {
499 logmemory(malloc, NULL, type, size, flags);
500 return(NULL);
502 panic("%s: malloc limit exceeded", type->ks_shortdesc);
507 * Handle the degenerate size == 0 case. Yes, this does happen.
508 * Return a special pointer. This is to maintain compatibility with
509 * the original malloc implementation. Certain devices, such as the
510 * adaptec driver, not only allocate 0 bytes, they check for NULL and
511 * also realloc() later on. Joy.
513 if (size == 0) {
514 logmemory(malloc, ZERO_LENGTH_PTR, type, size, flags);
515 return(ZERO_LENGTH_PTR);
519 * Handle hysteresis from prior frees here in malloc(). We cannot
520 * safely manipulate the kernel_map in free() due to free() possibly
521 * being called via an IPI message or from sensitive interrupt code.
523 while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) {
524 crit_enter();
525 if (slgd->NFreeZones > ZONE_RELS_THRESH) { /* crit sect race */
526 z = slgd->FreeZones;
527 slgd->FreeZones = z->z_Next;
528 --slgd->NFreeZones;
529 kmem_slab_free(z, ZoneSize); /* may block */
530 atomic_add_int(&ZoneGenAlloc, -(int)ZoneSize / 1024);
532 crit_exit();
535 * XXX handle oversized frees that were queued from free().
537 while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
538 crit_enter();
539 if ((z = slgd->FreeOvZones) != NULL) {
540 vm_size_t tsize;
542 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
543 slgd->FreeOvZones = z->z_Next;
544 tsize = z->z_ChunkSize;
545 kmem_slab_free(z, tsize); /* may block */
546 atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
548 crit_exit();
552 * Handle large allocations directly. There should not be very many of
553 * these so performance is not a big issue.
555 * The backend allocator is pretty nasty on a SMP system. Use the
556 * slab allocator for one and two page-sized chunks even though we lose
557 * some efficiency. XXX maybe fix mmio and the elf loader instead.
559 if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
560 struct kmemusage *kup;
562 size = round_page(size);
563 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
564 if (chunk == NULL) {
565 logmemory(malloc, NULL, type, size, flags);
566 return(NULL);
568 atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
569 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */
570 flags |= M_PASSIVE_ZERO;
571 kup = btokup(chunk);
572 kup->ku_pagecnt = size / PAGE_SIZE;
573 crit_enter();
574 goto done;
578 * Attempt to allocate out of an existing zone. First try the free list,
579 * then allocate out of unallocated space. If we find a good zone move
580 * it to the head of the list so later allocations find it quickly
581 * (we might have thousands of zones in the list).
583 * Note: zoneindex() will panic of size is too large.
585 zi = zoneindex(&size);
586 KKASSERT(zi < NZONES);
587 crit_enter();
588 if ((z = slgd->ZoneAry[zi]) != NULL) {
589 KKASSERT(z->z_NFree > 0);
592 * Remove us from the ZoneAry[] when we become empty
594 if (--z->z_NFree == 0) {
595 slgd->ZoneAry[zi] = z->z_Next;
596 z->z_Next = NULL;
600 * Locate a chunk in a free page. This attempts to localize
601 * reallocations into earlier pages without us having to sort
602 * the chunk list. A chunk may still overlap a page boundary.
604 while (z->z_FirstFreePg < ZonePageCount) {
605 if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
606 #ifdef DIAGNOSTIC
608 * Diagnostic: c_Next is not total garbage.
610 KKASSERT(chunk->c_Next == NULL ||
611 ((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) ==
612 ((intptr_t)chunk & IN_SAME_PAGE_MASK));
613 #endif
614 #ifdef INVARIANTS
615 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
616 panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount);
617 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
618 panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount);
619 chunk_mark_allocated(z, chunk);
620 #endif
621 z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
622 goto done;
624 ++z->z_FirstFreePg;
628 * No chunks are available but NFree said we had some memory, so
629 * it must be available in the never-before-used-memory area
630 * governed by UIndex. The consequences are very serious if our zone
631 * got corrupted so we use an explicit panic rather then a KASSERT.
