systimer/cputimer: Add {systimer,cputimer}_intr_enable()
[dragonfly.git] / sys / platform / pc64 / isa / clock.c
blob943da303eaa111f520c1ceba1d3050701af3d55b
1 /*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * Copyright (c) 2008 The DragonFly Project.
4 * All rights reserved.
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz and Don Ahn.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
37 * from: @(#)clock.c 7.2 (Berkeley) 5/12/91
38 * $FreeBSD: src/sys/i386/isa/clock.c,v 1.149.2.6 2002/11/02 04:41:50 iwasaki Exp $
39 * $DragonFly: src/sys/platform/pc64/isa/clock.c,v 1.1 2008/08/29 17:07:19 dillon Exp $
43 * Routines to handle clock hardware.
47 * inittodr, settodr and support routines written
48 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
50 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
53 //#include "use_apm.h"
54 //#include "opt_clock.h"
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/eventhandler.h>
59 #include <sys/time.h>
60 #include <sys/kernel.h>
61 #include <sys/bus.h>
62 #ifndef SMP
63 #include <sys/lock.h>
64 #endif
65 #include <sys/sysctl.h>
66 #include <sys/cons.h>
67 #include <sys/systimer.h>
68 #include <sys/globaldata.h>
69 #include <sys/thread2.h>
70 #include <sys/systimer.h>
71 #include <sys/machintr.h>
73 #include <machine/clock.h>
74 #ifdef CLK_CALIBRATION_LOOP
75 #endif
76 #include <machine/cputypes.h>
77 #include <machine/frame.h>
78 #include <machine/ipl.h>
79 #include <machine/limits.h>
80 #include <machine/md_var.h>
81 #include <machine/psl.h>
82 #include <machine/segments.h>
83 #include <machine/smp.h>
84 #include <machine/specialreg.h>
86 #include <machine_base/icu/icu.h>
87 #include <bus/isa/isa.h>
88 #include <bus/isa/rtc.h>
89 #include <machine_base/isa/timerreg.h>
91 #include <machine_base/isa/intr_machdep.h>
93 #ifdef APIC_IO
94 /* The interrupt triggered by the 8254 (timer) chip */
95 int apic_8254_intr;
96 static void setup_8254_mixed_mode (void);
97 #endif
98 static void i8254_restore(void);
99 static void resettodr_on_shutdown(void *arg __unused);
102 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
103 * can use a simple formula for leap years.
105 #define LEAPYEAR(y) ((u_int)(y) % 4 == 0)
106 #define DAYSPERYEAR (31+28+31+30+31+30+31+31+30+31+30+31)
108 #ifndef TIMER_FREQ
109 #define TIMER_FREQ 1193182
110 #endif
112 static uint8_t i8254_walltimer_sel;
113 static uint16_t i8254_walltimer_cntr;
115 int adjkerntz; /* local offset from GMT in seconds */
116 int disable_rtc_set; /* disable resettodr() if != 0 */
117 int statclock_disable = 1; /* we don't use the statclock right now */
118 int tsc_present;
119 int64_t tsc_frequency;
120 int tsc_is_broken;
121 int wall_cmos_clock; /* wall CMOS clock assumed if != 0 */
122 int timer0_running;
123 enum tstate { RELEASED, ACQUIRED };
124 enum tstate timer0_state;
125 enum tstate timer1_state;
126 enum tstate timer2_state;
128 static int beeping = 0;
129 static const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
130 static u_char rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
131 static u_char rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
132 static int rtc_loaded;
134 static int i8254_cputimer_div;
136 static struct callout sysbeepstop_ch;
138 static sysclock_t i8254_cputimer_count(void);
139 static void i8254_cputimer_construct(struct cputimer *cputimer, sysclock_t last);
140 static void i8254_cputimer_destruct(struct cputimer *cputimer);
142 static struct cputimer i8254_cputimer = {
143 SLIST_ENTRY_INITIALIZER,
144 "i8254",
145 CPUTIMER_PRI_8254,
147 i8254_cputimer_count,
148 cputimer_default_fromhz,
149 cputimer_default_fromus,
150 i8254_cputimer_construct,
151 i8254_cputimer_destruct,
152 TIMER_FREQ,
153 0, 0, 0
157 * timer0 clock interrupt. Timer0 is in one-shot mode and has stopped
158 * counting as of this interrupt. We use timer1 in free-running mode (not
159 * generating any interrupts) as our main counter. Each cpu has timeouts
160 * pending.
162 * This code is INTR_MPSAFE and may be called without the BGL held.
