route: Routes should only be accessed from the first netisr_ncpus netisrs.
[dragonfly.git] / sys / netinet / ip_input.c
blob1da4b3a290f2fc705ac9dc64b5476ee077b479a2
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1993
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
62 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
63 * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
66 #define _IP_VHL
68 #include "opt_bootp.h"
69 #include "opt_ipdn.h"
70 #include "opt_ipdivert.h"
71 #include "opt_ipstealth.h"
72 #include "opt_ipsec.h"
73 #include "opt_rss.h"
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/mpipe.h>
80 #include <sys/domain.h>
81 #include <sys/protosw.h>
82 #include <sys/socket.h>
83 #include <sys/time.h>
84 #include <sys/globaldata.h>
85 #include <sys/thread.h>
86 #include <sys/kernel.h>
87 #include <sys/syslog.h>
88 #include <sys/sysctl.h>
89 #include <sys/in_cksum.h>
90 #include <sys/lock.h>
92 #include <sys/mplock2.h>
94 #include <machine/stdarg.h>
96 #include <net/if.h>
97 #include <net/if_types.h>
98 #include <net/if_var.h>
99 #include <net/if_dl.h>
100 #include <net/pfil.h>
101 #include <net/route.h>
102 #include <net/netisr2.h>
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip_icmp.h>
111 #include <netinet/ip_divert.h>
112 #include <netinet/ip_flow.h>
114 #include <sys/thread2.h>
115 #include <sys/msgport2.h>
116 #include <net/netmsg2.h>
118 #include <sys/socketvar.h>
120 #include <net/ipfw/ip_fw.h>
121 #include <net/dummynet/ip_dummynet.h>
123 #ifdef IPSEC
124 #include <netinet6/ipsec.h>
125 #include <netproto/key/key.h>
126 #endif
128 #ifdef FAST_IPSEC
129 #include <netproto/ipsec/ipsec.h>
130 #include <netproto/ipsec/key.h>
131 #endif
133 int rsvp_on = 0;
134 static int ip_rsvp_on;
135 struct socket *ip_rsvpd;
137 int ipforwarding = 0;
138 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
139 &ipforwarding, 0, "Enable IP forwarding between interfaces");
141 static int ipsendredirects = 1; /* XXX */
142 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
143 &ipsendredirects, 0, "Enable sending IP redirects");
145 int ip_defttl = IPDEFTTL;
146 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
147 &ip_defttl, 0, "Maximum TTL on IP packets");
149 static int ip_dosourceroute = 0;
150 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
151 &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
153 static int ip_acceptsourceroute = 0;
154 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
155 CTLFLAG_RW, &ip_acceptsourceroute, 0,
156 "Enable accepting source routed IP packets");
158 static int ip_keepfaith = 0;
159 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
160 &ip_keepfaith, 0,
161 "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
163 static int maxnipq;
164 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
165 &maxnipq, 0,
166 "Maximum number of IPv4 fragment reassembly queue entries");
168 static int maxfragsperpacket;
169 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
170 &maxfragsperpacket, 0,
171 "Maximum number of IPv4 fragments allowed per packet");
173 static int ip_sendsourcequench = 0;
174 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
175 &ip_sendsourcequench, 0,
176 "Enable the transmission of source quench packets");
178 int ip_do_randomid = 1;
179 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
180 &ip_do_randomid, 0,
181 "Assign random ip_id values");
183 * XXX - Setting ip_checkinterface mostly implements the receive side of
184 * the Strong ES model described in RFC 1122, but since the routing table
185 * and transmit implementation do not implement the Strong ES model,
186 * setting this to 1 results in an odd hybrid.
188 * XXX - ip_checkinterface currently must be disabled if you use ipnat
189 * to translate the destination address to another local interface.
191 * XXX - ip_checkinterface must be disabled if you add IP aliases
192 * to the loopback interface instead of the interface where the
193 * packets for those addresses are received.
195 static int ip_checkinterface = 0;
196 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
197 &ip_checkinterface, 0, "Verify packet arrives on correct interface");
199 static u_long ip_hash_count = 0;
200 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, hash_count, CTLFLAG_RD,
201 &ip_hash_count, 0, "Number of packets hashed by IP");
203 #ifdef RSS_DEBUG
204 static u_long ip_rehash_count = 0;
205 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, rehash_count, CTLFLAG_RD,
206 &ip_rehash_count, 0, "Number of packets rehashed by IP");
208 static u_long ip_dispatch_fast = 0;
209 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_fast_count, CTLFLAG_RD,
210 &ip_dispatch_fast, 0, "Number of packets handled on current CPU");
212 static u_long ip_dispatch_slow = 0;
213 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_slow_count, CTLFLAG_RD,
214 &ip_dispatch_slow, 0, "Number of packets messaged to another CPU");
215 #endif
217 #ifdef DIAGNOSTIC
218 static int ipprintfs = 0;
219 #endif
221 extern struct domain inetdomain;
222 extern struct protosw inetsw[];
223 u_char ip_protox[IPPROTO_MAX];
224 struct in_ifaddrhead in_ifaddrheads[MAXCPU]; /* first inet address */
225 struct in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
226 /* inet addr hash table */
227 u_long in_ifaddrhmask; /* mask for hash table */
229 static struct mbuf *ipforward_mtemp[MAXCPU];
231 struct ip_stats ipstats_percpu[MAXCPU] __cachealign;
233 static int
234 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
236 int cpu, error = 0;
238 for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
239 if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
240 sizeof(struct ip_stats))))
241 break;
242 if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
243 sizeof(struct ip_stats))))
244 break;
247 return (error);
249 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
250 0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
252 /* Packet reassembly stuff */
253 #define IPREASS_NHASH_LOG2 6
254 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
255 #define IPREASS_HMASK (IPREASS_NHASH - 1)
256 #define IPREASS_HASH(x,y) \
257 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
259 TAILQ_HEAD(ipqhead, ipq);
260 struct ipfrag_queue {
261 int nipq;
262 volatile int draining;
263 struct netmsg_base timeo_netmsg;
264 struct callout timeo_ch;
265 struct netmsg_base drain_netmsg;
266 struct ipqhead ipq[IPREASS_NHASH];
267 } __cachealign;
269 static struct ipfrag_queue ipfrag_queue_pcpu[MAXCPU];
271 #ifdef IPCTL_DEFMTU
272 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
273 &ip_mtu, 0, "Default MTU");
274 #endif
276 #ifdef IPSTEALTH
277 static int ipstealth = 0;
278 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
279 #else
280 static const int ipstealth = 0;
281 #endif
283 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
285 struct pfil_head inet_pfil_hook;
288 * struct ip_srcrt_opt is used to store packet state while it travels
289 * through the stack.
291 * XXX Note that the code even makes assumptions on the size and
292 * alignment of fields inside struct ip_srcrt so e.g. adding some
293 * fields will break the code. This needs to be fixed.
295 * We need to save the IP options in case a protocol wants to respond
296 * to an incoming packet over the same route if the packet got here
297 * using IP source routing. This allows connection establishment and
298 * maintenance when the remote end is on a network that is not known
299 * to us.
301 struct ip_srcrt {
302 struct in_addr dst; /* final destination */
303 char nop; /* one NOP to align */
304 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
305 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
308 struct ip_srcrt_opt {
309 int ip_nhops;
310 struct ip_srcrt ip_srcrt;
313 #define IPFRAG_MPIPE_MAX 4096
314 #define MAXIPFRAG_MIN ((IPFRAG_MPIPE_MAX * 2) / 256)
316 #define IPFRAG_TIMEO (hz / PR_SLOWHZ)
318 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
319 static struct malloc_pipe ipq_mpipe;
321 static void save_rte(struct mbuf *, u_char *, struct in_addr);
322 static int ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
323 static void ip_freef(struct ipfrag_queue *, struct ipqhead *,
324 struct ipq *);
325 static void ip_input_handler(netmsg_t);
327 static void ipfrag_timeo_dispatch(netmsg_t);
328 static void ipfrag_timeo(void *);
329 static void ipfrag_drain_dispatch(netmsg_t);
332 * IP initialization: fill in IP protocol switch table.
333 * All protocols not implemented in kernel go to raw IP protocol handler.
