systimer/cputimer: Add {systimer,cputimer}_intr_enable()
[dragonfly.git] / sys / platform / pc32 / isa / clock.c
blob65c3a2ef89f44abde66c5fd12f51ce96975e425d
1 /*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * from: @(#)clock.c 7.2 (Berkeley) 5/12/91
37 * $FreeBSD: src/sys/i386/isa/clock.c,v 1.149.2.6 2002/11/02 04:41:50 iwasaki Exp $
38 * $DragonFly: src/sys/platform/pc32/isa/clock.c,v 1.55 2008/08/02 01:14:43 dillon Exp $
42 * Routines to handle clock hardware.
46 * inittodr, settodr and support routines written
47 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
49 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
52 #include "use_apm.h"
53 #include "opt_clock.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/eventhandler.h>
58 #include <sys/time.h>
59 #include <sys/kernel.h>
60 #include <sys/bus.h>
61 #ifndef SMP
62 #include <sys/lock.h>
63 #endif
64 #include <sys/sysctl.h>
65 #include <sys/cons.h>
66 #include <sys/systimer.h>
67 #include <sys/globaldata.h>
68 #include <sys/thread2.h>
69 #include <sys/systimer.h>
70 #include <sys/machintr.h>
72 #include <machine/clock.h>
73 #ifdef CLK_CALIBRATION_LOOP
74 #endif
75 #include <machine/cputypes.h>
76 #include <machine/frame.h>
77 #include <machine/ipl.h>
78 #include <machine/limits.h>
79 #include <machine/md_var.h>
80 #include <machine/psl.h>
81 #include <machine/segments.h>
82 #include <machine/smp.h>
83 #include <machine/specialreg.h>
85 #include <machine_base/icu/icu.h>
86 #include <bus/isa/isa.h>
87 #include <bus/isa/rtc.h>
88 #include <machine_base/isa/timerreg.h>
90 #include <machine_base/isa/intr_machdep.h>
92 #ifdef APIC_IO
93 /* The interrupt triggered by the 8254 (timer) chip */
94 int apic_8254_intr;
95 static void setup_8254_mixed_mode (void);
96 #endif
97 static void i8254_restore(void);
98 static void resettodr_on_shutdown(void *arg __unused);
101 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
102 * can use a simple formula for leap years.
104 #define LEAPYEAR(y) ((u_int)(y) % 4 == 0)
105 #define DAYSPERYEAR (31+28+31+30+31+30+31+31+30+31+30+31)
107 #ifndef TIMER_FREQ
108 #define TIMER_FREQ 1193182
109 #endif
111 static uint8_t i8254_walltimer_sel;
112 static uint16_t i8254_walltimer_cntr;
114 int adjkerntz; /* local offset from GMT in seconds */
115 int disable_rtc_set; /* disable resettodr() if != 0 */
116 int statclock_disable = 1; /* we don't use the statclock right now */
117 int tsc_present;
118 int64_t tsc_frequency;
119 int tsc_is_broken;
120 int wall_cmos_clock; /* wall CMOS clock assumed if != 0 */
121 int timer0_running;
122 enum tstate { RELEASED, ACQUIRED };
123 enum tstate timer0_state;
124 enum tstate timer1_state;
125 enum tstate timer2_state;
127 static int beeping = 0;
128 static const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
129 static u_char rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
130 static u_char rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
131 static int rtc_loaded;
133 static int i8254_cputimer_div;
135 static struct callout sysbeepstop_ch;
137 static sysclock_t i8254_cputimer_count(void);
138 static void i8254_cputimer_construct(struct cputimer *cputimer, sysclock_t last);
139 static void i8254_cputimer_destruct(struct cputimer *cputimer);
141 static struct cputimer i8254_cputimer = {
142 SLIST_ENTRY_INITIALIZER,
143 "i8254",
144 CPUTIMER_PRI_8254,
146 i8254_cputimer_count,
147 cputimer_default_fromhz,
148 cputimer_default_fromus,
149 i8254_cputimer_construct,
150 i8254_cputimer_destruct,
151 TIMER_FREQ,
152 0, 0, 0
156 * timer0 clock interrupt. Timer0 is in one-shot mode and has stopped
157 * counting as of this interrupt. We use timer1 in free-running mode (not
158 * generating any interrupts) as our main counter. Each cpu has timeouts
159 * pending.
161 * This code is INTR_MPSAFE and may be called without the BGL held.
