nfs: fix real/effective id mismatch in nfs_access
[dragonfly.git] / sys / vm / vm_pageout.c
blobb46b8b033293f0384265836deeeb5593134ba7eb
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
40 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 * Carnegie Mellon requests users of this software to return to
60 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
68 * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69 * $DragonFly: src/sys/vm/vm_pageout.c,v 1.36 2008/07/01 02:02:56 dillon Exp $
73 * The proverbial page-out daemon.
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
103 * System initialization
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static int vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
113 static struct kproc_desc page_kp = {
114 "pagedaemon",
115 vm_pageout,
116 &pagethread
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct thread *vmthread;
125 static struct kproc_desc vm_kp = {
126 "vmdaemon",
127 vm_daemon,
128 &vmthread
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
134 int vm_pages_needed=0; /* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0; /* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0; /* flag saying that the pageout daemon needs pages */
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout; /* XXX */
140 static int vm_daemon_needed;
141 #endif
142 extern int vm_swap_size;
143 static int vm_max_launder = 32;
144 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
145 static int vm_pageout_full_stats_interval = 0;
146 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
147 static int defer_swap_pageouts=0;
148 static int disable_swap_pageouts=0;
150 #if defined(NO_SWAPPING)
151 static int vm_swap_enabled=0;
152 static int vm_swap_idle_enabled=0;
153 #else
154 static int vm_swap_enabled=1;
155 static int vm_swap_idle_enabled=0;
156 #endif
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
159 CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
161 SYSCTL_INT(_vm, OID_AUTO, max_launder,
162 CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
165 CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
167 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
168 CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
171 CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
174 CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
176 #if defined(NO_SWAPPING)
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178 CTLFLAG_RD, &vm_swap_enabled, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180 CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
181 #else
182 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183 CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
184 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185 CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
186 #endif
188 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
189 CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
191 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
192 CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
194 static int pageout_lock_miss;
195 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
196 CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
198 int vm_load;
199 SYSCTL_INT(_vm, OID_AUTO, vm_load,
200 CTLFLAG_RD, &vm_load, 0, "load on the VM system");
201 int vm_load_enable = 1;
202 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
203 CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
204 #ifdef INVARIANTS
205 int vm_load_debug;
206 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
207 CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
208 #endif
210 #define VM_PAGEOUT_PAGE_COUNT 16
211 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
213 int vm_page_max_wired; /* XXX max # of wired pages system-wide */
215 #if !defined(NO_SWAPPING)
216 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
217 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
218 static freeer_fcn_t vm_pageout_object_deactivate_pages;
219 static void vm_req_vmdaemon (void);
220 #endif
221 static void vm_pageout_page_stats(void);
224 * Update vm_load to slow down faulting processes.
226 void
227 vm_fault_ratecheck(void)
229 if (vm_pages_needed) {
230 if (vm_load < 1000)
231 ++vm_load;
232 } else {
233 if (vm_load > 0)
234 --vm_load;
239 * vm_pageout_clean:
241 * Clean the page and remove it from the laundry. The page must not be
242 * busy on-call.
244 * We set the busy bit to cause potential page faults on this page to
245 * block. Note the careful timing, however, the busy bit isn't set till
246 * late and we cannot do anything that will mess with the page.
249 static int
250 vm_pageout_clean(vm_page_t m)
252 vm_object_t object;
253 vm_page_t mc[2*vm_pageout_page_count];
254 int pageout_count;
255 int ib, is, page_base;
256 vm_pindex_t pindex = m->pindex;
258 object = m->object;
261 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
262 * with the new swapper, but we could have serious problems paging
263 * out other object types if there is insufficient memory.
265 * Unfortunately, checking free memory here is far too late, so the
266 * check has been moved up a procedural level.
270 * Don't mess with the page if it's busy, held, or special
272 if ((m->hold_count != 0) ||
273 ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
274 return 0;
277 mc[vm_pageout_page_count] = m;
278 pageout_count = 1;
279 page_base = vm_pageout_page_count;
280 ib = 1;
281 is = 1;
284 * Scan object for clusterable pages.
286 * We can cluster ONLY if: ->> the page is NOT
287 * clean, wired, busy, held, or mapped into a
288 * buffer, and one of the following:
289 * 1) The page is inactive, or a seldom used
290 * active page.
291 * -or-
292 * 2) we force the issue.
294 * During heavy mmap/modification loads the pageout
295 * daemon can really fragment the underlying file
296 * due to flushing pages out of order and not trying
297 * align the clusters (which leave sporatic out-of-order
298 * holes). To solve this problem we do the reverse scan
299 * first and attempt to align our cluster, then do a
300 * forward scan if room remains.
303 more:
304 while (ib && pageout_count < vm_pageout_page_count) {
305 vm_page_t p;
307 if (ib > pindex) {
308 ib = 0;
309 break;
312 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
313 ib = 0;
314 break;
316 if (((p->queue - p->pc) == PQ_CACHE) ||
317 (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318 ib = 0;
319 break;
321 vm_page_test_dirty(p);
322 if ((p->dirty & p->valid) == 0 ||
323 p->queue != PQ_INACTIVE ||
324 p->wire_count != 0 || /* may be held by buf cache */
325 p->hold_count != 0) { /* may be undergoing I/O */
326 ib = 0;
327 break;
329 mc[--page_base] = p;
330 ++pageout_count;
331 ++ib;
333 * alignment boundry, stop here and switch directions. Do
334 * not clear ib.
