hammer - Adjust hammer to new breadnx / cluster_readx API
[dragonfly.git] / sys / vfs / hammer / hammer_vnops.c
blob9b6b6fab8bc3d15a3e61dcc18d93ac48c9e6a27e
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
35 #include <sys/mountctl.h>
36 #include <sys/namecache.h>
37 #include <sys/buf2.h>
38 #include <vfs/fifofs/fifo.h>
40 #include "hammer.h"
43 * USERFS VNOPS
45 static int hammer_vop_fsync(struct vop_fsync_args *);
46 static int hammer_vop_read(struct vop_read_args *);
47 static int hammer_vop_write(struct vop_write_args *);
48 static int hammer_vop_access(struct vop_access_args *);
49 static int hammer_vop_advlock(struct vop_advlock_args *);
50 static int hammer_vop_close(struct vop_close_args *);
51 static int hammer_vop_ncreate(struct vop_ncreate_args *);
52 static int hammer_vop_getattr(struct vop_getattr_args *);
53 static int hammer_vop_nresolve(struct vop_nresolve_args *);
54 static int hammer_vop_nlookupdotdot(struct vop_nlookupdotdot_args *);
55 static int hammer_vop_nlink(struct vop_nlink_args *);
56 static int hammer_vop_nmkdir(struct vop_nmkdir_args *);
57 static int hammer_vop_nmknod(struct vop_nmknod_args *);
58 static int hammer_vop_open(struct vop_open_args *);
59 static int hammer_vop_print(struct vop_print_args *);
60 static int hammer_vop_readdir(struct vop_readdir_args *);
61 static int hammer_vop_readlink(struct vop_readlink_args *);
62 static int hammer_vop_nremove(struct vop_nremove_args *);
63 static int hammer_vop_nrename(struct vop_nrename_args *);
64 static int hammer_vop_nrmdir(struct vop_nrmdir_args *);
65 static int hammer_vop_markatime(struct vop_markatime_args *);
66 static int hammer_vop_setattr(struct vop_setattr_args *);
67 static int hammer_vop_strategy(struct vop_strategy_args *);
68 static int hammer_vop_bmap(struct vop_bmap_args *ap);
69 static int hammer_vop_nsymlink(struct vop_nsymlink_args *);
70 static int hammer_vop_nwhiteout(struct vop_nwhiteout_args *);
71 static int hammer_vop_ioctl(struct vop_ioctl_args *);
72 static int hammer_vop_mountctl(struct vop_mountctl_args *);
73 static int hammer_vop_kqfilter (struct vop_kqfilter_args *);
75 static int hammer_vop_fifoclose (struct vop_close_args *);
76 static int hammer_vop_fiforead (struct vop_read_args *);
77 static int hammer_vop_fifowrite (struct vop_write_args *);
78 static int hammer_vop_fifokqfilter (struct vop_kqfilter_args *);
80 struct vop_ops hammer_vnode_vops = {
81 .vop_default = vop_defaultop,
82 .vop_fsync = hammer_vop_fsync,
83 .vop_getpages = vop_stdgetpages,
84 .vop_putpages = vop_stdputpages,
85 .vop_read = hammer_vop_read,
86 .vop_write = hammer_vop_write,
87 .vop_access = hammer_vop_access,
88 .vop_advlock = hammer_vop_advlock,
89 .vop_close = hammer_vop_close,
90 .vop_ncreate = hammer_vop_ncreate,
91 .vop_getattr = hammer_vop_getattr,
92 .vop_inactive = hammer_vop_inactive,
93 .vop_reclaim = hammer_vop_reclaim,
94 .vop_nresolve = hammer_vop_nresolve,
95 .vop_nlookupdotdot = hammer_vop_nlookupdotdot,
96 .vop_nlink = hammer_vop_nlink,
97 .vop_nmkdir = hammer_vop_nmkdir,
98 .vop_nmknod = hammer_vop_nmknod,
99 .vop_open = hammer_vop_open,
100 .vop_pathconf = vop_stdpathconf,
101 .vop_print = hammer_vop_print,
102 .vop_readdir = hammer_vop_readdir,
103 .vop_readlink = hammer_vop_readlink,
104 .vop_nremove = hammer_vop_nremove,
105 .vop_nrename = hammer_vop_nrename,
106 .vop_nrmdir = hammer_vop_nrmdir,
107 .vop_markatime = hammer_vop_markatime,
108 .vop_setattr = hammer_vop_setattr,
109 .vop_bmap = hammer_vop_bmap,
110 .vop_strategy = hammer_vop_strategy,
111 .vop_nsymlink = hammer_vop_nsymlink,
112 .vop_nwhiteout = hammer_vop_nwhiteout,
113 .vop_ioctl = hammer_vop_ioctl,
114 .vop_mountctl = hammer_vop_mountctl,
115 .vop_kqfilter = hammer_vop_kqfilter
118 struct vop_ops hammer_spec_vops = {
119 .vop_default = vop_defaultop,
120 .vop_fsync = hammer_vop_fsync,
121 .vop_read = vop_stdnoread,
122 .vop_write = vop_stdnowrite,
123 .vop_access = hammer_vop_access,
124 .vop_close = hammer_vop_close,
125 .vop_markatime = hammer_vop_markatime,
126 .vop_getattr = hammer_vop_getattr,
127 .vop_inactive = hammer_vop_inactive,
128 .vop_reclaim = hammer_vop_reclaim,
129 .vop_setattr = hammer_vop_setattr
132 struct vop_ops hammer_fifo_vops = {
133 .vop_default = fifo_vnoperate,
134 .vop_fsync = hammer_vop_fsync,
135 .vop_read = hammer_vop_fiforead,
136 .vop_write = hammer_vop_fifowrite,
137 .vop_access = hammer_vop_access,
138 .vop_close = hammer_vop_fifoclose,
139 .vop_markatime = hammer_vop_markatime,
140 .vop_getattr = hammer_vop_getattr,
141 .vop_inactive = hammer_vop_inactive,
142 .vop_reclaim = hammer_vop_reclaim,
143 .vop_setattr = hammer_vop_setattr,
144 .vop_kqfilter = hammer_vop_fifokqfilter
147 static __inline
148 void
149 hammer_knote(struct vnode *vp, int flags)
151 if (flags)
152 KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, flags);
155 static int hammer_dounlink(hammer_transaction_t trans, struct nchandle *nch,
156 struct vnode *dvp, struct ucred *cred,
157 int flags, int isdir);
158 static int hammer_vop_strategy_read(struct vop_strategy_args *ap);
159 static int hammer_vop_strategy_write(struct vop_strategy_args *ap);
162 * hammer_vop_fsync { vp, waitfor }
164 * fsync() an inode to disk and wait for it to be completely committed
165 * such that the information would not be undone if a crash occured after
166 * return.
168 * NOTE: HAMMER's fsync()'s are going to remain expensive until we implement
169 * a REDO log. A sysctl is provided to relax HAMMER's fsync()
170 * operation.
172 * Ultimately the combination of a REDO log and use of fast storage
173 * to front-end cluster caches will make fsync fast, but it aint
174 * here yet. And, in anycase, we need real transactional
175 * all-or-nothing features which are not restricted to a single file.
177 static
179 hammer_vop_fsync(struct vop_fsync_args *ap)
181 hammer_inode_t ip = VTOI(ap->a_vp);
182 hammer_mount_t hmp = ip->hmp;
183 int waitfor = ap->a_waitfor;
184 int mode;
186 lwkt_gettoken(&hmp->fs_token);
189 * Fsync rule relaxation (default is either full synchronous flush
190 * or REDO semantics with synchronous flush).
192 if (ap->a_flags & VOP_FSYNC_SYSCALL) {
193 switch(hammer_fsync_mode) {
194 case 0:
195 mode0:
196 /* no REDO, full synchronous flush */
197 goto skip;
198 case 1:
199 mode1:
200 /* no REDO, full asynchronous flush */
201 if (waitfor == MNT_WAIT)
202 waitfor = MNT_NOWAIT;
203 goto skip;
204 case 2:
205 /* REDO semantics, synchronous flush */
206 if (hmp->version < HAMMER_VOL_VERSION_FOUR)
207 goto mode0;
208 mode = HAMMER_FLUSH_UNDOS_AUTO;
209 break;
210 case 3:
211 /* REDO semantics, relaxed asynchronous flush */
212 if (hmp->version < HAMMER_VOL_VERSION_FOUR)
213 goto mode1;
214 mode = HAMMER_FLUSH_UNDOS_RELAXED;
215 if (waitfor == MNT_WAIT)
216 waitfor = MNT_NOWAIT;
217 break;
218 case 4:
219 /* ignore the fsync() system call */
220 lwkt_reltoken(&hmp->fs_token);
221 return(0);
222 default:
223 /* we have to do something */
224 mode = HAMMER_FLUSH_UNDOS_RELAXED;
225 if (waitfor == MNT_WAIT)
226 waitfor = MNT_NOWAIT;
227 break;
231 * Fast fsync only needs to flush the UNDO/REDO fifo if
232 * HAMMER_INODE_REDO is non-zero and the only modifications
233 * made to the file are write or write-extends.
235 if ((ip->flags & HAMMER_INODE_REDO) &&
236 (ip->flags & HAMMER_INODE_MODMASK_NOREDO) == 0) {
237 ++hammer_count_fsyncs;
238 hammer_flusher_flush_undos(hmp, mode);
239 ip->redo_count = 0;
240 if (ip->vp && (ip->flags & HAMMER_INODE_MODMASK) == 0)
241 vclrisdirty(ip->vp);
242 lwkt_reltoken(&hmp->fs_token);
243 return(0);
247 * REDO is enabled by fsync(), the idea being we really only
248 * want to lay down REDO records when programs are using
249 * fsync() heavily. The first fsync() on the file starts
250 * the gravy train going and later fsync()s keep it hot by
251 * resetting the redo_count.
