nfs: fix real/effective id mismatch in nfs_access
[dragonfly.git] / sys / vm / vm_fault.c
blob0fae06422ffe637c1ae50ce8a6942e38bf878a24
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 * Carnegie Mellon requests users of this software to return to
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
69 * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70 * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
74 * Page fault handling module.
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vkernel.h>
85 #include <sys/sfbuf.h>
86 #include <sys/lock.h>
87 #include <sys/sysctl.h>
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_pageout.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_pager.h>
98 #include <vm/vnode_pager.h>
99 #include <vm/vm_extern.h>
101 #include <sys/thread2.h>
102 #include <vm/vm_page2.h>
104 #define VM_FAULT_READ_AHEAD 8
105 #define VM_FAULT_READ_BEHIND 7
106 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
108 struct faultstate {
109 vm_page_t m;
110 vm_object_t object;
111 vm_pindex_t pindex;
112 vm_prot_t prot;
113 vm_page_t first_m;
114 vm_object_t first_object;
115 vm_prot_t first_prot;
116 vm_map_t map;
117 vm_map_entry_t entry;
118 int lookup_still_valid;
119 int didlimit;
120 int hardfault;
121 int fault_flags;
122 int map_generation;
123 boolean_t wired;
124 struct vnode *vp;
127 static int burst_fault = 1;
128 SYSCTL_INT(_vm, OID_AUTO, burst_fault, CTLFLAG_RW, &burst_fault, 0, "");
130 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
131 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
132 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
133 static int vm_fault_ratelimit(struct vmspace *);
135 static __inline void
136 release_page(struct faultstate *fs)
138 vm_page_deactivate(fs->m);
139 vm_page_wakeup(fs->m);
140 fs->m = NULL;
143 static __inline void
144 unlock_map(struct faultstate *fs)
146 if (fs->lookup_still_valid && fs->map) {
147 vm_map_lookup_done(fs->map, fs->entry, 0);
148 fs->lookup_still_valid = FALSE;
153 * Clean up after a successful call to vm_fault_object() so another call
154 * to vm_fault_object() can be made.
156 static void
157 _cleanup_successful_fault(struct faultstate *fs, int relock)
159 if (fs->object != fs->first_object) {
160 vm_page_free(fs->first_m);
161 vm_object_pip_wakeup(fs->object);
162 fs->first_m = NULL;
164 fs->object = fs->first_object;
165 if (relock && fs->lookup_still_valid == FALSE) {
166 if (fs->map)
167 vm_map_lock_read(fs->map);
168 fs->lookup_still_valid = TRUE;
172 static void
173 _unlock_things(struct faultstate *fs, int dealloc)
175 vm_object_pip_wakeup(fs->first_object);
176 _cleanup_successful_fault(fs, 0);
177 if (dealloc) {
178 vm_object_deallocate(fs->first_object);
179 fs->first_object = NULL;
181 unlock_map(fs);
182 if (fs->vp != NULL) {
183 vput(fs->vp);
184 fs->vp = NULL;
188 #define unlock_things(fs) _unlock_things(fs, 0)
189 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
190 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
193 * TRYPAGER
195 * Determine if the pager for the current object *might* contain the page.
197 * We only need to try the pager if this is not a default object (default
198 * objects are zero-fill and have no real pager), and if we are not taking
199 * a wiring fault or if the FS entry is wired.
201 #define TRYPAGER(fs) \
202 (fs->object->type != OBJT_DEFAULT && \
203 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
206 * vm_fault:
208 * Handle a page fault occuring at the given address, requiring the given
209 * permissions, in the map specified. If successful, the page is inserted
210 * into the associated physical map.
212 * NOTE: The given address should be truncated to the proper page address.
214 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
215 * a standard error specifying why the fault is fatal is returned.
217 * The map in question must be referenced, and remains so.
218 * The caller may hold no locks.
221 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
223 int result;
224 vm_pindex_t first_pindex;
225 struct faultstate fs;
227 mycpu->gd_cnt.v_vm_faults++;
229 fs.didlimit = 0;
230 fs.hardfault = 0;
231 fs.fault_flags = fault_flags;
233 RetryFault:
235 * Find the vm_map_entry representing the backing store and resolve
236 * the top level object and page index. This may have the side
237 * effect of executing a copy-on-write on the map entry and/or
238 * creating a shadow object, but will not COW any actual VM pages.
240 * On success fs.map is left read-locked and various other fields
241 * are initialized but not otherwise referenced or locked.
243 * NOTE! vm_map_lookup will try to upgrade the fault_type to
244 * VM_FAULT_WRITE if the map entry is a virtual page table and also
245 * writable, so we can set the 'A'accessed bit in the virtual page
246 * table entry.
248 fs.map = map;
249 result = vm_map_lookup(&fs.map, vaddr, fault_type,
250 &fs.entry, &fs.first_object,
251 &first_pindex, &fs.first_prot, &fs.wired);
254 * If the lookup failed or the map protections are incompatible,
255 * the fault generally fails. However, if the caller is trying
256 * to do a user wiring we have more work to do.
258 if (result != KERN_SUCCESS) {
259 if (result != KERN_PROTECTION_FAILURE)
260 return result;
261 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
262 return result;
265 * If we are user-wiring a r/w segment, and it is COW, then
266 * we need to do the COW operation. Note that we don't
267 * currently COW RO sections now, because it is NOT desirable
268 * to COW .text. We simply keep .text from ever being COW'ed
269 * and take the heat that one cannot debug wired .text sections.
271 result = vm_map_lookup(&fs.map, vaddr,
272 VM_PROT_READ|VM_PROT_WRITE|
273 VM_PROT_OVERRIDE_WRITE,
274 &fs.entry, &fs.first_object,
275 &first_pindex, &fs.first_prot,
276 &fs.wired);
277 if (result != KERN_SUCCESS)
278 return result;
281 * If we don't COW now, on a user wire, the user will never
282 * be able to write to the mapping. If we don't make this
283 * restriction, the bookkeeping would be nearly impossible.
285 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
286 fs.entry->max_protection &= ~VM_PROT_WRITE;
290 * fs.map is read-locked
292 * Misc checks. Save the map generation number to detect races.