336 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
337 break;
340 while (pageout_count < vm_pageout_page_count &&
341 pindex + is < object->size) {
342 vm_page_t p;
344 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
345 break;
346 if (((p->queue - p->pc) == PQ_CACHE) ||
347 (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
348 break;
350 vm_page_test_dirty(p);
351 if ((p->dirty & p->valid) == 0 ||
352 p->queue != PQ_INACTIVE ||
353 p->wire_count != 0 || /* may be held by buf cache */
354 p->hold_count != 0) { /* may be undergoing I/O */
355 break;
357 mc[page_base + pageout_count] = p;
358 ++pageout_count;
359 ++is;
363 * If we exhausted our forward scan, continue with the reverse scan
364 * when possible, even past a page boundry. This catches boundry
365 * conditions.
367 if (ib && pageout_count < vm_pageout_page_count)
368 goto more;
371 * we allow reads during pageouts...
373 return vm_pageout_flush(&mc[page_base], pageout_count, 0);
377 * vm_pageout_flush() - launder the given pages
379 * The given pages are laundered. Note that we setup for the start of
380 * I/O ( i.e. busy the page ), mark it read-only, and bump the object
381 * reference count all in here rather then in the parent. If we want
382 * the parent to do more sophisticated things we may have to change
383 * the ordering.
386 vm_pageout_flush(vm_page_t *mc, int count, int flags)
388 vm_object_t object;
389 int pageout_status[count];
390 int numpagedout = 0;
391 int i;
394 * Initiate I/O. Bump the vm_page_t->busy counter.
396 for (i = 0; i < count; i++) {
397 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
398 vm_page_io_start(mc[i]);
402 * We must make the pages read-only. This will also force the
403 * modified bit in the related pmaps to be cleared. The pager
404 * cannot clear the bit for us since the I/O completion code
405 * typically runs from an interrupt. The act of making the page
406 * read-only handles the case for us.
408 for (i = 0; i < count; i++) {
409 vm_page_protect(mc[i], VM_PROT_READ);
412 object = mc[0]->object;
413 vm_object_pip_add(object, count);
415 vm_pager_put_pages(object, mc, count,
416 (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
417 pageout_status);
419 for (i = 0; i < count; i++) {
420 vm_page_t mt = mc[i];
422 switch (pageout_status[i]) {
423 case VM_PAGER_OK:
424 numpagedout++;
425 break;
426 case VM_PAGER_PEND:
427 numpagedout++;
428 break;
429 case VM_PAGER_BAD:
431 * Page outside of range of object. Right now we
432 * essentially lose the changes by pretending it
433 * worked.
435 pmap_clear_modify(mt);
436 vm_page_undirty(mt);
437 break;
438 case VM_PAGER_ERROR:
439 case VM_PAGER_FAIL:
441 * A page typically cannot be paged out when we
442 * have run out of swap. We leave the page
443 * marked inactive and will try to page it out
444 * again later.
446 * Starvation of the active page list is used to
447 * determine when the system is massively memory
448 * starved.
450 break;
451 case VM_PAGER_AGAIN:
452 break;
456 * If the operation is still going, leave the page busy to
457 * block all other accesses. Also, leave the paging in
458 * progress indicator set so that we don't attempt an object
459 * collapse.
461 * For any pages which have completed synchronously,
462 * deactivate the page if we are under a severe deficit.
463 * Do not try to enter them into the cache, though, they
464 * might still be read-heavy.
466 if (pageout_status[i] != VM_PAGER_PEND) {
467 vm_object_pip_wakeup(object);
468 vm_page_io_finish(mt);
469 if (vm_page_count_severe())
470 vm_page_deactivate(mt);
471 #if 0
472 if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
473 vm_page_protect(mt, VM_PROT_READ);
474 #endif
477 return numpagedout;
480 #if !defined(NO_SWAPPING)
482 * vm_pageout_object_deactivate_pages
484 * deactivate enough pages to satisfy the inactive target
485 * requirements or if vm_page_proc_limit is set, then
486 * deactivate all of the pages in the object and its
487 * backing_objects.
489 * The object and map must be locked.
491 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
493 static void
494 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
495 vm_pindex_t desired, int map_remove_only)
497 struct rb_vm_page_scan_info info;
498 int remove_mode;
500 if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
501 return;
503 while (object) {
504 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
505 return;
506 if (object->paging_in_progress)
507 return;
509 remove_mode = map_remove_only;
510 if (object->shadow_count > 1)
511 remove_mode = 1;
514 * scan the objects entire memory queue. spl protection is
515 * required to avoid an interrupt unbusy/free race against
516 * our busy check.