253 * We weren't running REDOs before now so we have to fall
254 * through and do a full fsync of what we have.
256 if (hmp->version >= HAMMER_VOL_VERSION_FOUR &&
257 (hmp->flags & HAMMER_MOUNT_REDO_RECOVERY_RUN) == 0) {
258 ip->flags |= HAMMER_INODE_REDO;
259 ip->redo_count = 0;
262 skip:
265 * Do a full flush sequence.
267 * Attempt to release the vnode while waiting for the inode to
268 * finish flushing. This can really mess up inactive->reclaim
269 * sequences so only do it if the vnode is active.
271 * WARNING! The VX lock functions must be used. vn_lock() will
272 * fail when this is part of a VOP_RECLAIM sequence.
274 ++hammer_count_fsyncs;
275 vfsync(ap->a_vp, waitfor, 1, NULL, NULL);
276 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
277 if (waitfor == MNT_WAIT) {
278 int dorelock;
280 if ((ap->a_vp->v_flag & VRECLAIMED) == 0) {
281 vx_unlock(ap->a_vp);
282 dorelock = 1;
283 } else {
284 dorelock = 0;
286 hammer_wait_inode(ip);
287 if (dorelock)
288 vx_lock(ap->a_vp);
290 if (ip->vp && (ip->flags & HAMMER_INODE_MODMASK) == 0)
291 vclrisdirty(ip->vp);
292 lwkt_reltoken(&hmp->fs_token);
293 return (ip->error);
297 * hammer_vop_read { vp, uio, ioflag, cred }
299 * MPSAFE (for the cache safe does not require fs_token)
301 static
303 hammer_vop_read(struct vop_read_args *ap)
305 struct hammer_transaction trans;
306 hammer_inode_t ip;
307 hammer_mount_t hmp;
308 off_t offset;
309 struct buf *bp;
310 struct uio *uio;
311 int error;
312 int n;
313 int seqcount;
314 int ioseqcount;
315 int blksize;
316 int bigread;
317 int got_trans;
318 size_t resid;
320 if (ap->a_vp->v_type != VREG)
321 return (EINVAL);
322 ip = VTOI(ap->a_vp);
323 hmp = ip->hmp;
324 error = 0;
325 got_trans = 0;
326 uio = ap->a_uio;
329 * Attempt to shortcut directly to the VM object using lwbufs.
330 * This is much faster than instantiating buffer cache buffers.
332 resid = uio->uio_resid;
333 error = vop_helper_read_shortcut(ap);
334 hammer_stats_file_read += resid - uio->uio_resid;
335 if (error)
336 return (error);
337 if (uio->uio_resid == 0)
338 goto finished;
341 * Allow the UIO's size to override the sequential heuristic.
343 blksize = hammer_blocksize(uio->uio_offset);
344 seqcount = (uio->uio_resid + (MAXBSIZE - 1)) / MAXBSIZE;
345 ioseqcount = (ap->a_ioflag >> 16);
346 if (seqcount < ioseqcount)
347 seqcount = ioseqcount;
350 * If reading or writing a huge amount of data we have to break
351 * atomicy and allow the operation to be interrupted by a signal
352 * or it can DOS the machine.
354 bigread = (uio->uio_resid > 100 * 1024 * 1024);
357 * Access the data typically in HAMMER_BUFSIZE blocks via the
358 * buffer cache, but HAMMER may use a variable block size based
359 * on the offset.
361 * XXX Temporary hack, delay the start transaction while we remain
362 * MPSAFE. NOTE: ino_data.size cannot change while vnode is
363 * locked-shared.
365 while (uio->uio_resid > 0 && uio->uio_offset < ip->ino_data.size) {
366 int64_t base_offset;
367 int64_t file_limit;
369 blksize = hammer_blocksize(uio->uio_offset);
370 offset = (int)uio->uio_offset & (blksize - 1);
371 base_offset = uio->uio_offset - offset;
373 if (bigread && (error = hammer_signal_check(ip->hmp)) != 0)
374 break;
377 * MPSAFE
379 bp = getblk(ap->a_vp, base_offset, blksize, 0, 0);
380 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) {
381 bp->b_flags &= ~B_AGE;
382 error = 0;
383 goto skip;
385 if (ap->a_ioflag & IO_NRDELAY) {
386 bqrelse(bp);
387 return (EWOULDBLOCK);
391 * MPUNSAFE
393 if (got_trans == 0) {
394 hammer_start_transaction(&trans, ip->hmp);
395 got_trans = 1;
399 * NOTE: A valid bp has already been acquired, but was not
400 * B_CACHE.
402 if (hammer_cluster_enable) {
404 * Use file_limit to prevent cluster_read() from
405 * creating buffers of the wrong block size past
406 * the demarc.
408 file_limit = ip->ino_data.size;
409 if (base_offset < HAMMER_XDEMARC &&
410 file_limit > HAMMER_XDEMARC) {
411 file_limit = HAMMER_XDEMARC;
413 error = cluster_readx(ap->a_vp,
414 file_limit, base_offset,
415 blksize, B_NOTMETA,
416 uio->uio_resid,
417 seqcount * MAXBSIZE,
418 &bp);
419 } else {
420 error = breadnx(ap->a_vp, base_offset,
421 blksize, B_NOTMETA,
422 NULL, NULL, 0, &bp);
424 if (error) {
425 brelse(bp);
426 break;
428 skip:
429 if ((hammer_debug_io & 0x0001) && (bp->b_flags & B_IOISSUED)) {
430 hdkprintf("zone2_offset %016jx read file %016jx@%016jx\n",
431 (intmax_t)bp->b_bio2.bio_offset,
432 (intmax_t)ip->obj_id,
433 (intmax_t)bp->b_loffset);
435 bp->b_flags &= ~B_IOISSUED;
436 if (blksize == HAMMER_XBUFSIZE)
437 bp->b_flags |= B_CLUSTEROK;
439 n = blksize - offset;
440 if (n > uio->uio_resid)
441 n = uio->uio_resid;
442 if (n > ip->ino_data.size - uio->uio_offset)
443 n = (int)(ip->ino_data.size - uio->uio_offset);
446 * Set B_AGE, data has a lower priority than meta-data.
448 * Use a hold/unlock/drop sequence to run the uiomove
449 * with the buffer unlocked, avoiding deadlocks against
450 * read()s on mmap()'d spaces.
452 bp->b_flags |= B_AGE;
453 error = uiomovebp(bp, (char *)bp->b_data + offset, n, uio);
454 bqrelse(bp);
456 if (error)
457 break;
458 hammer_stats_file_read += n;
461 finished:
464 * Try to update the atime with just the inode lock for maximum
465 * concurrency. If we can't shortcut it we have to get the full
466 * blown transaction.
468 if (got_trans == 0 && hammer_update_atime_quick(ip) < 0) {
469 hammer_start_transaction(&trans, ip->hmp);
470 got_trans = 1;
473 if (got_trans) {
474 if ((ip->flags & HAMMER_INODE_RO) == 0 &&
475 (ip->hmp->mp->mnt_flag & MNT_NOATIME) == 0) {
476 lwkt_gettoken(&hmp->fs_token);
477 ip->ino_data.atime = trans.time;
478 hammer_modify_inode(&trans, ip, HAMMER_INODE_ATIME);
479 hammer_done_transaction(&trans);
480 lwkt_reltoken(&hmp->fs_token);
481 } else {
482 hammer_done_transaction(&trans);
485 return (error);
489 * hammer_vop_write { vp, uio, ioflag, cred }
491 static
493 hammer_vop_write(struct vop_write_args *ap)
495 struct hammer_transaction trans;
496 hammer_inode_t ip;
497 hammer_mount_t hmp;
498 thread_t td;
499 struct uio *uio;
500 int offset;
501 off_t base_offset;
502 int64_t cluster_eof;
503 struct buf *bp;
504 int kflags;
505 int error;
506 int n;
507 int flags;
508 int seqcount;
509 int bigwrite;
511 if (ap->a_vp->v_type != VREG)
512 return (EINVAL);
513 ip = VTOI(ap->a_vp);
514 hmp = ip->hmp;
515 error = 0;
516 kflags = 0;
517 seqcount = ap->a_ioflag >> 16;
519 if (ip->flags & HAMMER_INODE_RO)
520 return (EROFS);
523 * Create a transaction to cover the operations we perform.
525 hammer_start_transaction(&trans, hmp);
526 uio = ap->a_uio;
529 * Check append mode
531 if (ap->a_ioflag & IO_APPEND)
532 uio->uio_offset = ip->ino_data.size;
535 * Check for illegal write offsets. Valid range is 0...2^63-1.
537 * NOTE: the base_off assignment is required to work around what
538 * I consider to be a GCC-4 optimization bug.
540 if (uio->uio_offset < 0) {
541 hammer_done_transaction(&trans);
542 return (EFBIG);
544 base_offset = uio->uio_offset + uio->uio_resid; /* work around gcc-4 */
545 if (uio->uio_resid > 0 && base_offset <= uio->uio_offset) {
546 hammer_done_transaction(&trans);
547 return (EFBIG);
550 if (uio->uio_resid > 0 && (td = uio->uio_td) != NULL && td->td_proc &&
551 base_offset > td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
552 hammer_done_transaction(&trans);
553 lwpsignal(td->td_proc, td->td_lwp, SIGXFSZ);
554 return (EFBIG);
558 * If reading or writing a huge amount of data we have to break
559 * atomicy and allow the operation to be interrupted by a signal
560 * or it can DOS the machine.