294 fs.map_generation = fs.map->timestamp;
296 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
297 panic("vm_fault: fault on nofault entry, addr: %lx",
298 (u_long)vaddr);
302 * A system map entry may return a NULL object. No object means
303 * no pager means an unrecoverable kernel fault.
305 if (fs.first_object == NULL) {
306 panic("vm_fault: unrecoverable fault at %p in entry %p",
307 (void *)vaddr, fs.entry);
311 * Make a reference to this object to prevent its disposal while we
312 * are messing with it. Once we have the reference, the map is free
313 * to be diddled. Since objects reference their shadows (and copies),
314 * they will stay around as well.
316 * Bump the paging-in-progress count to prevent size changes (e.g.
317 * truncation operations) during I/O. This must be done after
318 * obtaining the vnode lock in order to avoid possible deadlocks.
320 vm_object_reference(fs.first_object);
321 fs.vp = vnode_pager_lock(fs.first_object);
322 vm_object_pip_add(fs.first_object, 1);
324 fs.lookup_still_valid = TRUE;
325 fs.first_m = NULL;
326 fs.object = fs.first_object; /* so unlock_and_deallocate works */
329 * If the entry is wired we cannot change the page protection.
331 if (fs.wired)
332 fault_type = fs.first_prot;
335 * The page we want is at (first_object, first_pindex), but if the
336 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
337 * page table to figure out the actual pindex.
339 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
340 * ONLY
342 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
343 result = vm_fault_vpagetable(&fs, &first_pindex,
344 fs.entry->aux.master_pde,
345 fault_type);
346 if (result == KERN_TRY_AGAIN)
347 goto RetryFault;
348 if (result != KERN_SUCCESS)
349 return (result);
353 * Now we have the actual (object, pindex), fault in the page. If
354 * vm_fault_object() fails it will unlock and deallocate the FS
355 * data. If it succeeds everything remains locked and fs->object
356 * will have an additinal PIP count if it is not equal to
357 * fs->first_object
359 * vm_fault_object will set fs->prot for the pmap operation. It is
360 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
361 * page can be safely written. However, it will force a read-only
362 * mapping for a read fault if the memory is managed by a virtual
363 * page table.
365 result = vm_fault_object(&fs, first_pindex, fault_type);
367 if (result == KERN_TRY_AGAIN)
368 goto RetryFault;
369 if (result != KERN_SUCCESS)
370 return (result);
373 * On success vm_fault_object() does not unlock or deallocate, and fs.m
374 * will contain a busied page.
376 * Enter the page into the pmap and do pmap-related adjustments.
378 unlock_things(&fs);
379 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
381 if (((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0) && (fs.wired == 0)) {
382 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
385 vm_page_flag_clear(fs.m, PG_ZERO);
386 vm_page_flag_set(fs.m, PG_REFERENCED);
389 * If the page is not wired down, then put it where the pageout daemon
390 * can find it.
392 if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
393 if (fs.wired)
394 vm_page_wire(fs.m);
395 else
396 vm_page_unwire(fs.m, 1);
397 } else {
398 vm_page_activate(fs.m);
401 if (curthread->td_lwp) {
402 if (fs.hardfault) {
403 curthread->td_lwp->lwp_ru.ru_majflt++;
404 } else {
405 curthread->td_lwp->lwp_ru.ru_minflt++;
410 * Unlock everything, and return
412 vm_page_wakeup(fs.m);
413 vm_object_deallocate(fs.first_object);
415 return (KERN_SUCCESS);
419 * Fault in the specified virtual address in the current process map,
420 * returning a held VM page or NULL. See vm_fault_page() for more
421 * information.
423 vm_page_t
424 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
426 struct lwp *lp = curthread->td_lwp;
427 vm_page_t m;
429 m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
430 fault_type, VM_FAULT_NORMAL, errorp);
431 return(m);
435 * Fault in the specified virtual address in the specified map, doing all
436 * necessary manipulation of the object store and all necessary I/O. Return
437 * a held VM page or NULL, and set *errorp. The related pmap is not
438 * updated.
440 * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
441 * and marked PG_REFERENCED as well.
443 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
444 * error will be returned.
446 vm_page_t
447 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
448 int fault_flags, int *errorp)
450 vm_pindex_t first_pindex;
451 struct faultstate fs;
452 int result;
453 vm_prot_t orig_fault_type = fault_type;
455 mycpu->gd_cnt.v_vm_faults++;
457 fs.didlimit = 0;
458 fs.hardfault = 0;
459 fs.fault_flags = fault_flags;
460 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
462 RetryFault:
464 * Find the vm_map_entry representing the backing store and resolve
465 * the top level object and page index. This may have the side
466 * effect of executing a copy-on-write on the map entry and/or
467 * creating a shadow object, but will not COW any actual VM pages.
469 * On success fs.map is left read-locked and various other fields
470 * are initialized but not otherwise referenced or locked.
472 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
473 * if the map entry is a virtual page table and also writable,
474 * so we can set the 'A'accessed bit in the virtual page table entry.
476 fs.map = map;
477 result = vm_map_lookup(&fs.map, vaddr, fault_type,
478 &fs.entry, &fs.first_object,
479 &first_pindex, &fs.first_prot, &fs.wired);
481 if (result != KERN_SUCCESS) {
482 *errorp = result;
483 return (NULL);
487 * fs.map is read-locked
489 * Misc checks. Save the map generation number to detect races.
491 fs.map_generation = fs.map->timestamp;
493 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
494 panic("vm_fault: fault on nofault entry, addr: %lx",
495 (u_long)vaddr);
499 * A system map entry may return a NULL object. No object means
500 * no pager means an unrecoverable kernel fault.
502 if (fs.first_object == NULL) {
503 panic("vm_fault: unrecoverable fault at %p in entry %p",
504 (void *)vaddr, fs.entry);
508 * Make a reference to this object to prevent its disposal while we
509 * are messing with it. Once we have the reference, the map is free
510 * to be diddled. Since objects reference their shadows (and copies),
511 * they will stay around as well.
513 * Bump the paging-in-progress count to prevent size changes (e.g.
514 * truncation operations) during I/O. This must be done after
515 * obtaining the vnode lock in order to avoid possible deadlocks.