163 static void
164 clkintr(void *dummy, void *frame_arg)
166 static sysclock_t sysclock_count; /* NOTE! Must be static */
167 struct globaldata *gd = mycpu;
168 #ifdef SMP
169 struct globaldata *gscan;
170 int n;
171 #endif
174 * SWSTROBE mode is a one-shot, the timer is no longer running
176 timer0_running = 0;
179 * XXX the dispatcher needs work. right now we call systimer_intr()
180 * directly or via IPI for any cpu with systimers queued, which is
181 * usually *ALL* of them. We need to use the LAPIC timer for this.
183 sysclock_count = sys_cputimer->count();
184 #ifdef SMP
185 for (n = 0; n < ncpus; ++n) {
186 gscan = globaldata_find(n);
187 if (TAILQ_FIRST(&gscan->gd_systimerq) == NULL)
188 continue;
189 if (gscan != gd) {
190 lwkt_send_ipiq3(gscan, (ipifunc3_t)systimer_intr,
191 &sysclock_count, 0);
192 } else {
193 systimer_intr(&sysclock_count, 0, frame_arg);
196 #else
197 if (TAILQ_FIRST(&gd->gd_systimerq) != NULL)
198 systimer_intr(&sysclock_count, 0, frame_arg);
199 #endif
204 * NOTE! not MP safe.
207 acquire_timer2(int mode)
209 if (timer2_state != RELEASED)
210 return (-1);
211 timer2_state = ACQUIRED;
214 * This access to the timer registers is as atomic as possible
215 * because it is a single instruction. We could do better if we
216 * knew the rate.
218 outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
219 return (0);
223 release_timer2(void)
225 if (timer2_state != ACQUIRED)
226 return (-1);
227 outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
228 timer2_state = RELEASED;
229 return (0);
233 * This routine receives statistical clock interrupts from the RTC.
234 * As explained above, these occur at 128 interrupts per second.
235 * When profiling, we receive interrupts at a rate of 1024 Hz.
237 * This does not actually add as much overhead as it sounds, because
238 * when the statistical clock is active, the hardclock driver no longer
239 * needs to keep (inaccurate) statistics on its own. This decouples
240 * statistics gathering from scheduling interrupts.
242 * The RTC chip requires that we read status register C (RTC_INTR)
243 * to acknowledge an interrupt, before it will generate the next one.
244 * Under high interrupt load, rtcintr() can be indefinitely delayed and
245 * the clock can tick immediately after the read from RTC_INTR. In this
246 * case, the mc146818A interrupt signal will not drop for long enough
247 * to register with the 8259 PIC. If an interrupt is missed, the stat
248 * clock will halt, considerably degrading system performance. This is
249 * why we use 'while' rather than a more straightforward 'if' below.
250 * Stat clock ticks can still be lost, causing minor loss of accuracy
251 * in the statistics, but the stat clock will no longer stop.
253 static void
254 rtcintr(void *dummy, void *frame)
256 while (rtcin(RTC_INTR) & RTCIR_PERIOD)
258 /* statclock(frame); no longer used */
261 #include "opt_ddb.h"
262 #ifdef DDB
263 #include <ddb/ddb.h>
265 DB_SHOW_COMMAND(rtc, rtc)
267 kprintf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
268 rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
269 rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
270 rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
272 #endif /* DDB */
275 * Return the current cpu timer count as a 32 bit integer.
277 static
278 sysclock_t
279 i8254_cputimer_count(void)
281 static __uint16_t cputimer_last;
282 __uint16_t count;
283 sysclock_t ret;
285 clock_lock();
286 outb(TIMER_MODE, i8254_walltimer_sel | TIMER_LATCH);
287 count = (__uint8_t)inb(i8254_walltimer_cntr); /* get countdown */
288 count |= ((__uint8_t)inb(i8254_walltimer_cntr) << 8);
289 count = -count; /* -> countup */
290 if (count < cputimer_last) /* rollover */
291 i8254_cputimer.base += 0x00010000;
292 ret = i8254_cputimer.base | count;
293 cputimer_last = count;
294 clock_unlock();
295 return(ret);
299 * This function is called whenever the system timebase changes, allowing
300 * us to calculate what is needed to convert a system timebase tick
301 * into an 8254 tick for the interrupt timer. If we can convert to a
302 * simple shift, multiplication, or division, we do so. Otherwise 64
303 * bit arithmatic is required every time the interrupt timer is reloaded.
305 void
306 cputimer_intr_config(struct cputimer *timer)
308 int freq;
309 int div;
312 * Will a simple divide do the trick?
314 div = (timer->freq + (i8254_cputimer.freq / 2)) / i8254_cputimer.freq;
315 freq = i8254_cputimer.freq * div;
317 if (freq >= timer->freq - 1 && freq <= timer->freq + 1)
318 i8254_cputimer_div = div;
319 else
320 i8254_cputimer_div = 0;
324 * Reload for the next timeout. It is possible for the reload value
325 * to be 0 or negative, indicating that an immediate timer interrupt
326 * is desired. For now make the minimum 2 ticks.
