nlookup - introduce nlookup_init_root
[dragonfly.git] / sys / kern / kern_ntptime.c
blobe0685f6255c0a161433674c617e69c9afbe020e8
1 /***********************************************************************
2 * *
3 * Copyright (c) David L. Mills 1993-2001 *
4 * *
5 * Permission to use, copy, modify, and distribute this software and *
6 * its documentation for any purpose and without fee is hereby *
7 * granted, provided that the above copyright notice appears in all *
8 * copies and that both the copyright notice and this permission *
9 * notice appear in supporting documentation, and that the name *
10 * University of Delaware not be used in advertising or publicity *
11 * pertaining to distribution of the software without specific, *
12 * written prior permission. The University of Delaware makes no *
13 * representations about the suitability this software for any *
14 * purpose. It is provided "as is" without express or implied *
15 * warranty. *
16 * *
17 **********************************************************************/
20 * Adapted from the original sources for FreeBSD and timecounters by:
21 * Poul-Henning Kamp <phk@FreeBSD.org>.
23 * The 32bit version of the "LP" macros seems a bit past its "sell by"
24 * date so I have retained only the 64bit version and included it directly
25 * in this file.
27 * Only minor changes done to interface with the timecounters over in
28 * sys/kern/kern_clock.c. Some of the comments below may be (even more)
29 * confusing and/or plain wrong in that context.
31 * $FreeBSD: src/sys/kern/kern_ntptime.c,v 1.32.2.2 2001/04/22 11:19:46 jhay Exp $
32 * $DragonFly: src/sys/kern/kern_ntptime.c,v 1.13 2007/04/30 07:18:53 dillon Exp $
35 #include "opt_ntp.h"
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/sysproto.h>
40 #include <sys/kernel.h>
41 #include <sys/proc.h>
42 #include <sys/priv.h>
43 #include <sys/time.h>
44 #include <sys/timex.h>
45 #include <sys/timepps.h>
46 #include <sys/sysctl.h>
48 #include <sys/thread2.h>
49 #include <sys/mplock2.h>
52 * Single-precision macros for 64-bit machines
54 typedef long long l_fp;
55 #define L_ADD(v, u) ((v) += (u))
56 #define L_SUB(v, u) ((v) -= (u))
57 #define L_ADDHI(v, a) ((v) += (long long)(a) << 32)
58 #define L_NEG(v) ((v) = -(v))
59 #define L_RSHIFT(v, n) \
60 do { \
61 if ((v) < 0) \
62 (v) = -(-(v) >> (n)); \
63 else \
64 (v) = (v) >> (n); \
65 } while (0)
66 #define L_MPY(v, a) ((v) *= (a))
67 #define L_CLR(v) ((v) = 0)
68 #define L_ISNEG(v) ((v) < 0)
69 #define L_LINT(v, a) ((v) = (long long)(a) << 32)
70 #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
73 * Generic NTP kernel interface
75 * These routines constitute the Network Time Protocol (NTP) interfaces
76 * for user and daemon application programs. The ntp_gettime() routine
77 * provides the time, maximum error (synch distance) and estimated error
78 * (dispersion) to client user application programs. The ntp_adjtime()
79 * routine is used by the NTP daemon to adjust the system clock to an
80 * externally derived time. The time offset and related variables set by
81 * this routine are used by other routines in this module to adjust the
82 * phase and frequency of the clock discipline loop which controls the
83 * system clock.
85 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
86 * defined), the time at each tick interrupt is derived directly from
87 * the kernel time variable. When the kernel time is reckoned in
88 * microseconds, (NTP_NANO undefined), the time is derived from the
89 * kernel time variable together with a variable representing the
90 * leftover nanoseconds at the last tick interrupt. In either case, the
91 * current nanosecond time is reckoned from these values plus an
92 * interpolated value derived by the clock routines in another
93 * architecture-specific module. The interpolation can use either a
94 * dedicated counter or a processor cycle counter (PCC) implemented in
95 * some architectures.
97 * Note that all routines must run at priority splclock or higher.