518 crit_enter();
519 info.limit = remove_mode;
520 info.map = map;
521 info.desired = desired;
522 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
523 vm_pageout_object_deactivate_pages_callback,
524 &info
526 crit_exit();
527 object = object->backing_object;
531 static int
532 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
534 struct rb_vm_page_scan_info *info = data;
535 int actcount;
537 if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
538 return(-1);
540 mycpu->gd_cnt.v_pdpages++;
541 if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 ||
542 (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
543 !pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
544 return(0);
547 actcount = pmap_ts_referenced(p);
548 if (actcount) {
549 vm_page_flag_set(p, PG_REFERENCED);
550 } else if (p->flags & PG_REFERENCED) {
551 actcount = 1;
554 if ((p->queue != PQ_ACTIVE) &&
555 (p->flags & PG_REFERENCED)) {
556 vm_page_activate(p);
557 p->act_count += actcount;
558 vm_page_flag_clear(p, PG_REFERENCED);
559 } else if (p->queue == PQ_ACTIVE) {
560 if ((p->flags & PG_REFERENCED) == 0) {
561 p->act_count -= min(p->act_count, ACT_DECLINE);
562 if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) {
563 vm_page_busy(p);
564 vm_page_protect(p, VM_PROT_NONE);
565 vm_page_wakeup(p);
566 vm_page_deactivate(p);
567 } else {
568 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
569 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
571 } else {
572 vm_page_activate(p);
573 vm_page_flag_clear(p, PG_REFERENCED);
574 if (p->act_count < (ACT_MAX - ACT_ADVANCE))
575 p->act_count += ACT_ADVANCE;
576 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
577 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
579 } else if (p->queue == PQ_INACTIVE) {
580 vm_page_busy(p);
581 vm_page_protect(p, VM_PROT_NONE);
582 vm_page_wakeup(p);
584 return(0);
588 * deactivate some number of pages in a map, try to do it fairly, but
589 * that is really hard to do.
591 static void
592 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
594 vm_map_entry_t tmpe;
595 vm_object_t obj, bigobj;
596 int nothingwired;
598 if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
599 return;
602 bigobj = NULL;
603 nothingwired = TRUE;
606 * first, search out the biggest object, and try to free pages from
607 * that.
609 tmpe = map->header.next;
610 while (tmpe != &map->header) {
611 switch(tmpe->maptype) {
612 case VM_MAPTYPE_NORMAL:
613 case VM_MAPTYPE_VPAGETABLE:
614 obj = tmpe->object.vm_object;
615 if ((obj != NULL) && (obj->shadow_count <= 1) &&
616 ((bigobj == NULL) ||
617 (bigobj->resident_page_count < obj->resident_page_count))) {
618 bigobj = obj;
620 break;
621 default:
622 break;
624 if (tmpe->wired_count > 0)
625 nothingwired = FALSE;
626 tmpe = tmpe->next;
629 if (bigobj)
630 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
633 * Next, hunt around for other pages to deactivate. We actually
634 * do this search sort of wrong -- .text first is not the best idea.
636 tmpe = map->header.next;
637 while (tmpe != &map->header) {
638 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
639 break;
640 switch(tmpe->maptype) {
641 case VM_MAPTYPE_NORMAL:
642 case VM_MAPTYPE_VPAGETABLE:
643 obj = tmpe->object.vm_object;
644 if (obj)
645 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
646 break;
647 default:
648 break;
650 tmpe = tmpe->next;
654 * Remove all mappings if a process is swapped out, this will free page
655 * table pages.
657 if (desired == 0 && nothingwired)
658 pmap_remove(vm_map_pmap(map),
659 VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
660 vm_map_unlock(map);
662 #endif
665 * Don't try to be fancy - being fancy can lead to vnode deadlocks. We
666 * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
667 * be trivially freed.
669 void
670 vm_pageout_page_free(vm_page_t m)
672 vm_object_t object = m->object;
673 int type = object->type;
675 if (type == OBJT_SWAP || type == OBJT_DEFAULT)
676 vm_object_reference(object);
677 vm_page_busy(m);
678 vm_page_protect(m, VM_PROT_NONE);
679 vm_page_free(m);
680 if (type == OBJT_SWAP || type == OBJT_DEFAULT)
681 vm_object_deallocate(object);
685 * vm_pageout_scan does the dirty work for the pageout daemon.
687 struct vm_pageout_scan_info {
688 struct proc *bigproc;
689 vm_offset_t bigsize;
692 static int vm_pageout_scan_callback(struct proc *p, void *data);
694 static int
695 vm_pageout_scan(int pass)
697 struct vm_pageout_scan_info info;
698 vm_page_t m, next;
699 struct vm_page marker;
700 int maxscan, pcount;
701 int recycle_count;
702 int inactive_shortage, active_shortage;
703 vm_object_t object;
704 int actcount;
705 int vnodes_skipped = 0;
706 int maxlaunder;
709 * Do whatever cleanup that the pmap code can.
711 pmap_collect();
714 * Calculate our target for the number of free+cache pages we
715 * want to get to. This is higher then the number that causes
716 * allocations to stall (severe) in order to provide hysteresis,
717 * and if we don't make it all the way but get to the minimum
718 * we're happy.
720 inactive_shortage = vm_paging_target() + vm_pageout_deficit;
721 vm_pageout_deficit = 0;
724 * Initialize our marker
726 bzero(&marker, sizeof(marker));
727 marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
728 marker.queue = PQ_INACTIVE;
729 marker.wire_count = 1;
732 * Start scanning the inactive queue for pages we can move to the
733 * cache or free. The scan will stop when the target is reached or
734 * we have scanned the entire inactive queue. Note that m->act_count
735 * is not used to form decisions for the inactive queue, only for the
736 * active queue.