517 vm_object_reference(fs.first_object);
518 fs.vp = vnode_pager_lock(fs.first_object);
519 vm_object_pip_add(fs.first_object, 1);
521 fs.lookup_still_valid = TRUE;
522 fs.first_m = NULL;
523 fs.object = fs.first_object; /* so unlock_and_deallocate works */
526 * If the entry is wired we cannot change the page protection.
528 if (fs.wired)
529 fault_type = fs.first_prot;
532 * The page we want is at (first_object, first_pindex), but if the
533 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
534 * page table to figure out the actual pindex.
536 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
537 * ONLY
539 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
540 result = vm_fault_vpagetable(&fs, &first_pindex,
541 fs.entry->aux.master_pde,
542 fault_type);
543 if (result == KERN_TRY_AGAIN)
544 goto RetryFault;
545 if (result != KERN_SUCCESS) {
546 *errorp = result;
547 return (NULL);
552 * Now we have the actual (object, pindex), fault in the page. If
553 * vm_fault_object() fails it will unlock and deallocate the FS
554 * data. If it succeeds everything remains locked and fs->object
555 * will have an additinal PIP count if it is not equal to
556 * fs->first_object
558 result = vm_fault_object(&fs, first_pindex, fault_type);
560 if (result == KERN_TRY_AGAIN)
561 goto RetryFault;
562 if (result != KERN_SUCCESS) {
563 *errorp = result;
564 return(NULL);
567 if ((orig_fault_type & VM_PROT_WRITE) &&
568 (fs.prot & VM_PROT_WRITE) == 0) {
569 *errorp = KERN_PROTECTION_FAILURE;
570 unlock_and_deallocate(&fs);
571 return(NULL);
575 * On success vm_fault_object() does not unlock or deallocate, and fs.m
576 * will contain a busied page.
578 unlock_things(&fs);
581 * Return a held page. We are not doing any pmap manipulation so do
582 * not set PG_MAPPED. However, adjust the page flags according to
583 * the fault type because the caller may not use a managed pmapping
584 * (so we don't want to lose the fact that the page will be dirtied
585 * if a write fault was specified).
587 vm_page_hold(fs.m);
588 vm_page_flag_clear(fs.m, PG_ZERO);
589 if (fault_type & VM_PROT_WRITE)
590 vm_page_dirty(fs.m);
593 * Update the pmap. We really only have to do this if a COW
594 * occured to replace the read-only page with the new page. For
595 * now just do it unconditionally. XXX
597 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
598 vm_page_flag_set(fs.m, PG_REFERENCED);
601 * Unbusy the page by activating it. It remains held and will not
602 * be reclaimed.
604 vm_page_activate(fs.m);
606 if (curthread->td_lwp) {
607 if (fs.hardfault) {
608 curthread->td_lwp->lwp_ru.ru_majflt++;
609 } else {
610 curthread->td_lwp->lwp_ru.ru_minflt++;
615 * Unlock everything, and return the held page.
617 vm_page_wakeup(fs.m);
618 vm_object_deallocate(fs.first_object);
620 *errorp = 0;
621 return(fs.m);
625 * Fault in the specified (object,offset), dirty the returned page as
626 * needed. If the requested fault_type cannot be done NULL and an
627 * error is returned.
629 vm_page_t
630 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
631 vm_prot_t fault_type, int fault_flags, int *errorp)
633 int result;
634 vm_pindex_t first_pindex;
635 struct faultstate fs;
636 struct vm_map_entry entry;
638 bzero(&entry, sizeof(entry));
639 entry.object.vm_object = object;
640 entry.maptype = VM_MAPTYPE_NORMAL;
641 entry.protection = entry.max_protection = fault_type;
643 fs.didlimit = 0;
644 fs.hardfault = 0;
645 fs.fault_flags = fault_flags;
646 fs.map = NULL;
647 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
649 RetryFault:
651 fs.first_object = object;
652 first_pindex = OFF_TO_IDX(offset);
653 fs.entry = &entry;
654 fs.first_prot = fault_type;
655 fs.wired = 0;
656 /*fs.map_generation = 0; unused */
659 * Make a reference to this object to prevent its disposal while we
660 * are messing with it. Once we have the reference, the map is free
661 * to be diddled. Since objects reference their shadows (and copies),
662 * they will stay around as well.
664 * Bump the paging-in-progress count to prevent size changes (e.g.
665 * truncation operations) during I/O. This must be done after
666 * obtaining the vnode lock in order to avoid possible deadlocks.
668 vm_object_reference(fs.first_object);
669 fs.vp = vnode_pager_lock(fs.first_object);
670 vm_object_pip_add(fs.first_object, 1);
672 fs.lookup_still_valid = TRUE;
673 fs.first_m = NULL;
674 fs.object = fs.first_object; /* so unlock_and_deallocate works */
676 #if 0
677 /* XXX future - ability to operate on VM object using vpagetable */
678 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
679 result = vm_fault_vpagetable(&fs, &first_pindex,
680 fs.entry->aux.master_pde,
681 fault_type);
682 if (result == KERN_TRY_AGAIN)
683 goto RetryFault;
684 if (result != KERN_SUCCESS) {
685 *errorp = result;
686 return (NULL);
689 #endif
692 * Now we have the actual (object, pindex), fault in the page. If
693 * vm_fault_object() fails it will unlock and deallocate the FS
694 * data. If it succeeds everything remains locked and fs->object
695 * will have an additinal PIP count if it is not equal to
696 * fs->first_object
698 result = vm_fault_object(&fs, first_pindex, fault_type);
700 if (result == KERN_TRY_AGAIN)
701 goto RetryFault;
702 if (result != KERN_SUCCESS) {
703 *errorp = result;
704 return(NULL);
707 if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
708 *errorp = KERN_PROTECTION_FAILURE;
709 unlock_and_deallocate(&fs);
710 return(NULL);
714 * On success vm_fault_object() does not unlock or deallocate, and fs.m
715 * will contain a busied page.
717 unlock_things(&fs);
720 * Return a held page. We are not doing any pmap manipulation so do
721 * not set PG_MAPPED. However, adjust the page flags according to
722 * the fault type because the caller may not use a managed pmapping
723 * (so we don't want to lose the fact that the page will be dirtied
724 * if a write fault was specified).