562 * Preset redo_count so we stop generating REDOs earlier if the
563 * limit is exceeded.
565 * redo_count is heuristical, SMP races are ok
567 bigwrite = (uio->uio_resid > 100 * 1024 * 1024);
568 if ((ip->flags & HAMMER_INODE_REDO) &&
569 ip->redo_count < hammer_limit_redo) {
570 ip->redo_count += uio->uio_resid;
574 * Access the data typically in HAMMER_BUFSIZE blocks via the
575 * buffer cache, but HAMMER may use a variable block size based
576 * on the offset.
578 while (uio->uio_resid > 0) {
579 int fixsize = 0;
580 int blksize;
581 int blkmask;
582 int trivial;
583 int endofblk;
584 off_t nsize;
586 if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_WRITE)) != 0)
587 break;
588 if (bigwrite && (error = hammer_signal_check(hmp)) != 0)
589 break;
591 blksize = hammer_blocksize(uio->uio_offset);
594 * Control the number of pending records associated with
595 * this inode. If too many have accumulated start a
596 * flush. Try to maintain a pipeline with the flusher.
598 * NOTE: It is possible for other sources to grow the
599 * records but not necessarily issue another flush,
600 * so use a timeout and ensure that a re-flush occurs.
602 if (ip->rsv_recs >= hammer_limit_inode_recs) {
603 lwkt_gettoken(&hmp->fs_token);
604 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
605 while (ip->rsv_recs >= hammer_limit_inode_recs * 2) {
606 ip->flags |= HAMMER_INODE_RECSW;
607 tsleep(&ip->rsv_recs, 0, "hmrwww", hz);
608 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
610 lwkt_reltoken(&hmp->fs_token);
614 * Do not allow HAMMER to blow out the buffer cache. Very
615 * large UIOs can lockout other processes due to bwillwrite()
616 * mechanics.
618 * The hammer inode is not locked during these operations.
619 * The vnode is locked which can interfere with the pageout
620 * daemon for non-UIO_NOCOPY writes but should not interfere
621 * with the buffer cache. Even so, we cannot afford to
622 * allow the pageout daemon to build up too many dirty buffer
623 * cache buffers.
625 * Only call this if we aren't being recursively called from
626 * a virtual disk device (vn), else we may deadlock.
628 if ((ap->a_ioflag & IO_RECURSE) == 0)
629 bwillwrite(blksize);
632 * Calculate the blocksize at the current offset and figure
633 * out how much we can actually write.
635 blkmask = blksize - 1;
636 offset = (int)uio->uio_offset & blkmask;
637 base_offset = uio->uio_offset & ~(int64_t)blkmask;
638 n = blksize - offset;
639 if (n > uio->uio_resid) {
640 n = uio->uio_resid;
641 endofblk = 0;
642 } else {
643 endofblk = 1;
645 nsize = uio->uio_offset + n;
646 if (nsize > ip->ino_data.size) {
647 if (uio->uio_offset > ip->ino_data.size)
648 trivial = 0;
649 else
650 trivial = 1;
651 nvextendbuf(ap->a_vp,
652 ip->ino_data.size,
653 nsize,
654 hammer_blocksize(ip->ino_data.size),
655 hammer_blocksize(nsize),
656 hammer_blockoff(ip->ino_data.size),
657 hammer_blockoff(nsize),
658 trivial);
659 fixsize = 1;
660 kflags |= NOTE_EXTEND;
663 if (uio->uio_segflg == UIO_NOCOPY) {
665 * Issuing a write with the same data backing the
666 * buffer. Instantiate the buffer to collect the
667 * backing vm pages, then read-in any missing bits.
669 * This case is used by vop_stdputpages().
671 bp = getblk(ap->a_vp, base_offset,
672 blksize, GETBLK_BHEAVY, 0);
673 if ((bp->b_flags & B_CACHE) == 0) {
674 bqrelse(bp);
675 error = bread(ap->a_vp, base_offset,
676 blksize, &bp);
678 } else if (offset == 0 && uio->uio_resid >= blksize) {
680 * Even though we are entirely overwriting the buffer
681 * we may still have to zero it out to avoid a
682 * mmap/write visibility issue.
684 bp = getblk(ap->a_vp, base_offset, blksize, GETBLK_BHEAVY, 0);
685 if ((bp->b_flags & B_CACHE) == 0)
686 vfs_bio_clrbuf(bp);
687 } else if (base_offset >= ip->ino_data.size) {
689 * If the base offset of the buffer is beyond the
690 * file EOF, we don't have to issue a read.
692 bp = getblk(ap->a_vp, base_offset,
693 blksize, GETBLK_BHEAVY, 0);
694 vfs_bio_clrbuf(bp);
695 } else {
697 * Partial overwrite, read in any missing bits then
698 * replace the portion being written.
700 error = bread(ap->a_vp, base_offset, blksize, &bp);
701 if (error == 0)
702 bheavy(bp);
704 if (error == 0)
705 error = uiomovebp(bp, bp->b_data + offset, n, uio);
707 lwkt_gettoken(&hmp->fs_token);
710 * Generate REDO records if enabled and redo_count will not
711 * exceeded the limit.
713 * If redo_count exceeds the limit we stop generating records
714 * and clear HAMMER_INODE_REDO. This will cause the next
715 * fsync() to do a full meta-data sync instead of just an
716 * UNDO/REDO fifo update.
718 * When clearing HAMMER_INODE_REDO any pre-existing REDOs
719 * will still be tracked. The tracks will be terminated
720 * when the related meta-data (including possible data
721 * modifications which are not tracked via REDO) is
722 * flushed.
724 if ((ip->flags & HAMMER_INODE_REDO) && error == 0) {
725 if (ip->redo_count < hammer_limit_redo) {
726 bp->b_flags |= B_VFSFLAG1;
727 error = hammer_generate_redo(&trans, ip,
728 base_offset + offset,
729 HAMMER_REDO_WRITE,
730 bp->b_data + offset,
731 (size_t)n);
732 } else {
733 ip->flags &= ~HAMMER_INODE_REDO;
738 * If we screwed up we have to undo any VM size changes we
739 * made.
741 if (error) {
742 brelse(bp);
743 if (fixsize) {
744 nvtruncbuf(ap->a_vp, ip->ino_data.size,
745 hammer_blocksize(ip->ino_data.size),
746 hammer_blockoff(ip->ino_data.size),
749 lwkt_reltoken(&hmp->fs_token);
750 break;
752 kflags |= NOTE_WRITE;
753 hammer_stats_file_write += n;
754 if (blksize == HAMMER_XBUFSIZE)
755 bp->b_flags |= B_CLUSTEROK;
756 if (ip->ino_data.size < uio->uio_offset) {
757 ip->ino_data.size = uio->uio_offset;
758 flags = HAMMER_INODE_SDIRTY;
759 } else {
760 flags = 0;
762 ip->ino_data.mtime = trans.time;
763 flags |= HAMMER_INODE_MTIME | HAMMER_INODE_BUFS;
764 hammer_modify_inode(&trans, ip, flags);
767 * Once we dirty the buffer any cached zone-X offset
768 * becomes invalid. HAMMER NOTE: no-history mode cannot
769 * allow overwriting over the same data sector unless
770 * we provide UNDOs for the old data, which we don't.
772 bp->b_bio2.bio_offset = NOOFFSET;
774 lwkt_reltoken(&hmp->fs_token);
777 * Final buffer disposition.
779 * Because meta-data updates are deferred, HAMMER is
780 * especially sensitive to excessive bdwrite()s because
781 * the I/O stream is not broken up by disk reads. So the
782 * buffer cache simply cannot keep up.
784 * WARNING! blksize is variable. cluster_write() is
785 * expected to not blow up if it encounters
786 * buffers that do not match the passed blksize.
788 * NOTE! Hammer shouldn't need to bawrite()/cluster_write().
789 * The ip->rsv_recs check should burst-flush the data.
790 * If we queue it immediately the buf could be left
791 * locked on the device queue for a very long time.
793 * However, failing to flush a dirty buffer out when
794 * issued from the pageout daemon can result in a low
795 * memory deadlock against bio_page_alloc(), so we
796 * have to bawrite() on IO_ASYNC as well.
798 * NOTE! To avoid degenerate stalls due to mismatched block
799 * sizes we only honor IO_DIRECT on the write which
800 * abuts the end of the buffer. However, we must
801 * honor IO_SYNC in case someone is silly enough to
802 * configure a HAMMER file as swap, or when HAMMER
803 * is serving NFS (for commits). Ick ick.