164 static void
165 clkintr(void *dummy, void *frame_arg)
167 static sysclock_t sysclock_count; /* NOTE! Must be static */
168 struct globaldata *gd = mycpu;
169 #ifdef SMP
170 struct globaldata *gscan;
171 int n;
172 #endif
175 * SWSTROBE mode is a one-shot, the timer is no longer running
177 timer0_running = 0;
180 * XXX the dispatcher needs work. right now we call systimer_intr()
181 * directly or via IPI for any cpu with systimers queued, which is
182 * usually *ALL* of them. We need to use the LAPIC timer for this.
184 sysclock_count = sys_cputimer->count();
185 #ifdef SMP
186 for (n = 0; n < ncpus; ++n) {
187 gscan = globaldata_find(n);
188 if (TAILQ_FIRST(&gscan->gd_systimerq) == NULL)
189 continue;
190 if (gscan != gd) {
191 lwkt_send_ipiq3(gscan, (ipifunc3_t)systimer_intr,
192 &sysclock_count, 0);
193 } else {
194 systimer_intr(&sysclock_count, 0, frame_arg);
197 #else
198 if (TAILQ_FIRST(&gd->gd_systimerq) != NULL)
199 systimer_intr(&sysclock_count, 0, frame_arg);
200 #endif
205 * NOTE! not MP safe.
208 acquire_timer2(int mode)
210 if (timer2_state != RELEASED)
211 return (-1);
212 timer2_state = ACQUIRED;
215 * This access to the timer registers is as atomic as possible
216 * because it is a single instruction. We could do better if we
217 * knew the rate.
219 outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
220 return (0);
224 release_timer2(void)
226 if (timer2_state != ACQUIRED)
227 return (-1);
228 outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
229 timer2_state = RELEASED;
230 return (0);
234 * This routine receives statistical clock interrupts from the RTC.
235 * As explained above, these occur at 128 interrupts per second.
236 * When profiling, we receive interrupts at a rate of 1024 Hz.
238 * This does not actually add as much overhead as it sounds, because
239 * when the statistical clock is active, the hardclock driver no longer
240 * needs to keep (inaccurate) statistics on its own. This decouples
241 * statistics gathering from scheduling interrupts.
243 * The RTC chip requires that we read status register C (RTC_INTR)
244 * to acknowledge an interrupt, before it will generate the next one.
245 * Under high interrupt load, rtcintr() can be indefinitely delayed and
246 * the clock can tick immediately after the read from RTC_INTR. In this
247 * case, the mc146818A interrupt signal will not drop for long enough
248 * to register with the 8259 PIC. If an interrupt is missed, the stat
249 * clock will halt, considerably degrading system performance. This is
250 * why we use 'while' rather than a more straightforward 'if' below.
251 * Stat clock ticks can still be lost, causing minor loss of accuracy
252 * in the statistics, but the stat clock will no longer stop.
254 static void
255 rtcintr(void *dummy, void *frame)
257 while (rtcin(RTC_INTR) & RTCIR_PERIOD)
259 /* statclock(frame); no longer used */
262 #include "opt_ddb.h"
263 #ifdef DDB
264 #include <ddb/ddb.h>
266 DB_SHOW_COMMAND(rtc, rtc)
268 kprintf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
269 rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
270 rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
271 rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
273 #endif /* DDB */
276 * Return the current cpu timer count as a 32 bit integer.
278 static
279 sysclock_t
280 i8254_cputimer_count(void)
282 static __uint16_t cputimer_last;
283 __uint16_t count;
284 sysclock_t ret;
286 clock_lock();
287 outb(TIMER_MODE, i8254_walltimer_sel | TIMER_LATCH);
288 count = (__uint8_t)inb(i8254_walltimer_cntr); /* get countdown */
289 count |= ((__uint8_t)inb(i8254_walltimer_cntr) << 8);
290 count = -count; /* -> countup */
291 if (count < cputimer_last) /* rollover */
292 i8254_cputimer.base += 0x00010000;
293 ret = i8254_cputimer.base | count;
294 cputimer_last = count;
295 clock_unlock();
296 return(ret);
300 * This function is called whenever the system timebase changes, allowing
301 * us to calculate what is needed to convert a system timebase tick
302 * into an 8254 tick for the interrupt timer. If we can convert to a
303 * simple shift, multiplication, or division, we do so. Otherwise 64
304 * bit arithmatic is required every time the interrupt timer is reloaded.
306 void
307 cputimer_intr_config(struct cputimer *timer)
309 int freq;
310 int div;
313 * Will a simple divide do the trick?