726 vm_page_hold(fs.m);
727 vm_page_flag_clear(fs.m, PG_ZERO);
728 if (fault_type & VM_PROT_WRITE)
729 vm_page_dirty(fs.m);
732 * Indicate that the page was accessed.
734 vm_page_flag_set(fs.m, PG_REFERENCED);
737 * Unbusy the page by activating it. It remains held and will not
738 * be reclaimed.
740 vm_page_activate(fs.m);
742 if (curthread->td_lwp) {
743 if (fs.hardfault) {
744 mycpu->gd_cnt.v_vm_faults++;
745 curthread->td_lwp->lwp_ru.ru_majflt++;
746 } else {
747 curthread->td_lwp->lwp_ru.ru_minflt++;
752 * Unlock everything, and return the held page.
754 vm_page_wakeup(fs.m);
755 vm_object_deallocate(fs.first_object);
757 *errorp = 0;
758 return(fs.m);
762 * Translate the virtual page number (first_pindex) that is relative
763 * to the address space into a logical page number that is relative to the
764 * backing object. Use the virtual page table pointed to by (vpte).
766 * This implements an N-level page table. Any level can terminate the
767 * scan by setting VPTE_PS. A linear mapping is accomplished by setting
768 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
770 static
772 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
773 vpte_t vpte, int fault_type)
775 struct sf_buf *sf;
776 int vshift = 32 - PAGE_SHIFT; /* page index bits remaining */
777 int result = KERN_SUCCESS;
778 vpte_t *ptep;
780 for (;;) {
782 * We cannot proceed if the vpte is not valid, not readable
783 * for a read fault, or not writable for a write fault.
785 if ((vpte & VPTE_V) == 0) {
786 unlock_and_deallocate(fs);
787 return (KERN_FAILURE);
789 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
790 unlock_and_deallocate(fs);
791 return (KERN_FAILURE);
793 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
794 unlock_and_deallocate(fs);
795 return (KERN_FAILURE);
797 if ((vpte & VPTE_PS) || vshift == 0)
798 break;
799 KKASSERT(vshift >= VPTE_PAGE_BITS);
802 * Get the page table page. Nominally we only read the page
803 * table, but since we are actively setting VPTE_M and VPTE_A,
804 * tell vm_fault_object() that we are writing it.
806 * There is currently no real need to optimize this.
808 result = vm_fault_object(fs, vpte >> PAGE_SHIFT,
809 VM_PROT_READ|VM_PROT_WRITE);
810 if (result != KERN_SUCCESS)
811 return (result);
814 * Process the returned fs.m and look up the page table
815 * entry in the page table page.
817 vshift -= VPTE_PAGE_BITS;
818 sf = sf_buf_alloc(fs->m, SFB_CPUPRIVATE);
819 ptep = ((vpte_t *)sf_buf_kva(sf) +
820 ((*pindex >> vshift) & VPTE_PAGE_MASK));
821 vpte = *ptep;
824 * Page table write-back. If the vpte is valid for the
825 * requested operation, do a write-back to the page table.
827 * XXX VPTE_M is not set properly for page directory pages.
828 * It doesn't get set in the page directory if the page table
829 * is modified during a read access.
831 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
832 (vpte & VPTE_W)) {
833 if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
834 atomic_set_int(ptep, VPTE_M|VPTE_A);
835 vm_page_dirty(fs->m);
838 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
839 (vpte & VPTE_R)) {
840 if ((vpte & VPTE_A) == 0) {
841 atomic_set_int(ptep, VPTE_A);
842 vm_page_dirty(fs->m);
845 sf_buf_free(sf);
846 vm_page_flag_set(fs->m, PG_REFERENCED);
847 vm_page_activate(fs->m);
848 vm_page_wakeup(fs->m);
849 cleanup_successful_fault(fs);
852 * Combine remaining address bits with the vpte.
854 *pindex = (vpte >> PAGE_SHIFT) +
855 (*pindex & ((1 << vshift) - 1));
856 return (KERN_SUCCESS);
861 * Do all operations required to fault-in (fs.first_object, pindex). Run
862 * through the shadow chain as necessary and do required COW or virtual
863 * copy operations. The caller has already fully resolved the vm_map_entry
864 * and, if appropriate, has created a copy-on-write layer. All we need to
865 * do is iterate the object chain.
867 * On failure (fs) is unlocked and deallocated and the caller may return or
868 * retry depending on the failure code. On success (fs) is NOT unlocked or
869 * deallocated, fs.m will contained a resolved, busied page, and fs.object
870 * will have an additional PIP count if it is not equal to fs.first_object.
872 static
874 vm_fault_object(struct faultstate *fs,
875 vm_pindex_t first_pindex, vm_prot_t fault_type)
877 vm_object_t next_object;
878 vm_page_t marray[VM_FAULT_READ];
879 vm_pindex_t pindex;
880 int faultcount;
882 fs->prot = fs->first_prot;
883 fs->object = fs->first_object;
884 pindex = first_pindex;
887 * If a read fault occurs we try to make the page writable if
888 * possible. There are three cases where we cannot make the
889 * page mapping writable:
891 * (1) The mapping is read-only or the VM object is read-only,
892 * fs->prot above will simply not have VM_PROT_WRITE set.
894 * (2) If the mapping is a virtual page table we need to be able
895 * to detect writes so we can set VPTE_M in the virtual page
896 * table.
898 * (3) If the VM page is read-only or copy-on-write, upgrading would
899 * just result in an unnecessary COW fault.
901 * VM_PROT_VPAGED is set if faulting via a virtual page table and
902 * causes adjustments to the 'M'odify bit to also turn off write
903 * access to force a re-fault.
905 if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
906 if ((fault_type & VM_PROT_WRITE) == 0)
907 fs->prot &= ~VM_PROT_WRITE;
910 for (;;) {
912 * If the object is dead, we stop here
914 if (fs->object->flags & OBJ_DEAD) {
915 unlock_and_deallocate(fs);
916 return (KERN_PROTECTION_FAILURE);
920 * See if page is resident. spl protection is required
921 * to avoid an interrupt unbusy/free race against our
922 * lookup. We must hold the protection through a page
923 * allocation or busy.