633 if (z->z_UIndex + 1 != z->z_NMax)
634 z->z_UIndex = z->z_UIndex + 1;
635 else
636 z->z_UIndex = 0;
637 if (z->z_UIndex == z->z_UEndIndex)
638 panic("slaballoc: corrupted zone");
639 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
640 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
641 flags &= ~M_ZERO;
642 flags |= M_PASSIVE_ZERO;
644 #if defined(INVARIANTS)
645 chunk_mark_allocated(z, chunk);
646 #endif
647 goto done;
651 * If all zones are exhausted we need to allocate a new zone for this
652 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see
653 * UAlloc use above in regards to M_ZERO. Note that when we are reusing
654 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
655 * we do not pre-zero it because we do not want to mess up the L1 cache.
657 * At least one subsystem, the tty code (see CROUND) expects power-of-2
658 * allocations to be power-of-2 aligned. We maintain compatibility by
659 * adjusting the base offset below.
662 int off;
664 if ((z = slgd->FreeZones) != NULL) {
665 slgd->FreeZones = z->z_Next;
666 --slgd->NFreeZones;
667 bzero(z, sizeof(SLZone));
668 z->z_Flags |= SLZF_UNOTZEROD;
669 } else {
670 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
671 if (z == NULL)
672 goto fail;
673 atomic_add_int(&ZoneGenAlloc, (int)ZoneSize / 1024);
677 * How big is the base structure?
679 #if defined(INVARIANTS)
681 * Make room for z_Bitmap. An exact calculation is somewhat more
682 * complicated so don't make an exact calculation.
684 off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
685 bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
686 #else
687 off = sizeof(SLZone);
688 #endif
691 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
692 * Otherwise just 8-byte align the data.
694 if ((size | (size - 1)) + 1 == (size << 1))
695 off = (off + size - 1) & ~(size - 1);
696 else
697 off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
698 z->z_Magic = ZALLOC_SLAB_MAGIC;
699 z->z_ZoneIndex = zi;
700 z->z_NMax = (ZoneSize - off) / size;
701 z->z_NFree = z->z_NMax - 1;
702 z->z_BasePtr = (char *)z + off;
703 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
704 z->z_ChunkSize = size;
705 z->z_FirstFreePg = ZonePageCount;
706 z->z_CpuGd = gd;
707 z->z_Cpu = gd->gd_cpuid;
708 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
709 z->z_Next = slgd->ZoneAry[zi];
710 slgd->ZoneAry[zi] = z;
711 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
712 flags &= ~M_ZERO; /* already zero'd */
713 flags |= M_PASSIVE_ZERO;
715 #if defined(INVARIANTS)
716 chunk_mark_allocated(z, chunk);
717 #endif
720 * Slide the base index for initial allocations out of the next
721 * zone we create so we do not over-weight the lower part of the
722 * cpu memory caches.
724 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
725 & (ZALLOC_MAX_ZONE_SIZE - 1);
727 done:
728 ++type->ks_inuse[gd->gd_cpuid];
729 type->ks_memuse[gd->gd_cpuid] += size;
730 type->ks_loosememuse += size; /* not MP synchronized */
731 crit_exit();
732 if (flags & M_ZERO)
733 bzero(chunk, size);
734 #ifdef INVARIANTS
735 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
736 if (use_malloc_pattern) {
737 for (i = 0; i < size; i += sizeof(int)) {
738 *(int *)((char *)chunk + i) = -1;
741 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
743 #endif
744 logmemory(malloc, chunk, type, size, flags);
745 return(chunk);
746 fail:
747 crit_exit();
748 logmemory(malloc, NULL, type, size, flags);
749 return(NULL);
753 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE)
755 * Generally speaking this routine is not called very often and we do
756 * not attempt to optimize it beyond reusing the same pointer if the
757 * new size fits within the chunking of the old pointer's zone.