335 void
336 ip_init(void)
338 struct ipfrag_queue *fragq;
339 struct protosw *pr;
340 int cpu, i;
343 * Make sure we can handle a reasonable number of fragments but
344 * cap it at IPFRAG_MPIPE_MAX.
346 mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
347 IFQ_MAXLEN, IPFRAG_MPIPE_MAX, 0, NULL, NULL, NULL);
350 * Make in_ifaddrhead and in_ifaddrhashtbl available on all CPUs,
351 * since they could be accessed by any threads.
353 for (cpu = 0; cpu < ncpus; ++cpu) {
354 TAILQ_INIT(&in_ifaddrheads[cpu]);
355 in_ifaddrhashtbls[cpu] =
356 hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
359 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
360 if (pr == NULL)
361 panic("ip_init");
362 for (i = 0; i < IPPROTO_MAX; i++)
363 ip_protox[i] = pr - inetsw;
364 for (pr = inetdomain.dom_protosw;
365 pr < inetdomain.dom_protoswNPROTOSW; pr++) {
366 if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
367 if (pr->pr_protocol != IPPROTO_RAW)
368 ip_protox[pr->pr_protocol] = pr - inetsw;
372 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
373 inet_pfil_hook.ph_af = AF_INET;
374 if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
375 kprintf("%s: WARNING: unable to register pfil hook, "
376 "error %d\n", __func__, i);
379 maxnipq = (nmbclusters / 32) / netisr_ncpus;
380 if (maxnipq < MAXIPFRAG_MIN)
381 maxnipq = MAXIPFRAG_MIN;
382 maxfragsperpacket = 16;
384 ip_id = time_second & 0xffff; /* time_second survives reboots */
386 for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
388 * Initialize IP statistics counters for each CPU.
390 bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
393 * Preallocate mbuf template for forwarding
395 MGETHDR(ipforward_mtemp[cpu], M_WAITOK, MT_DATA);
398 * Initialize per-cpu ip fragments queues
400 fragq = &ipfrag_queue_pcpu[cpu];
401 for (i = 0; i < IPREASS_NHASH; i++)
402 TAILQ_INIT(&fragq->ipq[i]);
404 callout_init_mp(&fragq->timeo_ch);
405 netmsg_init(&fragq->timeo_netmsg, NULL, &netisr_adone_rport,
406 MSGF_PRIORITY, ipfrag_timeo_dispatch);
407 netmsg_init(&fragq->drain_netmsg, NULL, &netisr_adone_rport,
408 MSGF_PRIORITY, ipfrag_drain_dispatch);
411 netisr_register(NETISR_IP, ip_input_handler, ip_hashfn);
412 netisr_register_hashcheck(NETISR_IP, ip_hashcheck);
414 for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
415 fragq = &ipfrag_queue_pcpu[cpu];
416 callout_reset_bycpu(&fragq->timeo_ch, IPFRAG_TIMEO,
417 ipfrag_timeo, NULL, cpu);
421 /* Do transport protocol processing. */
422 static void
423 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
425 const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
428 * Switch out to protocol's input routine.
430 PR_GET_MPLOCK(pr);
431 pr->pr_input(&m, &hlen, ip->ip_p);
432 PR_REL_MPLOCK(pr);
435 static void
436 transport_processing_handler(netmsg_t msg)
438 struct netmsg_packet *pmsg = &msg->packet;
439 struct ip *ip;
440 int hlen;
442 ip = mtod(pmsg->nm_packet, struct ip *);
443 hlen = pmsg->base.lmsg.u.ms_result;
445 transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
446 /* msg was embedded in the mbuf, do not reply! */
449 static void
450 ip_input_handler(netmsg_t msg)
452 ip_input(msg->packet.nm_packet);
453 /* msg was embedded in the mbuf, do not reply! */
457 * IP input routine. Checksum and byte swap header. If fragmented
458 * try to reassemble. Process options. Pass to next level.
460 void
461 ip_input(struct mbuf *m)
463 struct ip *ip;
464 struct in_ifaddr *ia = NULL;
465 struct in_ifaddr_container *iac;
466 int hlen, checkif;
467 u_short sum;
468 struct in_addr pkt_dst;
469 boolean_t using_srcrt = FALSE; /* forward (by PFIL_HOOKS) */
470 struct in_addr odst; /* original dst address(NAT) */
471 struct m_tag *mtag;
472 struct sockaddr_in *next_hop = NULL;
473 lwkt_port_t port;
474 #ifdef FAST_IPSEC
475 struct tdb_ident *tdbi;
476 struct secpolicy *sp;
477 int error;
478 #endif
480 ASSERT_NETISR_NCPUS(mycpuid);
481 M_ASSERTPKTHDR(m);
484 * This routine is called from numerous places which may not have
485 * characterized the packet.
487 ip = mtod(m, struct ip *);
488 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
489 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK))) {
491 * Force hash recalculation for fragments and multicast
492 * packets; hardware may not do it correctly.
493 * XXX add flag to indicate the hash is from hardware
495 m->m_flags &= ~M_HASH;
497 if ((m->m_flags & M_HASH) == 0) {
498 ip_hashfn(&m, 0);
499 if (m == NULL)
500 return;
501 KKASSERT(m->m_flags & M_HASH);
503 if (&curthread->td_msgport !=
504 netisr_hashport(m->m_pkthdr.hash)) {
505 netisr_queue(NETISR_IP, m);
506 /* Requeued to other netisr msgport; done */
507 return;
510 /* mbuf could have been changed */
511 ip = mtod(m, struct ip *);
515 * Pull out certain tags
517 if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
518 /* Next hop */
519 mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
520 KKASSERT(mtag != NULL);
521 next_hop = m_tag_data(mtag);
524 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
525 /* dummynet already filtered us */
526 ip = mtod(m, struct ip *);
527 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
528 goto iphack;
531 ipstat.ips_total++;
533 /* length checks already done in ip_hashfn() */
534 KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
536 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
537 ipstat.ips_badvers++;
538 goto bad;
541 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
542 /* length checks already done in ip_hashfn() */
543 KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
544 KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
546 /* 127/8 must not appear on wire - RFC1122 */
547 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
548 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
549 if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
550 ipstat.ips_badaddr++;
551 goto bad;
555 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
556 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
557 } else {
558 if (hlen == sizeof(struct ip))
559 sum = in_cksum_hdr(ip);
560 else
561 sum = in_cksum(m, hlen);
563 if (sum != 0) {
564 ipstat.ips_badsum++;
565 goto bad;
568 #ifdef ALTQ
569 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
570 /* packet is dropped by traffic conditioner */
571 return;
573 #endif
575 * Convert fields to host representation.
577 ip->ip_len = ntohs(ip->ip_len);
578 ip->ip_off = ntohs(ip->ip_off);
580 /* length checks already done in ip_hashfn() */
581 KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
582 KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
585 * Trim mbufs if longer than the IP header would have us expect.
587 if (m->m_pkthdr.len > ip->ip_len) {
588 if (m->m_len == m->m_pkthdr.len) {
589 m->m_len = ip->ip_len;
590 m->m_pkthdr.len = ip->ip_len;
591 } else {
592 m_adj(m, ip->ip_len - m->m_pkthdr.len);
595 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
597 * Bypass packet filtering for packets from a tunnel (gif).
599 if (ipsec_gethist(m, NULL))
600 goto pass;
601 #endif
604 * IpHack's section.
605 * Right now when no processing on packet has done
606 * and it is still fresh out of network we do our black
607 * deals with it.
608 * - Firewall: deny/allow/divert
609 * - Xlate: translate packet's addr/port (NAT).
610 * - Pipe: pass pkt through dummynet.
611 * - Wrap: fake packet's addr/port <unimpl.>
612 * - Encapsulate: put it in another IP and send out. <unimp.>
615 iphack:
617 * If we've been forwarded from the output side, then
618 * skip the firewall a second time
620 if (next_hop != NULL)
621 goto ours;
623 /* No pfil hooks */
624 if (!pfil_has_hooks(&inet_pfil_hook)) {
625 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
627 * Strip dummynet tags from stranded packets
629 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
630 KKASSERT(mtag != NULL);
631 m_tag_delete(m, mtag);
632 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
634 goto pass;
638 * Run through list of hooks for input packets.
640 * NOTE! If the packet is rewritten pf/ipfw/whoever must
641 * clear M_HASH.