315 div = (timer->freq + (i8254_cputimer.freq / 2)) / i8254_cputimer.freq;
316 freq = i8254_cputimer.freq * div;
318 if (freq >= timer->freq - 1 && freq <= timer->freq + 1)
319 i8254_cputimer_div = div;
320 else
321 i8254_cputimer_div = 0;
325 * Reload for the next timeout. It is possible for the reload value
326 * to be 0 or negative, indicating that an immediate timer interrupt
327 * is desired. For now make the minimum 2 ticks.
329 * We may have to convert from the system timebase to the 8254 timebase.
331 void
332 cputimer_intr_reload(sysclock_t reload)
334 __uint16_t count;
336 if (i8254_cputimer_div)
337 reload /= i8254_cputimer_div;
338 else
339 reload = (int64_t)reload * i8254_cputimer.freq / sys_cputimer->freq;
341 if ((int)reload < 2)
342 reload = 2;
344 clock_lock();
345 if (timer0_running) {
346 outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH); /* count-down timer */
347 count = (__uint8_t)inb(TIMER_CNTR0); /* lsb */
348 count |= ((__uint8_t)inb(TIMER_CNTR0) << 8); /* msb */
349 if (reload < count) {
350 outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
351 outb(TIMER_CNTR0, (__uint8_t)reload); /* lsb */
352 outb(TIMER_CNTR0, (__uint8_t)(reload >> 8)); /* msb */
354 } else {
355 timer0_running = 1;
356 if (reload > 0xFFFF)
357 reload = 0; /* full count */
358 outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
359 outb(TIMER_CNTR0, (__uint8_t)reload); /* lsb */
360 outb(TIMER_CNTR0, (__uint8_t)(reload >> 8)); /* msb */
362 clock_unlock();
365 void
366 cputimer_intr_enable(void)
371 * DELAY(usec) - Spin for the specified number of microseconds.
372 * DRIVERSLEEP(usec) - Spin for the specified number of microseconds,
373 * but do a thread switch in the loop
375 * Relies on timer 1 counting down from (cputimer_freq / hz)
376 * Note: timer had better have been programmed before this is first used!
378 static void
379 DODELAY(int n, int doswitch)
381 int delta, prev_tick, tick, ticks_left;
383 #ifdef DELAYDEBUG
384 int getit_calls = 1;
385 int n1;
386 static int state = 0;
388 if (state == 0) {
389 state = 1;
390 for (n1 = 1; n1 <= 10000000; n1 *= 10)
391 DELAY(n1);
392 state = 2;
394 if (state == 1)
395 kprintf("DELAY(%d)...", n);
396 #endif
398 * Guard against the timer being uninitialized if we are called
399 * early for console i/o.
401 if (timer0_state == RELEASED)
402 i8254_restore();
405 * Read the counter first, so that the rest of the setup overhead is
406 * counted. Then calculate the number of hardware timer ticks
407 * required, rounding up to be sure we delay at least the requested
408 * number of microseconds.
410 prev_tick = sys_cputimer->count();
411 ticks_left = ((u_int)n * (int64_t)sys_cputimer->freq + 999999) /
412 1000000;
415 * Loop until done.
417 while (ticks_left > 0) {
418 tick = sys_cputimer->count();
419 #ifdef DELAYDEBUG
420 ++getit_calls;
421 #endif
422 delta = tick - prev_tick;
423 prev_tick = tick;
424 if (delta < 0)
425 delta = 0;
426 ticks_left -= delta;
427 if (doswitch && ticks_left > 0)
428 lwkt_switch();
430 #ifdef DELAYDEBUG
431 if (state == 1)
432 kprintf(" %d calls to getit() at %d usec each\n",
433 getit_calls, (n + 5) / getit_calls);
434 #endif
437 void
438 DELAY(int n)
440 DODELAY(n, 0);
443 void
444 DRIVERSLEEP(int usec)
446 globaldata_t gd = mycpu;
448 if (gd->gd_intr_nesting_level ||
449 gd->gd_spinlock_rd ||
450 gd->gd_spinlocks_wr) {
451 DODELAY(usec, 0);
452 } else {
453 DODELAY(usec, 1);
457 static void
458 sysbeepstop(void *chan)
460 outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
461 beeping = 0;
462 release_timer2();
466 sysbeep(int pitch, int period)
468 if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
469 return(-1);
471 * Nobody else is using timer2, we do not need the clock lock
473 outb(TIMER_CNTR2, pitch);
474 outb(TIMER_CNTR2, (pitch>>8));
475 if (!beeping) {
476 /* enable counter2 output to speaker */
477 outb(IO_PPI, inb(IO_PPI) | 3);
478 beeping = period;
479 callout_reset(&sysbeepstop_ch, period, sysbeepstop, NULL);
481 return (0);
485 * RTC support routines
489 rtcin(int reg)
491 u_char val;
493 crit_enter();
494 outb(IO_RTC, reg);
495 inb(0x84);
496 val = inb(IO_RTC + 1);
497 inb(0x84);
498 crit_exit();
499 return (val);
502 static __inline void
503 writertc(u_char reg, u_char val)
505 crit_enter();
506 inb(0x84);
507 outb(IO_RTC, reg);
508 inb(0x84);
509 outb(IO_RTC + 1, val);