738 * maxlaunder limits the number of dirty pages we flush per scan.
739 * For most systems a smaller value (16 or 32) is more robust under
740 * extreme memory and disk pressure because any unnecessary writes
741 * to disk can result in extreme performance degredation. However,
742 * systems with excessive dirty pages (especially when MAP_NOSYNC is
743 * used) will die horribly with limited laundering. If the pageout
744 * daemon cannot clean enough pages in the first pass, we let it go
745 * all out in succeeding passes.
747 if ((maxlaunder = vm_max_launder) <= 1)
748 maxlaunder = 1;
749 if (pass)
750 maxlaunder = 10000;
753 * We will generally be in a critical section throughout the
754 * scan, but we can release it temporarily when we are sitting on a
755 * non-busy page without fear. this is required to prevent an
756 * interrupt from unbusying or freeing a page prior to our busy
757 * check, leaving us on the wrong queue or checking the wrong
758 * page.
760 crit_enter();
761 rescan0:
762 maxscan = vmstats.v_inactive_count;
763 for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
764 m != NULL && maxscan-- > 0 && inactive_shortage > 0;
765 m = next
767 mycpu->gd_cnt.v_pdpages++;
770 * Give interrupts a chance
772 crit_exit();
773 crit_enter();
776 * It's easier for some of the conditions below to just loop
777 * and catch queue changes here rather then check everywhere
778 * else.
780 if (m->queue != PQ_INACTIVE)
781 goto rescan0;
782 next = TAILQ_NEXT(m, pageq);
785 * skip marker pages
787 if (m->flags & PG_MARKER)
788 continue;
791 * A held page may be undergoing I/O, so skip it.
793 if (m->hold_count) {
794 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
795 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
796 continue;
800 * Dont mess with busy pages, keep in the front of the
801 * queue, most likely are being paged out.
803 if (m->busy || (m->flags & PG_BUSY)) {
804 continue;
807 if (m->object->ref_count == 0) {
809 * If the object is not being used, we ignore previous
810 * references.
812 vm_page_flag_clear(m, PG_REFERENCED);
813 pmap_clear_reference(m);
815 } else if (((m->flags & PG_REFERENCED) == 0) &&
816 (actcount = pmap_ts_referenced(m))) {
818 * Otherwise, if the page has been referenced while
819 * in the inactive queue, we bump the "activation
820 * count" upwards, making it less likely that the
821 * page will be added back to the inactive queue
822 * prematurely again. Here we check the page tables
823 * (or emulated bits, if any), given the upper level
824 * VM system not knowing anything about existing
825 * references.
827 vm_page_activate(m);
828 m->act_count += (actcount + ACT_ADVANCE);
829 continue;
833 * If the upper level VM system knows about any page
834 * references, we activate the page. We also set the
835 * "activation count" higher than normal so that we will less
836 * likely place pages back onto the inactive queue again.
838 if ((m->flags & PG_REFERENCED) != 0) {
839 vm_page_flag_clear(m, PG_REFERENCED);
840 actcount = pmap_ts_referenced(m);
841 vm_page_activate(m);
842 m->act_count += (actcount + ACT_ADVANCE + 1);
843 continue;
847 * If the upper level VM system doesn't know anything about
848 * the page being dirty, we have to check for it again. As
849 * far as the VM code knows, any partially dirty pages are
850 * fully dirty.
852 * Pages marked PG_WRITEABLE may be mapped into the user
853 * address space of a process running on another cpu. A
854 * user process (without holding the MP lock) running on
855 * another cpu may be able to touch the page while we are
856 * trying to remove it. vm_page_cache() will handle this
857 * case for us.
859 if (m->dirty == 0) {
860 vm_page_test_dirty(m);
861 } else {
862 vm_page_dirty(m);
865 if (m->valid == 0) {
867 * Invalid pages can be easily freed
869 vm_pageout_page_free(m);
870 mycpu->gd_cnt.v_dfree++;
871 --inactive_shortage;
872 } else if (m->dirty == 0) {
874 * Clean pages can be placed onto the cache queue.
875 * This effectively frees them.
877 vm_page_cache(m);
878 --inactive_shortage;
879 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
881 * Dirty pages need to be paged out, but flushing
882 * a page is extremely expensive verses freeing
883 * a clean page. Rather then artificially limiting
884 * the number of pages we can flush, we instead give
885 * dirty pages extra priority on the inactive queue
886 * by forcing them to be cycled through the queue
887 * twice before being flushed, after which the
888 * (now clean) page will cycle through once more
889 * before being freed. This significantly extends
890 * the thrash point for a heavily loaded machine.
892 vm_page_flag_set(m, PG_WINATCFLS);
893 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
894 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
895 } else if (maxlaunder > 0) {
897 * We always want to try to flush some dirty pages if
898 * we encounter them, to keep the system stable.
899 * Normally this number is small, but under extreme
900 * pressure where there are insufficient clean pages
901 * on the inactive queue, we may have to go all out.