805 bp->b_flags |= B_AGE;
806 if (blksize == HAMMER_XBUFSIZE)
807 bp->b_flags |= B_CLUSTEROK;
809 if (ap->a_ioflag & IO_SYNC) {
810 bwrite(bp);
811 } else if ((ap->a_ioflag & IO_DIRECT) && endofblk) {
812 bawrite(bp);
813 } else if (ap->a_ioflag & IO_ASYNC) {
814 bawrite(bp);
815 } else if (hammer_cluster_enable &&
816 !(ap->a_vp->v_mount->mnt_flag & MNT_NOCLUSTERW)) {
817 if (base_offset < HAMMER_XDEMARC)
818 cluster_eof = hammer_blockdemarc(base_offset,
819 ip->ino_data.size);
820 else
821 cluster_eof = ip->ino_data.size;
822 cluster_write(bp, cluster_eof, blksize, seqcount);
823 } else {
824 bdwrite(bp);
827 hammer_done_transaction(&trans);
828 hammer_knote(ap->a_vp, kflags);
830 return (error);
834 * hammer_vop_access { vp, mode, cred }
836 * MPSAFE - does not require fs_token
838 static
840 hammer_vop_access(struct vop_access_args *ap)
842 hammer_inode_t ip = VTOI(ap->a_vp);
843 uid_t uid;
844 gid_t gid;
845 int error;
847 uid = hammer_to_unix_xid(&ip->ino_data.uid);
848 gid = hammer_to_unix_xid(&ip->ino_data.gid);
850 error = vop_helper_access(ap, uid, gid, ip->ino_data.mode,
851 ip->ino_data.uflags);
852 return (error);
856 * hammer_vop_advlock { vp, id, op, fl, flags }
858 * MPSAFE - does not require fs_token
860 static
862 hammer_vop_advlock(struct vop_advlock_args *ap)
864 hammer_inode_t ip = VTOI(ap->a_vp);
866 return (lf_advlock(ap, &ip->advlock, ip->ino_data.size));
870 * hammer_vop_close { vp, fflag }
872 * We can only sync-on-close for normal closes. XXX disabled for now.
874 static
876 hammer_vop_close(struct vop_close_args *ap)
878 #if 0
879 struct vnode *vp = ap->a_vp;
880 hammer_inode_t ip = VTOI(vp);
881 int waitfor;
882 if (ip->flags & (HAMMER_INODE_CLOSESYNC|HAMMER_INODE_CLOSEASYNC)) {
883 if (vn_islocked(vp) == LK_EXCLUSIVE &&
884 (vp->v_flag & (VINACTIVE|VRECLAIMED)) == 0) {
885 if (ip->flags & HAMMER_INODE_CLOSESYNC)
886 waitfor = MNT_WAIT;
887 else
888 waitfor = MNT_NOWAIT;
889 ip->flags &= ~(HAMMER_INODE_CLOSESYNC |
890 HAMMER_INODE_CLOSEASYNC);
891 VOP_FSYNC(vp, MNT_NOWAIT, waitfor);
894 #endif
895 return (vop_stdclose(ap));
899 * hammer_vop_ncreate { nch, dvp, vpp, cred, vap }
901 * The operating system has already ensured that the directory entry
902 * does not exist and done all appropriate namespace locking.
904 static
906 hammer_vop_ncreate(struct vop_ncreate_args *ap)
908 struct hammer_transaction trans;
909 hammer_inode_t dip;
910 hammer_inode_t nip;
911 struct nchandle *nch;
912 hammer_mount_t hmp;
913 int error;
915 nch = ap->a_nch;
916 dip = VTOI(ap->a_dvp);
917 hmp = dip->hmp;
919 if (dip->flags & HAMMER_INODE_RO)
920 return (EROFS);
921 if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
922 return (error);
925 * Create a transaction to cover the operations we perform.
927 lwkt_gettoken(&hmp->fs_token);
928 hammer_start_transaction(&trans, hmp);
931 * Create a new filesystem object of the requested type. The
932 * returned inode will be referenced and shared-locked to prevent
933 * it from being moved to the flusher.
935 error = hammer_create_inode(&trans, ap->a_vap, ap->a_cred,
936 dip, nch->ncp->nc_name, nch->ncp->nc_nlen,
937 NULL, &nip);
938 if (error) {
939 hkprintf("hammer_create_inode error %d\n", error);
940 hammer_done_transaction(&trans);
941 *ap->a_vpp = NULL;
942 lwkt_reltoken(&hmp->fs_token);
943 return (error);
947 * Add the new filesystem object to the directory. This will also
948 * bump the inode's link count.
950 error = hammer_ip_add_direntry(&trans, dip,
951 nch->ncp->nc_name, nch->ncp->nc_nlen,
952 nip);
953 if (error)
954 hkprintf("hammer_ip_add_direntry error %d\n", error);
957 * Finish up.
959 if (error) {
960 hammer_rel_inode(nip, 0);
961 hammer_done_transaction(&trans);
962 *ap->a_vpp = NULL;
963 } else {
964 error = hammer_get_vnode(nip, ap->a_vpp);
965 hammer_done_transaction(&trans);
966 hammer_rel_inode(nip, 0);
967 if (error == 0) {
968 cache_setunresolved(ap->a_nch);
969 cache_setvp(ap->a_nch, *ap->a_vpp);
971 hammer_knote(ap->a_dvp, NOTE_WRITE);
973 lwkt_reltoken(&hmp->fs_token);
974 return (error);
978 * hammer_vop_getattr { vp, vap }
980 * Retrieve an inode's attribute information. When accessing inodes
981 * historically we fake the atime field to ensure consistent results.
982 * The atime field is stored in the B-Tree element and allowed to be
983 * updated without cycling the element.
985 * MPSAFE - does not require fs_token
987 static
989 hammer_vop_getattr(struct vop_getattr_args *ap)
991 hammer_inode_t ip = VTOI(ap->a_vp);
992 struct vattr *vap = ap->a_vap;
995 * We want the fsid to be different when accessing a filesystem
996 * with different as-of's so programs like diff don't think
997 * the files are the same.
999 * We also want the fsid to be the same when comparing snapshots,
1000 * or when comparing mirrors (which might be backed by different
1001 * physical devices). HAMMER fsids are based on the PFS's
1002 * shared_uuid field.
1004 * XXX there is a chance of collision here. The va_fsid reported
1005 * by stat is different from the more involved fsid used in the
1006 * mount structure.
1008 hammer_lock_sh(&ip->lock);
1009 vap->va_fsid = ip->pfsm->fsid_udev ^ (uint32_t)ip->obj_asof ^
1010 (uint32_t)(ip->obj_asof >> 32);
1012 vap->va_fileid = ip->ino_leaf.base.obj_id;
1013 vap->va_mode = ip->ino_data.mode;
1014 vap->va_nlink = ip->ino_data.nlinks;
1015 vap->va_uid = hammer_to_unix_xid(&ip->ino_data.uid);
1016 vap->va_gid = hammer_to_unix_xid(&ip->ino_data.gid);
1017 vap->va_rmajor = 0;
1018 vap->va_rminor = 0;
1019 vap->va_size = ip->ino_data.size;
1022 * Special case for @@PFS softlinks. The actual size of the
1023 * expanded softlink is "@@0x%016llx:%05d" == 26 bytes.
1024 * or for MAX_TID is "@@-1:%05d" == 10 bytes.
1026 * Note that userspace hammer command does not allow users to
1027 * create a @@PFS softlink under an existing other PFS (id!=0)
1028 * so the ip localization here for @@PFS softlink is always 0.
1030 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_SOFTLINK &&
1031 ip->ino_data.size == 10 &&
1032 ip->obj_asof == HAMMER_MAX_TID &&
1033 ip->obj_localization == HAMMER_DEF_LOCALIZATION &&
1034 strncmp(ip->ino_data.ext.symlink, "@@PFS", 5) == 0) {
1035 if (hammer_is_pfs_slave(&ip->pfsm->pfsd))
1036 vap->va_size = 26;
1037 else
1038 vap->va_size = 10;
1042 * We must provide a consistent atime and mtime for snapshots
1043 * so people can do a 'tar cf - ... | md5' on them and get
1044 * consistent results.
1046 if (ip->flags & HAMMER_INODE_RO) {
1047 hammer_time_to_timespec(ip->ino_data.ctime, &vap->va_atime);
1048 hammer_time_to_timespec(ip->ino_data.ctime, &vap->va_mtime);
1049 } else {
1050 hammer_time_to_timespec(ip->ino_data.atime, &vap->va_atime);
1051 hammer_time_to_timespec(ip->ino_data.mtime, &vap->va_mtime);
1053 hammer_time_to_timespec(ip->ino_data.ctime, &vap->va_ctime);
1054 vap->va_flags = ip->ino_data.uflags;
1055 vap->va_gen = 1; /* hammer inums are unique for all time */
1056 vap->va_blocksize = HAMMER_BUFSIZE;
1057 if (ip->ino_data.size >= HAMMER_XDEMARC) {
1058 vap->va_bytes = HAMMER_XBUFSIZE64_DOALIGN(ip->ino_data.size);
1059 } else if (ip->ino_data.size > HAMMER_HBUFSIZE) {
1060 vap->va_bytes = HAMMER_BUFSIZE64_DOALIGN(ip->ino_data.size);
1061 } else {
1062 vap->va_bytes = HAMMER_DATA_DOALIGN(ip->ino_data.size);
1065 vap->va_type = hammer_get_vnode_type(ip->ino_data.obj_type);
1066 vap->va_filerev = 0; /* XXX */
1067 vap->va_uid_uuid = ip->ino_data.uid;
1068 vap->va_gid_uuid = ip->ino_data.gid;
1069 vap->va_fsid_uuid = ip->hmp->fsid;
1070 vap->va_vaflags = VA_UID_UUID_VALID | VA_GID_UUID_VALID |
1071 VA_FSID_UUID_VALID;
1073 switch (ip->ino_data.obj_type) {
1074 case HAMMER_OBJTYPE_CDEV:
1075 case HAMMER_OBJTYPE_BDEV:
1076 vap->va_rmajor = ip->ino_data.rmajor;
1077 vap->va_rminor = ip->ino_data.rminor;
1078 break;
1079 default:
1080 break;
1082 hammer_unlock(&ip->lock);
1083 return(0);
1087 * hammer_vop_nresolve { nch, dvp, cred }
1089 * Locate the requested directory entry.