510 inb(0x84); /* XXX work around wrong order in rtcin() */
511 crit_exit();
514 static __inline int
515 readrtc(int port)
517 return(bcd2bin(rtcin(port)));
520 static u_int
521 calibrate_clocks(void)
523 u_int64_t old_tsc;
524 u_int count, prev_count, tot_count;
525 int sec, start_sec, timeout;
527 if (bootverbose)
528 kprintf("Calibrating clock(s) ... ");
529 if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
530 goto fail;
531 timeout = 100000000;
533 /* Read the mc146818A seconds counter. */
534 for (;;) {
535 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
536 sec = rtcin(RTC_SEC);
537 break;
539 if (--timeout == 0)
540 goto fail;
543 /* Wait for the mC146818A seconds counter to change. */
544 start_sec = sec;
545 for (;;) {
546 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
547 sec = rtcin(RTC_SEC);
548 if (sec != start_sec)
549 break;
551 if (--timeout == 0)
552 goto fail;
555 /* Start keeping track of the i8254 counter. */
556 prev_count = sys_cputimer->count();
557 tot_count = 0;
559 if (tsc_present)
560 old_tsc = rdtsc();
561 else
562 old_tsc = 0; /* shut up gcc */
565 * Wait for the mc146818A seconds counter to change. Read the i8254
566 * counter for each iteration since this is convenient and only
567 * costs a few usec of inaccuracy. The timing of the final reads
568 * of the counters almost matches the timing of the initial reads,
569 * so the main cause of inaccuracy is the varying latency from
570 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
571 * rtcin(RTC_SEC) that returns a changed seconds count. The
572 * maximum inaccuracy from this cause is < 10 usec on 486's.
574 start_sec = sec;
575 for (;;) {
576 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
577 sec = rtcin(RTC_SEC);
578 count = sys_cputimer->count();
579 tot_count += (int)(count - prev_count);
580 prev_count = count;
581 if (sec != start_sec)
582 break;
583 if (--timeout == 0)
584 goto fail;
588 * Read the cpu cycle counter. The timing considerations are
589 * similar to those for the i8254 clock.
591 if (tsc_present) {
592 tsc_frequency = rdtsc() - old_tsc;
595 if (tsc_present)
596 kprintf("TSC clock: %llu Hz, ", tsc_frequency);
597 kprintf("i8254 clock: %u Hz\n", tot_count);
598 return (tot_count);
600 fail:
601 kprintf("failed, using default i8254 clock of %u Hz\n",
602 i8254_cputimer.freq);
603 return (i8254_cputimer.freq);
606 static void
607 i8254_restore(void)
609 timer0_state = ACQUIRED;
611 clock_lock();
614 * Timer0 is our fine-grained variable clock interrupt
616 outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
617 outb(TIMER_CNTR0, 2); /* lsb */
618 outb(TIMER_CNTR0, 0); /* msb */
619 clock_unlock();
622 * Timer1 or timer2 is our free-running clock, but only if another
623 * has not been selected.
625 cputimer_register(&i8254_cputimer);
626 cputimer_select(&i8254_cputimer, 0);
629 static void
630 i8254_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
632 int which;
635 * Should we use timer 1 or timer 2 ?
637 which = 0;
638 TUNABLE_INT_FETCH("hw.i8254.walltimer", &which);
639 if (which != 1 && which != 2)
640 which = 2;
642 switch(which) {
643 case 1:
644 timer->name = "i8254_timer1";
645 timer->type = CPUTIMER_8254_SEL1;
646 i8254_walltimer_sel = TIMER_SEL1;
647 i8254_walltimer_cntr = TIMER_CNTR1;
648 timer1_state = ACQUIRED;
649 break;
650 case 2:
651 timer->name = "i8254_timer2";
652 timer->type = CPUTIMER_8254_SEL2;
653 i8254_walltimer_sel = TIMER_SEL2;
654 i8254_walltimer_cntr = TIMER_CNTR2;
655 timer2_state = ACQUIRED;
656 break;
659 timer->base = (oldclock + 0xFFFF) & ~0xFFFF;
661 clock_lock();
662 outb(TIMER_MODE, i8254_walltimer_sel | TIMER_RATEGEN | TIMER_16BIT);
663 outb(i8254_walltimer_cntr, 0); /* lsb */
664 outb(i8254_walltimer_cntr, 0); /* msb */
665 outb(IO_PPI, inb(IO_PPI) | 1); /* bit 0: enable gate, bit 1: spkr */
666 clock_unlock();
669 static void
670 i8254_cputimer_destruct(struct cputimer *timer)
672 switch(timer->type) {
673 case CPUTIMER_8254_SEL1:
674 timer1_state = RELEASED;
675 break;
676 case CPUTIMER_8254_SEL2:
677 timer2_state = RELEASED;
678 break;
679 default:
680 break;
682 timer->type = 0;
685 static void
686 rtc_restore(void)
688 /* Restore all of the RTC's "status" (actually, control) registers. */
689 writertc(RTC_STATUSB, RTCSB_24HR);
690 writertc(RTC_STATUSA, rtc_statusa);
691 writertc(RTC_STATUSB, rtc_statusb);
695 * Restore all the timers.