643 odst = ip->ip_dst;
644 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
645 return;
646 if (m == NULL) /* consumed by filter */
647 return;
648 ip = mtod(m, struct ip *);
649 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
650 using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
652 if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
653 mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
654 KKASSERT(mtag != NULL);
655 next_hop = m_tag_data(mtag);
657 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
658 ip_dn_queue(m);
659 return;
661 if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH) {
662 m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
664 pass:
666 * Process options and, if not destined for us,
667 * ship it on. ip_dooptions returns 1 when an
668 * error was detected (causing an icmp message
669 * to be sent and the original packet to be freed).
671 if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
672 return;
674 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
675 * matter if it is destined to another node, or whether it is
676 * a multicast one, RSVP wants it! and prevents it from being forwarded
677 * anywhere else. Also checks if the rsvp daemon is running before
678 * grabbing the packet.
680 if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
681 goto ours;
684 * Check our list of addresses, to see if the packet is for us.
685 * If we don't have any addresses, assume any unicast packet
686 * we receive might be for us (and let the upper layers deal
687 * with it).
689 if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
690 !(m->m_flags & (M_MCAST | M_BCAST)))
691 goto ours;
694 * Cache the destination address of the packet; this may be
695 * changed by use of 'ipfw fwd'.
697 pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
700 * Enable a consistency check between the destination address
701 * and the arrival interface for a unicast packet (the RFC 1122
702 * strong ES model) if IP forwarding is disabled and the packet
703 * is not locally generated and the packet is not subject to
704 * 'ipfw fwd'.
706 * XXX - Checking also should be disabled if the destination
707 * address is ipnat'ed to a different interface.
709 * XXX - Checking is incompatible with IP aliases added
710 * to the loopback interface instead of the interface where
711 * the packets are received.
713 checkif = ip_checkinterface &&
714 !ipforwarding &&
715 m->m_pkthdr.rcvif != NULL &&
716 !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
717 next_hop == NULL;
720 * Check for exact addresses in the hash bucket.
722 LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
723 ia = iac->ia;
726 * If the address matches, verify that the packet
727 * arrived via the correct interface if checking is
728 * enabled.
730 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
731 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
732 goto ours;
734 ia = NULL;
737 * Check for broadcast addresses.
739 * Only accept broadcast packets that arrive via the matching
740 * interface. Reception of forwarded directed broadcasts would
741 * be handled via ip_forward() and ether_output() with the loopback
742 * into the stack for SIMPLEX interfaces handled by ether_output().
744 if (m->m_pkthdr.rcvif != NULL &&
745 m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
746 struct ifaddr_container *ifac;
748 TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
749 ifa_link) {
750 struct ifaddr *ifa = ifac->ifa;
752 if (ifa->ifa_addr == NULL) /* shutdown/startup race */
753 continue;
754 if (ifa->ifa_addr->sa_family != AF_INET)
755 continue;
756 ia = ifatoia(ifa);
757 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
758 pkt_dst.s_addr)
759 goto ours;
760 if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
761 goto ours;
762 #ifdef BOOTP_COMPAT
763 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
764 goto ours;
765 #endif
768 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
769 struct in_multi *inm;
771 if (ip_mrouter != NULL) {
772 /* XXX Multicast routing is not MPSAFE yet */
773 get_mplock();
776 * If we are acting as a multicast router, all
777 * incoming multicast packets are passed to the
778 * kernel-level multicast forwarding function.
779 * The packet is returned (relatively) intact; if
780 * ip_mforward() returns a non-zero value, the packet
781 * must be discarded, else it may be accepted below.
783 if (ip_mforward != NULL &&
784 ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
785 rel_mplock();
786 ipstat.ips_cantforward++;
787 m_freem(m);
788 return;
791 rel_mplock();
794 * The process-level routing daemon needs to receive
795 * all multicast IGMP packets, whether or not this
796 * host belongs to their destination groups.
798 if (ip->ip_p == IPPROTO_IGMP)
799 goto ours;
800 ipstat.ips_forward++;
803 * See if we belong to the destination multicast group on the
804 * arrival interface.
806 inm = IN_LOOKUP_MULTI(&ip->ip_dst, m->m_pkthdr.rcvif);
807 if (inm == NULL) {
808 ipstat.ips_notmember++;
809 m_freem(m);
810 return;
812 goto ours;
814 if (ip->ip_dst.s_addr == INADDR_BROADCAST)
815 goto ours;
816 if (ip->ip_dst.s_addr == INADDR_ANY)
817 goto ours;
820 * FAITH(Firewall Aided Internet Translator)
822 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
823 if (ip_keepfaith) {
824 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
825 goto ours;
827 m_freem(m);
828 return;
832 * Not for us; forward if possible and desirable.
834 if (!ipforwarding) {
835 ipstat.ips_cantforward++;
836 m_freem(m);
837 } else {
838 #ifdef IPSEC
840 * Enforce inbound IPsec SPD.
842 if (ipsec4_in_reject(m, NULL)) {
843 ipsecstat.in_polvio++;
844 goto bad;
846 #endif
847 #ifdef FAST_IPSEC
848 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
849 crit_enter();
850 if (mtag != NULL) {
851 tdbi = (struct tdb_ident *)m_tag_data(mtag);
852 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
853 } else {
854 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
855 IP_FORWARDING, &error);
857 if (sp == NULL) { /* NB: can happen if error */
858 crit_exit();
859 /*XXX error stat???*/
860 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
861 goto bad;
865 * Check security policy against packet attributes.
867 error = ipsec_in_reject(sp, m);
868 KEY_FREESP(&sp);
869 crit_exit();
870 if (error) {
871 ipstat.ips_cantforward++;
872 goto bad;
874 #endif
875 ip_forward(m, using_srcrt, next_hop);
877 return;
879 ours:
882 * IPSTEALTH: Process non-routing options only
883 * if the packet is destined for us.
885 if (ipstealth &&
886 hlen > sizeof(struct ip) &&
887 ip_dooptions(m, 1, next_hop))
888 return;
890 /* Count the packet in the ip address stats */
891 if (ia != NULL) {
892 IFA_STAT_INC(&ia->ia_ifa, ipackets, 1);
893 IFA_STAT_INC(&ia->ia_ifa, ibytes, m->m_pkthdr.len);
897 * If offset or IP_MF are set, must reassemble.
898 * Otherwise, nothing need be done.
899 * (We could look in the reassembly queue to see
900 * if the packet was previously fragmented,
901 * but it's not worth the time; just let them time out.)
903 if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
905 * Attempt reassembly; if it succeeds, proceed. ip_reass()
906 * will return a different mbuf.
908 * NOTE: ip_reass() returns m with M_HASH cleared to force
909 * us to recharacterize the packet.
911 m = ip_reass(m);
912 if (m == NULL)
913 return;
914 ip = mtod(m, struct ip *);
916 /* Get the header length of the reassembled packet */
917 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
918 } else {
919 ip->ip_len -= hlen;
922 #ifdef IPSEC
924 * enforce IPsec policy checking if we are seeing last header.
925 * note that we do not visit this with protocols with pcb layer
926 * code - like udp/tcp/raw ip.
928 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
929 ipsec4_in_reject(m, NULL)) {
930 ipsecstat.in_polvio++;
931 goto bad;
933 #endif
934 #ifdef FAST_IPSEC
936 * enforce IPsec policy checking if we are seeing last header.
937 * note that we do not visit this with protocols with pcb layer
938 * code - like udp/tcp/raw ip.
940 if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
942 * Check if the packet has already had IPsec processing
943 * done. If so, then just pass it along. This tag gets
944 * set during AH, ESP, etc. input handling, before the
945 * packet is returned to the ip input queue for delivery.
947 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
948 crit_enter();
949 if (mtag != NULL) {
950 tdbi = (struct tdb_ident *)m_tag_data(mtag);
951 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
952 } else {
953 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
954 IP_FORWARDING, &error);
956 if (sp != NULL) {
958 * Check security policy against packet attributes.
960 error = ipsec_in_reject(sp, m);
961 KEY_FREESP(&sp);
962 } else {
963 /* XXX error stat??? */
964 error = EINVAL;
965 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
966 crit_exit();
967 goto bad;
969 crit_exit();
970 if (error)
971 goto bad;
973 #endif /* FAST_IPSEC */
976 * We must forward the packet to the correct protocol thread if
977 * we are not already in it.