1091 static
1093 hammer_vop_nresolve(struct vop_nresolve_args *ap)
1095 struct hammer_transaction trans;
1096 struct namecache *ncp;
1097 hammer_mount_t hmp;
1098 hammer_inode_t dip;
1099 hammer_inode_t ip;
1100 hammer_tid_t asof;
1101 struct hammer_cursor cursor;
1102 struct vnode *vp;
1103 int64_t namekey;
1104 int error;
1105 int i;
1106 int nlen;
1107 int flags;
1108 int ispfs;
1109 int64_t obj_id;
1110 uint32_t localization;
1111 uint32_t max_iterations;
1114 * Misc initialization, plus handle as-of name extensions. Look for
1115 * the '@@' extension. Note that as-of files and directories cannot
1116 * be modified.
1118 dip = VTOI(ap->a_dvp);
1119 ncp = ap->a_nch->ncp;
1120 asof = dip->obj_asof;
1121 localization = dip->obj_localization; /* for code consistency */
1122 nlen = ncp->nc_nlen;
1123 flags = dip->flags & HAMMER_INODE_RO;
1124 ispfs = 0;
1125 hmp = dip->hmp;
1127 lwkt_gettoken(&hmp->fs_token);
1128 hammer_simple_transaction(&trans, hmp);
1130 for (i = 0; i < nlen; ++i) {
1131 if (ncp->nc_name[i] == '@' && ncp->nc_name[i+1] == '@') {
1132 error = hammer_str_to_tid(ncp->nc_name + i + 2,
1133 &ispfs, &asof, &localization);
1134 if (error != 0) {
1135 i = nlen;
1136 break;
1138 if (asof != HAMMER_MAX_TID)
1139 flags |= HAMMER_INODE_RO;
1140 break;
1143 nlen = i;
1146 * If this is a PFS we dive into the PFS root inode
1148 if (ispfs && nlen == 0) {
1149 ip = hammer_get_inode(&trans, dip, HAMMER_OBJID_ROOT,
1150 asof, localization,
1151 flags, &error);
1152 if (error == 0) {
1153 error = hammer_get_vnode(ip, &vp);
1154 hammer_rel_inode(ip, 0);
1155 } else {
1156 vp = NULL;
1158 if (error == 0) {
1159 vn_unlock(vp);
1160 cache_setvp(ap->a_nch, vp);
1161 vrele(vp);
1163 goto done;
1167 * If there is no path component the time extension is relative to dip.
1168 * e.g. "fubar/@@<snapshot>"
1170 * "." is handled by the kernel, but ".@@<snapshot>" is not.
1171 * e.g. "fubar/.@@<snapshot>"
1173 * ".." is handled by the kernel. We do not currently handle
1174 * "..@<snapshot>".
1176 if (nlen == 0 || (nlen == 1 && ncp->nc_name[0] == '.')) {
1177 ip = hammer_get_inode(&trans, dip, dip->obj_id,
1178 asof, dip->obj_localization,
1179 flags, &error);
1180 if (error == 0) {
1181 error = hammer_get_vnode(ip, &vp);
1182 hammer_rel_inode(ip, 0);
1183 } else {
1184 vp = NULL;
1186 if (error == 0) {
1187 vn_unlock(vp);
1188 cache_setvp(ap->a_nch, vp);
1189 vrele(vp);
1191 goto done;
1195 * Calculate the namekey and setup the key range for the scan. This
1196 * works kinda like a chained hash table where the lower 32 bits
1197 * of the namekey synthesize the chain.
1199 * The key range is inclusive of both key_beg and key_end.
1201 namekey = hammer_direntry_namekey(dip, ncp->nc_name, nlen,
1202 &max_iterations);
1204 error = hammer_init_cursor(&trans, &cursor, &dip->cache[1], dip);
1205 cursor.key_beg.localization = dip->obj_localization |
1206 hammer_dir_localization(dip);
1207 cursor.key_beg.obj_id = dip->obj_id;
1208 cursor.key_beg.key = namekey;
1209 cursor.key_beg.create_tid = 0;
1210 cursor.key_beg.delete_tid = 0;
1211 cursor.key_beg.rec_type = HAMMER_RECTYPE_DIRENTRY;
1212 cursor.key_beg.obj_type = 0;
1214 cursor.key_end = cursor.key_beg;
1215 cursor.key_end.key += max_iterations;
1216 cursor.asof = asof;
1217 cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
1220 * Scan all matching records (the chain), locate the one matching
1221 * the requested path component.
1223 * The hammer_ip_*() functions merge in-memory records with on-disk
1224 * records for the purposes of the search.
1226 obj_id = 0;
1227 localization = HAMMER_DEF_LOCALIZATION;
1229 if (error == 0) {
1230 error = hammer_ip_first(&cursor);
1231 while (error == 0) {
1232 error = hammer_ip_resolve_data(&cursor);
1233 if (error)
1234 break;
1235 if (nlen == cursor.leaf->data_len - HAMMER_ENTRY_NAME_OFF &&
1236 bcmp(ncp->nc_name, cursor.data->entry.name, nlen) == 0) {
1237 obj_id = cursor.data->entry.obj_id;
1238 localization = cursor.data->entry.localization;
1239 break;
1241 error = hammer_ip_next(&cursor);
1244 hammer_done_cursor(&cursor);
1247 * Lookup the obj_id. This should always succeed. If it does not
1248 * the filesystem may be damaged and we return a dummy inode.
1250 if (error == 0) {
1251 ip = hammer_get_inode(&trans, dip, obj_id,
1252 asof, localization,
1253 flags, &error);
1254 if (error == ENOENT) {
1255 hkprintf("WARNING: Missing inode for dirent \"%s\"\n"
1256 "\tobj_id = %016jx, asof=%016jx, lo=%08x\n",
1257 ncp->nc_name,
1258 (intmax_t)obj_id, (intmax_t)asof,
1259 localization);
1260 error = 0;
1261 ip = hammer_get_dummy_inode(&trans, dip, obj_id,
1262 asof, localization,
1263 flags, &error);
1265 if (error == 0) {
1266 error = hammer_get_vnode(ip, &vp);
1267 hammer_rel_inode(ip, 0);
1268 } else {
1269 vp = NULL;
1271 if (error == 0) {
1272 vn_unlock(vp);
1273 cache_setvp(ap->a_nch, vp);
1274 vrele(vp);
1276 } else if (error == ENOENT) {
1277 cache_setvp(ap->a_nch, NULL);
1279 done:
1280 hammer_done_transaction(&trans);
1281 lwkt_reltoken(&hmp->fs_token);
1282 return (error);
1286 * hammer_vop_nlookupdotdot { dvp, vpp, cred }
1288 * Locate the parent directory of a directory vnode.
1290 * dvp is referenced but not locked. *vpp must be returned referenced and
1291 * locked. A parent_obj_id of 0 indicates that we are at the root.
1293 * NOTE: as-of sequences are not linked into the directory structure. If
1294 * we are at the root with a different asof then the mount point, reload
1295 * the same directory with the mount point's asof. I'm not sure what this
1296 * will do to NFS. We encode ASOF stamps in NFS file handles so it might not
1297 * get confused, but it hasn't been tested.
1299 static
1301 hammer_vop_nlookupdotdot(struct vop_nlookupdotdot_args *ap)
1303 struct hammer_transaction trans;
1304 hammer_inode_t dip;
1305 hammer_inode_t ip;
1306 hammer_mount_t hmp;
1307 int64_t parent_obj_id;
1308 uint32_t parent_obj_localization;
1309 hammer_tid_t asof;
1310 int error;
1312 dip = VTOI(ap->a_dvp);
1313 asof = dip->obj_asof;
1314 hmp = dip->hmp;
1317 * Whos are parent? This could be the root of a pseudo-filesystem
1318 * whos parent is in another localization domain.
1320 lwkt_gettoken(&hmp->fs_token);
1321 parent_obj_id = dip->ino_data.parent_obj_id;
1322 if (dip->obj_id == HAMMER_OBJID_ROOT)
1323 parent_obj_localization = HAMMER_DEF_LOCALIZATION;
1324 else
1325 parent_obj_localization = dip->obj_localization;
1328 * It's probably a PFS root when dip->ino_data.parent_obj_id is 0.
1330 if (parent_obj_id == 0) {
1331 if (dip->obj_id == HAMMER_OBJID_ROOT &&
1332 asof != hmp->asof) {
1333 parent_obj_id = dip->obj_id;
1334 asof = hmp->asof;
1335 *ap->a_fakename = kmalloc(19, M_TEMP, M_WAITOK);
1336 ksnprintf(*ap->a_fakename, 19, "0x%016jx",
1337 (intmax_t)dip->obj_asof);
1338 } else {
1339 *ap->a_vpp = NULL;
1340 lwkt_reltoken(&hmp->fs_token);
1341 return ENOENT;
1345 hammer_simple_transaction(&trans, hmp);
1347 ip = hammer_get_inode(&trans, dip, parent_obj_id,
1348 asof, parent_obj_localization,
1349 dip->flags, &error);
1350 if (ip) {
1351 error = hammer_get_vnode(ip, ap->a_vpp);
1352 hammer_rel_inode(ip, 0);
1353 } else {
1354 *ap->a_vpp = NULL;
1356 hammer_done_transaction(&trans);
1357 lwkt_reltoken(&hmp->fs_token);
1358 return (error);
1362 * hammer_vop_nlink { nch, dvp, vp, cred }
1364 static
1366 hammer_vop_nlink(struct vop_nlink_args *ap)
1368 struct hammer_transaction trans;
1369 hammer_inode_t dip;
1370 hammer_inode_t ip;
1371 struct nchandle *nch;
1372 hammer_mount_t hmp;
1373 int error;
1375 if (ap->a_dvp->v_mount != ap->a_vp->v_mount)
1376 return(EXDEV);
1378 nch = ap->a_nch;
1379 dip = VTOI(ap->a_dvp);
1380 ip = VTOI(ap->a_vp);
1381 hmp = dip->hmp;
1383 if (dip->obj_localization != ip->obj_localization)
1384 return(EXDEV);
1386 if (dip->flags & HAMMER_INODE_RO)
1387 return (EROFS);
1388 if (ip->flags & HAMMER_INODE_RO)
1389 return (EROFS);
1390 if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
1391 return (error);
1394 * Create a transaction to cover the operations we perform.