925 crit_enter();
926 fs->m = vm_page_lookup(fs->object, pindex);
927 if (fs->m != NULL) {
928 int queue;
930 * Wait/Retry if the page is busy. We have to do this
931 * if the page is busy via either PG_BUSY or
932 * vm_page_t->busy because the vm_pager may be using
933 * vm_page_t->busy for pageouts ( and even pageins if
934 * it is the vnode pager ), and we could end up trying
935 * to pagein and pageout the same page simultaneously.
937 * We can theoretically allow the busy case on a read
938 * fault if the page is marked valid, but since such
939 * pages are typically already pmap'd, putting that
940 * special case in might be more effort then it is
941 * worth. We cannot under any circumstances mess
942 * around with a vm_page_t->busy page except, perhaps,
943 * to pmap it.
945 if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
946 unlock_things(fs);
947 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
948 mycpu->gd_cnt.v_intrans++;
949 vm_object_deallocate(fs->first_object);
950 fs->first_object = NULL;
951 crit_exit();
952 return (KERN_TRY_AGAIN);
956 * If reactivating a page from PQ_CACHE we may have
957 * to rate-limit.
959 queue = fs->m->queue;
960 vm_page_unqueue_nowakeup(fs->m);
962 if ((queue - fs->m->pc) == PQ_CACHE &&
963 vm_page_count_severe()) {
964 vm_page_activate(fs->m);
965 unlock_and_deallocate(fs);
966 vm_waitpfault();
967 crit_exit();
968 return (KERN_TRY_AGAIN);
972 * Mark page busy for other processes, and the
973 * pagedaemon. If it still isn't completely valid
974 * (readable), jump to readrest, else we found the
975 * page and can return.
977 * We can release the spl once we have marked the
978 * page busy.
980 vm_page_busy(fs->m);
981 crit_exit();
983 if (((fs->m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
984 fs->m->object != &kernel_object) {
985 goto readrest;
987 break; /* break to PAGE HAS BEEN FOUND */
991 * Page is not resident, If this is the search termination
992 * or the pager might contain the page, allocate a new page.
994 * NOTE: We are still in a critical section.
996 if (TRYPAGER(fs) || fs->object == fs->first_object) {
998 * If the page is beyond the object size we fail
1000 if (pindex >= fs->object->size) {
1001 crit_exit();
1002 unlock_and_deallocate(fs);
1003 return (KERN_PROTECTION_FAILURE);
1007 * Ratelimit.
1009 if (fs->didlimit == 0 && curproc != NULL) {
1010 int limticks;
1012 limticks = vm_fault_ratelimit(curproc->p_vmspace);
1013 if (limticks) {
1014 crit_exit();
1015 unlock_and_deallocate(fs);
1016 tsleep(curproc, 0, "vmrate", limticks);
1017 fs->didlimit = 1;
1018 return (KERN_TRY_AGAIN);
1023 * Allocate a new page for this object/offset pair.
1025 fs->m = NULL;
1026 if (!vm_page_count_severe()) {
1027 fs->m = vm_page_alloc(fs->object, pindex,
1028 (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1030 if (fs->m == NULL) {
1031 crit_exit();
1032 unlock_and_deallocate(fs);
1033 vm_waitpfault();
1034 return (KERN_TRY_AGAIN);
1037 crit_exit();
1039 readrest:
1041 * We have found a valid page or we have allocated a new page.
1042 * The page thus may not be valid or may not be entirely
1043 * valid.
1045 * Attempt to fault-in the page if there is a chance that the
1046 * pager has it, and potentially fault in additional pages
1047 * at the same time.
1049 * We are NOT in splvm here and if TRYPAGER is true then
1050 * fs.m will be non-NULL and will be PG_BUSY for us.
1053 if (TRYPAGER(fs)) {
1054 int rv;
1055 int reqpage;
1056 int ahead, behind;
1057 u_char behavior = vm_map_entry_behavior(fs->entry);
1059 if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
1060 ahead = 0;
1061 behind = 0;
1062 } else {
1063 behind = pindex;
1064 KKASSERT(behind >= 0);
1065 if (behind > VM_FAULT_READ_BEHIND)
1066 behind = VM_FAULT_READ_BEHIND;
1068 ahead = fs->object->size - pindex;
1069 if (ahead < 1)
1070 ahead = 1;
1071 if (ahead > VM_FAULT_READ_AHEAD)
1072 ahead = VM_FAULT_READ_AHEAD;
1075 if ((fs->first_object->type != OBJT_DEVICE) &&
1076 (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1077 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1078 pindex >= fs->entry->lastr &&
1079 pindex < fs->entry->lastr + VM_FAULT_READ))
1081 vm_pindex_t firstpindex, tmppindex;
1083 if (first_pindex < 2 * VM_FAULT_READ)
1084 firstpindex = 0;
1085 else
1086 firstpindex = first_pindex - 2 * VM_FAULT_READ;
1089 * note: partially valid pages cannot be
1090 * included in the lookahead - NFS piecemeal
1091 * writes will barf on it badly.
1093 * spl protection is required to avoid races
1094 * between the lookup and an interrupt
1095 * unbusy/free sequence occuring prior to
1096 * our busy check.
1098 crit_enter();
1099 for (tmppindex = first_pindex - 1;
1100 tmppindex >= firstpindex;
1101 --tmppindex
1103 vm_page_t mt;
1105 mt = vm_page_lookup(fs->first_object, tmppindex);
1106 if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
1107 break;
1108 if (mt->busy ||
1109 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1110 mt->hold_count ||
1111 mt->wire_count)
1112 continue;
1113 if (mt->dirty == 0)
1114 vm_page_test_dirty(mt);
1115 if (mt->dirty) {
1116 vm_page_busy(mt);
1117 vm_page_protect(mt, VM_PROT_NONE);
1118 vm_page_deactivate(mt);
1119 vm_page_wakeup(mt);
1120 } else {
1121 vm_page_cache(mt);
1124 crit_exit();
1126 ahead += behind;
1127 behind = 0;
1131 * now we find out if any other pages should be paged
1132 * in at this time this routine checks to see if the
1133 * pages surrounding this fault reside in the same
1134 * object as the page for this fault. If they do,
1135 * then they are faulted in also into the object. The
1136 * array "marray" returned contains an array of
1137 * vm_page_t structs where one of them is the
1138 * vm_page_t passed to the routine. The reqpage
1139 * return value is the index into the marray for the
1140 * vm_page_t passed to the routine.