903 int swap_pageouts_ok;
904 struct vnode *vp = NULL;
906 object = m->object;
908 if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
909 swap_pageouts_ok = 1;
910 } else {
911 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
912 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
913 vm_page_count_min(0));
918 * We don't bother paging objects that are "dead".
919 * Those objects are in a "rundown" state.
921 if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
922 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
923 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
924 continue;
928 * The object is already known NOT to be dead. It
929 * is possible for the vget() to block the whole
930 * pageout daemon, but the new low-memory handling
931 * code should prevent it.
933 * The previous code skipped locked vnodes and, worse,
934 * reordered pages in the queue. This results in
935 * completely non-deterministic operation because,
936 * quite often, a vm_fault has initiated an I/O and
937 * is holding a locked vnode at just the point where
938 * the pageout daemon is woken up.
940 * We can't wait forever for the vnode lock, we might
941 * deadlock due to a vn_read() getting stuck in
942 * vm_wait while holding this vnode. We skip the
943 * vnode if we can't get it in a reasonable amount
944 * of time.
947 if (object->type == OBJT_VNODE) {
948 vp = object->handle;
950 if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK)) {
951 ++pageout_lock_miss;
952 if (object->flags & OBJ_MIGHTBEDIRTY)
953 vnodes_skipped++;
954 continue;
958 * The page might have been moved to another
959 * queue during potential blocking in vget()
960 * above. The page might have been freed and
961 * reused for another vnode. The object might
962 * have been reused for another vnode.
964 if (m->queue != PQ_INACTIVE ||
965 m->object != object ||
966 object->handle != vp) {
967 if (object->flags & OBJ_MIGHTBEDIRTY)
968 vnodes_skipped++;
969 vput(vp);
970 continue;
974 * The page may have been busied during the
975 * blocking in vput(); We don't move the
976 * page back onto the end of the queue so that
977 * statistics are more correct if we don't.
979 if (m->busy || (m->flags & PG_BUSY)) {
980 vput(vp);
981 continue;
985 * If the page has become held it might
986 * be undergoing I/O, so skip it
988 if (m->hold_count) {
989 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
990 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
991 if (object->flags & OBJ_MIGHTBEDIRTY)
992 vnodes_skipped++;
993 vput(vp);
994 continue;
999 * If a page is dirty, then it is either being washed
1000 * (but not yet cleaned) or it is still in the
1001 * laundry. If it is still in the laundry, then we
1002 * start the cleaning operation.
1004 * This operation may cluster, invalidating the 'next'
1005 * pointer. To prevent an inordinate number of
1006 * restarts we use our marker to remember our place.
1008 * decrement inactive_shortage on success to account
1009 * for the (future) cleaned page. Otherwise we
1010 * could wind up laundering or cleaning too many
1011 * pages.
1013 TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1014 if (vm_pageout_clean(m) != 0) {
1015 --inactive_shortage;
1016 --maxlaunder;
1018 next = TAILQ_NEXT(&marker, pageq);
1019 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1020 if (vp != NULL)
1021 vput(vp);
1026 * We want to move pages from the active queue to the inactive
1027 * queue to get the inactive queue to the inactive target. If
1028 * we still have a page shortage from above we try to directly free
1029 * clean pages instead of moving them.
1031 * If we do still have a shortage we keep track of the number of
1032 * pages we free or cache (recycle_count) as a measure of thrashing
1033 * between the active and inactive queues.
1035 * We do not do this if we were able to satisfy the requirement
1036 * entirely from the inactive queue.
1038 * NOTE: Both variables can end up negative.
1039 * NOTE: We are still in a critical section.
1041 active_shortage = vmstats.v_inactive_target - vmstats.v_inactive_count;
1042 if (inactive_shortage <= 0)
1043 active_shortage = 0;
1045 pcount = vmstats.v_active_count;
1046 recycle_count = 0;
1047 m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1049 while ((m != NULL) && (pcount-- > 0) &&
1050 (inactive_shortage > 0 || active_shortage > 0)
1053 * Give interrupts a chance.
1055 crit_exit();
1056 crit_enter();
1059 * If the page was ripped out from under us, just stop.
1061 if (m->queue != PQ_ACTIVE)
1062 break;
1063 next = TAILQ_NEXT(m, pageq);
1066 * Don't deactivate pages that are busy.
1068 if ((m->busy != 0) ||
1069 (m->flags & PG_BUSY) ||
1070 (m->hold_count != 0)) {
1071 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1072 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1073 m = next;
1074 continue;
1078 * The count for pagedaemon pages is done after checking the
1079 * page for eligibility...
1081 mycpu->gd_cnt.v_pdpages++;
1084 * Check to see "how much" the page has been used and clear
1085 * the tracking access bits. If the object has no references
1086 * don't bother paying the expense.
1088 actcount = 0;
1089 if (m->object->ref_count != 0) {
1090 if (m->flags & PG_REFERENCED)
1091 ++actcount;
1092 actcount += pmap_ts_referenced(m);
1093 if (actcount) {
1094 m->act_count += ACT_ADVANCE + actcount;
1095 if (m->act_count > ACT_MAX)
1096 m->act_count = ACT_MAX;
1099 vm_page_flag_clear(m, PG_REFERENCED);
1102 * actcount is only valid if the object ref_count is non-zero.