100 * Phase/frequency-lock loop (PLL/FLL) definitions
102 * The nanosecond clock discipline uses two variable types, time
103 * variables and frequency variables. Both types are represented as 64-
104 * bit fixed-point quantities with the decimal point between two 32-bit
105 * halves. On a 32-bit machine, each half is represented as a single
106 * word and mathematical operations are done using multiple-precision
107 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
108 * used.
110 * A time variable is a signed 64-bit fixed-point number in ns and
111 * fraction. It represents the remaining time offset to be amortized
112 * over succeeding tick interrupts. The maximum time offset is about
113 * 0.5 s and the resolution is about 2.3e-10 ns.
115 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
116 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
117 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
118 * |s s s| ns |
119 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
120 * | fraction |
121 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
123 * A frequency variable is a signed 64-bit fixed-point number in ns/s
124 * and fraction. It represents the ns and fraction to be added to the
125 * kernel time variable at each second. The maximum frequency offset is
126 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
128 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
129 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
130 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
131 * |s s s s s s s s s s s s s| ns/s |
132 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
133 * | fraction |
134 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
137 * The following variables establish the state of the PLL/FLL and the
138 * residual time and frequency offset of the local clock.
140 #define SHIFT_PLL 4 /* PLL loop gain (shift) */
141 #define SHIFT_FLL 2 /* FLL loop gain (shift) */
143 static int time_state = TIME_OK; /* clock state */
144 static int time_status = STA_UNSYNC; /* clock status bits */
145 static long time_tai; /* TAI offset (s) */
146 static long time_monitor; /* last time offset scaled (ns) */
147 static long time_constant; /* poll interval (shift) (s) */
148 static long time_precision = 1; /* clock precision (ns) */
149 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
150 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
151 static long time_reftime; /* time at last adjustment (s) */
152 static long time_tick; /* nanoseconds per tick (ns) */
153 static l_fp time_offset; /* time offset (ns) */
154 static l_fp time_freq; /* frequency offset (ns/s) */
155 static l_fp time_adj; /* tick adjust (ns/s) */
157 #ifdef PPS_SYNC
159 * The following variables are used when a pulse-per-second (PPS) signal
160 * is available and connected via a modem control lead. They establish
161 * the engineering parameters of the clock discipline loop when
162 * controlled by the PPS signal.
164 #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
165 #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
166 #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
167 #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
168 #define PPS_VALID 120 /* PPS signal watchdog max (s) */
169 #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
170 #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
172 static struct timespec pps_tf[3]; /* phase median filter */
173 static l_fp pps_freq; /* scaled frequency offset (ns/s) */
174 static long pps_fcount; /* frequency accumulator */
175 static long pps_jitter; /* nominal jitter (ns) */
176 static long pps_stabil; /* nominal stability (scaled ns/s) */
177 static long pps_lastsec; /* time at last calibration (s) */
178 static int pps_valid; /* signal watchdog counter */
179 static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
180 static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
181 static int pps_intcnt; /* wander counter */
184 * PPS signal quality monitors
186 static long pps_calcnt; /* calibration intervals */
187 static long pps_jitcnt; /* jitter limit exceeded */
188 static long pps_stbcnt; /* stability limit exceeded */
189 static long pps_errcnt; /* calibration errors */
190 #endif /* PPS_SYNC */
192 * End of phase/frequency-lock loop (PLL/FLL) definitions
195 static void ntp_init(void);
196 static void hardupdate(long offset);
199 * ntp_gettime() - NTP user application interface
201 * See the timex.h header file for synopsis and API description. Note
202 * that the TAI offset is returned in the ntvtimeval.tai structure
203 * member.
205 static int
206 ntp_sysctl(SYSCTL_HANDLER_ARGS)
208 struct ntptimeval ntv; /* temporary structure */
209 struct timespec atv; /* nanosecond time */
211 nanotime(&atv);
212 ntv.time.tv_sec = atv.tv_sec;
213 ntv.time.tv_nsec = atv.tv_nsec;
214 ntv.maxerror = time_maxerror;
215 ntv.esterror = time_esterror;
216 ntv.tai = time_tai;
217 ntv.time_state = time_state;
220 * Status word error decode. If any of these conditions occur,
221 * an error is returned, instead of the status word. Most
222 * applications will care only about the fact the system clock
223 * may not be trusted, not about the details.