1142 * fs.m plus the additional pages are PG_BUSY'd.
1144 faultcount = vm_fault_additional_pages(
1145 fs->m, behind, ahead, marray, &reqpage);
1148 * update lastr imperfectly (we do not know how much
1149 * getpages will actually read), but good enough.
1151 fs->entry->lastr = pindex + faultcount - behind;
1154 * Call the pager to retrieve the data, if any, after
1155 * releasing the lock on the map. We hold a ref on
1156 * fs.object and the pages are PG_BUSY'd.
1158 unlock_map(fs);
1160 if (faultcount) {
1161 rv = vm_pager_get_pages(fs->object, marray,
1162 faultcount, reqpage);
1163 } else {
1164 rv = VM_PAGER_FAIL;
1167 if (rv == VM_PAGER_OK) {
1169 * Found the page. Leave it busy while we play
1170 * with it.
1174 * Relookup in case pager changed page. Pager
1175 * is responsible for disposition of old page
1176 * if moved.
1178 * XXX other code segments do relookups too.
1179 * It's a bad abstraction that needs to be
1180 * fixed/removed.
1182 fs->m = vm_page_lookup(fs->object, pindex);
1183 if (fs->m == NULL) {
1184 unlock_and_deallocate(fs);
1185 return (KERN_TRY_AGAIN);
1188 ++fs->hardfault;
1189 break; /* break to PAGE HAS BEEN FOUND */
1193 * Remove the bogus page (which does not exist at this
1194 * object/offset); before doing so, we must get back
1195 * our object lock to preserve our invariant.
1197 * Also wake up any other process that may want to bring
1198 * in this page.
1200 * If this is the top-level object, we must leave the
1201 * busy page to prevent another process from rushing
1202 * past us, and inserting the page in that object at
1203 * the same time that we are.
1205 if (rv == VM_PAGER_ERROR) {
1206 if (curproc)
1207 kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1208 else
1209 kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1212 * Data outside the range of the pager or an I/O error
1214 * The page may have been wired during the pagein,
1215 * e.g. by the buffer cache, and cannot simply be
1216 * freed. Call vnode_pager_freepag() to deal with it.
1219 * XXX - the check for kernel_map is a kludge to work
1220 * around having the machine panic on a kernel space
1221 * fault w/ I/O error.
1223 if (((fs->map != &kernel_map) && (rv == VM_PAGER_ERROR)) ||
1224 (rv == VM_PAGER_BAD)) {
1225 vnode_pager_freepage(fs->m);
1226 fs->m = NULL;
1227 unlock_and_deallocate(fs);
1228 if (rv == VM_PAGER_ERROR)
1229 return (KERN_FAILURE);
1230 else
1231 return (KERN_PROTECTION_FAILURE);
1232 /* NOT REACHED */
1234 if (fs->object != fs->first_object) {
1235 vnode_pager_freepage(fs->m);
1236 fs->m = NULL;
1238 * XXX - we cannot just fall out at this
1239 * point, m has been freed and is invalid!
1245 * We get here if the object has a default pager (or unwiring)
1246 * or the pager doesn't have the page.
1248 if (fs->object == fs->first_object)
1249 fs->first_m = fs->m;
1252 * Move on to the next object. Lock the next object before
1253 * unlocking the current one.
1255 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1256 next_object = fs->object->backing_object;
1257 if (next_object == NULL) {
1259 * If there's no object left, fill the page in the top
1260 * object with zeros.
1262 if (fs->object != fs->first_object) {
1263 vm_object_pip_wakeup(fs->object);
1265 fs->object = fs->first_object;
1266 pindex = first_pindex;
1267 fs->m = fs->first_m;
1269 fs->first_m = NULL;
1272 * Zero the page if necessary and mark it valid.
1274 if ((fs->m->flags & PG_ZERO) == 0) {
1275 vm_page_zero_fill(fs->m);
1276 } else {
1277 mycpu->gd_cnt.v_ozfod++;
1279 mycpu->gd_cnt.v_zfod++;
1280 fs->m->valid = VM_PAGE_BITS_ALL;
1281 break; /* break to PAGE HAS BEEN FOUND */
1282 } else {
1283 if (fs->object != fs->first_object) {
1284 vm_object_pip_wakeup(fs->object);
1286 KASSERT(fs->object != next_object, ("object loop %p", next_object));
1287 fs->object = next_object;
1288 vm_object_pip_add(fs->object, 1);
1292 KASSERT((fs->m->flags & PG_BUSY) != 0,
1293 ("vm_fault: not busy after main loop"));
1296 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1297 * is held.]
1301 * If the page is being written, but isn't already owned by the
1302 * top-level object, we have to copy it into a new page owned by the
1303 * top-level object.
1305 if (fs->object != fs->first_object) {
1307 * We only really need to copy if we want to write it.
1309 if (fault_type & VM_PROT_WRITE) {
1311 * This allows pages to be virtually copied from a
1312 * backing_object into the first_object, where the
1313 * backing object has no other refs to it, and cannot
1314 * gain any more refs. Instead of a bcopy, we just
1315 * move the page from the backing object to the
1316 * first object. Note that we must mark the page
1317 * dirty in the first object so that it will go out
1318 * to swap when needed.
1320 if (
1322 * Map, if present, has not changed
1324 (fs->map == NULL ||
1325 fs->map_generation == fs->map->timestamp) &&
1327 * Only one shadow object
1329 (fs->object->shadow_count == 1) &&
1331 * No COW refs, except us
1333 (fs->object->ref_count == 1) &&
1335 * No one else can look this object up
1337 (fs->object->handle == NULL) &&
1339 * No other ways to look the object up
1341 ((fs->object->type == OBJT_DEFAULT) ||
1342 (fs->object->type == OBJT_SWAP)) &&
1344 * We don't chase down the shadow chain
1346 (fs->object == fs->first_object->backing_object) &&
1349 * grab the lock if we need to
1351 (fs->lookup_still_valid ||
1352 fs->map == NULL ||
1353 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1356 fs->lookup_still_valid = 1;
1358 * get rid of the unnecessary page
1360 vm_page_protect(fs->first_m, VM_PROT_NONE);
1361 vm_page_free(fs->first_m);
1362 fs->first_m = NULL;
1365 * grab the page and put it into the
1366 * process'es object. The page is
1367 * automatically made dirty.