328 * We may have to convert from the system timebase to the 8254 timebase.
330 static void
331 i8254_intr_reload(sysclock_t reload)
333 __uint16_t count;
335 if (i8254_cputimer_div)
336 reload /= i8254_cputimer_div;
337 else
338 reload = (int64_t)reload * i8254_cputimer.freq / sys_cputimer->freq;
340 if ((int)reload < 2)
341 reload = 2;
343 clock_lock();
344 if (timer0_running) {
345 outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH); /* count-down timer */
346 count = (__uint8_t)inb(TIMER_CNTR0); /* lsb */
347 count |= ((__uint8_t)inb(TIMER_CNTR0) << 8); /* msb */
348 if (reload < count) {
349 outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
350 outb(TIMER_CNTR0, (__uint8_t)reload); /* lsb */
351 outb(TIMER_CNTR0, (__uint8_t)(reload >> 8)); /* msb */
353 } else {
354 timer0_running = 1;
355 if (reload > 0xFFFF)
356 reload = 0; /* full count */
357 outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
358 outb(TIMER_CNTR0, (__uint8_t)reload); /* lsb */
359 outb(TIMER_CNTR0, (__uint8_t)(reload >> 8)); /* msb */
361 clock_unlock();
364 #ifdef SMP
365 extern void lapic_timer_intr_reload(sysclock_t);
366 #endif
368 void
369 cputimer_intr_reload(sysclock_t reload)
371 i8254_intr_reload(reload);
372 #ifdef SMP
373 lapic_timer_intr_reload(reload);
374 #endif
377 void
378 cputimer_intr_enable(void)
383 * DELAY(usec) - Spin for the specified number of microseconds.
384 * DRIVERSLEEP(usec) - Spin for the specified number of microseconds,
385 * but do a thread switch in the loop
387 * Relies on timer 1 counting down from (cputimer_freq / hz)
388 * Note: timer had better have been programmed before this is first used!
390 static void
391 DODELAY(int n, int doswitch)
393 int delta, prev_tick, tick, ticks_left;
395 #ifdef DELAYDEBUG
396 int getit_calls = 1;
397 int n1;
398 static int state = 0;
400 if (state == 0) {
401 state = 1;
402 for (n1 = 1; n1 <= 10000000; n1 *= 10)
403 DELAY(n1);
404 state = 2;
406 if (state == 1)
407 kprintf("DELAY(%d)...", n);
408 #endif
410 * Guard against the timer being uninitialized if we are called
411 * early for console i/o.
413 if (timer0_state == RELEASED)
414 i8254_restore();
417 * Read the counter first, so that the rest of the setup overhead is
418 * counted. Then calculate the number of hardware timer ticks
419 * required, rounding up to be sure we delay at least the requested
420 * number of microseconds.
422 prev_tick = sys_cputimer->count();
423 ticks_left = ((u_int)n * (int64_t)sys_cputimer->freq + 999999) /
424 1000000;
427 * Loop until done.
429 while (ticks_left > 0) {
430 tick = sys_cputimer->count();
431 #ifdef DELAYDEBUG
432 ++getit_calls;
433 #endif
434 delta = tick - prev_tick;
435 prev_tick = tick;
436 if (delta < 0)
437 delta = 0;
438 ticks_left -= delta;
439 if (doswitch && ticks_left > 0)
440 lwkt_switch();
442 #ifdef DELAYDEBUG
443 if (state == 1)
444 kprintf(" %d calls to getit() at %d usec each\n",
445 getit_calls, (n + 5) / getit_calls);
446 #endif
449 void
450 DELAY(int n)
452 DODELAY(n, 0);
455 void
456 DRIVERSLEEP(int usec)
458 globaldata_t gd = mycpu;
460 if (gd->gd_intr_nesting_level ||
461 gd->gd_spinlock_rd ||
462 gd->gd_spinlocks_wr) {
463 DODELAY(usec, 0);
464 } else {
465 DODELAY(usec, 1);
469 static void
470 sysbeepstop(void *chan)
472 outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
473 beeping = 0;
474 release_timer2();
478 sysbeep(int pitch, int period)
480 if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
481 return(-1);
483 * Nobody else is using timer2, we do not need the clock lock
485 outb(TIMER_CNTR2, pitch);
486 outb(TIMER_CNTR2, (pitch>>8));
487 if (!beeping) {
488 /* enable counter2 output to speaker */
489 outb(IO_PPI, inb(IO_PPI) | 3);
490 beeping = period;
491 callout_reset(&sysbeepstop_ch, period, sysbeepstop, NULL);
493 return (0);
497 * RTC support routines
501 rtcin(int reg)
503 u_char val;
505 crit_enter();
506 outb(IO_RTC, reg);
507 inb(0x84);
508 val = inb(IO_RTC + 1);
509 inb(0x84);
510 crit_exit();
511 return (val);
514 static __inline void
515 writertc(u_char reg, u_char val)
517 crit_enter();
518 inb(0x84);
519 outb(IO_RTC, reg);
520 inb(0x84);
521 outb(IO_RTC + 1, val);
522 inb(0x84); /* XXX work around wrong order in rtcin() */
523 crit_exit();
526 static __inline int
527 readrtc(int port)