1104 if (actcount && m->object->ref_count != 0) {
1105 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1106 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1107 } else {
1108 m->act_count -= min(m->act_count, ACT_DECLINE);
1109 if (vm_pageout_algorithm ||
1110 m->object->ref_count == 0 ||
1111 m->act_count < pass + 1
1114 * Deactivate the page. If we had a
1115 * shortage from our inactive scan try to
1116 * free (cache) the page instead.
1118 --active_shortage;
1119 if (inactive_shortage > 0 ||
1120 m->object->ref_count == 0) {
1121 if (inactive_shortage > 0)
1122 ++recycle_count;
1123 vm_page_busy(m);
1124 vm_page_protect(m, VM_PROT_NONE);
1125 vm_page_wakeup(m);
1126 if (m->dirty == 0) {
1127 --inactive_shortage;
1128 vm_page_cache(m);
1129 } else {
1130 vm_page_deactivate(m);
1132 } else {
1133 vm_page_deactivate(m);
1135 } else {
1136 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1137 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1140 m = next;
1144 * We try to maintain some *really* free pages, this allows interrupt
1145 * code to be guaranteed space. Since both cache and free queues
1146 * are considered basically 'free', moving pages from cache to free
1147 * does not effect other calculations.
1149 * NOTE: we are still in a critical section.
1151 * Pages moved from PQ_CACHE to totally free are not counted in the
1152 * pages_freed counter.
1154 while (vmstats.v_free_count < vmstats.v_free_reserved) {
1155 static int cache_rover = 0;
1156 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1157 if (m == NULL)
1158 break;
1159 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1160 m->busy ||
1161 m->hold_count ||
1162 m->wire_count) {
1163 #ifdef INVARIANTS
1164 kprintf("Warning: busy page %p found in cache\n", m);
1165 #endif
1166 vm_page_deactivate(m);
1167 continue;
1169 KKASSERT((m->flags & PG_MAPPED) == 0);
1170 KKASSERT(m->dirty == 0);
1171 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1172 vm_pageout_page_free(m);
1173 mycpu->gd_cnt.v_dfree++;
1176 crit_exit();
1178 #if !defined(NO_SWAPPING)
1180 * Idle process swapout -- run once per second.
1182 if (vm_swap_idle_enabled) {
1183 static long lsec;
1184 if (time_second != lsec) {
1185 vm_pageout_req_swapout |= VM_SWAP_IDLE;
1186 vm_req_vmdaemon();
1187 lsec = time_second;
1190 #endif
1193 * If we didn't get enough free pages, and we have skipped a vnode
1194 * in a writeable object, wakeup the sync daemon. And kick swapout
1195 * if we did not get enough free pages.
1197 if (vm_paging_target() > 0) {
1198 if (vnodes_skipped && vm_page_count_min(0))
1199 speedup_syncer();
1200 #if !defined(NO_SWAPPING)
1201 if (vm_swap_enabled && vm_page_count_target()) {
1202 vm_req_vmdaemon();
1203 vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1205 #endif
1209 * Handle catastrophic conditions. Under good conditions we should
1210 * be at the target, well beyond our minimum. If we could not even
1211 * reach our minimum the system is under heavy stress.
1213 * Determine whether we have run out of memory. This occurs when
1214 * swap_pager_full is TRUE and the only pages left in the page
1215 * queues are dirty. We will still likely have page shortages.
1217 * - swap_pager_full is set if insufficient swap was
1218 * available to satisfy a requested pageout.
1220 * - the inactive queue is bloated (4 x size of active queue),
1221 * meaning it is unable to get rid of dirty pages and.
1223 * - vm_page_count_min() without counting pages recycled from the
1224 * active queue (recycle_count) means we could not recover
1225 * enough pages to meet bare minimum needs. This test only
1226 * works if the inactive queue is bloated.
1228 * - due to a positive inactive_shortage we shifted the remaining
1229 * dirty pages from the active queue to the inactive queue
1230 * trying to find clean ones to free.
1232 if (swap_pager_full && vm_page_count_min(recycle_count))
1233 kprintf("Warning: system low on memory+swap!\n");
1234 if (swap_pager_full && vm_page_count_min(recycle_count) &&
1235 vmstats.v_inactive_count > vmstats.v_active_count * 4 &&
1236 inactive_shortage > 0) {
1238 * Kill something.
1240 info.bigproc = NULL;
1241 info.bigsize = 0;
1242 allproc_scan(vm_pageout_scan_callback, &info);
1243 if (info.bigproc != NULL) {
1244 killproc(info.bigproc, "out of swap space");
1245 info.bigproc->p_nice = PRIO_MIN;
1246 info.bigproc->p_usched->resetpriority(
1247 FIRST_LWP_IN_PROC(info.bigproc));
1248 wakeup(&vmstats.v_free_count);
1249 PRELE(info.bigproc);
1252 return(inactive_shortage);
1255 static int
1256 vm_pageout_scan_callback(struct proc *p, void *data)
1258 struct vm_pageout_scan_info *info = data;
1259 vm_offset_t size;
1262 * Never kill system processes or init. If we have configured swap
1263 * then try to avoid killing low-numbered pids.