225 * Hardware or software error
227 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
230 * PPS signal lost when either time or frequency synchronization
231 * requested
233 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
234 !(time_status & STA_PPSSIGNAL)) ||
237 * PPS jitter exceeded when time synchronization requested
239 (time_status & STA_PPSTIME &&
240 time_status & STA_PPSJITTER) ||
243 * PPS wander exceeded or calibration error when frequency
244 * synchronization requested
246 (time_status & STA_PPSFREQ &&
247 time_status & (STA_PPSWANDER | STA_PPSERROR)))
248 ntv.time_state = TIME_ERROR;
249 return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
252 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
253 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
254 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
256 #ifdef PPS_SYNC
257 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
258 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
259 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
261 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
262 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
263 #endif
265 * ntp_adjtime() - NTP daemon application interface
267 * See the timex.h header file for synopsis and API description. Note
268 * that the timex.constant structure member has a dual purpose to set
269 * the time constant and to set the TAI offset.
271 * MPALMOSTSAFE
274 sys_ntp_adjtime(struct ntp_adjtime_args *uap)
276 struct thread *td = curthread;
277 struct timex ntv; /* temporary structure */
278 long freq; /* frequency ns/s) */
279 int modes; /* mode bits from structure */
280 int error;
282 error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
283 if (error)
284 return(error);
287 * Update selected clock variables - only the superuser can
288 * change anything. Note that there is no error checking here on
289 * the assumption the superuser should know what it is doing.
290 * Note that either the time constant or TAI offset are loaded
291 * from the ntv.constant member, depending on the mode bits. If
292 * the STA_PLL bit in the status word is cleared, the state and
293 * status words are reset to the initial values at boot.
295 modes = ntv.modes;
296 if (modes)
297 error = priv_check(td, PRIV_NTP_ADJTIME);
298 if (error)
299 return (error);
301 get_mplock();
302 crit_enter();
303 if (modes & MOD_MAXERROR)
304 time_maxerror = ntv.maxerror;
305 if (modes & MOD_ESTERROR)
306 time_esterror = ntv.esterror;
307 if (modes & MOD_STATUS) {
308 if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
309 time_state = TIME_OK;
310 time_status = STA_UNSYNC;
311 #ifdef PPS_SYNC
312 pps_shift = PPS_FAVG;
313 #endif /* PPS_SYNC */
315 time_status &= STA_RONLY;
316 time_status |= ntv.status & ~STA_RONLY;
318 if (modes & MOD_TIMECONST) {
319 if (ntv.constant < 0)
320 time_constant = 0;
321 else if (ntv.constant > MAXTC)
322 time_constant = MAXTC;
323 else
324 time_constant = ntv.constant;
326 if (modes & MOD_TAI) {
327 if (ntv.constant > 0) /* XXX zero & negative numbers ? */
328 time_tai = ntv.constant;
330 #ifdef PPS_SYNC
331 if (modes & MOD_PPSMAX) {
332 if (ntv.shift < PPS_FAVG)
333 pps_shiftmax = PPS_FAVG;
334 else if (ntv.shift > PPS_FAVGMAX)
335 pps_shiftmax = PPS_FAVGMAX;
336 else
337 pps_shiftmax = ntv.shift;
339 #endif /* PPS_SYNC */
340 if (modes & MOD_NANO)
341 time_status |= STA_NANO;
342 if (modes & MOD_MICRO)
343 time_status &= ~STA_NANO;
344 if (modes & MOD_CLKB)
345 time_status |= STA_CLK;
346 if (modes & MOD_CLKA)
347 time_status &= ~STA_CLK;
348 if (modes & MOD_OFFSET) {
349 if (time_status & STA_NANO)
350 hardupdate(ntv.offset);
351 else
352 hardupdate(ntv.offset * 1000);
355 * Note: the userland specified frequency is in seconds per second
356 * times 65536e+6. Multiply by a thousand and divide by 65336 to
357 * get nanoseconds.