697 * This function is called to resynchronize our core timekeeping after a
698 * long halt, e.g. from apm_default_resume() and friends. It is also
699 * called if after a BIOS call we have detected munging of the 8254.
700 * It is necessary because cputimer_count() counter's delta may have grown
701 * too large for nanouptime() and friends to handle, or (in the case of 8254
702 * munging) might cause the SYSTIMER code to prematurely trigger.
704 void
705 timer_restore(void)
707 crit_enter();
708 i8254_restore(); /* restore timer_freq and hz */
709 rtc_restore(); /* reenable RTC interrupts */
710 crit_exit();
714 * Initialize 8254 timer 0 early so that it can be used in DELAY().
716 void
717 startrtclock(void)
719 u_int delta, freq;
722 * Can we use the TSC?
724 if (cpu_feature & CPUID_TSC)
725 tsc_present = 1;
726 else
727 tsc_present = 0;
730 * Initial RTC state, don't do anything unexpected
732 writertc(RTC_STATUSA, rtc_statusa);
733 writertc(RTC_STATUSB, RTCSB_24HR);
736 * Set the 8254 timer0 in TIMER_SWSTROBE mode and cause it to
737 * generate an interrupt, which we will ignore for now.
739 * Set the 8254 timer1 in TIMER_RATEGEN mode and load 0x0000
740 * (so it counts a full 2^16 and repeats). We will use this timer
741 * for our counting.
743 i8254_restore();
744 freq = calibrate_clocks();
745 #ifdef CLK_CALIBRATION_LOOP
746 if (bootverbose) {
747 kprintf(
748 "Press a key on the console to abort clock calibration\n");
749 while (cncheckc() == -1)
750 calibrate_clocks();
752 #endif
755 * Use the calibrated i8254 frequency if it seems reasonable.
756 * Otherwise use the default, and don't use the calibrated i586
757 * frequency.
759 delta = freq > i8254_cputimer.freq ?
760 freq - i8254_cputimer.freq : i8254_cputimer.freq - freq;
761 if (delta < i8254_cputimer.freq / 100) {
762 #ifndef CLK_USE_I8254_CALIBRATION
763 if (bootverbose)
764 kprintf(
765 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
766 freq = i8254_cputimer.freq;
767 #endif
768 cputimer_set_frequency(&i8254_cputimer, freq);
769 } else {
770 if (bootverbose)
771 kprintf(
772 "%d Hz differs from default of %d Hz by more than 1%%\n",
773 freq, i8254_cputimer.freq);
774 tsc_frequency = 0;
777 #ifndef CLK_USE_TSC_CALIBRATION
778 if (tsc_frequency != 0) {
779 if (bootverbose)
780 kprintf(
781 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
782 tsc_frequency = 0;
784 #endif
785 if (tsc_present && tsc_frequency == 0) {
787 * Calibration of the i586 clock relative to the mc146818A
788 * clock failed. Do a less accurate calibration relative
789 * to the i8254 clock.
791 u_int64_t old_tsc = rdtsc();
793 DELAY(1000000);
794 tsc_frequency = rdtsc() - old_tsc;
795 #ifdef CLK_USE_TSC_CALIBRATION
796 if (bootverbose) {
797 kprintf("TSC clock: %llu Hz (Method B)\n",
798 tsc_frequency);
800 #endif
803 EVENTHANDLER_REGISTER(shutdown_post_sync, resettodr_on_shutdown, NULL, SHUTDOWN_PRI_LAST);
805 #if !defined(SMP)
807 * We can not use the TSC in SMP mode, until we figure out a
808 * cheap (impossible), reliable and precise (yeah right!) way
809 * to synchronize the TSCs of all the CPUs.
810 * Curse Intel for leaving the counter out of the I/O APIC.