529 return(bcd2bin(rtcin(port)));
532 static u_int
533 calibrate_clocks(void)
535 u_int64_t old_tsc;
536 u_int count, prev_count, tot_count;
537 int sec, start_sec, timeout;
539 if (bootverbose)
540 kprintf("Calibrating clock(s) ... ");
541 if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
542 goto fail;
543 timeout = 100000000;
545 /* Read the mc146818A seconds counter. */
546 for (;;) {
547 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
548 sec = rtcin(RTC_SEC);
549 break;
551 if (--timeout == 0)
552 goto fail;
555 /* Wait for the mC146818A seconds counter to change. */
556 start_sec = sec;
557 for (;;) {
558 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
559 sec = rtcin(RTC_SEC);
560 if (sec != start_sec)
561 break;
563 if (--timeout == 0)
564 goto fail;
567 /* Start keeping track of the i8254 counter. */
568 prev_count = sys_cputimer->count();
569 tot_count = 0;
571 if (tsc_present)
572 old_tsc = rdtsc();
573 else
574 old_tsc = 0; /* shut up gcc */
577 * Wait for the mc146818A seconds counter to change. Read the i8254
578 * counter for each iteration since this is convenient and only
579 * costs a few usec of inaccuracy. The timing of the final reads
580 * of the counters almost matches the timing of the initial reads,
581 * so the main cause of inaccuracy is the varying latency from
582 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
583 * rtcin(RTC_SEC) that returns a changed seconds count. The
584 * maximum inaccuracy from this cause is < 10 usec on 486's.
586 start_sec = sec;
587 for (;;) {
588 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
589 sec = rtcin(RTC_SEC);
590 count = sys_cputimer->count();
591 tot_count += (int)(count - prev_count);
592 prev_count = count;
593 if (sec != start_sec)
594 break;
595 if (--timeout == 0)
596 goto fail;
600 * Read the cpu cycle counter. The timing considerations are
601 * similar to those for the i8254 clock.
603 if (tsc_present) {
604 tsc_frequency = rdtsc() - old_tsc;
607 if (tsc_present)
608 kprintf("TSC clock: %llu Hz, ", tsc_frequency);
609 kprintf("i8254 clock: %u Hz\n", tot_count);
610 return (tot_count);
612 fail:
613 kprintf("failed, using default i8254 clock of %u Hz\n",
614 i8254_cputimer.freq);
615 return (i8254_cputimer.freq);
618 static void
619 i8254_restore(void)
621 timer0_state = ACQUIRED;
623 clock_lock();
626 * Timer0 is our fine-grained variable clock interrupt
628 outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
629 outb(TIMER_CNTR0, 2); /* lsb */
630 outb(TIMER_CNTR0, 0); /* msb */
631 clock_unlock();
634 * Timer1 or timer2 is our free-running clock, but only if another
635 * has not been selected.
637 cputimer_register(&i8254_cputimer);
638 cputimer_select(&i8254_cputimer, 0);
641 static void
642 i8254_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
644 int which;
647 * Should we use timer 1 or timer 2 ?
649 which = 0;
650 TUNABLE_INT_FETCH("hw.i8254.walltimer", &which);
651 if (which != 1 && which != 2)
652 which = 2;
654 switch(which) {
655 case 1:
656 timer->name = "i8254_timer1";
657 timer->type = CPUTIMER_8254_SEL1;
658 i8254_walltimer_sel = TIMER_SEL1;
659 i8254_walltimer_cntr = TIMER_CNTR1;
660 timer1_state = ACQUIRED;
661 break;
662 case 2:
663 timer->name = "i8254_timer2";
664 timer->type = CPUTIMER_8254_SEL2;
665 i8254_walltimer_sel = TIMER_SEL2;
666 i8254_walltimer_cntr = TIMER_CNTR2;
667 timer2_state = ACQUIRED;
668 break;
671 timer->base = (oldclock + 0xFFFF) & ~0xFFFF;
673 clock_lock();
674 outb(TIMER_MODE, i8254_walltimer_sel | TIMER_RATEGEN | TIMER_16BIT);
675 outb(i8254_walltimer_cntr, 0); /* lsb */
676 outb(i8254_walltimer_cntr, 0); /* msb */
677 outb(IO_PPI, inb(IO_PPI) | 1); /* bit 0: enable gate, bit 1: spkr */
678 clock_unlock();
681 static void
682 i8254_cputimer_destruct(struct cputimer *timer)
684 switch(timer->type) {
685 case CPUTIMER_8254_SEL1:
686 timer1_state = RELEASED;
687 break;
688 case CPUTIMER_8254_SEL2:
689 timer2_state = RELEASED;
690 break;
691 default:
692 break;
694 timer->type = 0;
697 static void
698 rtc_restore(void)
700 /* Restore all of the RTC's "status" (actually, control) registers. */
701 writertc(RTC_STATUSB, RTCSB_24HR);
702 writertc(RTC_STATUSA, rtc_statusa);
703 writertc(RTC_STATUSB, rtc_statusb);
707 * Restore all the timers.