979 * NOTE: ip_len is now in host form. ip_len is not adjusted
980 * further for protocol processing, instead we pass hlen
981 * to the protosw and let it deal with it.
983 ipstat.ips_delivered++;
985 if ((m->m_flags & M_HASH) == 0) {
986 #ifdef RSS_DEBUG
987 atomic_add_long(&ip_rehash_count, 1);
988 #endif
989 ip->ip_len = htons(ip->ip_len + hlen);
990 ip->ip_off = htons(ip->ip_off);
992 ip_hashfn(&m, 0);
993 if (m == NULL)
994 return;
996 ip = mtod(m, struct ip *);
997 ip->ip_len = ntohs(ip->ip_len) - hlen;
998 ip->ip_off = ntohs(ip->ip_off);
999 KKASSERT(m->m_flags & M_HASH);
1001 port = netisr_hashport(m->m_pkthdr.hash);
1003 if (port != &curthread->td_msgport) {
1004 struct netmsg_packet *pmsg;
1006 #ifdef RSS_DEBUG
1007 atomic_add_long(&ip_dispatch_slow, 1);
1008 #endif
1010 pmsg = &m->m_hdr.mh_netmsg;
1011 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1012 0, transport_processing_handler);
1013 pmsg->nm_packet = m;
1014 pmsg->base.lmsg.u.ms_result = hlen;
1015 lwkt_sendmsg(port, &pmsg->base.lmsg);
1016 } else {
1017 #ifdef RSS_DEBUG
1018 atomic_add_long(&ip_dispatch_fast, 1);
1019 #endif
1020 transport_processing_oncpu(m, hlen, ip);
1022 return;
1024 bad:
1025 m_freem(m);
1029 * Take incoming datagram fragment and try to reassemble it into
1030 * whole datagram. If a chain for reassembly of this datagram already
1031 * exists, then it is given as fp; otherwise have to make a chain.
1033 struct mbuf *
1034 ip_reass(struct mbuf *m)
1036 struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1037 struct ip *ip = mtod(m, struct ip *);
1038 struct mbuf *p = NULL, *q, *nq;
1039 struct mbuf *n;
1040 struct ipq *fp = NULL;
1041 struct ipqhead *head;
1042 int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1043 int i, next;
1044 u_short sum;
1046 /* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
1047 if (maxnipq == 0 || maxfragsperpacket == 0) {
1048 ipstat.ips_fragments++;
1049 ipstat.ips_fragdropped++;
1050 m_freem(m);
1051 return NULL;
1054 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
1056 * Look for queue of fragments of this datagram.
1058 head = &fragq->ipq[sum];
1059 TAILQ_FOREACH(fp, head, ipq_list) {
1060 if (ip->ip_id == fp->ipq_id &&
1061 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1062 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1063 ip->ip_p == fp->ipq_p)
1064 goto found;
1067 fp = NULL;
1070 * Enforce upper bound on number of fragmented packets
1071 * for which we attempt reassembly;
1072 * If maxnipq is -1, accept all fragments without limitation.
1074 if (fragq->nipq > maxnipq && maxnipq > 0) {
1076 * drop something from the tail of the current queue
1077 * before proceeding further
1079 struct ipq *q = TAILQ_LAST(head, ipqhead);
1080 if (q == NULL) {
1082 * The current queue is empty,
1083 * so drop from one of the others.
1085 for (i = 0; i < IPREASS_NHASH; i++) {
1086 struct ipq *r = TAILQ_LAST(&fragq->ipq[i],
1087 ipqhead);
1088 if (r) {
1089 ipstat.ips_fragtimeout += r->ipq_nfrags;
1090 ip_freef(fragq, &fragq->ipq[i], r);
1091 break;
1094 } else {
1095 ipstat.ips_fragtimeout += q->ipq_nfrags;
1096 ip_freef(fragq, head, q);
1099 found:
1101 * Adjust ip_len to not reflect header,
1102 * convert offset of this to bytes.
1104 ip->ip_len -= hlen;
1105 if (ip->ip_off & IP_MF) {
1107 * Make sure that fragments have a data length
1108 * that's a non-zero multiple of 8 bytes.
1110 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1111 ipstat.ips_toosmall++; /* XXX */
1112 m_freem(m);
1113 goto done;
1115 m->m_flags |= M_FRAG;
1116 } else {
1117 m->m_flags &= ~M_FRAG;
1119 ip->ip_off <<= 3;
1121 ipstat.ips_fragments++;
1122 m->m_pkthdr.header = ip;
1125 * If the hardware has not done csum over this fragment
1126 * then csum_data is not valid at all.
1128 if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1129 == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1130 m->m_pkthdr.csum_data = 0;
1131 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1135 * Presence of header sizes in mbufs
1136 * would confuse code below.
1138 m->m_data += hlen;
1139 m->m_len -= hlen;
1142 * If first fragment to arrive, create a reassembly queue.
1144 if (fp == NULL) {
1145 if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1146 goto dropfrag;
1147 TAILQ_INSERT_HEAD(head, fp, ipq_list);
1148 fragq->nipq++;
1149 fp->ipq_nfrags = 1;
1150 fp->ipq_ttl = IPFRAGTTL;
1151 fp->ipq_p = ip->ip_p;
1152 fp->ipq_id = ip->ip_id;
1153 fp->ipq_src = ip->ip_src;
1154 fp->ipq_dst = ip->ip_dst;
1155 fp->ipq_frags = m;
1156 m->m_nextpkt = NULL;
1157 goto inserted;
1159 fp->ipq_nfrags++;
1161 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
1164 * Find a segment which begins after this one does.
1166 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1167 if (GETIP(q)->ip_off > ip->ip_off)
1168 break;
1172 * If there is a preceding segment, it may provide some of
1173 * our data already. If so, drop the data from the incoming
1174 * segment. If it provides all of our data, drop us, otherwise
1175 * stick new segment in the proper place.
1177 * If some of the data is dropped from the the preceding
1178 * segment, then it's checksum is invalidated.
1180 if (p) {
1181 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1182 if (i > 0) {
1183 if (i >= ip->ip_len)
1184 goto dropfrag;
1185 m_adj(m, i);
1186 m->m_pkthdr.csum_flags = 0;
1187 ip->ip_off += i;
1188 ip->ip_len -= i;
1190 m->m_nextpkt = p->m_nextpkt;
1191 p->m_nextpkt = m;
1192 } else {
1193 m->m_nextpkt = fp->ipq_frags;
1194 fp->ipq_frags = m;
1198 * While we overlap succeeding segments trim them or,
1199 * if they are completely covered, dequeue them.
1201 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1202 q = nq) {
1203 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1204 if (i < GETIP(q)->ip_len) {
1205 GETIP(q)->ip_len -= i;
1206 GETIP(q)->ip_off += i;
1207 m_adj(q, i);
1208 q->m_pkthdr.csum_flags = 0;
1209 break;
1211 nq = q->m_nextpkt;
1212 m->m_nextpkt = nq;
1213 ipstat.ips_fragdropped++;
1214 fp->ipq_nfrags--;
1215 q->m_nextpkt = NULL;
1216 m_freem(q);
1219 inserted:
1221 * Check for complete reassembly and perform frag per packet
1222 * limiting.
1224 * Frag limiting is performed here so that the nth frag has
1225 * a chance to complete the packet before we drop the packet.
1226 * As a result, n+1 frags are actually allowed per packet, but
1227 * only n will ever be stored. (n = maxfragsperpacket.)
1230 next = 0;
1231 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1232 if (GETIP(q)->ip_off != next) {
1233 if (fp->ipq_nfrags > maxfragsperpacket) {
1234 ipstat.ips_fragdropped += fp->ipq_nfrags;
1235 ip_freef(fragq, head, fp);
1237 goto done;
1239 next += GETIP(q)->ip_len;
1241 /* Make sure the last packet didn't have the IP_MF flag */
1242 if (p->m_flags & M_FRAG) {
1243 if (fp->ipq_nfrags > maxfragsperpacket) {
1244 ipstat.ips_fragdropped += fp->ipq_nfrags;
1245 ip_freef(fragq, head, fp);
1247 goto done;
1251 * Reassembly is complete. Make sure the packet is a sane size.