813 #if NAPM > 0
815 * We can not use the TSC if we support APM. Precise timekeeping
816 * on an APM'ed machine is at best a fools pursuit, since
817 * any and all of the time spent in various SMM code can't
818 * be reliably accounted for. Reading the RTC is your only
819 * source of reliable time info. The i8254 looses too of course
820 * but we need to have some kind of time...
821 * We don't know at this point whether APM is going to be used
822 * or not, nor when it might be activated. Play it safe.
824 return;
825 #endif /* NAPM > 0 */
827 #endif /* !defined(SMP) */
831 * Sync the time of day back to the RTC on shutdown, but only if
832 * we have already loaded it and have not crashed.
834 static void
835 resettodr_on_shutdown(void *arg __unused)
837 if (rtc_loaded && panicstr == NULL) {
838 resettodr();
843 * Initialize the time of day register, based on the time base which is, e.g.
844 * from a filesystem.
846 void
847 inittodr(time_t base)
849 unsigned long sec, days;
850 int yd;
851 int year, month;
852 int y, m;
853 struct timespec ts;
855 if (base) {
856 ts.tv_sec = base;
857 ts.tv_nsec = 0;
858 set_timeofday(&ts);
861 /* Look if we have a RTC present and the time is valid */
862 if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
863 goto wrong_time;
865 /* wait for time update to complete */
866 /* If RTCSA_TUP is zero, we have at least 244us before next update */
867 crit_enter();
868 while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
869 crit_exit();
870 crit_enter();
873 days = 0;
874 #ifdef USE_RTC_CENTURY
875 year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
876 #else
877 year = readrtc(RTC_YEAR) + 1900;
878 if (year < 1970)
879 year += 100;
880 #endif
881 if (year < 1970) {
882 crit_exit();
883 goto wrong_time;
885 month = readrtc(RTC_MONTH);
886 for (m = 1; m < month; m++)
887 days += daysinmonth[m-1];
888 if ((month > 2) && LEAPYEAR(year))
889 days ++;
890 days += readrtc(RTC_DAY) - 1;
891 yd = days;
892 for (y = 1970; y < year; y++)
893 days += DAYSPERYEAR + LEAPYEAR(y);
894 sec = ((( days * 24 +
895 readrtc(RTC_HRS)) * 60 +
896 readrtc(RTC_MIN)) * 60 +
897 readrtc(RTC_SEC));
898 /* sec now contains the number of seconds, since Jan 1 1970,
899 in the local time zone */
901 sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
903 y = time_second - sec;
904 if (y <= -2 || y >= 2) {
905 /* badly off, adjust it */
906 ts.tv_sec = sec;
907 ts.tv_nsec = 0;
908 set_timeofday(&ts);
910 rtc_loaded = 1;
911 crit_exit();
912 return;
914 wrong_time:
915 kprintf("Invalid time in real time clock.\n");
916 kprintf("Check and reset the date immediately!\n");
920 * Write system time back to RTC
922 void
923 resettodr(void)
925 struct timeval tv;
926 unsigned long tm;
927 int m;
928 int y;
930 if (disable_rtc_set)
931 return;
933 microtime(&tv);
934 tm = tv.tv_sec;
936 crit_enter();
937 /* Disable RTC updates and interrupts. */
938 writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
940 /* Calculate local time to put in RTC */
942 tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
944 writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60; /* Write back Seconds */
945 writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60; /* Write back Minutes */
946 writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24; /* Write back Hours */
948 /* We have now the days since 01-01-1970 in tm */
949 writertc(RTC_WDAY, (tm+4)%7); /* Write back Weekday */
950 for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
951 tm >= m;
952 y++, m = DAYSPERYEAR + LEAPYEAR(y))
953 tm -= m;
955 /* Now we have the years in y and the day-of-the-year in tm */
956 writertc(RTC_YEAR, bin2bcd(y%100)); /* Write back Year */
957 #ifdef USE_RTC_CENTURY
958 writertc(RTC_CENTURY, bin2bcd(y/100)); /* ... and Century */
959 #endif
960 for (m = 0; ; m++) {
961 int ml;
963 ml = daysinmonth[m];
964 if (m == 1 && LEAPYEAR(y))
965 ml++;
966 if (tm < ml)
967 break;
968 tm -= ml;
971 writertc(RTC_MONTH, bin2bcd(m + 1)); /* Write back Month */
972 writertc(RTC_DAY, bin2bcd(tm + 1)); /* Write back Month Day */
974 /* Reenable RTC updates and interrupts. */
975 writertc(RTC_STATUSB, rtc_statusb);
976 crit_exit();
981 * Start both clocks running. DragonFly note: the stat clock is no longer
982 * used. Instead, 8254 based systimers are used for all major clock
983 * interrupts. statclock_disable is set by default.