1369 vm_page_rename(fs->m, fs->first_object, first_pindex);
1370 fs->first_m = fs->m;
1371 vm_page_busy(fs->first_m);
1372 fs->m = NULL;
1373 mycpu->gd_cnt.v_cow_optim++;
1374 } else {
1376 * Oh, well, lets copy it.
1378 vm_page_copy(fs->m, fs->first_m);
1379 vm_page_event(fs->m, VMEVENT_COW);
1382 if (fs->m) {
1384 * We no longer need the old page or object.
1386 release_page(fs);
1390 * fs->object != fs->first_object due to above
1391 * conditional
1393 vm_object_pip_wakeup(fs->object);
1396 * Only use the new page below...
1399 mycpu->gd_cnt.v_cow_faults++;
1400 fs->m = fs->first_m;
1401 fs->object = fs->first_object;
1402 pindex = first_pindex;
1403 } else {
1405 * If it wasn't a write fault avoid having to copy
1406 * the page by mapping it read-only.
1408 fs->prot &= ~VM_PROT_WRITE;
1413 * We may have had to unlock a map to do I/O. If we did then
1414 * lookup_still_valid will be FALSE. If the map generation count
1415 * also changed then all sorts of things could have happened while
1416 * we were doing the I/O and we need to retry.
1419 if (!fs->lookup_still_valid &&
1420 fs->map != NULL &&
1421 (fs->map->timestamp != fs->map_generation)) {
1422 release_page(fs);
1423 unlock_and_deallocate(fs);
1424 return (KERN_TRY_AGAIN);
1428 * If the fault is a write, we know that this page is being
1429 * written NOW so dirty it explicitly to save on pmap_is_modified()
1430 * calls later.
1432 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1433 * if the page is already dirty to prevent data written with
1434 * the expectation of being synced from not being synced.
1435 * Likewise if this entry does not request NOSYNC then make
1436 * sure the page isn't marked NOSYNC. Applications sharing
1437 * data should use the same flags to avoid ping ponging.
1439 * Also tell the backing pager, if any, that it should remove
1440 * any swap backing since the page is now dirty.
1442 if (fs->prot & VM_PROT_WRITE) {
1443 vm_object_set_writeable_dirty(fs->m->object);
1444 if (fs->entry->eflags & MAP_ENTRY_NOSYNC) {
1445 if (fs->m->dirty == 0)
1446 vm_page_flag_set(fs->m, PG_NOSYNC);
1447 } else {
1448 vm_page_flag_clear(fs->m, PG_NOSYNC);
1450 if (fs->fault_flags & VM_FAULT_DIRTY) {
1451 crit_enter();
1452 vm_page_dirty(fs->m);
1453 vm_pager_page_unswapped(fs->m);
1454 crit_exit();
1459 * Page had better still be busy. We are still locked up and
1460 * fs->object will have another PIP reference if it is not equal
1461 * to fs->first_object.
1463 KASSERT(fs->m->flags & PG_BUSY,
1464 ("vm_fault: page %p not busy!", fs->m));
1467 * Sanity check: page must be completely valid or it is not fit to
1468 * map into user space. vm_pager_get_pages() ensures this.
1470 if (fs->m->valid != VM_PAGE_BITS_ALL) {
1471 vm_page_zero_invalid(fs->m, TRUE);
1472 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1475 return (KERN_SUCCESS);
1479 * Wire down a range of virtual addresses in a map. The entry in question
1480 * should be marked in-transition and the map must be locked. We must
1481 * release the map temporarily while faulting-in the page to avoid a
1482 * deadlock. Note that the entry may be clipped while we are blocked but
1483 * will never be freed.
1486 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1488 boolean_t fictitious;
1489 vm_offset_t start;
1490 vm_offset_t end;
1491 vm_offset_t va;
1492 vm_paddr_t pa;
1493 pmap_t pmap;
1494 int rv;
1496 pmap = vm_map_pmap(map);
1497 start = entry->start;
1498 end = entry->end;
1499 fictitious = entry->object.vm_object &&
1500 (entry->object.vm_object->type == OBJT_DEVICE);
1502 vm_map_unlock(map);
1503 map->timestamp++;
1506 * We simulate a fault to get the page and enter it in the physical
1507 * map.
1509 for (va = start; va < end; va += PAGE_SIZE) {
1510 if (user_wire) {
1511 rv = vm_fault(map, va, VM_PROT_READ,
1512 VM_FAULT_USER_WIRE);
1513 } else {
1514 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1515 VM_FAULT_CHANGE_WIRING);
1517 if (rv) {
1518 while (va > start) {
1519 va -= PAGE_SIZE;
1520 if ((pa = pmap_extract(pmap, va)) == 0)
1521 continue;
1522 pmap_change_wiring(pmap, va, FALSE);
1523 if (!fictitious)
1524 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1526 vm_map_lock(map);
1527 return (rv);
1530 vm_map_lock(map);
1531 return (KERN_SUCCESS);
1535 * Unwire a range of virtual addresses in a map. The map should be
1536 * locked.
1538 void
1539 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1541 boolean_t fictitious;
1542 vm_offset_t start;
1543 vm_offset_t end;
1544 vm_offset_t va;
1545 vm_paddr_t pa;
1546 pmap_t pmap;
1548 pmap = vm_map_pmap(map);
1549 start = entry->start;
1550 end = entry->end;
1551 fictitious = entry->object.vm_object &&
1552 (entry->object.vm_object->type == OBJT_DEVICE);
1555 * Since the pages are wired down, we must be able to get their
1556 * mappings from the physical map system.
1558 for (va = start; va < end; va += PAGE_SIZE) {
1559 pa = pmap_extract(pmap, va);
1560 if (pa != 0) {
1561 pmap_change_wiring(pmap, va, FALSE);
1562 if (!fictitious)
1563 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1569 * Reduce the rate at which memory is allocated to a process based
1570 * on the perceived load on the VM system. As the load increases
1571 * the allocation burst rate goes down and the delay increases.
1573 * Rate limiting does not apply when faulting active or inactive
1574 * pages. When faulting 'cache' pages, rate limiting only applies
1575 * if the system currently has a severe page deficit.