1253 q = fp->ipq_frags;
1254 ip = GETIP(q);
1255 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1256 ipstat.ips_toolong++;
1257 ipstat.ips_fragdropped += fp->ipq_nfrags;
1258 ip_freef(fragq, head, fp);
1259 goto done;
1263 * Concatenate fragments.
1265 m = q;
1266 n = m->m_next;
1267 m->m_next = NULL;
1268 m_cat(m, n);
1269 nq = q->m_nextpkt;
1270 q->m_nextpkt = NULL;
1271 for (q = nq; q != NULL; q = nq) {
1272 nq = q->m_nextpkt;
1273 q->m_nextpkt = NULL;
1274 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1275 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1276 m_cat(m, q);
1280 * Clean up the 1's complement checksum. Carry over 16 bits must
1281 * be added back. This assumes no more then 65535 packet fragments
1282 * were reassembled. A second carry can also occur (but not a third).
1284 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1285 (m->m_pkthdr.csum_data >> 16);
1286 if (m->m_pkthdr.csum_data > 0xFFFF)
1287 m->m_pkthdr.csum_data -= 0xFFFF;
1290 * Create header for new ip packet by
1291 * modifying header of first packet;
1292 * dequeue and discard fragment reassembly header.
1293 * Make header visible.
1295 ip->ip_len = next;
1296 ip->ip_src = fp->ipq_src;
1297 ip->ip_dst = fp->ipq_dst;
1298 TAILQ_REMOVE(head, fp, ipq_list);
1299 fragq->nipq--;
1300 mpipe_free(&ipq_mpipe, fp);
1301 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1302 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1303 /* some debugging cruft by sklower, below, will go away soon */
1304 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1305 int plen = 0;
1307 for (n = m; n; n = n->m_next)
1308 plen += n->m_len;
1309 m->m_pkthdr.len = plen;
1313 * Reassembly complete, return the next protocol.
1315 * Be sure to clear M_HASH to force the packet
1316 * to be re-characterized.
1318 * Clear M_FRAG, we are no longer a fragment.
1320 m->m_flags &= ~(M_HASH | M_FRAG);
1322 ipstat.ips_reassembled++;
1323 return (m);
1325 dropfrag:
1326 ipstat.ips_fragdropped++;
1327 if (fp != NULL)
1328 fp->ipq_nfrags--;
1329 m_freem(m);
1330 done:
1331 return (NULL);
1333 #undef GETIP
1337 * Free a fragment reassembly header and all
1338 * associated datagrams.
1340 static void
1341 ip_freef(struct ipfrag_queue *fragq, struct ipqhead *fhp, struct ipq *fp)
1343 struct mbuf *q;
1346 * Remove first to protect against blocking
1348 TAILQ_REMOVE(fhp, fp, ipq_list);
1351 * Clean out at our leisure
1353 while (fp->ipq_frags) {
1354 q = fp->ipq_frags;
1355 fp->ipq_frags = q->m_nextpkt;
1356 q->m_nextpkt = NULL;
1357 m_freem(q);
1359 mpipe_free(&ipq_mpipe, fp);
1360 fragq->nipq--;
1364 * If a timer expires on a reassembly queue, discard it.
1366 static void
1367 ipfrag_timeo_dispatch(netmsg_t nmsg)
1369 struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1370 struct ipq *fp, *fp_temp;
1371 struct ipqhead *head;
1372 int i;
1374 crit_enter();
1375 netisr_replymsg(&nmsg->base, 0); /* reply ASAP */
1376 crit_exit();
1378 if (fragq->nipq == 0)
1379 goto done;
1381 for (i = 0; i < IPREASS_NHASH; i++) {
1382 head = &fragq->ipq[i];
1383 TAILQ_FOREACH_MUTABLE(fp, head, ipq_list, fp_temp) {
1384 if (--fp->ipq_ttl == 0) {
1385 ipstat.ips_fragtimeout += fp->ipq_nfrags;
1386 ip_freef(fragq, head, fp);
1391 * If we are over the maximum number of fragments
1392 * (due to the limit being lowered), drain off
1393 * enough to get down to the new limit.
1395 if (maxnipq >= 0 && fragq->nipq > maxnipq) {
1396 for (i = 0; i < IPREASS_NHASH; i++) {
1397 head = &fragq->ipq[i];
1398 while (fragq->nipq > maxnipq && !TAILQ_EMPTY(head)) {
1399 ipstat.ips_fragdropped +=
1400 TAILQ_FIRST(head)->ipq_nfrags;
1401 ip_freef(fragq, head, TAILQ_FIRST(head));
1405 done:
1406 callout_reset(&fragq->timeo_ch, IPFRAG_TIMEO, ipfrag_timeo, NULL);
1409 static void
1410 ipfrag_timeo(void *dummy __unused)
1412 struct netmsg_base *msg = &ipfrag_queue_pcpu[mycpuid].timeo_netmsg;
1414 crit_enter();
1415 if (msg->lmsg.ms_flags & MSGF_DONE)
1416 netisr_sendmsg_oncpu(msg);
1417 crit_exit();
1421 * Drain off all datagram fragments.
1423 static void
1424 ipfrag_drain_oncpu(struct ipfrag_queue *fragq)
1426 struct ipqhead *head;
1427 int i;
1429 for (i = 0; i < IPREASS_NHASH; i++) {
1430 head = &fragq->ipq[i];
1431 while (!TAILQ_EMPTY(head)) {
1432 ipstat.ips_fragdropped += TAILQ_FIRST(head)->ipq_nfrags;
1433 ip_freef(fragq, head, TAILQ_FIRST(head));
1438 static void
1439 ipfrag_drain_dispatch(netmsg_t nmsg)
1441 struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1443 crit_enter();
1444 lwkt_replymsg(&nmsg->lmsg, 0); /* reply ASAP */
1445 crit_exit();
1447 ipfrag_drain_oncpu(fragq);
1448 fragq->draining = 0;
1451 static void
1452 ipfrag_drain_ipi(void *arg __unused)
1454 int cpu = mycpuid;
1455 struct lwkt_msg *msg = &ipfrag_queue_pcpu[cpu].drain_netmsg.lmsg;
1457 crit_enter();
1458 if (msg->ms_flags & MSGF_DONE)
1459 lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1460 crit_exit();
1463 static void
1464 ipfrag_drain(void)
1466 cpumask_t mask;
1467 int cpu;
1469 CPUMASK_ASSBMASK(mask, netisr_ncpus);
1470 CPUMASK_ANDMASK(mask, smp_active_mask);
1472 if (IN_NETISR_NCPUS(mycpuid)) {
1473 ipfrag_drain_oncpu(&ipfrag_queue_pcpu[mycpuid]);
1474 CPUMASK_NANDBIT(mask, mycpuid);
1477 for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
1478 struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[cpu];
1480 if (!CPUMASK_TESTBIT(mask, cpu))
1481 continue;
1483 if (fragq->nipq == 0 || fragq->draining) {
1484 /* No fragments or is draining; skip this cpu. */
1485 CPUMASK_NANDBIT(mask, cpu);
1486 continue;
1488 fragq->draining = 1;
1491 if (CPUMASK_TESTNZERO(mask))
1492 lwkt_send_ipiq_mask(mask, ipfrag_drain_ipi, NULL);
1495 void
1496 ip_drain(void)
1498 ipfrag_drain();
1499 in_rtqdrain();
1503 * Do option processing on a datagram,
1504 * possibly discarding it if bad options are encountered,
1505 * or forwarding it if source-routed.
1506 * The pass argument is used when operating in the IPSTEALTH
1507 * mode to tell what options to process:
1508 * [LS]SRR (pass 0) or the others (pass 1).
1509 * The reason for as many as two passes is that when doing IPSTEALTH,
1510 * non-routing options should be processed only if the packet is for us.
1511 * Returns 1 if packet has been forwarded/freed,
1512 * 0 if the packet should be processed further.
1514 static int
1515 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1517 struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1518 struct ip *ip = mtod(m, struct ip *);
1519 u_char *cp;
1520 struct in_ifaddr *ia;
1521 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1522 boolean_t forward = FALSE;
1523 struct in_addr *sin, dst;
1524 n_time ntime;
1526 dst = ip->ip_dst;
1527 cp = (u_char *)(ip + 1);
1528 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1529 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1530 opt = cp[IPOPT_OPTVAL];
1531 if (opt == IPOPT_EOL)
1532 break;
1533 if (opt == IPOPT_NOP)
1534 optlen = 1;
1535 else {
1536 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1537 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1538 goto bad;
1540 optlen = cp[IPOPT_OLEN];
1541 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1542 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1543 goto bad;
1546 switch (opt) {
1548 default:
1549 break;
1552 * Source routing with record.
