kernel - SWAP CACHE part 18/many - Minor enablement swapspace check
[dragonfly.git] / sys / vm / vm_swapcache.c
blobf2db5fedf73ed1529026d350cf828dd99b6fd84f
1 /*
2 * Copyright (c) 2010 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
36 * Implement the swapcache daemon. When enabled swap is assumed to be
37 * configured on a fast storage device such as a SSD. Swap is assigned
38 * to clean vnode-backed pages in the inactive queue, clustered by object
39 * if possible, and written out. The swap assignment sticks around even
40 * after the underlying pages have been recycled.
42 * The daemon manages write bandwidth based on sysctl settings to control
43 * wear on the SSD.
45 * The vnode strategy code will check for the swap assignments and divert
46 * reads to the swap device when the data is present in the swapcache.
48 * This operates on both regular files and the block device vnodes used by
49 * filesystems to manage meta-data.
52 #include "opt_vm.h"
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/kthread.h>
58 #include <sys/resourcevar.h>
59 #include <sys/signalvar.h>
60 #include <sys/vnode.h>
61 #include <sys/vmmeter.h>
62 #include <sys/sysctl.h>
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <sys/lock.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_pageout.h>
71 #include <vm/vm_pager.h>
72 #include <vm/swap_pager.h>
73 #include <vm/vm_extern.h>
75 #include <sys/thread2.h>
76 #include <vm/vm_page2.h>
78 #define INACTIVE_LIST (&vm_page_queues[PQ_INACTIVE].pl)
80 /* the kernel process "vm_pageout"*/
81 static void vm_swapcached (void);
82 static int vm_swapcached_flush (vm_page_t m);
83 static int vm_swapcache_test(vm_page_t m);
84 static void vm_swapcache_writing(vm_page_t marker);
85 static void vm_swapcache_cleaning(vm_object_t marker);
86 struct thread *swapcached_thread;
88 static struct kproc_desc swpc_kp = {
89 "swapcached",
90 vm_swapcached,
91 &swapcached_thread
93 SYSINIT(swapcached, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, &swpc_kp)
95 SYSCTL_NODE(_vm, OID_AUTO, swapcache, CTLFLAG_RW, NULL, NULL);
97 int vm_swapcache_read_enable;
98 static int vm_swapcache_sleep;
99 static int vm_swapcache_maxlaunder = 256;
100 static int vm_swapcache_data_enable = 0;
101 static int vm_swapcache_meta_enable = 0;
102 static int64_t vm_swapcache_minburst = 10000000LL; /* 10MB */
103 static int64_t vm_swapcache_curburst = 4000000000LL; /* 4G after boot */
104 static int64_t vm_swapcache_maxburst = 2000000000LL; /* 2G nominal max */
105 static int64_t vm_swapcache_accrate = 100000LL; /* 100K/s */
106 static int64_t vm_swapcache_write_count;
107 static int64_t vm_swapcache_maxfilesize;
109 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxlaunder,
110 CTLFLAG_RW, &vm_swapcache_maxlaunder, 0, "");
112 SYSCTL_INT(_vm_swapcache, OID_AUTO, data_enable,
113 CTLFLAG_RW, &vm_swapcache_data_enable, 0, "");
114 SYSCTL_INT(_vm_swapcache, OID_AUTO, meta_enable,
115 CTLFLAG_RW, &vm_swapcache_meta_enable, 0, "");
116 SYSCTL_INT(_vm_swapcache, OID_AUTO, read_enable,
117 CTLFLAG_RW, &vm_swapcache_read_enable, 0, "");
119 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, minburst,
120 CTLFLAG_RW, &vm_swapcache_minburst, 0, "");
121 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, curburst,
122 CTLFLAG_RW, &vm_swapcache_curburst, 0, "");
123 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxburst,
124 CTLFLAG_RW, &vm_swapcache_maxburst, 0, "");
125 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxfilesize,
126 CTLFLAG_RW, &vm_swapcache_maxfilesize, 0, "");
127 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, accrate,
128 CTLFLAG_RW, &vm_swapcache_accrate, 0, "");
129 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, write_count,
130 CTLFLAG_RW, &vm_swapcache_write_count, 0, "");
133 * vm_swapcached is the high level pageout daemon.