1577 * XXX vm_pagesupply should be increased when a page is freed.
1579 * We sleep up to 1/10 of a second.
1581 static int
1582 vm_fault_ratelimit(struct vmspace *vmspace)
1584 if (vm_load_enable == 0)
1585 return(0);
1586 if (vmspace->vm_pagesupply > 0) {
1587 --vmspace->vm_pagesupply;
1588 return(0);
1590 #ifdef INVARIANTS
1591 if (vm_load_debug) {
1592 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1593 vm_load,
1594 (1000 - vm_load ) / 10, vm_load * hz / 10000,
1595 curproc->p_pid, curproc->p_comm);
1597 #endif
1598 vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1599 return(vm_load * hz / 10000);
1603 * Routine:
1604 * vm_fault_copy_entry
1605 * Function:
1606 * Copy all of the pages from a wired-down map entry to another.
1608 * In/out conditions:
1609 * The source and destination maps must be locked for write.
1610 * The source map entry must be wired down (or be a sharing map
1611 * entry corresponding to a main map entry that is wired down).
1614 void
1615 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1616 vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1618 vm_object_t dst_object;
1619 vm_object_t src_object;
1620 vm_ooffset_t dst_offset;
1621 vm_ooffset_t src_offset;
1622 vm_prot_t prot;
1623 vm_offset_t vaddr;
1624 vm_page_t dst_m;
1625 vm_page_t src_m;
1627 #ifdef lint
1628 src_map++;
1629 #endif /* lint */
1631 src_object = src_entry->object.vm_object;
1632 src_offset = src_entry->offset;
1635 * Create the top-level object for the destination entry. (Doesn't
1636 * actually shadow anything - we copy the pages directly.)
1638 vm_map_entry_allocate_object(dst_entry);
1639 dst_object = dst_entry->object.vm_object;
1641 prot = dst_entry->max_protection;
1644 * Loop through all of the pages in the entry's range, copying each
1645 * one from the source object (it should be there) to the destination
1646 * object.
1648 for (vaddr = dst_entry->start, dst_offset = 0;
1649 vaddr < dst_entry->end;
1650 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1653 * Allocate a page in the destination object
1655 do {
1656 dst_m = vm_page_alloc(dst_object,
1657 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1658 if (dst_m == NULL) {
1659 vm_wait(0);
1661 } while (dst_m == NULL);
1664 * Find the page in the source object, and copy it in.
1665 * (Because the source is wired down, the page will be in
1666 * memory.)
1668 src_m = vm_page_lookup(src_object,
1669 OFF_TO_IDX(dst_offset + src_offset));
1670 if (src_m == NULL)
1671 panic("vm_fault_copy_wired: page missing");
1673 vm_page_copy(src_m, dst_m);
1674 vm_page_event(src_m, VMEVENT_COW);
1677 * Enter it in the pmap...
1680 vm_page_flag_clear(dst_m, PG_ZERO);
1681 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1684 * Mark it no longer busy, and put it on the active list.
1686 vm_page_activate(dst_m);
1687 vm_page_wakeup(dst_m);
1693 * This routine checks around the requested page for other pages that
1694 * might be able to be faulted in. This routine brackets the viable
1695 * pages for the pages to be paged in.
1697 * Inputs:
1698 * m, rbehind, rahead
1700 * Outputs:
1701 * marray (array of vm_page_t), reqpage (index of requested page)
1703 * Return value:
1704 * number of pages in marray
1706 static int
1707 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1708 vm_page_t *marray, int *reqpage)
1710 int i,j;
1711 vm_object_t object;
1712 vm_pindex_t pindex, startpindex, endpindex, tpindex;
1713 vm_page_t rtm;
1714 int cbehind, cahead;
1716 object = m->object;
1717 pindex = m->pindex;
1720 * we don't fault-ahead for device pager
1722 if (object->type == OBJT_DEVICE) {
1723 *reqpage = 0;
1724 marray[0] = m;
1725 return 1;
1729 * if the requested page is not available, then give up now
1731 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1732 *reqpage = 0; /* not used by caller, fix compiler warn */
1733 return 0;
1736 if ((cbehind == 0) && (cahead == 0)) {
1737 *reqpage = 0;
1738 marray[0] = m;
1739 return 1;
1742 if (rahead > cahead) {
1743 rahead = cahead;
1746 if (rbehind > cbehind) {
1747 rbehind = cbehind;
1751 * Do not do any readahead if we have insufficient free memory.
1753 * XXX code was broken disabled before and has instability
1754 * with this conditonal fixed, so shortcut for now.
1756 if (burst_fault == 0 || vm_page_count_severe()) {
1757 marray[0] = m;
1758 *reqpage = 0;
1759 return 1;
1763 * scan backward for the read behind pages -- in memory
1765 * Assume that if the page is not found an interrupt will not
1766 * create it. Theoretically interrupts can only remove (busy)
1767 * pages, not create new associations.
1769 if (pindex > 0) {
1770 if (rbehind > pindex) {
1771 rbehind = pindex;
1772 startpindex = 0;
1773 } else {
1774 startpindex = pindex - rbehind;
1777 crit_enter();
1778 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
1779 if (vm_page_lookup(object, tpindex - 1))
1780 break;
1783 i = 0;
1784 while (tpindex < pindex) {
1785 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1786 if (rtm == NULL) {
1787 crit_exit();
1788 for (j = 0; j < i; j++) {
1789 vm_page_free(marray[j]);
1791 marray[0] = m;
1792 *reqpage = 0;
1793 return 1;
1795 marray[i] = rtm;
1796 ++i;
1797 ++tpindex;
1799 crit_exit();
1800 } else {
1801 i = 0;
1805 * Assign requested page
1807 marray[i] = m;
1808 *reqpage = i;
1809 ++i;
1812 * Scan forwards for read-ahead pages
1814 tpindex = pindex + 1;
1815 endpindex = tpindex + rahead;
1816 if (endpindex > object->size)
1817 endpindex = object->size;
1819 crit_enter();
1820 while (tpindex < endpindex) {
1821 if (vm_page_lookup(object, tpindex))
1822 break;
1823 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1824 if (rtm == NULL)
1825 break;
1826 marray[i] = rtm;
1827 ++i;
1828 ++tpindex;
1830 crit_exit();
1832 return (i);