1553 * Find interface with current destination address.
1554 * If none on this machine then drop if strictly routed,
1555 * or do nothing if loosely routed.
1556 * Record interface address and bring up next address
1557 * component. If strictly routed make sure next
1558 * address is on directly accessible net.
1560 case IPOPT_LSRR:
1561 case IPOPT_SSRR:
1562 if (ipstealth && pass > 0)
1563 break;
1564 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1565 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1566 goto bad;
1568 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1569 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1570 goto bad;
1572 ipaddr.sin_addr = ip->ip_dst;
1573 ia = (struct in_ifaddr *)
1574 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1575 if (ia == NULL) {
1576 if (opt == IPOPT_SSRR) {
1577 type = ICMP_UNREACH;
1578 code = ICMP_UNREACH_SRCFAIL;
1579 goto bad;
1581 if (!ip_dosourceroute)
1582 goto nosourcerouting;
1584 * Loose routing, and not at next destination
1585 * yet; nothing to do except forward.
1587 break;
1589 off--; /* 0 origin */
1590 if (off > optlen - (int)sizeof(struct in_addr)) {
1592 * End of source route. Should be for us.
1594 if (!ip_acceptsourceroute)
1595 goto nosourcerouting;
1596 save_rte(m, cp, ip->ip_src);
1597 break;
1599 if (ipstealth)
1600 goto dropit;
1601 if (!ip_dosourceroute) {
1602 if (ipforwarding) {
1603 char sbuf[INET_ADDRSTRLEN];
1604 char dbuf[INET_ADDRSTRLEN];
1607 * Acting as a router, so generate ICMP
1609 nosourcerouting:
1610 log(LOG_WARNING,
1611 "attempted source route from %s to %s\n",
1612 kinet_ntoa(ip->ip_src, sbuf),
1613 kinet_ntoa(ip->ip_dst, dbuf));
1614 type = ICMP_UNREACH;
1615 code = ICMP_UNREACH_SRCFAIL;
1616 goto bad;
1617 } else {
1619 * Not acting as a router,
1620 * so silently drop.
1622 dropit:
1623 ipstat.ips_cantforward++;
1624 m_freem(m);
1625 return (1);
1630 * locate outgoing interface
1632 memcpy(&ipaddr.sin_addr, cp + off,
1633 sizeof ipaddr.sin_addr);
1635 if (opt == IPOPT_SSRR) {
1636 #define INA struct in_ifaddr *
1637 #define SA struct sockaddr *
1638 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1639 == NULL)
1640 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1641 } else {
1642 ia = ip_rtaddr(ipaddr.sin_addr, NULL);
1644 if (ia == NULL) {
1645 type = ICMP_UNREACH;
1646 code = ICMP_UNREACH_SRCFAIL;
1647 goto bad;
1649 ip->ip_dst = ipaddr.sin_addr;
1650 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1651 sizeof(struct in_addr));
1652 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1654 * Let ip_intr's mcast routing check handle mcast pkts
1656 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1657 break;
1659 case IPOPT_RR:
1660 if (ipstealth && pass == 0)
1661 break;
1662 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1663 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1664 goto bad;
1666 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1667 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1668 goto bad;
1671 * If no space remains, ignore.
1673 off--; /* 0 origin */
1674 if (off > optlen - (int)sizeof(struct in_addr))
1675 break;
1676 memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1677 sizeof ipaddr.sin_addr);
1679 * locate outgoing interface; if we're the destination,
1680 * use the incoming interface (should be same).
1682 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1683 (ia = ip_rtaddr(ipaddr.sin_addr, NULL)) == NULL) {
1684 type = ICMP_UNREACH;
1685 code = ICMP_UNREACH_HOST;
1686 goto bad;
1688 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1689 sizeof(struct in_addr));
1690 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1691 break;
1693 case IPOPT_TS:
1694 if (ipstealth && pass == 0)
1695 break;
1696 code = cp - (u_char *)ip;
1697 if (optlen < 4 || optlen > 40) {
1698 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1699 goto bad;
1701 if ((off = cp[IPOPT_OFFSET]) < 5) {
1702 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1703 goto bad;
1705 if (off > optlen - (int)sizeof(int32_t)) {
1706 cp[IPOPT_OFFSET + 1] += (1 << 4);
1707 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1708 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1709 goto bad;
1711 break;
1713 off--; /* 0 origin */
1714 sin = (struct in_addr *)(cp + off);
1715 switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1717 case IPOPT_TS_TSONLY:
1718 break;
1720 case IPOPT_TS_TSANDADDR:
1721 if (off + sizeof(n_time) +
1722 sizeof(struct in_addr) > optlen) {
1723 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1724 goto bad;
1726 ipaddr.sin_addr = dst;
1727 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1728 m->m_pkthdr.rcvif);
1729 if (ia == NULL)
1730 continue;
1731 memcpy(sin, &IA_SIN(ia)->sin_addr,
1732 sizeof(struct in_addr));
1733 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1734 off += sizeof(struct in_addr);
1735 break;
1737 case IPOPT_TS_PRESPEC:
1738 if (off + sizeof(n_time) +
1739 sizeof(struct in_addr) > optlen) {
1740 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1741 goto bad;
1743 memcpy(&ipaddr.sin_addr, sin,
1744 sizeof(struct in_addr));
1745 if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1746 continue;
1747 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1748 off += sizeof(struct in_addr);
1749 break;
1751 default:
1752 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1753 goto bad;
1755 ntime = iptime();
1756 memcpy(cp + off, &ntime, sizeof(n_time));
1757 cp[IPOPT_OFFSET] += sizeof(n_time);
1760 if (forward && ipforwarding) {
1761 ip_forward(m, TRUE, next_hop);
1762 return (1);
1764 return (0);
1765 bad:
1766 icmp_error(m, type, code, 0, 0);
1767 ipstat.ips_badoptions++;
1768 return (1);
1772 * Given address of next destination (final or next hop),
1773 * return internet address info of interface to be used to get there.
1775 struct in_ifaddr *
1776 ip_rtaddr(struct in_addr dst, struct route *ro0)
1778 struct route sro, *ro;
1779 struct sockaddr_in *sin;
1780 struct in_ifaddr *ia;
1782 if (ro0 != NULL) {
1783 ro = ro0;
1784 } else {
1785 bzero(&sro, sizeof(sro));
1786 ro = &sro;
1789 sin = (struct sockaddr_in *)&ro->ro_dst;
1791 if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1792 if (ro->ro_rt != NULL) {
1793 RTFREE(ro->ro_rt);
1794 ro->ro_rt = NULL;
1796 sin->sin_family = AF_INET;
1797 sin->sin_len = sizeof *sin;
1798 sin->sin_addr = dst;
1799 rtalloc_ign(ro, RTF_PRCLONING);
1802 if (ro->ro_rt == NULL)
1803 return (NULL);
1805 ia = ifatoia(ro->ro_rt->rt_ifa);
1807 if (ro == &sro)
1808 RTFREE(ro->ro_rt);
1809 return ia;
1813 * Save incoming source route for use in replies,
1814 * to be picked up later by ip_srcroute if the receiver is interested.
1816 static void
1817 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1819 struct m_tag *mtag;
1820 struct ip_srcrt_opt *opt;
1821 unsigned olen;
1823 mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), M_NOWAIT);
1824 if (mtag == NULL)
1825 return;
1826 opt = m_tag_data(mtag);
1828 olen = option[IPOPT_OLEN];
1829 #ifdef DIAGNOSTIC
1830 if (ipprintfs)
1831 kprintf("save_rte: olen %d\n", olen);
1832 #endif
1833 if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1834 m_tag_free(mtag);
1835 return;
1837 bcopy(option, opt->ip_srcrt.srcopt, olen);
1838 opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1839 opt->ip_srcrt.dst = dst;
1840 m_tag_prepend(m, mtag);
1844 * Retrieve incoming source route for use in replies,
1845 * in the same form used by setsockopt.
1846 * The first hop is placed before the options, will be removed later.