1396 lwkt_gettoken(&hmp->fs_token);
1397 hammer_start_transaction(&trans, hmp);
1400 * Add the filesystem object to the directory. Note that neither
1401 * dip nor ip are referenced or locked, but their vnodes are
1402 * referenced. This function will bump the inode's link count.
1404 error = hammer_ip_add_direntry(&trans, dip,
1405 nch->ncp->nc_name, nch->ncp->nc_nlen,
1406 ip);
1409 * Finish up.
1411 if (error == 0) {
1412 cache_setunresolved(nch);
1413 cache_setvp(nch, ap->a_vp);
1415 hammer_done_transaction(&trans);
1416 hammer_knote(ap->a_vp, NOTE_LINK);
1417 hammer_knote(ap->a_dvp, NOTE_WRITE);
1418 lwkt_reltoken(&hmp->fs_token);
1419 return (error);
1423 * hammer_vop_nmkdir { nch, dvp, vpp, cred, vap }
1425 * The operating system has already ensured that the directory entry
1426 * does not exist and done all appropriate namespace locking.
1428 static
1430 hammer_vop_nmkdir(struct vop_nmkdir_args *ap)
1432 struct hammer_transaction trans;
1433 hammer_inode_t dip;
1434 hammer_inode_t nip;
1435 struct nchandle *nch;
1436 hammer_mount_t hmp;
1437 int error;
1439 nch = ap->a_nch;
1440 dip = VTOI(ap->a_dvp);
1441 hmp = dip->hmp;
1443 if (dip->flags & HAMMER_INODE_RO)
1444 return (EROFS);
1445 if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
1446 return (error);
1449 * Create a transaction to cover the operations we perform.
1451 lwkt_gettoken(&hmp->fs_token);
1452 hammer_start_transaction(&trans, hmp);
1455 * Create a new filesystem object of the requested type. The
1456 * returned inode will be referenced but not locked.
1458 error = hammer_create_inode(&trans, ap->a_vap, ap->a_cred,
1459 dip, nch->ncp->nc_name, nch->ncp->nc_nlen,
1460 NULL, &nip);
1461 if (error) {
1462 hammer_done_transaction(&trans);
1463 *ap->a_vpp = NULL;
1464 lwkt_reltoken(&hmp->fs_token);
1465 return (error);
1468 * Add the new filesystem object to the directory. This will also
1469 * bump the inode's link count.
1471 error = hammer_ip_add_direntry(&trans, dip,
1472 nch->ncp->nc_name, nch->ncp->nc_nlen,
1473 nip);
1474 if (error)
1475 hkprintf("hammer_mkdir (add) error %d\n", error);
1478 * Finish up.
1480 if (error) {
1481 hammer_rel_inode(nip, 0);
1482 *ap->a_vpp = NULL;
1483 } else {
1484 error = hammer_get_vnode(nip, ap->a_vpp);
1485 hammer_rel_inode(nip, 0);
1486 if (error == 0) {
1487 cache_setunresolved(ap->a_nch);
1488 cache_setvp(ap->a_nch, *ap->a_vpp);
1491 hammer_done_transaction(&trans);
1492 if (error == 0)
1493 hammer_knote(ap->a_dvp, NOTE_WRITE | NOTE_LINK);
1494 lwkt_reltoken(&hmp->fs_token);
1495 return (error);
1499 * hammer_vop_nmknod { nch, dvp, vpp, cred, vap }
1501 * The operating system has already ensured that the directory entry
1502 * does not exist and done all appropriate namespace locking.
1504 static
1506 hammer_vop_nmknod(struct vop_nmknod_args *ap)
1508 struct hammer_transaction trans;
1509 hammer_inode_t dip;
1510 hammer_inode_t nip;
1511 struct nchandle *nch;
1512 hammer_mount_t hmp;
1513 int error;
1515 nch = ap->a_nch;
1516 dip = VTOI(ap->a_dvp);
1517 hmp = dip->hmp;
1519 if (dip->flags & HAMMER_INODE_RO)
1520 return (EROFS);
1521 if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
1522 return (error);
1525 * Create a transaction to cover the operations we perform.
1527 lwkt_gettoken(&hmp->fs_token);
1528 hammer_start_transaction(&trans, hmp);
1531 * Create a new filesystem object of the requested type. The
1532 * returned inode will be referenced but not locked.
1534 * If mknod specifies a directory a pseudo-fs is created.
1536 error = hammer_create_inode(&trans, ap->a_vap, ap->a_cred,
1537 dip, nch->ncp->nc_name, nch->ncp->nc_nlen,
1538 NULL, &nip);
1539 if (error) {
1540 hammer_done_transaction(&trans);
1541 *ap->a_vpp = NULL;
1542 lwkt_reltoken(&hmp->fs_token);
1543 return (error);
1547 * Add the new filesystem object to the directory. This will also
1548 * bump the inode's link count.
1550 error = hammer_ip_add_direntry(&trans, dip,
1551 nch->ncp->nc_name, nch->ncp->nc_nlen,
1552 nip);
1555 * Finish up.
1557 if (error) {
1558 hammer_rel_inode(nip, 0);
1559 *ap->a_vpp = NULL;
1560 } else {
1561 error = hammer_get_vnode(nip, ap->a_vpp);
1562 hammer_rel_inode(nip, 0);
1563 if (error == 0) {
1564 cache_setunresolved(ap->a_nch);
1565 cache_setvp(ap->a_nch, *ap->a_vpp);
1568 hammer_done_transaction(&trans);
1569 if (error == 0)
1570 hammer_knote(ap->a_dvp, NOTE_WRITE);
1571 lwkt_reltoken(&hmp->fs_token);
1572 return (error);
1576 * hammer_vop_open { vp, mode, cred, fp }
1578 * MPSAFE (does not require fs_token)
1580 static
1582 hammer_vop_open(struct vop_open_args *ap)
1584 hammer_inode_t ip;
1586 ip = VTOI(ap->a_vp);
1588 if ((ap->a_mode & FWRITE) && (ip->flags & HAMMER_INODE_RO))
1589 return (EROFS);
1590 return(vop_stdopen(ap));
1594 * hammer_vop_print { vp }
1596 static
1598 hammer_vop_print(struct vop_print_args *ap)
1600 return EOPNOTSUPP;
1604 * hammer_vop_readdir { vp, uio, cred, *eofflag, *ncookies, off_t **cookies }
1606 static
1608 hammer_vop_readdir(struct vop_readdir_args *ap)
1610 struct hammer_transaction trans;
1611 struct hammer_cursor cursor;
1612 hammer_inode_t ip;
1613 hammer_mount_t hmp;
1614 struct uio *uio;
1615 hammer_base_elm_t base;
1616 int error;
1617 int cookie_index;
1618 int ncookies;
1619 off_t *cookies;
1620 off_t saveoff;
1621 int r;
1622 int dtype;
1624 ip = VTOI(ap->a_vp);
1625 uio = ap->a_uio;
1626 saveoff = uio->uio_offset;
1627 hmp = ip->hmp;
1629 if (ap->a_ncookies) {
1630 ncookies = uio->uio_resid / 16 + 1;
1631 if (ncookies > 1024)
1632 ncookies = 1024;
1633 cookies = kmalloc(ncookies * sizeof(off_t), M_TEMP, M_WAITOK);
1634 cookie_index = 0;
1635 } else {
1636 ncookies = -1;
1637 cookies = NULL;
1638 cookie_index = 0;
1641 lwkt_gettoken(&hmp->fs_token);
1642 hammer_simple_transaction(&trans, hmp);
1645 * Handle artificial entries
1647 * It should be noted that the minimum value for a directory
1648 * hash key on-media is 0x0000000100000000, so we can use anything
1649 * less then that to represent our 'special' key space.
1651 error = 0;
1652 if (saveoff == 0) {
1653 r = vop_write_dirent(&error, uio, ip->obj_id, DT_DIR, 1, ".");
1654 if (r)
1655 goto done;
1656 if (cookies)
1657 cookies[cookie_index] = saveoff;
1658 ++saveoff;
1659 ++cookie_index;
1660 if (cookie_index == ncookies)
1661 goto done;
1663 if (saveoff == 1) {
1664 if (ip->ino_data.parent_obj_id) {
1665 r = vop_write_dirent(&error, uio,
1666 ip->ino_data.parent_obj_id,
1667 DT_DIR, 2, "..");
1668 } else {
1669 r = vop_write_dirent(&error, uio,
1670 ip->obj_id, DT_DIR, 2, "..");
1672 if (r)
1673 goto done;
1674 if (cookies)
1675 cookies[cookie_index] = saveoff;
1676 ++saveoff;
1677 ++cookie_index;
1678 if (cookie_index == ncookies)
1679 goto done;
1683 * Key range (begin and end inclusive) to scan. Directory keys
1684 * directly translate to a 64 bit 'seek' position.