759 void *
760 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
762 SLZone *z;
763 void *nptr;
764 unsigned long osize;
766 KKASSERT((flags & M_ZERO) == 0); /* not supported */
768 if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
769 return(kmalloc(size, type, flags));
770 if (size == 0) {
771 kfree(ptr, type);
772 return(NULL);
776 * Handle oversized allocations. XXX we really should require that a
777 * size be passed to free() instead of this nonsense.
780 struct kmemusage *kup;
782 kup = btokup(ptr);
783 if (kup->ku_pagecnt) {
784 osize = kup->ku_pagecnt << PAGE_SHIFT;
785 if (osize == round_page(size))
786 return(ptr);
787 if ((nptr = kmalloc(size, type, flags)) == NULL)
788 return(NULL);
789 bcopy(ptr, nptr, min(size, osize));
790 kfree(ptr, type);
791 return(nptr);
796 * Get the original allocation's zone. If the new request winds up
797 * using the same chunk size we do not have to do anything.
799 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
800 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
803 * Allocate memory for the new request size. Note that zoneindex has
804 * already adjusted the request size to the appropriate chunk size, which
805 * should optimize our bcopy(). Then copy and return the new pointer.
807 * Resizing a non-power-of-2 allocation to a power-of-2 size does not
808 * necessary align the result.
810 * We can only zoneindex (to align size to the chunk size) if the new
811 * size is not too large.
813 if (size < ZoneLimit) {
814 zoneindex(&size);
815 if (z->z_ChunkSize == size)
816 return(ptr);
818 if ((nptr = kmalloc(size, type, flags)) == NULL)
819 return(NULL);
820 bcopy(ptr, nptr, min(size, z->z_ChunkSize));
821 kfree(ptr, type);
822 return(nptr);
826 * Return the kmalloc limit for this type, in bytes.
828 long
829 kmalloc_limit(struct malloc_type *type)
831 if (type->ks_limit == 0) {
832 crit_enter();
833 if (type->ks_limit == 0)
834 malloc_init(type);
835 crit_exit();
837 return(type->ks_limit);
841 * Allocate a copy of the specified string.
843 * (MP SAFE) (MAY BLOCK)
845 char *
846 kstrdup(const char *str, struct malloc_type *type)
848 int zlen; /* length inclusive of terminating NUL */
849 char *nstr;
851 if (str == NULL)
852 return(NULL);
853 zlen = strlen(str) + 1;
854 nstr = kmalloc(zlen, type, M_WAITOK);
855 bcopy(str, nstr, zlen);
856 return(nstr);
859 #ifdef SMP
861 * free() (SLAB ALLOCATOR)
863 * Free the specified chunk of memory.
865 static
866 void
867 free_remote(void *ptr)
869 logmemory(free_remote, ptr, *(struct malloc_type **)ptr, -1, 0);
870 kfree(ptr, *(struct malloc_type **)ptr);
873 #endif
876 * free (SLAB ALLOCATOR)
878 * Free a memory block previously allocated by malloc. Note that we do not
879 * attempt to uplodate ks_loosememuse as MP races could prevent us from
880 * checking memory limits in malloc.
882 * MPSAFE
884 void
885 kfree(void *ptr, struct malloc_type *type)
887 SLZone *z;
888 SLChunk *chunk;
889 SLGlobalData *slgd;
890 struct globaldata *gd;
891 int pgno;
893 logmemory_quick(free_beg);
894 gd = mycpu;
895 slgd = &gd->gd_slab;
897 if (ptr == NULL)
898 panic("trying to free NULL pointer");
901 * Handle special 0-byte allocations
903 if (ptr == ZERO_LENGTH_PTR) {
904 logmemory(free_zero, ptr, type, -1, 0);
905 logmemory_quick(free_end);
906 return;
910 * Handle oversized allocations. XXX we really should require that a
911 * size be passed to free() instead of this nonsense.