1848 struct mbuf *
1849 ip_srcroute(struct mbuf *m0)
1851 struct in_addr *p, *q;
1852 struct mbuf *m;
1853 struct m_tag *mtag;
1854 struct ip_srcrt_opt *opt;
1856 if (m0 == NULL)
1857 return NULL;
1859 mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1860 if (mtag == NULL)
1861 return NULL;
1862 opt = m_tag_data(mtag);
1864 if (opt->ip_nhops == 0)
1865 return (NULL);
1866 m = m_get(M_NOWAIT, MT_HEADER);
1867 if (m == NULL)
1868 return (NULL);
1870 #define OPTSIZ (sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1872 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1873 m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1874 sizeof(struct in_addr) + OPTSIZ;
1875 #ifdef DIAGNOSTIC
1876 if (ipprintfs) {
1877 kprintf("ip_srcroute: nhops %d mlen %d",
1878 opt->ip_nhops, m->m_len);
1880 #endif
1883 * First save first hop for return route
1885 p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1886 *(mtod(m, struct in_addr *)) = *p--;
1887 #ifdef DIAGNOSTIC
1888 if (ipprintfs)
1889 kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1890 #endif
1893 * Copy option fields and padding (nop) to mbuf.
1895 opt->ip_srcrt.nop = IPOPT_NOP;
1896 opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1897 memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1898 OPTSIZ);
1899 q = (struct in_addr *)(mtod(m, caddr_t) +
1900 sizeof(struct in_addr) + OPTSIZ);
1901 #undef OPTSIZ
1903 * Record return path as an IP source route,
1904 * reversing the path (pointers are now aligned).
1906 while (p >= opt->ip_srcrt.route) {
1907 #ifdef DIAGNOSTIC
1908 if (ipprintfs)
1909 kprintf(" %x", ntohl(q->s_addr));
1910 #endif
1911 *q++ = *p--;
1914 * Last hop goes to final destination.
1916 *q = opt->ip_srcrt.dst;
1917 m_tag_delete(m0, mtag);
1918 #ifdef DIAGNOSTIC
1919 if (ipprintfs)
1920 kprintf(" %x\n", ntohl(q->s_addr));
1921 #endif
1922 return (m);
1926 * Strip out IP options.
1928 void
1929 ip_stripoptions(struct mbuf *m)
1931 int datalen;
1932 struct ip *ip = mtod(m, struct ip *);
1933 caddr_t opts;
1934 int optlen;
1936 optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1937 opts = (caddr_t)(ip + 1);
1938 datalen = m->m_len - (sizeof(struct ip) + optlen);
1939 bcopy(opts + optlen, opts, datalen);
1940 m->m_len -= optlen;
1941 if (m->m_flags & M_PKTHDR)
1942 m->m_pkthdr.len -= optlen;
1943 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1946 u_char inetctlerrmap[PRC_NCMDS] = {
1947 0, 0, 0, 0,
1948 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1949 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1950 EMSGSIZE, EHOSTUNREACH, 0, 0,
1951 0, 0, 0, 0,
1952 ENOPROTOOPT, ECONNREFUSED
1956 * Forward a packet. If some error occurs return the sender
1957 * an icmp packet. Note we can't always generate a meaningful
1958 * icmp message because icmp doesn't have a large enough repertoire
1959 * of codes and types.
1961 * If not forwarding, just drop the packet. This could be confusing
1962 * if ipforwarding was zero but some routing protocol was advancing
1963 * us as a gateway to somewhere. However, we must let the routing
1964 * protocol deal with that.
1966 * The using_srcrt parameter indicates whether the packet is being forwarded
1967 * via a source route.
1969 void
1970 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1972 struct ip *ip = mtod(m, struct ip *);
1973 struct rtentry *rt;
1974 struct route fwd_ro;
1975 int error, type = 0, code = 0, destmtu = 0;
1976 struct mbuf *mcopy, *mtemp = NULL;
1977 n_long dest;
1978 struct in_addr pkt_dst;
1980 dest = INADDR_ANY;
1982 * Cache the destination address of the packet; this may be
1983 * changed by use of 'ipfw fwd'.
1985 pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1987 #ifdef DIAGNOSTIC
1988 if (ipprintfs)
1989 kprintf("forward: src %x dst %x ttl %x\n",
1990 ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1991 #endif
1993 if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1994 ipstat.ips_cantforward++;
1995 m_freem(m);
1996 return;
1998 if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1999 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
2000 return;
2003 bzero(&fwd_ro, sizeof(fwd_ro));
2004 ip_rtaddr(pkt_dst, &fwd_ro);
2005 if (fwd_ro.ro_rt == NULL) {
2006 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
2007 return;
2009 rt = fwd_ro.ro_rt;
2011 if (curthread->td_type == TD_TYPE_NETISR) {
2013 * Save the IP header and at most 8 bytes of the payload,
2014 * in case we need to generate an ICMP message to the src.
2016 mtemp = ipforward_mtemp[mycpuid];
2017 KASSERT((mtemp->m_flags & M_EXT) == 0 &&
2018 mtemp->m_data == mtemp->m_pktdat &&
2019 m_tag_first(mtemp) == NULL,
2020 ("ip_forward invalid mtemp1"));
2022 if (!m_dup_pkthdr(mtemp, m, M_NOWAIT)) {
2024 * It's probably ok if the pkthdr dup fails (because
2025 * the deep copy of the tag chain failed), but for now
2026 * be conservative and just discard the copy since
2027 * code below may some day want the tags.
2029 mtemp = NULL;
2030 } else {
2031 mtemp->m_type = m->m_type;
2032 mtemp->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
2033 (int)ip->ip_len);
2034 mtemp->m_pkthdr.len = mtemp->m_len;
2035 m_copydata(m, 0, mtemp->m_len, mtod(mtemp, caddr_t));
2039 if (!ipstealth)
2040 ip->ip_ttl -= IPTTLDEC;
2043 * If forwarding packet using same interface that it came in on,
2044 * perhaps should send a redirect to sender to shortcut a hop.
2045 * Only send redirect if source is sending directly to us,
2046 * and if packet was not source routed (or has any options).
2047 * Also, don't send redirect if forwarding using a default route
2048 * or a route modified by a redirect.
2050 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
2051 !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
2052 satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
2053 ipsendredirects && !using_srcrt && next_hop == NULL) {
2054 u_long src = ntohl(ip->ip_src.s_addr);
2055 struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
2057 if (rt_ifa != NULL &&
2058 (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
2059 if (rt->rt_flags & RTF_GATEWAY)
2060 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
2061 else
2062 dest = pkt_dst.s_addr;
2064 * Router requirements says to only send
2065 * host redirects.
2067 type = ICMP_REDIRECT;
2068 code = ICMP_REDIRECT_HOST;
2069 #ifdef DIAGNOSTIC
2070 if (ipprintfs)
2071 kprintf("redirect (%d) to %x\n", code, dest);
2072 #endif
2076 error = ip_output(m, NULL, &fwd_ro, IP_FORWARDING, NULL, NULL);
2077 if (error == 0) {
2078 ipstat.ips_forward++;
2079 if (type == 0) {
2080 if (mtemp)
2081 ipflow_create(&fwd_ro, mtemp);
2082 goto done;
2084 ipstat.ips_redirectsent++;
2085 } else {
2086 ipstat.ips_cantforward++;
2089 if (mtemp == NULL)
2090 goto done;
2093 * Errors that do not require generating ICMP message
2095 switch (error) {
2096 case ENOBUFS:
2098 * A router should not generate ICMP_SOURCEQUENCH as
2099 * required in RFC1812 Requirements for IP Version 4 Routers.
2100 * Source quench could be a big problem under DoS attacks,
2101 * or if the underlying interface is rate-limited.
2102 * Those who need source quench packets may re-enable them
2103 * via the net.inet.ip.sendsourcequench sysctl.
2105 if (!ip_sendsourcequench)
2106 goto done;
2107 break;
2109 case EACCES: /* ipfw denied packet */
2110 goto done;
2113 KASSERT((mtemp->m_flags & M_EXT) == 0 &&
2114 mtemp->m_data == mtemp->m_pktdat,
2115 ("ip_forward invalid mtemp2"));
2116 mcopy = m_copym(mtemp, 0, mtemp->m_len, M_NOWAIT);
2117 if (mcopy == NULL)
2118 goto done;
2121 * Send ICMP message.