709 * This function is called to resynchronize our core timekeeping after a
710 * long halt, e.g. from apm_default_resume() and friends. It is also
711 * called if after a BIOS call we have detected munging of the 8254.
712 * It is necessary because cputimer_count() counter's delta may have grown
713 * too large for nanouptime() and friends to handle, or (in the case of 8254
714 * munging) might cause the SYSTIMER code to prematurely trigger.
716 void
717 timer_restore(void)
719 crit_enter();
720 i8254_restore(); /* restore timer_freq and hz */
721 rtc_restore(); /* reenable RTC interrupts */
722 crit_exit();
726 * Initialize 8254 timer 0 early so that it can be used in DELAY().
728 void
729 startrtclock(void)
731 u_int delta, freq;
734 * Can we use the TSC?
736 if (cpu_feature & CPUID_TSC)
737 tsc_present = 1;
738 else
739 tsc_present = 0;
742 * Initial RTC state, don't do anything unexpected
744 writertc(RTC_STATUSA, rtc_statusa);
745 writertc(RTC_STATUSB, RTCSB_24HR);
748 * Set the 8254 timer0 in TIMER_SWSTROBE mode and cause it to
749 * generate an interrupt, which we will ignore for now.
751 * Set the 8254 timer1 in TIMER_RATEGEN mode and load 0x0000
752 * (so it counts a full 2^16 and repeats). We will use this timer
753 * for our counting.
755 i8254_restore();
756 freq = calibrate_clocks();
757 #ifdef CLK_CALIBRATION_LOOP
758 if (bootverbose) {
759 kprintf(
760 "Press a key on the console to abort clock calibration\n");
761 while (cncheckc() == -1)
762 calibrate_clocks();
764 #endif
767 * Use the calibrated i8254 frequency if it seems reasonable.
768 * Otherwise use the default, and don't use the calibrated i586
769 * frequency.
771 delta = freq > i8254_cputimer.freq ?
772 freq - i8254_cputimer.freq : i8254_cputimer.freq - freq;
773 if (delta < i8254_cputimer.freq / 100) {
774 #ifndef CLK_USE_I8254_CALIBRATION
775 if (bootverbose)
776 kprintf(
777 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
778 freq = i8254_cputimer.freq;
779 #endif
780 cputimer_set_frequency(&i8254_cputimer, freq);
781 } else {
782 if (bootverbose)
783 kprintf(
784 "%d Hz differs from default of %d Hz by more than 1%%\n",
785 freq, i8254_cputimer.freq);
786 tsc_frequency = 0;
789 #ifndef CLK_USE_TSC_CALIBRATION
790 if (tsc_frequency != 0) {
791 if (bootverbose)
792 kprintf(
793 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
794 tsc_frequency = 0;
796 #endif
797 if (tsc_present && tsc_frequency == 0) {
799 * Calibration of the i586 clock relative to the mc146818A
800 * clock failed. Do a less accurate calibration relative
801 * to the i8254 clock.
803 u_int64_t old_tsc = rdtsc();
805 DELAY(1000000);
806 tsc_frequency = rdtsc() - old_tsc;
807 #ifdef CLK_USE_TSC_CALIBRATION
808 if (bootverbose) {
809 kprintf("TSC clock: %llu Hz (Method B)\n",
810 tsc_frequency);
812 #endif
815 EVENTHANDLER_REGISTER(shutdown_post_sync, resettodr_on_shutdown, NULL, SHUTDOWN_PRI_LAST);
817 #if !defined(SMP)
819 * We can not use the TSC in SMP mode, until we figure out a
820 * cheap (impossible), reliable and precise (yeah right!) way
821 * to synchronize the TSCs of all the CPUs.