1265 if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1266 ((p->p_pid < 48) && (vm_swap_size != 0))) {
1267 return (0);
1271 * if the process is in a non-running type state,
1272 * don't touch it.
1274 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1275 return (0);
1278 * Get the approximate process size. Note that anonymous pages
1279 * with backing swap will be counted twice, but there should not
1280 * be too many such pages due to the stress the VM system is
1281 * under at this point.
1283 size = vmspace_anonymous_count(p->p_vmspace) +
1284 vmspace_swap_count(p->p_vmspace);
1287 * If the this process is bigger than the biggest one
1288 * remember it.
1290 if (info->bigsize < size) {
1291 if (info->bigproc)
1292 PRELE(info->bigproc);
1293 PHOLD(p);
1294 info->bigproc = p;
1295 info->bigsize = size;
1297 return(0);
1301 * This routine tries to maintain the pseudo LRU active queue,
1302 * so that during long periods of time where there is no paging,
1303 * that some statistic accumulation still occurs. This code
1304 * helps the situation where paging just starts to occur.
1306 static void
1307 vm_pageout_page_stats(void)
1309 vm_page_t m,next;
1310 int pcount,tpcount; /* Number of pages to check */
1311 static int fullintervalcount = 0;
1312 int page_shortage;
1314 page_shortage =
1315 (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1316 (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1318 if (page_shortage <= 0)
1319 return;
1321 crit_enter();
1323 pcount = vmstats.v_active_count;
1324 fullintervalcount += vm_pageout_stats_interval;
1325 if (fullintervalcount < vm_pageout_full_stats_interval) {
1326 tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1327 if (pcount > tpcount)
1328 pcount = tpcount;
1329 } else {
1330 fullintervalcount = 0;
1333 m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1334 while ((m != NULL) && (pcount-- > 0)) {
1335 int actcount;
1337 if (m->queue != PQ_ACTIVE) {
1338 break;
1341 next = TAILQ_NEXT(m, pageq);
1343 * Don't deactivate pages that are busy.
1345 if ((m->busy != 0) ||
1346 (m->flags & PG_BUSY) ||
1347 (m->hold_count != 0)) {
1348 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1349 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1350 m = next;
1351 continue;
1354 actcount = 0;
1355 if (m->flags & PG_REFERENCED) {
1356 vm_page_flag_clear(m, PG_REFERENCED);
1357 actcount += 1;
1360 actcount += pmap_ts_referenced(m);
1361 if (actcount) {
1362 m->act_count += ACT_ADVANCE + actcount;
1363 if (m->act_count > ACT_MAX)
1364 m->act_count = ACT_MAX;
1365 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1366 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1367 } else {
1368 if (m->act_count == 0) {
1370 * We turn off page access, so that we have
1371 * more accurate RSS stats. We don't do this
1372 * in the normal page deactivation when the
1373 * system is loaded VM wise, because the
1374 * cost of the large number of page protect
1375 * operations would be higher than the value
1376 * of doing the operation.
1378 vm_page_busy(m);
1379 vm_page_protect(m, VM_PROT_NONE);
1380 vm_page_wakeup(m);
1381 vm_page_deactivate(m);
1382 } else {
1383 m->act_count -= min(m->act_count, ACT_DECLINE);
1384 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1385 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1389 m = next;
1391 crit_exit();
1394 static int
1395 vm_pageout_free_page_calc(vm_size_t count)
1397 if (count < vmstats.v_page_count)
1398 return 0;
1400 * free_reserved needs to include enough for the largest swap pager
1401 * structures plus enough for any pv_entry structs when paging.
1403 if (vmstats.v_page_count > 1024)
1404 vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1405 else
1406 vmstats.v_free_min = 4;
1407 vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1408 vmstats.v_interrupt_free_min;
1409 vmstats.v_free_reserved = vm_pageout_page_count +
1410 vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1411 vmstats.v_free_severe = vmstats.v_free_min / 2;
1412 vmstats.v_free_min += vmstats.v_free_reserved;
1413 vmstats.v_free_severe += vmstats.v_free_reserved;
1414 return 1;
1419 * vm_pageout is the high level pageout daemon.
1421 static void
1422 vm_pageout(void)
1424 int pass;
1425 int inactive_shortage;
1428 * Initialize some paging parameters.
1430 curthread->td_flags |= TDF_SYSTHREAD;
1432 vmstats.v_interrupt_free_min = 2;
1433 if (vmstats.v_page_count < 2000)
1434 vm_pageout_page_count = 8;
1436 vm_pageout_free_page_calc(vmstats.v_page_count);
1439 * v_free_target and v_cache_min control pageout hysteresis. Note
1440 * that these are more a measure of the VM cache queue hysteresis
1441 * then the VM free queue. Specifically, v_free_target is the
1442 * high water mark (free+cache pages).
1444 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1445 * low water mark, while v_free_min is the stop. v_cache_min must
1446 * be big enough to handle memory needs while the pageout daemon
1447 * is signalled and run to free more pages.