2123 switch (error) {
2124 case 0: /* forwarded, but need redirect */
2125 /* type, code set above */
2126 break;
2128 case ENETUNREACH: /* shouldn't happen, checked above */
2129 case EHOSTUNREACH:
2130 case ENETDOWN:
2131 case EHOSTDOWN:
2132 default:
2133 type = ICMP_UNREACH;
2134 code = ICMP_UNREACH_HOST;
2135 break;
2137 case EMSGSIZE:
2138 type = ICMP_UNREACH;
2139 code = ICMP_UNREACH_NEEDFRAG;
2140 #ifdef IPSEC
2142 * If the packet is routed over IPsec tunnel, tell the
2143 * originator the tunnel MTU.
2144 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2145 * XXX quickhack!!!
2147 if (fwd_ro.ro_rt != NULL) {
2148 struct secpolicy *sp = NULL;
2149 int ipsecerror;
2150 int ipsechdr;
2151 struct route *ro;
2153 sp = ipsec4_getpolicybyaddr(mcopy,
2154 IPSEC_DIR_OUTBOUND,
2155 IP_FORWARDING,
2156 &ipsecerror);
2158 if (sp == NULL)
2159 destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2160 else {
2161 /* count IPsec header size */
2162 ipsechdr = ipsec4_hdrsiz(mcopy,
2163 IPSEC_DIR_OUTBOUND,
2164 NULL);
2167 * find the correct route for outer IPv4
2168 * header, compute tunnel MTU.
2171 if (sp->req != NULL && sp->req->sav != NULL &&
2172 sp->req->sav->sah != NULL) {
2173 ro = &sp->req->sav->sah->sa_route;
2174 if (ro->ro_rt != NULL &&
2175 ro->ro_rt->rt_ifp != NULL) {
2176 destmtu =
2177 ro->ro_rt->rt_ifp->if_mtu;
2178 destmtu -= ipsechdr;
2182 key_freesp(sp);
2185 #elif defined(FAST_IPSEC)
2187 * If the packet is routed over IPsec tunnel, tell the
2188 * originator the tunnel MTU.
2189 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2190 * XXX quickhack!!!
2192 if (fwd_ro.ro_rt != NULL) {
2193 struct secpolicy *sp = NULL;
2194 int ipsecerror;
2195 int ipsechdr;
2196 struct route *ro;
2198 sp = ipsec_getpolicybyaddr(mcopy,
2199 IPSEC_DIR_OUTBOUND,
2200 IP_FORWARDING,
2201 &ipsecerror);
2203 if (sp == NULL)
2204 destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2205 else {
2206 /* count IPsec header size */
2207 ipsechdr = ipsec4_hdrsiz(mcopy,
2208 IPSEC_DIR_OUTBOUND,
2209 NULL);
2212 * find the correct route for outer IPv4
2213 * header, compute tunnel MTU.
2216 if (sp->req != NULL &&
2217 sp->req->sav != NULL &&
2218 sp->req->sav->sah != NULL) {
2219 ro = &sp->req->sav->sah->sa_route;
2220 if (ro->ro_rt != NULL &&
2221 ro->ro_rt->rt_ifp != NULL) {
2222 destmtu =
2223 ro->ro_rt->rt_ifp->if_mtu;
2224 destmtu -= ipsechdr;
2228 KEY_FREESP(&sp);
2231 #else /* !IPSEC && !FAST_IPSEC */
2232 if (fwd_ro.ro_rt != NULL)
2233 destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2234 #endif /*IPSEC*/
2235 ipstat.ips_cantfrag++;
2236 break;
2238 case ENOBUFS:
2239 type = ICMP_SOURCEQUENCH;
2240 code = 0;
2241 break;
2243 case EACCES: /* ipfw denied packet */
2244 panic("ip_forward EACCES should not reach");
2246 icmp_error(mcopy, type, code, dest, destmtu);
2247 done:
2248 if (mtemp != NULL)
2249 m_tag_delete_chain(mtemp);
2250 if (fwd_ro.ro_rt != NULL)
2251 RTFREE(fwd_ro.ro_rt);
2254 void
2255 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2256 struct mbuf *m)
2258 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2259 struct timeval tv;
2261 microtime(&tv);
2262 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2263 SCM_TIMESTAMP, SOL_SOCKET);
2264 if (*mp)
2265 mp = &(*mp)->m_next;
2267 if (inp->inp_flags & INP_RECVDSTADDR) {
2268 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2269 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2270 if (*mp)
2271 mp = &(*mp)->m_next;
2273 if (inp->inp_flags & INP_RECVTTL) {
2274 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2275 sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2276 if (*mp)
2277 mp = &(*mp)->m_next;
2279 #ifdef notyet
2280 /* XXX
2281 * Moving these out of udp_input() made them even more broken
2282 * than they already were.
2284 /* options were tossed already */
2285 if (inp->inp_flags & INP_RECVOPTS) {
2286 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2287 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2288 if (*mp)
2289 mp = &(*mp)->m_next;
2291 /* ip_srcroute doesn't do what we want here, need to fix */
2292 if (inp->inp_flags & INP_RECVRETOPTS) {
2293 *mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2294 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2295 if (*mp)
2296 mp = &(*mp)->m_next;
2298 #endif
2299 if (inp->inp_flags & INP_RECVIF) {
2300 struct ifnet *ifp;
2301 struct sdlbuf {
2302 struct sockaddr_dl sdl;
2303 u_char pad[32];
2304 } sdlbuf;
2305 struct sockaddr_dl *sdp;
2306 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2308 if (((ifp = m->m_pkthdr.rcvif)) &&
2309 ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2310 sdp = IF_LLSOCKADDR(ifp);
2312 * Change our mind and don't try copy.
2314 if ((sdp->sdl_family != AF_LINK) ||
2315 (sdp->sdl_len > sizeof(sdlbuf))) {
2316 goto makedummy;
2318 bcopy(sdp, sdl2, sdp->sdl_len);
2319 } else {
2320 makedummy:
2321 sdl2->sdl_len =
2322 offsetof(struct sockaddr_dl, sdl_data[0]);
2323 sdl2->sdl_family = AF_LINK;
2324 sdl2->sdl_index = 0;
2325 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2327 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2328 IP_RECVIF, IPPROTO_IP);
2329 if (*mp)
2330 mp = &(*mp)->m_next;
2335 * XXX these routines are called from the upper part of the kernel.
2337 * They could also be moved to ip_mroute.c, since all the RSVP
2338 * handling is done there already.
2341 ip_rsvp_init(struct socket *so)
2343 if (so->so_type != SOCK_RAW ||
2344 so->so_proto->pr_protocol != IPPROTO_RSVP)
2345 return EOPNOTSUPP;
2347 if (ip_rsvpd != NULL)
2348 return EADDRINUSE;
2350 ip_rsvpd = so;
2352 * This may seem silly, but we need to be sure we don't over-increment
2353 * the RSVP counter, in case something slips up.
2355 if (!ip_rsvp_on) {
2356 ip_rsvp_on = 1;
2357 rsvp_on++;
2360 return 0;
2364 ip_rsvp_done(void)
2366 ip_rsvpd = NULL;
2368 * This may seem silly, but we need to be sure we don't over-decrement
2369 * the RSVP counter, in case something slips up.
2371 if (ip_rsvp_on) {
2372 ip_rsvp_on = 0;
2373 rsvp_on--;
2375 return 0;
2379 rsvp_input(struct mbuf **mp, int *offp, int proto)
2381 struct mbuf *m = *mp;
2383 *mp = NULL;
2385 if (rsvp_input_p) { /* call the real one if loaded */
2386 *mp = m;
2387 rsvp_input_p(mp, offp, proto);
2388 return(IPPROTO_DONE);
2391 /* Can still get packets with rsvp_on = 0 if there is a local member
2392 * of the group to which the RSVP packet is addressed. But in this
2393 * case we want to throw the packet away.
2396 if (!rsvp_on) {
2397 m_freem(m);
2398 return(IPPROTO_DONE);
2401 if (ip_rsvpd != NULL) {
2402 *mp = m;
2403 rip_input(mp, offp, proto);
2404 return(IPPROTO_DONE);
2406 /* Drop the packet */
2407 m_freem(m);
2408 return(IPPROTO_DONE);