359 if (modes & MOD_FREQUENCY) {
360 freq = (ntv.freq * 1000LL) >> 16;
361 if (freq > MAXFREQ)
362 L_LINT(time_freq, MAXFREQ);
363 else if (freq < -MAXFREQ)
364 L_LINT(time_freq, -MAXFREQ);
365 else
366 L_LINT(time_freq, freq);
367 #ifdef PPS_SYNC
368 pps_freq = time_freq;
369 #endif /* PPS_SYNC */
373 * Retrieve all clock variables. Note that the TAI offset is
374 * returned only by ntp_gettime();
376 if (time_status & STA_NANO)
377 ntv.offset = time_monitor;
378 else
379 ntv.offset = time_monitor / 1000; /* XXX rounding ? */
380 ntv.freq = L_GINT((time_freq / 1000LL) << 16);
381 ntv.maxerror = time_maxerror;
382 ntv.esterror = time_esterror;
383 ntv.status = time_status;
384 ntv.constant = time_constant;
385 if (time_status & STA_NANO)
386 ntv.precision = time_precision;
387 else
388 ntv.precision = time_precision / 1000;
389 ntv.tolerance = MAXFREQ * SCALE_PPM;
390 #ifdef PPS_SYNC
391 ntv.shift = pps_shift;
392 ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
393 if (time_status & STA_NANO)
394 ntv.jitter = pps_jitter;
395 else
396 ntv.jitter = pps_jitter / 1000;
397 ntv.stabil = pps_stabil;
398 ntv.calcnt = pps_calcnt;
399 ntv.errcnt = pps_errcnt;
400 ntv.jitcnt = pps_jitcnt;
401 ntv.stbcnt = pps_stbcnt;
402 #endif /* PPS_SYNC */
403 crit_exit();
404 rel_mplock();
406 error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
407 if (error)
408 return (error);
411 * Status word error decode. See comments in
412 * ntp_gettime() routine.
414 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
415 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
416 !(time_status & STA_PPSSIGNAL)) ||
417 (time_status & STA_PPSTIME &&
418 time_status & STA_PPSJITTER) ||
419 (time_status & STA_PPSFREQ &&
420 time_status & (STA_PPSWANDER | STA_PPSERROR))) {
421 uap->sysmsg_result = TIME_ERROR;
422 } else {
423 uap->sysmsg_result = time_state;
425 return (error);
429 * second_overflow() - called after ntp_tick_adjust()
431 * This routine is ordinarily called from hardclock() whenever the seconds
432 * hand rolls over. It returns leap seconds to add or drop, and sets nsec_adj
433 * to the total adjustment to make over the next second in (ns << 32).
435 * This routine is only called by cpu #0.
438 ntp_update_second(time_t newsec, int64_t *nsec_adj)
440 l_fp ftemp; /* 32/64-bit temporary */
441 int adjsec = 0;
444 * On rollover of the second both the nanosecond and microsecond
445 * clocks are updated and the state machine cranked as
446 * necessary. The phase adjustment to be used for the next
447 * second is calculated and the maximum error is increased by
448 * the tolerance.
450 time_maxerror += MAXFREQ / 1000;
453 * Leap second processing. If in leap-insert state at
454 * the end of the day, the system clock is set back one
455 * second; if in leap-delete state, the system clock is
456 * set ahead one second. The nano_time() routine or
457 * external clock driver will insure that reported time
458 * is always monotonic.
460 switch (time_state) {
463 * No warning.
465 case TIME_OK:
466 if (time_status & STA_INS)
467 time_state = TIME_INS;
468 else if (time_status & STA_DEL)
469 time_state = TIME_DEL;
470 break;
473 * Insert second 23:59:60 following second
474 * 23:59:59.
476 case TIME_INS:
477 if (!(time_status & STA_INS))
478 time_state = TIME_OK;
479 else if ((newsec) % 86400 == 0) {
480 --adjsec;
481 time_state = TIME_OOP;
483 break;
486 * Delete second 23:59:59.
488 case TIME_DEL:
489 if (!(time_status & STA_DEL))
490 time_state = TIME_OK;
491 else if (((newsec) + 1) % 86400 == 0) {
492 ++adjsec;
493 time_tai--;
494 time_state = TIME_WAIT;
496 break;
499 * Insert second in progress.