1449 if (vmstats.v_free_count > 6144)
1450 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1451 else
1452 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1454 if (vmstats.v_free_count > 2048) {
1455 vmstats.v_cache_min = vmstats.v_free_target;
1456 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1457 vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1458 } else {
1459 vmstats.v_cache_min = 0;
1460 vmstats.v_cache_max = 0;
1461 vmstats.v_inactive_target = vmstats.v_free_count / 4;
1463 if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1464 vmstats.v_inactive_target = vmstats.v_free_count / 3;
1466 /* XXX does not really belong here */
1467 if (vm_page_max_wired == 0)
1468 vm_page_max_wired = vmstats.v_free_count / 3;
1470 if (vm_pageout_stats_max == 0)
1471 vm_pageout_stats_max = vmstats.v_free_target;
1474 * Set interval in seconds for stats scan.
1476 if (vm_pageout_stats_interval == 0)
1477 vm_pageout_stats_interval = 5;
1478 if (vm_pageout_full_stats_interval == 0)
1479 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1483 * Set maximum free per pass
1485 if (vm_pageout_stats_free_max == 0)
1486 vm_pageout_stats_free_max = 5;
1488 swap_pager_swap_init();
1489 pass = 0;
1492 * The pageout daemon is never done, so loop forever.
1494 while (TRUE) {
1495 int error;
1497 if (vm_pages_needed == 0) {
1499 * Wait for an action request
1501 error = tsleep(&vm_pages_needed,
1502 0, "psleep",
1503 vm_pageout_stats_interval * hz);
1504 if (error && vm_pages_needed == 0) {
1505 vm_pageout_page_stats();
1506 continue;
1508 vm_pages_needed = 1;
1512 * If we have enough free memory, wakeup waiters.
1514 crit_enter();
1515 if (!vm_page_count_min(0))
1516 wakeup(&vmstats.v_free_count);
1517 mycpu->gd_cnt.v_pdwakeups++;
1518 crit_exit();
1519 inactive_shortage = vm_pageout_scan(pass);
1522 * Try to avoid thrashing the system with activity.
1524 if (inactive_shortage > 0) {
1525 ++pass;
1526 if (swap_pager_full) {
1528 * Running out of memory, catastrophic back-off
1529 * to one-second intervals.
1531 tsleep(&vm_pages_needed, 0, "pdelay", hz);
1532 } else if (pass < 10 && vm_pages_needed > 1) {
1534 * Normal operation, additional processes
1535 * have already kicked us. Retry immediately.
1537 } else if (pass < 10) {
1539 * Normal operation, fewer processes. Delay
1540 * a bit but allow wakeups.
1542 vm_pages_needed = 0;
1543 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1544 vm_pages_needed = 1;
1545 } else {
1547 * We've taken too many passes, forced delay.
1549 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1551 } else {
1552 pass = 0;
1553 vm_pages_needed = 0;
1559 * Called after allocating a page out of the cache or free queue
1560 * to possibly wake the pagedaemon up to replentish our supply.
1562 * We try to generate some hysteresis by waking the pagedaemon up
1563 * when our free+cache pages go below the severe level. The pagedaemon
1564 * tries to get the count back up to at least the minimum, and through
1565 * to the target level if possible.
1567 * If the pagedaemon is already active bump vm_pages_needed as a hint
1568 * that there are even more requests pending.
1570 void
1571 pagedaemon_wakeup(void)
1573 if (vm_page_count_severe() && curthread != pagethread) {
1574 if (vm_pages_needed == 0) {
1575 vm_pages_needed = 1;
1576 wakeup(&vm_pages_needed);
1577 } else if (vm_page_count_min(0)) {
1578 ++vm_pages_needed;
1583 #if !defined(NO_SWAPPING)
1584 static void
1585 vm_req_vmdaemon(void)
1587 static int lastrun = 0;
1589 if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1590 wakeup(&vm_daemon_needed);
1591 lastrun = ticks;
1595 static int vm_daemon_callback(struct proc *p, void *data __unused);
1597 static void
1598 vm_daemon(void)
1600 while (TRUE) {
1601 tsleep(&vm_daemon_needed, 0, "psleep", 0);
1602 if (vm_pageout_req_swapout) {
1603 swapout_procs(vm_pageout_req_swapout);
1604 vm_pageout_req_swapout = 0;
1607 * scan the processes for exceeding their rlimits or if
1608 * process is swapped out -- deactivate pages
1610 allproc_scan(vm_daemon_callback, NULL);
1614 static int
1615 vm_daemon_callback(struct proc *p, void *data __unused)
1617 vm_pindex_t limit, size;
1620 * if this is a system process or if we have already
1621 * looked at this process, skip it.
1623 if (p->p_flag & (P_SYSTEM | P_WEXIT))
1624 return (0);
1627 * if the process is in a non-running type state,
1628 * don't touch it.
1630 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1631 return (0);
1634 * get a limit
1636 limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1637 p->p_rlimit[RLIMIT_RSS].rlim_max));
1640 * let processes that are swapped out really be
1641 * swapped out. Set the limit to nothing to get as
1642 * many pages out to swap as possible.
1644 if (p->p_flag & P_SWAPPEDOUT)
1645 limit = 0;
1647 size = vmspace_resident_count(p->p_vmspace);
1648 if (limit >= 0 && size >= limit) {
1649 vm_pageout_map_deactivate_pages(
1650 &p->p_vmspace->vm_map, limit);
1652 return (0);
1655 #endif