135 static void
136 vm_swapcached(void)
138 enum { SWAPC_WRITING, SWAPC_CLEANING } state = SWAPC_WRITING;
139 enum { SWAPB_BURSTING, SWAPB_RECOVERING } burst = SWAPB_BURSTING;
140 struct vm_page page_marker;
141 struct vm_object object_marker;
144 * Thread setup
146 curthread->td_flags |= TDF_SYSTHREAD;
147 crit_enter();
150 * Initialize our marker for the inactive scan (SWAPC_WRITING)
152 bzero(&page_marker, sizeof(page_marker));
153 page_marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
154 page_marker.queue = PQ_INACTIVE;
155 page_marker.wire_count = 1;
156 TAILQ_INSERT_HEAD(INACTIVE_LIST, &page_marker, pageq);
159 * Initialize our marker for the vm_object scan (SWAPC_CLEANING)
161 bzero(&object_marker, sizeof(object_marker));
162 object_marker.type = OBJT_MARKER;
163 TAILQ_INSERT_HEAD(&vm_object_list, &object_marker, object_list);
165 for (;;) {
167 * Check every 5 seconds when not enabled or if no swap
168 * is present.
170 if ((vm_swapcache_data_enable == 0 &&
171 vm_swapcache_meta_enable == 0) ||
172 vm_swap_max == 0) {
173 tsleep(&vm_swapcache_sleep, 0, "csleep", hz * 5);
174 continue;
178 * Polling rate when enabled is approximately 10 hz.
180 tsleep(&vm_swapcache_sleep, 0, "csleep", hz / 10);
183 * State hysteresis. Generate write activity up to 75% of
184 * swap, then clean out swap assignments down to 70%, then
185 * repeat.
187 if (state == SWAPC_WRITING) {
188 if (vm_swap_cache_use > (int64_t)vm_swap_max * 75 / 100)
189 state = SWAPC_CLEANING;
190 } else {
191 if (vm_swap_cache_use < (int64_t)vm_swap_max * 70 / 100)
192 state = SWAPC_WRITING;
196 * We are allowed to continue accumulating burst value
197 * in either state. Allow the user to set curburst > maxburst
198 * for the initial load-in.
200 if (vm_swapcache_curburst < vm_swapcache_maxburst) {
201 vm_swapcache_curburst += vm_swapcache_accrate / 10;
202 if (vm_swapcache_curburst > vm_swapcache_maxburst)
203 vm_swapcache_curburst = vm_swapcache_maxburst;
207 * We don't want to nickle-and-dime the scan as that will
208 * create unnecessary fragmentation. The minimum burst
209 * is one-seconds worth of accumulation.
211 if (state == SWAPC_WRITING) {
212 if (vm_swapcache_curburst >= vm_swapcache_accrate) {
213 if (burst == SWAPB_BURSTING) {
214 vm_swapcache_writing(&page_marker);
215 if (vm_swapcache_curburst <= 0)
216 burst = SWAPB_RECOVERING;
217 } else if (vm_swapcache_curburst >
218 vm_swapcache_minburst) {
219 vm_swapcache_writing(&page_marker);
220 burst = SWAPB_BURSTING;
223 } else {
224 vm_swapcache_cleaning(&object_marker);
227 TAILQ_REMOVE(INACTIVE_LIST, &page_marker, pageq);
228 TAILQ_REMOVE(&vm_object_list, &object_marker, object_list);
229 crit_exit();
232 static void
233 vm_swapcache_writing(vm_page_t marker)
235 vm_object_t object;
236 struct vnode *vp;
237 vm_page_t m;
238 int count;
241 * Scan the inactive queue from our marker to locate
242 * suitable pages to push to the swap cache.