501 case TIME_OOP:
502 time_tai++;
503 time_state = TIME_WAIT;
504 break;
507 * Wait for status bits to clear.
509 case TIME_WAIT:
510 if (!(time_status & (STA_INS | STA_DEL)))
511 time_state = TIME_OK;
515 * time_offset represents the total time adjustment we wish to
516 * make (over no particular period of time). time_freq represents
517 * the frequency compensation we wish to apply.
519 * time_adj represents the total adjustment we wish to make over
520 * one full second. hardclock usually applies this adjustment in
521 * time_adj / hz jumps, hz times a second.
523 ftemp = time_offset;
524 #ifdef PPS_SYNC
525 /* XXX even if PPS signal dies we should finish adjustment ? */
526 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
527 L_RSHIFT(ftemp, pps_shift);
528 else
529 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
530 #else
531 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
532 #endif /* PPS_SYNC */
533 time_adj = ftemp; /* adjustment for part of the offset */
534 L_SUB(time_offset, ftemp);
535 L_ADD(time_adj, time_freq); /* add frequency correction */
536 *nsec_adj = time_adj;
537 #ifdef PPS_SYNC
538 if (pps_valid > 0)
539 pps_valid--;
540 else
541 time_status &= ~STA_PPSSIGNAL;
542 #endif /* PPS_SYNC */
543 return(adjsec);
547 * ntp_init() - initialize variables and structures
549 * This routine must be called after the kernel variables hz and tick
550 * are set or changed and before the next tick interrupt. In this
551 * particular implementation, these values are assumed set elsewhere in
552 * the kernel. The design allows the clock frequency and tick interval
553 * to be changed while the system is running. So, this routine should
554 * probably be integrated with the code that does that.
556 static void
557 ntp_init(void)
561 * The following variable must be initialized any time the
562 * kernel variable hz is changed.
564 time_tick = NANOSECOND / hz;
567 * The following variables are initialized only at startup. Only
568 * those structures not cleared by the compiler need to be
569 * initialized, and these only in the simulator. In the actual
570 * kernel, any nonzero values here will quickly evaporate.
572 L_CLR(time_offset);
573 L_CLR(time_freq);
574 #ifdef PPS_SYNC
575 pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
576 pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
577 pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
578 pps_fcount = 0;
579 L_CLR(pps_freq);
580 #endif /* PPS_SYNC */
583 SYSINIT(ntpclocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, ntp_init, NULL)
586 * hardupdate() - local clock update
588 * This routine is called by ntp_adjtime() to update the local clock
589 * phase and frequency. The implementation is of an adaptive-parameter,
590 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
591 * time and frequency offset estimates for each call. If the kernel PPS
592 * discipline code is configured (PPS_SYNC), the PPS signal itself
593 * determines the new time offset, instead of the calling argument.
594 * Presumably, calls to ntp_adjtime() occur only when the caller
595 * believes the local clock is valid within some bound (+-128 ms with
596 * NTP). If the caller's time is far different than the PPS time, an
597 * argument will ensue, and it's not clear who will lose.
599 * For uncompensated quartz crystal oscillators and nominal update
600 * intervals less than 256 s, operation should be in phase-lock mode,
601 * where the loop is disciplined to phase. For update intervals greater
602 * than 1024 s, operation should be in frequency-lock mode, where the
603 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
604 * is selected by the STA_MODE status bit.
606 static void
607 hardupdate(long offset)
609 long mtemp;
610 l_fp ftemp;
611 globaldata_t gd;
613 gd = mycpu;
616 * Select how the phase is to be controlled and from which
617 * source. If the PPS signal is present and enabled to
618 * discipline the time, the PPS offset is used; otherwise, the
619 * argument offset is used.
621 if (!(time_status & STA_PLL))
622 return;
623 if (!((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))) {
624 if (offset > MAXPHASE)
625 time_monitor = MAXPHASE;
626 else if (offset < -MAXPHASE)
627 time_monitor = -MAXPHASE;
628 else
629 time_monitor = offset;
630 L_LINT(time_offset, time_monitor);
634 * Select how the frequency is to be controlled and in which
635 * mode (PLL or FLL). If the PPS signal is present and enabled
636 * to discipline the frequency, the PPS frequency is used;
637 * otherwise, the argument offset is used to compute it.