822 * Curse Intel for leaving the counter out of the I/O APIC.
825 #if NAPM > 0
827 * We can not use the TSC if we support APM. Precise timekeeping
828 * on an APM'ed machine is at best a fools pursuit, since
829 * any and all of the time spent in various SMM code can't
830 * be reliably accounted for. Reading the RTC is your only
831 * source of reliable time info. The i8254 looses too of course
832 * but we need to have some kind of time...
833 * We don't know at this point whether APM is going to be used
834 * or not, nor when it might be activated. Play it safe.
836 return;
837 #endif /* NAPM > 0 */
839 #endif /* !defined(SMP) */
843 * Sync the time of day back to the RTC on shutdown, but only if
844 * we have already loaded it and have not crashed.
846 static void
847 resettodr_on_shutdown(void *arg __unused)
849 if (rtc_loaded && panicstr == NULL) {
850 resettodr();
855 * Initialize the time of day register, based on the time base which is, e.g.
856 * from a filesystem.
858 void
859 inittodr(time_t base)
861 unsigned long sec, days;
862 int yd;
863 int year, month;
864 int y, m;
865 struct timespec ts;
867 if (base) {
868 ts.tv_sec = base;
869 ts.tv_nsec = 0;
870 set_timeofday(&ts);
873 /* Look if we have a RTC present and the time is valid */
874 if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
875 goto wrong_time;
877 /* wait for time update to complete */
878 /* If RTCSA_TUP is zero, we have at least 244us before next update */
879 crit_enter();
880 while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
881 crit_exit();
882 crit_enter();
885 days = 0;
886 #ifdef USE_RTC_CENTURY
887 year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
888 #else
889 year = readrtc(RTC_YEAR) + 1900;
890 if (year < 1970)
891 year += 100;
892 #endif
893 if (year < 1970) {
894 crit_exit();
895 goto wrong_time;
897 month = readrtc(RTC_MONTH);
898 for (m = 1; m < month; m++)
899 days += daysinmonth[m-1];
900 if ((month > 2) && LEAPYEAR(year))
901 days ++;
902 days += readrtc(RTC_DAY) - 1;
903 yd = days;
904 for (y = 1970; y < year; y++)
905 days += DAYSPERYEAR + LEAPYEAR(y);
906 sec = ((( days * 24 +
907 readrtc(RTC_HRS)) * 60 +
908 readrtc(RTC_MIN)) * 60 +
909 readrtc(RTC_SEC));
910 /* sec now contains the number of seconds, since Jan 1 1970,
911 in the local time zone */
913 sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
915 y = time_second - sec;
916 if (y <= -2 || y >= 2) {
917 /* badly off, adjust it */
918 ts.tv_sec = sec;
919 ts.tv_nsec = 0;
920 set_timeofday(&ts);
922 rtc_loaded = 1;
923 crit_exit();
924 return;
926 wrong_time:
927 kprintf("Invalid time in real time clock.\n");
928 kprintf("Check and reset the date immediately!\n");
932 * Write system time back to RTC
934 void
935 resettodr(void)
937 struct timeval tv;
938 unsigned long tm;
939 int m;
940 int y;
942 if (disable_rtc_set)
943 return;
945 microtime(&tv);
946 tm = tv.tv_sec;
948 crit_enter();
949 /* Disable RTC updates and interrupts. */
950 writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
952 /* Calculate local time to put in RTC */
954 tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
956 writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60; /* Write back Seconds */
957 writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60; /* Write back Minutes */
958 writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24; /* Write back Hours */
960 /* We have now the days since 01-01-1970 in tm */
961 writertc(RTC_WDAY, (tm+4)%7); /* Write back Weekday */
962 for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
963 tm >= m;
964 y++, m = DAYSPERYEAR + LEAPYEAR(y))
965 tm -= m;
967 /* Now we have the years in y and the day-of-the-year in tm */
968 writertc(RTC_YEAR, bin2bcd(y%100)); /* Write back Year */
969 #ifdef USE_RTC_CENTURY
970 writertc(RTC_CENTURY, bin2bcd(y/100)); /* ... and Century */
971 #endif
972 for (m = 0; ; m++) {
973 int ml;
975 ml = daysinmonth[m];
976 if (m == 1 && LEAPYEAR(y))
977 ml++;
978 if (tm < ml)
979 break;
980 tm -= ml;
983 writertc(RTC_MONTH, bin2bcd(m + 1)); /* Write back Month */
984 writertc(RTC_DAY, bin2bcd(tm + 1)); /* Write back Month Day */
986 /* Reenable RTC updates and interrupts. */
987 writertc(RTC_STATUSB, rtc_statusb);
988 crit_exit();
993 * Start both clocks running. DragonFly note: the stat clock is no longer
994 * used. Instead, 8254 based systimers are used for all major clock
995 * interrupts. statclock_disable is set by default.