244 * We are looking for clean vnode-backed pages.
246 * NOTE: PG_SWAPPED pages in particular are not part of
247 * our count because once the cache stabilizes we
248 * can end up with a very high datarate of VM pages
249 * cycling from it.
251 m = marker;
252 count = vm_swapcache_maxlaunder;
254 while ((m = TAILQ_NEXT(m, pageq)) != NULL && count--) {
255 if (m->flags & (PG_MARKER | PG_SWAPPED)) {
256 ++count;
257 continue;
259 if (vm_swapcache_curburst < 0)
260 break;
261 if (vm_swapcache_test(m))
262 continue;
263 object = m->object;
264 vp = object->handle;
265 if (vp == NULL)
266 continue;
268 switch(vp->v_type) {
269 case VREG:
270 if (vm_swapcache_data_enable == 0)
271 continue;
272 if (vm_swapcache_maxfilesize &&
273 object->size >
274 (vm_swapcache_maxfilesize >> PAGE_SHIFT)) {
275 continue;
277 break;
278 case VCHR:
279 if (vm_swapcache_meta_enable == 0)
280 continue;
281 break;
282 default:
283 continue;
287 * Ok, move the marker and soft-busy the page.
289 TAILQ_REMOVE(INACTIVE_LIST, marker, pageq);
290 TAILQ_INSERT_AFTER(INACTIVE_LIST, m, marker, pageq);
293 * Assign swap and initiate I/O.
295 * (adjust for the --count which also occurs in the loop)
297 count -= vm_swapcached_flush(m) - 1;
300 * Setup for next loop using marker.
302 m = marker;
306 * Cleanup marker position. If we hit the end of the
307 * list the marker is placed at the tail. Newly deactivated
308 * pages will be placed after it.
310 * Earlier inactive pages that were dirty and become clean
311 * are typically moved to the end of PQ_INACTIVE by virtue
312 * of vfs_vmio_release() when they become unwired from the
313 * buffer cache.
315 TAILQ_REMOVE(INACTIVE_LIST, marker, pageq);
316 if (m)
317 TAILQ_INSERT_BEFORE(m, marker, pageq);
318 else
319 TAILQ_INSERT_TAIL(INACTIVE_LIST, marker, pageq);
323 * Flush the specified page using the swap_pager.
325 * Try to collect surrounding pages, including pages which may
326 * have already been assigned swap. Try to cluster within a
327 * contiguous aligned SMAP_META_PAGES (typ 16 x PAGE_SIZE) block
328 * to match what swap_pager_putpages() can do.
330 * We also want to try to match against the buffer cache blocksize
331 * but we don't really know what it is here. Since the buffer cache
332 * wires and unwires pages in groups the fact that we skip wired pages
333 * should be sufficient.
335 * Returns a count of pages we might have flushed (minimum 1)
337 static
339 vm_swapcached_flush(vm_page_t m)
341 vm_object_t object;
342 vm_page_t marray[SWAP_META_PAGES];
343 vm_pindex_t basei;
344 int rtvals[SWAP_META_PAGES];
345 int x;
346 int i;
347 int j;
348 int count;
350 vm_page_io_start(m);
351 vm_page_protect(m, VM_PROT_READ);
352 object = m->object;
355 * Try to cluster around (m), keeping in mind that the swap pager
356 * can only do SMAP_META_PAGES worth of continguous write.