639 * gd_time_seconds is basically an uncompensated uptime. We use
640 * this for consistency.
642 if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
643 time_reftime = time_second;
644 return;
646 if (time_status & STA_FREQHOLD || time_reftime == 0)
647 time_reftime = time_second;
648 mtemp = time_second - time_reftime;
649 L_LINT(ftemp, time_monitor);
650 L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
651 L_MPY(ftemp, mtemp);
652 L_ADD(time_freq, ftemp);
653 time_status &= ~STA_MODE;
654 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
655 L_LINT(ftemp, (time_monitor << 4) / mtemp);
656 L_RSHIFT(ftemp, SHIFT_FLL + 4);
657 L_ADD(time_freq, ftemp);
658 time_status |= STA_MODE;
660 time_reftime = time_second;
661 if (L_GINT(time_freq) > MAXFREQ)
662 L_LINT(time_freq, MAXFREQ);
663 else if (L_GINT(time_freq) < -MAXFREQ)
664 L_LINT(time_freq, -MAXFREQ);
667 #ifdef PPS_SYNC
669 * hardpps() - discipline CPU clock oscillator to external PPS signal
671 * This routine is called at each PPS interrupt in order to discipline
672 * the CPU clock oscillator to the PPS signal. There are two independent
673 * first-order feedback loops, one for the phase, the other for the
674 * frequency. The phase loop measures and grooms the PPS phase offset
675 * and leaves it in a handy spot for the seconds overflow routine. The
676 * frequency loop averages successive PPS phase differences and
677 * calculates the PPS frequency offset, which is also processed by the
678 * seconds overflow routine. The code requires the caller to capture the
679 * time and architecture-dependent hardware counter values in
680 * nanoseconds at the on-time PPS signal transition.
682 * Note that, on some Unix systems this routine runs at an interrupt
683 * priority level higher than the timer interrupt routine hardclock().
684 * Therefore, the variables used are distinct from the hardclock()
685 * variables, except for the actual time and frequency variables, which
686 * are determined by this routine and updated atomically.
688 void
689 hardpps(struct timespec *tsp, long nsec)
691 long u_sec, u_nsec, v_nsec; /* temps */
692 l_fp ftemp;
695 * The signal is first processed by a range gate and frequency
696 * discriminator. The range gate rejects noise spikes outside
697 * the range +-500 us. The frequency discriminator rejects input
698 * signals with apparent frequency outside the range 1 +-500
699 * PPM. If two hits occur in the same second, we ignore the
700 * later hit; if not and a hit occurs outside the range gate,
701 * keep the later hit for later comparison, but do not process
702 * it.
704 time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
705 time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
706 pps_valid = PPS_VALID;
707 u_sec = tsp->tv_sec;
708 u_nsec = tsp->tv_nsec;
709 if (u_nsec >= (NANOSECOND >> 1)) {
710 u_nsec -= NANOSECOND;
711 u_sec++;
713 v_nsec = u_nsec - pps_tf[0].tv_nsec;
714 if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
715 MAXFREQ)
716 return;
717 pps_tf[2] = pps_tf[1];
718 pps_tf[1] = pps_tf[0];
719 pps_tf[0].tv_sec = u_sec;
720 pps_tf[0].tv_nsec = u_nsec;
723 * Compute the difference between the current and previous
724 * counter values. If the difference exceeds 0.5 s, assume it
725 * has wrapped around, so correct 1.0 s. If the result exceeds
726 * the tick interval, the sample point has crossed a tick
727 * boundary during the last second, so correct the tick. Very
728 * intricate.
730 u_nsec = nsec;
731 if (u_nsec > (NANOSECOND >> 1))
732 u_nsec -= NANOSECOND;
733 else if (u_nsec < -(NANOSECOND >> 1))
734 u_nsec += NANOSECOND;
735 pps_fcount += u_nsec;
736 if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
737 return;
738 time_status &= ~STA_PPSJITTER;
741 * A three-stage median filter is used to help denoise the PPS
742 * time. The median sample becomes the time offset estimate; the
743 * difference between the other two samples becomes the time
744 * dispersion (jitter) estimate.