1686 hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
1687 cursor.key_beg.localization = ip->obj_localization |
1688 hammer_dir_localization(ip);
1689 cursor.key_beg.obj_id = ip->obj_id;
1690 cursor.key_beg.create_tid = 0;
1691 cursor.key_beg.delete_tid = 0;
1692 cursor.key_beg.rec_type = HAMMER_RECTYPE_DIRENTRY;
1693 cursor.key_beg.obj_type = 0;
1694 cursor.key_beg.key = saveoff;
1696 cursor.key_end = cursor.key_beg;
1697 cursor.key_end.key = HAMMER_MAX_KEY;
1698 cursor.asof = ip->obj_asof;
1699 cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
1701 error = hammer_ip_first(&cursor);
1703 while (error == 0) {
1704 error = hammer_ip_resolve_data(&cursor);
1705 if (error)
1706 break;
1707 base = &cursor.leaf->base;
1708 saveoff = base->key;
1709 KKASSERT(cursor.leaf->data_len > HAMMER_ENTRY_NAME_OFF);
1711 if (base->obj_id != ip->obj_id)
1712 hpanic("bad record at %p", cursor.node);
1714 dtype = hammer_get_dtype(cursor.leaf->base.obj_type);
1715 r = vop_write_dirent(
1716 &error, uio, cursor.data->entry.obj_id,
1717 dtype,
1718 cursor.leaf->data_len - HAMMER_ENTRY_NAME_OFF ,
1719 (void *)cursor.data->entry.name);
1720 if (r)
1721 break;
1722 ++saveoff;
1723 if (cookies)
1724 cookies[cookie_index] = base->key;
1725 ++cookie_index;
1726 if (cookie_index == ncookies)
1727 break;
1728 error = hammer_ip_next(&cursor);
1730 hammer_done_cursor(&cursor);
1732 done:
1733 hammer_done_transaction(&trans);
1735 if (ap->a_eofflag)
1736 *ap->a_eofflag = (error == ENOENT);
1737 uio->uio_offset = saveoff;
1738 if (error && cookie_index == 0) {
1739 if (error == ENOENT)
1740 error = 0;
1741 if (cookies) {
1742 kfree(cookies, M_TEMP);
1743 *ap->a_ncookies = 0;
1744 *ap->a_cookies = NULL;
1746 } else {
1747 if (error == ENOENT)
1748 error = 0;
1749 if (cookies) {
1750 *ap->a_ncookies = cookie_index;
1751 *ap->a_cookies = cookies;
1754 lwkt_reltoken(&hmp->fs_token);
1755 return(error);
1759 * hammer_vop_readlink { vp, uio, cred }
1761 static
1763 hammer_vop_readlink(struct vop_readlink_args *ap)
1765 struct hammer_transaction trans;
1766 struct hammer_cursor cursor;
1767 hammer_inode_t ip;
1768 hammer_mount_t hmp;
1769 char buf[32];
1770 uint32_t localization;
1771 hammer_pseudofs_inmem_t pfsm;
1772 int error;
1774 ip = VTOI(ap->a_vp);
1775 hmp = ip->hmp;
1777 lwkt_gettoken(&hmp->fs_token);
1780 * Shortcut if the symlink data was stuffed into ino_data.
1782 * Also expand special "@@PFS%05d" softlinks (expansion only
1783 * occurs for non-historical (current) accesses made from the
1784 * primary filesystem).
1786 * Note that userspace hammer command does not allow users to
1787 * create a @@PFS softlink under an existing other PFS (id!=0)
1788 * so the ip localization here for @@PFS softlink is always 0.
1790 if (ip->ino_data.size <= HAMMER_INODE_BASESYMLEN) {
1791 char *ptr;
1792 int bytes;
1794 ptr = ip->ino_data.ext.symlink;
1795 bytes = (int)ip->ino_data.size;
1796 if (bytes == 10 &&
1797 ip->obj_asof == HAMMER_MAX_TID &&
1798 ip->obj_localization == HAMMER_DEF_LOCALIZATION &&
1799 strncmp(ptr, "@@PFS", 5) == 0) {
1800 hammer_simple_transaction(&trans, hmp);
1801 bcopy(ptr + 5, buf, 5);
1802 buf[5] = 0;
1803 localization = pfs_to_lo(strtoul(buf, NULL, 10));
1804 pfsm = hammer_load_pseudofs(&trans, localization,
1805 &error);
1806 if (error == 0) {
1807 if (hammer_is_pfs_slave(&pfsm->pfsd)) {
1808 /* vap->va_size == 26 */
1809 ksnprintf(buf, sizeof(buf),
1810 "@@0x%016jx:%05d",
1811 (intmax_t)pfsm->pfsd.sync_end_tid,
1812 lo_to_pfs(localization));
1813 } else {
1814 /* vap->va_size == 10 */
1815 ksnprintf(buf, sizeof(buf),
1816 "@@-1:%05d",
1817 lo_to_pfs(localization));
1819 ptr = buf;
1820 bytes = strlen(buf);
1822 if (pfsm)
1823 hammer_rel_pseudofs(hmp, pfsm);
1824 hammer_done_transaction(&trans);
1826 error = uiomove(ptr, bytes, ap->a_uio);
1827 lwkt_reltoken(&hmp->fs_token);
1828 return(error);
1832 * Long version
1834 hammer_simple_transaction(&trans, hmp);
1835 hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
1838 * Key range (begin and end inclusive) to scan. Directory keys
1839 * directly translate to a 64 bit 'seek' position.
1841 cursor.key_beg.localization = ip->obj_localization |
1842 HAMMER_LOCALIZE_MISC;
1843 cursor.key_beg.obj_id = ip->obj_id;
1844 cursor.key_beg.create_tid = 0;
1845 cursor.key_beg.delete_tid = 0;
1846 cursor.key_beg.rec_type = HAMMER_RECTYPE_FIX;
1847 cursor.key_beg.obj_type = 0;
1848 cursor.key_beg.key = HAMMER_FIXKEY_SYMLINK;
1849 cursor.asof = ip->obj_asof;
1850 cursor.flags |= HAMMER_CURSOR_ASOF;
1852 error = hammer_ip_lookup(&cursor);
1853 if (error == 0) {
1854 error = hammer_ip_resolve_data(&cursor);
1855 if (error == 0) {
1856 KKASSERT(cursor.leaf->data_len >=
1857 HAMMER_SYMLINK_NAME_OFF);
1858 error = uiomove(cursor.data->symlink.name,
1859 cursor.leaf->data_len -
1860 HAMMER_SYMLINK_NAME_OFF,
1861 ap->a_uio);
1864 hammer_done_cursor(&cursor);
1865 hammer_done_transaction(&trans);
1866 lwkt_reltoken(&hmp->fs_token);
1867 return(error);
1871 * hammer_vop_nremove { nch, dvp, cred }
1873 static
1875 hammer_vop_nremove(struct vop_nremove_args *ap)
1877 struct hammer_transaction trans;
1878 hammer_inode_t dip;
1879 hammer_mount_t hmp;
1880 int error;
1882 dip = VTOI(ap->a_dvp);
1883 hmp = dip->hmp;
1885 if (hammer_nohistory(dip) == 0 &&
1886 (error = hammer_checkspace(hmp, HAMMER_CHKSPC_REMOVE)) != 0) {
1887 return (error);
1890 lwkt_gettoken(&hmp->fs_token);
1891 hammer_start_transaction(&trans, hmp);
1892 error = hammer_dounlink(&trans, ap->a_nch, ap->a_dvp, ap->a_cred, 0, 0);
1893 hammer_done_transaction(&trans);
1894 if (error == 0)
1895 hammer_knote(ap->a_dvp, NOTE_WRITE);
1896 lwkt_reltoken(&hmp->fs_token);
1897 return (error);
1901 * hammer_vop_nrename { fnch, tnch, fdvp, tdvp, cred }
1903 static
1905 hammer_vop_nrename(struct vop_nrename_args *ap)
1907 struct hammer_transaction trans;
1908 struct namecache *fncp;
1909 struct namecache *tncp;
1910 hammer_inode_t fdip;
1911 hammer_inode_t tdip;
1912 hammer_inode_t ip;
1913 hammer_mount_t hmp;
1914 struct hammer_cursor cursor;
1915 int64_t namekey;
1916 uint32_t max_iterations;
1917 int nlen, error;
1919 if (ap->a_fdvp->v_mount != ap->a_tdvp->v_mount)
1920 return(EXDEV);
1921 if (ap->a_fdvp->v_mount != ap->a_fnch->ncp->nc_vp->v_mount)
1922 return(EXDEV);
1924 fdip = VTOI(ap->a_fdvp);
1925 tdip = VTOI(ap->a_tdvp);
1926 fncp = ap->a_fnch->ncp;
1927 tncp = ap->a_tnch->ncp;
1928 ip = VTOI(fncp->nc_vp);
1929 KKASSERT(ip != NULL);
1931 hmp = ip->hmp;
1933 if (fdip->obj_localization != tdip->obj_localization)
1934 return(EXDEV);
1935 if (fdip->obj_localization != ip->obj_localization)
1936 return(EXDEV);
1938 if (fdip->flags & HAMMER_INODE_RO)
1939 return (EROFS);
1940 if (tdip->flags & HAMMER_INODE_RO)
1941 return (EROFS);
1942 if (ip->flags & HAMMER_INODE_RO)
1943 return (EROFS);
1944 if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
1945 return (error);
1947 lwkt_gettoken(&hmp->fs_token);
1948 hammer_start_transaction(&trans, hmp);
1951 * Remove tncp from the target directory and then link ip as
1952 * tncp. XXX pass trans to dounlink
1954 * Force the inode sync-time to match the transaction so it is
1955 * in-sync with the creation of the target directory entry.