985 void
986 cpu_initclocks(void *arg __unused)
988 int diag;
989 #ifdef APIC_IO
990 int apic_8254_trial;
991 void *clkdesc;
992 #endif /* APIC_IO */
994 if (statclock_disable) {
996 * The stat interrupt mask is different without the
997 * statistics clock. Also, don't set the interrupt
998 * flag which would normally cause the RTC to generate
999 * interrupts.
1001 rtc_statusb = RTCSB_24HR;
1002 } else {
1003 /* Setting stathz to nonzero early helps avoid races. */
1004 stathz = RTC_NOPROFRATE;
1005 profhz = RTC_PROFRATE;
1008 /* Finish initializing 8253 timer 0. */
1009 #ifdef APIC_IO
1011 apic_8254_intr = isa_apic_irq(0);
1012 apic_8254_trial = 0;
1013 if (apic_8254_intr >= 0 ) {
1014 if (apic_int_type(0, 0) == 3)
1015 apic_8254_trial = 1;
1016 } else {
1017 /* look for ExtInt on pin 0 */
1018 if (apic_int_type(0, 0) == 3) {
1019 apic_8254_intr = apic_irq(0, 0);
1020 setup_8254_mixed_mode();
1021 } else
1022 panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1025 clkdesc = register_int(apic_8254_intr, clkintr, NULL, "clk",
1026 NULL,
1027 INTR_EXCL | INTR_FAST |
1028 INTR_NOPOLL | INTR_MPSAFE |
1029 INTR_NOENTROPY);
1030 machintr_intren(apic_8254_intr);
1032 #else /* APIC_IO */
1034 register_int(0, clkintr, NULL, "clk", NULL,
1035 INTR_EXCL | INTR_FAST |
1036 INTR_NOPOLL | INTR_MPSAFE |
1037 INTR_NOENTROPY);
1038 machintr_intren(ICU_IRQ0);
1040 #endif /* APIC_IO */
1042 /* Initialize RTC. */
1043 writertc(RTC_STATUSA, rtc_statusa);
1044 writertc(RTC_STATUSB, RTCSB_24HR);
1046 if (statclock_disable == 0) {
1047 diag = rtcin(RTC_DIAG);
1048 if (diag != 0)
1049 kprintf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1051 #ifdef APIC_IO
1052 if (isa_apic_irq(8) != 8)
1053 panic("APIC RTC != 8");
1054 #endif /* APIC_IO */
1056 register_int(8, (inthand2_t *)rtcintr, NULL, "rtc", NULL,
1057 INTR_EXCL | INTR_FAST | INTR_NOPOLL |
1058 INTR_NOENTROPY);
1059 machintr_intren(8);
1061 writertc(RTC_STATUSB, rtc_statusb);
1064 #ifdef APIC_IO
1065 if (apic_8254_trial) {
1066 sysclock_t base;
1067 long lastcnt;
1069 lastcnt = get_interrupt_counter(apic_8254_intr);
1072 * XXX this assumes the 8254 is the cpu timer. Force an
1073 * 8254 Timer0 interrupt and wait 1/100s for it to happen,
1074 * then see if we got it.
1076 kprintf("APIC_IO: Testing 8254 interrupt delivery\n");
1077 cputimer_intr_reload(2); /* XXX assumes 8254 */
1078 base = sys_cputimer->count();
1079 while (sys_cputimer->count() - base < sys_cputimer->freq / 100)
1080 ; /* nothing */
1081 if (get_interrupt_counter(apic_8254_intr) - lastcnt == 0) {
1083 * The MP table is broken.
1084 * The 8254 was not connected to the specified pin
1085 * on the IO APIC.
1086 * Workaround: Limited variant of mixed mode.
1088 machintr_intrdis(apic_8254_intr);
1089 unregister_int(clkdesc);
1090 kprintf("APIC_IO: Broken MP table detected: "
1091 "8254 is not connected to "
1092 "IOAPIC #%d intpin %d\n",
1093 int_to_apicintpin[apic_8254_intr].ioapic,
1094 int_to_apicintpin[apic_8254_intr].int_pin);
1096 * Revoke current ISA IRQ 0 assignment and
1097 * configure a fallback interrupt routing from
1098 * the 8254 Timer via the 8259 PIC to the
1099 * an ExtInt interrupt line on IOAPIC #0 intpin 0.
1100 * We reuse the low level interrupt handler number.