746 if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
747 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
748 v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
749 u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
750 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
751 v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
752 u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
753 } else {
754 v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
755 u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
757 } else {
758 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
759 v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
760 u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
761 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
762 v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
763 u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
764 } else {
765 v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
766 u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
771 * Nominal jitter is due to PPS signal noise and interrupt
772 * latency. If it exceeds the popcorn threshold, the sample is
773 * discarded. otherwise, if so enabled, the time offset is
774 * updated. We can tolerate a modest loss of data here without
775 * much degrading time accuracy.
777 if (u_nsec > (pps_jitter << PPS_POPCORN)) {
778 time_status |= STA_PPSJITTER;
779 pps_jitcnt++;
780 } else if (time_status & STA_PPSTIME) {
781 time_monitor = -v_nsec;
782 L_LINT(time_offset, time_monitor);
784 pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
785 u_sec = pps_tf[0].tv_sec - pps_lastsec;
786 if (u_sec < (1 << pps_shift))
787 return;
790 * At the end of the calibration interval the difference between
791 * the first and last counter values becomes the scaled
792 * frequency. It will later be divided by the length of the
793 * interval to determine the frequency update. If the frequency
794 * exceeds a sanity threshold, or if the actual calibration
795 * interval is not equal to the expected length, the data are
796 * discarded. We can tolerate a modest loss of data here without
797 * much degrading frequency accuracy.
799 pps_calcnt++;
800 v_nsec = -pps_fcount;
801 pps_lastsec = pps_tf[0].tv_sec;
802 pps_fcount = 0;
803 u_nsec = MAXFREQ << pps_shift;
804 if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
805 pps_shift)) {
806 time_status |= STA_PPSERROR;
807 pps_errcnt++;
808 return;
812 * Here the raw frequency offset and wander (stability) is
813 * calculated. If the wander is less than the wander threshold
814 * for four consecutive averaging intervals, the interval is
815 * doubled; if it is greater than the threshold for four
816 * consecutive intervals, the interval is halved. The scaled
817 * frequency offset is converted to frequency offset. The
818 * stability metric is calculated as the average of recent
819 * frequency changes, but is used only for performance
820 * monitoring.
822 L_LINT(ftemp, v_nsec);
823 L_RSHIFT(ftemp, pps_shift);
824 L_SUB(ftemp, pps_freq);
825 u_nsec = L_GINT(ftemp);
826 if (u_nsec > PPS_MAXWANDER) {
827 L_LINT(ftemp, PPS_MAXWANDER);
828 pps_intcnt--;
829 time_status |= STA_PPSWANDER;
830 pps_stbcnt++;
831 } else if (u_nsec < -PPS_MAXWANDER) {
832 L_LINT(ftemp, -PPS_MAXWANDER);
833 pps_intcnt--;
834 time_status |= STA_PPSWANDER;
835 pps_stbcnt++;
836 } else {
837 pps_intcnt++;
839 if (pps_intcnt >= 4) {
840 pps_intcnt = 4;
841 if (pps_shift < pps_shiftmax) {
842 pps_shift++;
843 pps_intcnt = 0;
845 } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
846 pps_intcnt = -4;
847 if (pps_shift > PPS_FAVG) {
848 pps_shift--;
849 pps_intcnt = 0;
852 if (u_nsec < 0)
853 u_nsec = -u_nsec;
854 pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
857 * The PPS frequency is recalculated and clamped to the maximum
858 * MAXFREQ. If enabled, the system clock frequency is updated as
859 * well.
861 L_ADD(pps_freq, ftemp);
862 u_nsec = L_GINT(pps_freq);
863 if (u_nsec > MAXFREQ)
864 L_LINT(pps_freq, MAXFREQ);
865 else if (u_nsec < -MAXFREQ)
866 L_LINT(pps_freq, -MAXFREQ);
867 if (time_status & STA_PPSFREQ)
868 time_freq = pps_freq;
870 #endif /* PPS_SYNC */