997 void
998 cpu_initclocks(void *arg __unused)
1000 int diag;
1001 #ifdef APIC_IO
1002 int apic_8254_trial;
1003 void *clkdesc;
1004 #endif /* APIC_IO */
1006 callout_init(&sysbeepstop_ch);
1008 if (statclock_disable) {
1010 * The stat interrupt mask is different without the
1011 * statistics clock. Also, don't set the interrupt
1012 * flag which would normally cause the RTC to generate
1013 * interrupts.
1015 rtc_statusb = RTCSB_24HR;
1016 } else {
1017 /* Setting stathz to nonzero early helps avoid races. */
1018 stathz = RTC_NOPROFRATE;
1019 profhz = RTC_PROFRATE;
1022 /* Finish initializing 8253 timer 0. */
1023 #ifdef APIC_IO
1025 apic_8254_intr = isa_apic_irq(0);
1026 apic_8254_trial = 0;
1027 if (apic_8254_intr >= 0 ) {
1028 if (apic_int_type(0, 0) == 3)
1029 apic_8254_trial = 1;
1030 } else {
1031 /* look for ExtInt on pin 0 */
1032 if (apic_int_type(0, 0) == 3) {
1033 apic_8254_intr = apic_irq(0, 0);
1034 setup_8254_mixed_mode();
1035 } else
1036 panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1039 clkdesc = register_int(apic_8254_intr, clkintr, NULL, "clk",
1040 NULL,
1041 INTR_EXCL | INTR_FAST |
1042 INTR_NOPOLL | INTR_MPSAFE |
1043 INTR_NOENTROPY);
1044 machintr_intren(apic_8254_intr);
1046 #else /* APIC_IO */
1048 register_int(0, clkintr, NULL, "clk", NULL,
1049 INTR_EXCL | INTR_FAST |
1050 INTR_NOPOLL | INTR_MPSAFE |
1051 INTR_NOENTROPY);
1052 machintr_intren(ICU_IRQ0);
1054 #endif /* APIC_IO */
1056 /* Initialize RTC. */
1057 writertc(RTC_STATUSA, rtc_statusa);
1058 writertc(RTC_STATUSB, RTCSB_24HR);
1060 if (statclock_disable == 0) {
1061 diag = rtcin(RTC_DIAG);
1062 if (diag != 0)
1063 kprintf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1065 #ifdef APIC_IO
1066 if (isa_apic_irq(8) != 8)
1067 panic("APIC RTC != 8");
1068 #endif /* APIC_IO */
1070 register_int(8, (inthand2_t *)rtcintr, NULL, "rtc", NULL,
1071 INTR_EXCL | INTR_FAST | INTR_NOPOLL |
1072 INTR_NOENTROPY);
1073 machintr_intren(8);
1075 writertc(RTC_STATUSB, rtc_statusb);
1078 #ifdef APIC_IO
1079 if (apic_8254_trial) {
1080 sysclock_t base;
1081 long lastcnt;
1084 * Following code assumes the 8254 is the cpu timer,
1085 * so make sure it is.
1087 KKASSERT(sys_cputimer == &i8254_cputimer);
1089 lastcnt = get_interrupt_counter(apic_8254_intr);
1092 * Force an 8254 Timer0 interrupt and wait 1/100s for
1093 * it to happen, then see if we got it.
1095 kprintf("APIC_IO: Testing 8254 interrupt delivery\n");
1096 i8254_intr_reload(2);
1097 base = sys_cputimer->count();
1098 while (sys_cputimer->count() - base < sys_cputimer->freq / 100)
1099 ; /* nothing */
1100 if (get_interrupt_counter(apic_8254_intr) - lastcnt == 0) {
1102 * The MP table is broken.
1103 * The 8254 was not connected to the specified pin
1104 * on the IO APIC.
1105 * Workaround: Limited variant of mixed mode.
1107 machintr_intrdis(apic_8254_intr);
1108 unregister_int(clkdesc);
1109 kprintf("APIC_IO: Broken MP table detected: "
1110 "8254 is not connected to "
1111 "IOAPIC #%d intpin %d\n",
1112 int_to_apicintpin[apic_8254_intr].ioapic,
1113 int_to_apicintpin[apic_8254_intr].int_pin);
1115 * Revoke current ISA IRQ 0 assignment and
1116 * configure a fallback interrupt routing from
1117 * the 8254 Timer via the 8259 PIC to the
1118 * an ExtInt interrupt line on IOAPIC #0 intpin 0.
1119 * We reuse the low level interrupt handler number.