913 * This code is never called via an ipi.
916 struct kmemusage *kup;
917 unsigned long size;
919 kup = btokup(ptr);
920 if (kup->ku_pagecnt) {
921 size = kup->ku_pagecnt << PAGE_SHIFT;
922 kup->ku_pagecnt = 0;
923 #ifdef INVARIANTS
924 KKASSERT(sizeof(weirdary) <= size);
925 bcopy(weirdary, ptr, sizeof(weirdary));
926 #endif
928 * NOTE: For oversized allocations we do not record the
929 * originating cpu. It gets freed on the cpu calling
930 * kfree(). The statistics are in aggregate.
932 * note: XXX we have still inherited the interrupts-can't-block
933 * assumption. An interrupt thread does not bump
934 * gd_intr_nesting_level so check TDF_INTTHREAD. This is
935 * primarily until we can fix softupdate's assumptions about free().
937 crit_enter();
938 --type->ks_inuse[gd->gd_cpuid];
939 type->ks_memuse[gd->gd_cpuid] -= size;
940 if (mycpu->gd_intr_nesting_level ||
941 (gd->gd_curthread->td_flags & TDF_INTTHREAD))
943 logmemory(free_ovsz_delayed, ptr, type, size, 0);
944 z = (SLZone *)ptr;
945 z->z_Magic = ZALLOC_OVSZ_MAGIC;
946 z->z_Next = slgd->FreeOvZones;
947 z->z_ChunkSize = size;
948 slgd->FreeOvZones = z;
949 crit_exit();
950 } else {
951 crit_exit();
952 logmemory(free_ovsz, ptr, type, size, 0);
953 kmem_slab_free(ptr, size); /* may block */
954 atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
956 logmemory_quick(free_end);
957 return;
962 * Zone case. Figure out the zone based on the fact that it is
963 * ZoneSize aligned.
965 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
966 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
969 * If we do not own the zone then forward the request to the
970 * cpu that does. Since the timing is non-critical, a passive
971 * message is sent.
973 if (z->z_CpuGd != gd) {
974 *(struct malloc_type **)ptr = type;
975 #ifdef SMP
976 logmemory(free_request, ptr, type, z->z_ChunkSize, 0);
977 lwkt_send_ipiq_passive(z->z_CpuGd, free_remote, ptr);
978 #else
979 panic("Corrupt SLZone");
980 #endif
981 logmemory_quick(free_end);
982 return;
985 logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0);
987 if (type->ks_magic != M_MAGIC)
988 panic("free: malloc type lacks magic");
990 crit_enter();
991 pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
992 chunk = ptr;
994 #ifdef INVARIANTS
996 * Attempt to detect a double-free. To reduce overhead we only check
997 * if there appears to be link pointer at the base of the data.
999 if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) {
1000 SLChunk *scan;
1001 for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) {
1002 if (scan == chunk)
1003 panic("Double free at %p", chunk);
1006 chunk_mark_free(z, chunk);
1007 #endif
1010 * Put weird data into the memory to detect modifications after freeing,
1011 * illegal pointer use after freeing (we should fault on the odd address),
1012 * and so forth. XXX needs more work, see the old malloc code.
1014 #ifdef INVARIANTS
1015 if (z->z_ChunkSize < sizeof(weirdary))
1016 bcopy(weirdary, chunk, z->z_ChunkSize);
1017 else
1018 bcopy(weirdary, chunk, sizeof(weirdary));
1019 #endif
1022 * Add this free non-zero'd chunk to a linked list for reuse, adjust
1023 * z_FirstFreePg.