1102 if (apic_irq(0, 0) < 0) {
1103 revoke_apic_irq(apic_8254_intr);
1104 assign_apic_irq(0, 0, apic_8254_intr);
1106 apic_8254_intr = apic_irq(0, 0);
1107 setup_8254_mixed_mode();
1108 register_int(apic_8254_intr, clkintr, NULL, "clk",
1109 NULL,
1110 INTR_EXCL | INTR_FAST |
1111 INTR_NOPOLL | INTR_MPSAFE |
1112 INTR_NOENTROPY);
1113 machintr_intren(apic_8254_intr);
1117 if (apic_int_type(0, 0) != 3 ||
1118 int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
1119 int_to_apicintpin[apic_8254_intr].int_pin != 0) {
1120 kprintf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
1121 int_to_apicintpin[apic_8254_intr].ioapic,
1122 int_to_apicintpin[apic_8254_intr].int_pin);
1123 } else {
1124 kprintf("APIC_IO: "
1125 "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
1127 #endif
1128 callout_init(&sysbeepstop_ch);
1130 SYSINIT(clocks8254, SI_BOOT2_CLOCKREG, SI_ORDER_FIRST, cpu_initclocks, NULL)
1132 #ifdef APIC_IO
1134 static void
1135 setup_8254_mixed_mode(void)
1138 * Allow 8254 timer to INTerrupt 8259:
1139 * re-initialize master 8259:
1140 * reset; prog 4 bytes, single ICU, edge triggered
1142 outb(IO_ICU1, 0x13);
1143 outb(IO_ICU1 + 1, IDT_OFFSET); /* start vector (unused) */
1144 outb(IO_ICU1 + 1, 0x00); /* ignore slave */
1145 outb(IO_ICU1 + 1, 0x03); /* auto EOI, 8086 */
1146 outb(IO_ICU1 + 1, 0xfe); /* unmask INT0 */
1148 /* program IO APIC for type 3 INT on INT0 */
1149 if (ext_int_setup(0, 0) < 0)
1150 panic("8254 redirect via APIC pin0 impossible!");
1152 #endif
1154 void
1155 setstatclockrate(int newhz)
1157 if (newhz == RTC_PROFRATE)
1158 rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1159 else
1160 rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1161 writertc(RTC_STATUSA, rtc_statusa);
1164 #if 0
1165 static unsigned
1166 tsc_get_timecount(struct timecounter *tc)
1168 return (rdtsc());
1170 #endif
1172 #ifdef KERN_TIMESTAMP
1173 #define KERN_TIMESTAMP_SIZE 16384
1174 static u_long tsc[KERN_TIMESTAMP_SIZE] ;
1175 SYSCTL_OPAQUE(_debug, OID_AUTO, timestamp, CTLFLAG_RD, tsc,
1176 sizeof(tsc), "LU", "Kernel timestamps");
1177 void
1178 _TSTMP(u_int32_t x)
1180 static int i;
1182 tsc[i] = (u_int32_t)rdtsc();
1183 tsc[i+1] = x;
1184 i = i + 2;
1185 if (i >= KERN_TIMESTAMP_SIZE)
1186 i = 0;
1187 tsc[i] = 0; /* mark last entry */
1189 #endif /* KERN_TIMESTAMP */
1195 static int
1196 hw_i8254_timestamp(SYSCTL_HANDLER_ARGS)
1198 sysclock_t count;
1199 __uint64_t tscval;
1200 char buf[32];
1202 crit_enter();
1203 if (sys_cputimer == &i8254_cputimer)
1204 count = sys_cputimer->count();
1205 else
1206 count = 0;
1207 if (tsc_present)
1208 tscval = rdtsc();
1209 else
1210 tscval = 0;
1211 crit_exit();
1212 ksnprintf(buf, sizeof(buf), "%08x %016llx", count, (long long)tscval);
1213 return(SYSCTL_OUT(req, buf, strlen(buf) + 1));
1216 SYSCTL_NODE(_hw, OID_AUTO, i8254, CTLFLAG_RW, 0, "I8254");
1217 SYSCTL_UINT(_hw_i8254, OID_AUTO, freq, CTLFLAG_RD, &i8254_cputimer.freq, 0,
1218 "frequency");
1219 SYSCTL_PROC(_hw_i8254, OID_AUTO, timestamp, CTLTYPE_STRING|CTLFLAG_RD,
1220 0, 0, hw_i8254_timestamp, "A", "");
1222 SYSCTL_INT(_hw, OID_AUTO, tsc_present, CTLFLAG_RD,
1223 &tsc_present, 0, "TSC Available");
1224 SYSCTL_QUAD(_hw, OID_AUTO, tsc_frequency, CTLFLAG_RD,
1225 &tsc_frequency, 0, "TSC Frequency");