358 x = (int)m->pindex & SWAP_META_MASK;
359 marray[x] = m;
360 basei = m->pindex;
362 for (i = x - 1; i >= 0; --i) {
363 m = vm_page_lookup(object, basei - x + i);
364 if (m == NULL)
365 break;
366 if (vm_swapcache_test(m))
367 break;
368 vm_page_io_start(m);
369 vm_page_protect(m, VM_PROT_READ);
370 if (m->queue - m->pc == PQ_CACHE) {
371 vm_page_unqueue_nowakeup(m);
372 vm_page_deactivate(m);
374 marray[i] = m;
376 ++i;
378 for (j = x + 1; j < SWAP_META_PAGES; ++j) {
379 m = vm_page_lookup(object, basei - x + j);
380 if (m == NULL)
381 break;
382 if (vm_swapcache_test(m))
383 break;
384 vm_page_io_start(m);
385 vm_page_protect(m, VM_PROT_READ);
386 if (m->queue - m->pc == PQ_CACHE) {
387 vm_page_unqueue_nowakeup(m);
388 vm_page_deactivate(m);
390 marray[j] = m;
393 count = j - i;
394 vm_object_pip_add(object, count);
395 swap_pager_putpages(object, marray + i, count, FALSE, rtvals + i);
396 vm_swapcache_write_count += count * PAGE_SIZE;
397 vm_swapcache_curburst -= count * PAGE_SIZE;
399 while (i < j) {
400 if (rtvals[i] != VM_PAGER_PEND) {
401 vm_page_io_finish(marray[i]);
402 vm_object_pip_wakeup(object);
404 ++i;
406 return(count);
410 * Test whether a VM page is suitable for writing to the swapcache.
411 * Does not test m->queue, PG_MARKER, or PG_SWAPPED.
413 * Returns 0 on success, 1 on failure
415 static int
416 vm_swapcache_test(vm_page_t m)
418 vm_object_t object;
420 if (m->flags & (PG_BUSY | PG_UNMANAGED))
421 return(1);
422 if (m->busy || m->hold_count || m->wire_count)
423 return(1);
424 if (m->valid != VM_PAGE_BITS_ALL)
425 return(1);
426 if (m->dirty & m->valid)
427 return(1);
428 if ((object = m->object) == NULL)
429 return(1);
430 if (object->type != OBJT_VNODE ||
431 (object->flags & OBJ_DEAD)) {
432 return(1);
434 vm_page_test_dirty(m);
435 if (m->dirty & m->valid)
436 return(1);
437 return(0);
441 * Cleaning pass
443 static
444 void
445 vm_swapcache_cleaning(vm_object_t marker)
447 vm_object_t object;
448 struct vnode *vp;
449 int count;
450 int n;
452 object = marker;
453 count = vm_swapcache_maxlaunder;
456 * Look for vnode objects
458 while ((object = TAILQ_NEXT(object, object_list)) != NULL && count--) {
459 if (object->type != OBJT_VNODE)
460 continue;
461 if ((object->flags & OBJ_DEAD) || object->swblock_count == 0)
462 continue;
463 if ((vp = object->handle) == NULL)
464 continue;
465 if (vp->v_type != VREG && vp->v_type != VCHR)
466 continue;
469 * Adjust iterator.
471 if (marker->backing_object != object)
472 marker->size = 0;
475 * Move the marker so we can work on the VM object
477 TAILQ_REMOVE(&vm_object_list, marker, object_list);
478 TAILQ_INSERT_AFTER(&vm_object_list, object,
479 marker, object_list);
482 * Look for swblocks starting at our iterator.
484 * The swap_pager_condfree() function attempts to free
485 * swap space starting at the specified index. The index
486 * will be updated on return. The function will return
487 * a scan factor (NOT the number of blocks freed).
489 * If it must cut its scan of the object short due to an
490 * excessive number of swblocks, or is able to free the
491 * requested number of blocks, it will return n >= count
492 * and we break and pick it back up on a future attempt.
494 n = swap_pager_condfree(object, &marker->size, count);
495 count -= n;
496 if (count < 0)
497 break;
500 * Setup for loop.
502 marker->size = 0;
503 object = marker;
507 * Adjust marker so we continue the scan from where we left off.
508 * When we reach the end we start back at the beginning.
510 TAILQ_REMOVE(&vm_object_list, marker, object_list);
511 if (object)
512 TAILQ_INSERT_BEFORE(object, marker, object_list);
513 else
514 TAILQ_INSERT_HEAD(&vm_object_list, marker, object_list);
515 marker->backing_object = object;