1025 #ifdef INVARIANTS
1026 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1027 panic("BADFREE %p", chunk);
1028 #endif
1029 chunk->c_Next = z->z_PageAry[pgno];
1030 z->z_PageAry[pgno] = chunk;
1031 #ifdef INVARIANTS
1032 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1033 panic("BADFREE2");
1034 #endif
1035 if (z->z_FirstFreePg > pgno)
1036 z->z_FirstFreePg = pgno;
1039 * Bump the number of free chunks. If it becomes non-zero the zone
1040 * must be added back onto the appropriate list.
1042 if (z->z_NFree++ == 0) {
1043 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1044 slgd->ZoneAry[z->z_ZoneIndex] = z;
1047 --type->ks_inuse[z->z_Cpu];
1048 type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1051 * If the zone becomes totally free, and there are other zones we
1052 * can allocate from, move this zone to the FreeZones list. Since
1053 * this code can be called from an IPI callback, do *NOT* try to mess
1054 * with kernel_map here. Hysteresis will be performed at malloc() time.
1056 if (z->z_NFree == z->z_NMax &&
1057 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z)
1059 SLZone **pz;
1061 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
1063 *pz = z->z_Next;
1064 z->z_Magic = -1;
1065 z->z_Next = slgd->FreeZones;
1066 slgd->FreeZones = z;
1067 ++slgd->NFreeZones;
1069 logmemory_quick(free_end);
1070 crit_exit();
1073 #if defined(INVARIANTS)
1075 * Helper routines for sanity checks
1077 static
1078 void
1079 chunk_mark_allocated(SLZone *z, void *chunk)
1081 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1082 __uint32_t *bitptr;
1084 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1085 bitptr = &z->z_Bitmap[bitdex >> 5];
1086 bitdex &= 31;
1087 KASSERT((*bitptr & (1 << bitdex)) == 0, ("memory chunk %p is already allocated!", chunk));
1088 *bitptr |= 1 << bitdex;
1091 static
1092 void
1093 chunk_mark_free(SLZone *z, void *chunk)
1095 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1096 __uint32_t *bitptr;
1098 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1099 bitptr = &z->z_Bitmap[bitdex >> 5];
1100 bitdex &= 31;
1101 KASSERT((*bitptr & (1 << bitdex)) != 0, ("memory chunk %p is already free!", chunk));
1102 *bitptr &= ~(1 << bitdex);
1105 #endif
1108 * kmem_slab_alloc()
1110 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1111 * specified alignment. M_* flags are expected in the flags field.
1113 * Alignment must be a multiple of PAGE_SIZE.
1115 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1116 * but when we move zalloc() over to use this function as its backend
1117 * we will have to switch to kreserve/krelease and call reserve(0)
1118 * after the new space is made available.
1120 * Interrupt code which has preempted other code is not allowed to
1121 * use PQ_CACHE pages. However, if an interrupt thread is run
1122 * non-preemptively or blocks and then runs non-preemptively, then
1123 * it is free to use PQ_CACHE pages.
1125 * This routine will currently obtain the BGL.
1127 * MPALMOSTSAFE - acquires mplock
1129 static void *
1130 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1132 vm_size_t i;
1133 vm_offset_t addr;
1134 int count, vmflags, base_vmflags;
1135 thread_t td;
1137 size = round_page(size);
1138 addr = vm_map_min(&kernel_map);
1141 * Reserve properly aligned space from kernel_map. RNOWAIT allocations
1142 * cannot block.
1144 if (flags & M_RNOWAIT) {
1145 if (try_mplock() == 0)
1146 return(NULL);
1147 } else {
1148 get_mplock();
1150 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1151 crit_enter();
1152 vm_map_lock(&kernel_map);
1153 if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1154 vm_map_unlock(&kernel_map);
1155 if ((flags & M_NULLOK) == 0)
1156 panic("kmem_slab_alloc(): kernel_map ran out of space!");
1157 crit_exit();
1158 vm_map_entry_release(count);
1159 rel_mplock();
1160 return(NULL);
1164 * kernel_object maps 1:1 to kernel_map.