1121 if (apic_irq(0, 0) < 0) {
1122 revoke_apic_irq(apic_8254_intr);
1123 assign_apic_irq(0, 0, apic_8254_intr);
1125 apic_8254_intr = apic_irq(0, 0);
1126 setup_8254_mixed_mode();
1127 register_int(apic_8254_intr, clkintr, NULL, "clk",
1128 NULL,
1129 INTR_EXCL | INTR_FAST |
1130 INTR_NOPOLL | INTR_MPSAFE |
1131 INTR_NOENTROPY);
1132 machintr_intren(apic_8254_intr);
1136 if (apic_int_type(0, 0) != 3 ||
1137 int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
1138 int_to_apicintpin[apic_8254_intr].int_pin != 0) {
1139 kprintf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
1140 int_to_apicintpin[apic_8254_intr].ioapic,
1141 int_to_apicintpin[apic_8254_intr].int_pin);
1142 } else {
1143 kprintf("APIC_IO: "
1144 "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
1146 #endif
1148 SYSINIT(clocks8254, SI_BOOT2_CLOCKREG, SI_ORDER_FIRST, cpu_initclocks, NULL)
1150 #ifdef APIC_IO
1152 static void
1153 setup_8254_mixed_mode(void)
1156 * Allow 8254 timer to INTerrupt 8259:
1157 * re-initialize master 8259:
1158 * reset; prog 4 bytes, single ICU, edge triggered
1160 outb(IO_ICU1, 0x13);
1161 outb(IO_ICU1 + 1, IDT_OFFSET); /* start vector (unused) */
1162 outb(IO_ICU1 + 1, 0x00); /* ignore slave */
1163 outb(IO_ICU1 + 1, 0x03); /* auto EOI, 8086 */
1164 outb(IO_ICU1 + 1, 0xfe); /* unmask INT0 */
1166 /* program IO APIC for type 3 INT on INT0 */
1167 if (ext_int_setup(0, 0) < 0)
1168 panic("8254 redirect via APIC pin0 impossible!");
1170 #endif
1172 void
1173 setstatclockrate(int newhz)
1175 if (newhz == RTC_PROFRATE)
1176 rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1177 else
1178 rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1179 writertc(RTC_STATUSA, rtc_statusa);
1182 #if 0
1183 static unsigned
1184 tsc_get_timecount(struct timecounter *tc)
1186 return (rdtsc());
1188 #endif
1190 #ifdef KERN_TIMESTAMP
1191 #define KERN_TIMESTAMP_SIZE 16384
1192 static u_long tsc[KERN_TIMESTAMP_SIZE] ;
1193 SYSCTL_OPAQUE(_debug, OID_AUTO, timestamp, CTLFLAG_RD, tsc,
1194 sizeof(tsc), "LU", "Kernel timestamps");
1195 void
1196 _TSTMP(u_int32_t x)
1198 static int i;
1200 tsc[i] = (u_int32_t)rdtsc();
1201 tsc[i+1] = x;
1202 i = i + 2;
1203 if (i >= KERN_TIMESTAMP_SIZE)
1204 i = 0;
1205 tsc[i] = 0; /* mark last entry */
1207 #endif /* KERN_TIMESTAMP */
1213 static int
1214 hw_i8254_timestamp(SYSCTL_HANDLER_ARGS)
1216 sysclock_t count;
1217 __uint64_t tscval;
1218 char buf[32];
1220 crit_enter();
1221 if (sys_cputimer == &i8254_cputimer)
1222 count = sys_cputimer->count();
1223 else
1224 count = 0;
1225 if (tsc_present)
1226 tscval = rdtsc();
1227 else
1228 tscval = 0;
1229 crit_exit();
1230 ksnprintf(buf, sizeof(buf), "%08x %016llx", count, (long long)tscval);
1231 return(SYSCTL_OUT(req, buf, strlen(buf) + 1));
1234 SYSCTL_NODE(_hw, OID_AUTO, i8254, CTLFLAG_RW, 0, "I8254");
1235 SYSCTL_UINT(_hw_i8254, OID_AUTO, freq, CTLFLAG_RD, &i8254_cputimer.freq, 0,
1236 "frequency");
1237 SYSCTL_PROC(_hw_i8254, OID_AUTO, timestamp, CTLTYPE_STRING|CTLFLAG_RD,
1238 0, 0, hw_i8254_timestamp, "A", "");
1240 SYSCTL_INT(_hw, OID_AUTO, tsc_present, CTLFLAG_RD,
1241 &tsc_present, 0, "TSC Available");
1242 SYSCTL_QUAD(_hw, OID_AUTO, tsc_frequency, CTLFLAG_RD,
1243 &tsc_frequency, 0, "TSC Frequency");