1166 vm_object_reference(&kernel_object);
1167 vm_map_insert(&kernel_map, &count,
1168 &kernel_object, addr, addr, addr + size,
1169 VM_MAPTYPE_NORMAL,
1170 VM_PROT_ALL, VM_PROT_ALL,
1173 td = curthread;
1175 base_vmflags = 0;
1176 if (flags & M_ZERO)
1177 base_vmflags |= VM_ALLOC_ZERO;
1178 if (flags & M_USE_RESERVE)
1179 base_vmflags |= VM_ALLOC_SYSTEM;
1180 if (flags & M_USE_INTERRUPT_RESERVE)
1181 base_vmflags |= VM_ALLOC_INTERRUPT;
1182 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0)
1183 panic("kmem_slab_alloc: bad flags %08x (%p)", flags, ((int **)&size)[-1]);
1187 * Allocate the pages. Do not mess with the PG_ZERO flag yet.
1189 for (i = 0; i < size; i += PAGE_SIZE) {
1190 vm_page_t m;
1193 * VM_ALLOC_NORMAL can only be set if we are not preempting.
1195 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1196 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1197 * implied in this case), though I'm not sure if we really need to
1198 * do that.
1200 vmflags = base_vmflags;
1201 if (flags & M_WAITOK) {
1202 if (td->td_preempted)
1203 vmflags |= VM_ALLOC_SYSTEM;
1204 else
1205 vmflags |= VM_ALLOC_NORMAL;
1208 m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1211 * If the allocation failed we either return NULL or we retry.
1213 * If M_WAITOK is specified we wait for more memory and retry.
1214 * If M_WAITOK is specified from a preemption we yield instead of
1215 * wait. Livelock will not occur because the interrupt thread
1216 * will not be preempting anyone the second time around after the
1217 * yield.
1219 if (m == NULL) {
1220 if (flags & M_WAITOK) {
1221 if (td->td_preempted) {
1222 vm_map_unlock(&kernel_map);
1223 lwkt_yield();
1224 vm_map_lock(&kernel_map);
1225 } else {
1226 vm_map_unlock(&kernel_map);
1227 vm_wait(0);
1228 vm_map_lock(&kernel_map);
1230 i -= PAGE_SIZE; /* retry */
1231 continue;
1235 * We were unable to recover, cleanup and return NULL
1237 while (i != 0) {
1238 i -= PAGE_SIZE;
1239 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1240 /* page should already be busy */
1241 vm_page_free(m);
1243 vm_map_delete(&kernel_map, addr, addr + size, &count);
1244 vm_map_unlock(&kernel_map);
1245 crit_exit();
1246 vm_map_entry_release(count);
1247 rel_mplock();
1248 return(NULL);
1253 * Success!
1255 * Mark the map entry as non-pageable using a routine that allows us to
1256 * populate the underlying pages.
1258 * The pages were busied by the allocations above.
1260 vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1261 crit_exit();
1264 * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1266 for (i = 0; i < size; i += PAGE_SIZE) {
1267 vm_page_t m;
1269 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1270 m->valid = VM_PAGE_BITS_ALL;
1271 /* page should already be busy */
1272 vm_page_wire(m);
1273 vm_page_wakeup(m);
1274 pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
1275 if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1276 bzero((char *)addr + i, PAGE_SIZE);
1277 vm_page_flag_clear(m, PG_ZERO);
1278 KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1279 vm_page_flag_set(m, PG_REFERENCED);
1281 vm_map_unlock(&kernel_map);
1282 vm_map_entry_release(count);
1283 rel_mplock();
1284 return((void *)addr);
1288 * kmem_slab_free()
1290 * MPALMOSTSAFE - acquires mplock
1292 static void
1293 kmem_slab_free(void *ptr, vm_size_t size)
1295 get_mplock();
1296 crit_enter();
1297 vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1298 crit_exit();
1299 rel_mplock();