1957 error = hammer_dounlink(&trans, ap->a_tnch, ap->a_tdvp,
1958 ap->a_cred, 0, -1);
1959 if (error == 0 || error == ENOENT) {
1960 error = hammer_ip_add_direntry(&trans, tdip,
1961 tncp->nc_name, tncp->nc_nlen,
1962 ip);
1963 if (error == 0) {
1964 ip->ino_data.parent_obj_id = tdip->obj_id;
1965 ip->ino_data.ctime = trans.time;
1966 hammer_modify_inode(&trans, ip, HAMMER_INODE_DDIRTY);
1969 if (error)
1970 goto failed; /* XXX */
1973 * Locate the record in the originating directory and remove it.
1975 * Calculate the namekey and setup the key range for the scan. This
1976 * works kinda like a chained hash table where the lower 32 bits
1977 * of the namekey synthesize the chain.
1979 * The key range is inclusive of both key_beg and key_end.
1981 namekey = hammer_direntry_namekey(fdip, fncp->nc_name, fncp->nc_nlen,
1982 &max_iterations);
1983 retry:
1984 hammer_init_cursor(&trans, &cursor, &fdip->cache[1], fdip);
1985 cursor.key_beg.localization = fdip->obj_localization |
1986 hammer_dir_localization(fdip);
1987 cursor.key_beg.obj_id = fdip->obj_id;
1988 cursor.key_beg.key = namekey;
1989 cursor.key_beg.create_tid = 0;
1990 cursor.key_beg.delete_tid = 0;
1991 cursor.key_beg.rec_type = HAMMER_RECTYPE_DIRENTRY;
1992 cursor.key_beg.obj_type = 0;
1994 cursor.key_end = cursor.key_beg;
1995 cursor.key_end.key += max_iterations;
1996 cursor.asof = fdip->obj_asof;
1997 cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2000 * Scan all matching records (the chain), locate the one matching
2001 * the requested path component.
2003 * The hammer_ip_*() functions merge in-memory records with on-disk
2004 * records for the purposes of the search.
2006 error = hammer_ip_first(&cursor);
2007 while (error == 0) {
2008 if (hammer_ip_resolve_data(&cursor) != 0)
2009 break;
2010 nlen = cursor.leaf->data_len - HAMMER_ENTRY_NAME_OFF;
2011 KKASSERT(nlen > 0);
2012 if (fncp->nc_nlen == nlen &&
2013 bcmp(fncp->nc_name, cursor.data->entry.name, nlen) == 0) {
2014 break;
2016 error = hammer_ip_next(&cursor);
2020 * If all is ok we have to get the inode so we can adjust nlinks.
2022 * WARNING: hammer_ip_del_direntry() may have to terminate the
2023 * cursor to avoid a recursion. It's ok to call hammer_done_cursor()
2024 * twice.
2026 if (error == 0)
2027 error = hammer_ip_del_direntry(&trans, &cursor, fdip, ip);
2030 * XXX A deadlock here will break rename's atomicy for the purposes
2031 * of crash recovery.
2033 if (error == EDEADLK) {
2034 hammer_done_cursor(&cursor);
2035 goto retry;
2039 * Cleanup and tell the kernel that the rename succeeded.
2041 * NOTE: ip->vp, if non-NULL, cannot be directly referenced
2042 * without formally acquiring the vp since the vp might
2043 * have zero refs on it, or in the middle of a reclaim,
2044 * etc.
2046 hammer_done_cursor(&cursor);
2047 if (error == 0) {
2048 cache_rename(ap->a_fnch, ap->a_tnch);
2049 hammer_knote(ap->a_fdvp, NOTE_WRITE);
2050 hammer_knote(ap->a_tdvp, NOTE_WRITE);
2051 while (ip->vp) {
2052 struct vnode *vp;
2054 error = hammer_get_vnode(ip, &vp);
2055 if (error == 0 && vp) {
2056 vn_unlock(vp);
2057 hammer_knote(ip->vp, NOTE_RENAME);
2058 vrele(vp);
2059 break;
2061 hdkprintf("ip/vp race2 avoided\n");
2065 failed:
2066 hammer_done_transaction(&trans);
2067 lwkt_reltoken(&hmp->fs_token);
2068 return (error);
2072 * hammer_vop_nrmdir { nch, dvp, cred }
2074 static
2076 hammer_vop_nrmdir(struct vop_nrmdir_args *ap)
2078 struct hammer_transaction trans;
2079 hammer_inode_t dip;
2080 hammer_mount_t hmp;
2081 int error;
2083 dip = VTOI(ap->a_dvp);
2084 hmp = dip->hmp;
2086 if (hammer_nohistory(dip) == 0 &&
2087 (error = hammer_checkspace(hmp, HAMMER_CHKSPC_REMOVE)) != 0) {
2088 return (error);
2091 lwkt_gettoken(&hmp->fs_token);
2092 hammer_start_transaction(&trans, hmp);
2093 error = hammer_dounlink(&trans, ap->a_nch, ap->a_dvp, ap->a_cred, 0, 1);
2094 hammer_done_transaction(&trans);
2095 if (error == 0)
2096 hammer_knote(ap->a_dvp, NOTE_WRITE | NOTE_LINK);
2097 lwkt_reltoken(&hmp->fs_token);
2098 return (error);
2102 * hammer_vop_markatime { vp, cred }
2104 static
2106 hammer_vop_markatime(struct vop_markatime_args *ap)
2108 struct hammer_transaction trans;
2109 hammer_inode_t ip;
2110 hammer_mount_t hmp;
2112 ip = VTOI(ap->a_vp);
2113 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
2114 return (EROFS);
2115 if (ip->flags & HAMMER_INODE_RO)
2116 return (EROFS);
2117 hmp = ip->hmp;
2118 if (hmp->mp->mnt_flag & MNT_NOATIME)
2119 return (0);
2120 lwkt_gettoken(&hmp->fs_token);
2121 hammer_start_transaction(&trans, hmp);
2123 ip->ino_data.atime = trans.time;
2124 hammer_modify_inode(&trans, ip, HAMMER_INODE_ATIME);
2125 hammer_done_transaction(&trans);
2126 hammer_knote(ap->a_vp, NOTE_ATTRIB);
2127 lwkt_reltoken(&hmp->fs_token);
2128 return (0);
2132 * hammer_vop_setattr { vp, vap, cred }
2134 static
2136 hammer_vop_setattr(struct vop_setattr_args *ap)
2138 struct hammer_transaction trans;
2139 hammer_inode_t ip;
2140 struct vattr *vap;
2141 hammer_mount_t hmp;
2142 int modflags;
2143 int error;
2144 int truncating;
2145 int blksize;
2146 int kflags;
2147 #if 0
2148 int64_t aligned_size;
2149 #endif
2150 uint32_t flags;
2152 vap = ap->a_vap;
2153 ip = ap->a_vp->v_data;
2154 modflags = 0;
2155 kflags = 0;
2156 hmp = ip->hmp;
2158 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
2159 return(EROFS);
2160 if (ip->flags & HAMMER_INODE_RO)
2161 return (EROFS);
2162 if (hammer_nohistory(ip) == 0 &&
2163 (error = hammer_checkspace(hmp, HAMMER_CHKSPC_REMOVE)) != 0) {
2164 return (error);
2167 lwkt_gettoken(&hmp->fs_token);
2168 hammer_start_transaction(&trans, hmp);
2169 error = 0;
2171 if (vap->va_flags != VNOVAL) {
2172 flags = ip->ino_data.uflags;
2173 error = vop_helper_setattr_flags(&flags, vap->va_flags,
2174 hammer_to_unix_xid(&ip->ino_data.uid),
2175 ap->a_cred);
2176 if (error == 0) {
2177 if (ip->ino_data.uflags != flags) {
2178 ip->ino_data.uflags = flags;
2179 ip->ino_data.ctime = trans.time;
2180 modflags |= HAMMER_INODE_DDIRTY;
2181 kflags |= NOTE_ATTRIB;
2183 if (ip->ino_data.uflags & (IMMUTABLE | APPEND)) {
2184 error = 0;
2185 goto done;
2188 goto done;
2190 if (ip->ino_data.uflags & (IMMUTABLE | APPEND)) {
2191 error = EPERM;
2192 goto done;
2194 if (vap->va_uid != (uid_t)VNOVAL || vap->va_gid != (gid_t)VNOVAL) {
2195 mode_t cur_mode = ip->ino_data.mode;
2196 uid_t cur_uid = hammer_to_unix_xid(&ip->ino_data.uid);
2197 gid_t cur_gid = hammer_to_unix_xid(&ip->ino_data.gid);
2198 uuid_t uuid_uid;
2199 uuid_t uuid_gid;
2201 error = vop_helper_chown(ap->a_vp, vap->va_uid, vap->va_gid,
2202 ap->a_cred,
2203 &cur_uid, &cur_gid, &cur_mode);
2204 if (error == 0) {
2205 hammer_guid_to_uuid(&uuid_uid, cur_uid);
2206 hammer_guid_to_uuid(&uuid_gid, cur_gid);
2207 if (bcmp(&uuid_uid, &ip->ino_data.uid,
2208 sizeof(uuid_uid)) ||
2209 bcmp(&uuid_gid, &ip->ino_data.gid,
2210 sizeof(uuid_gid)) ||
2211 ip->ino_data.mode != cur_mode) {
2212 ip->ino_data.uid = uuid_uid;
2213 ip->ino_data.gid = uuid_gid;
2214 ip->ino_data.mode = cur_mode;
2215 ip->ino_data.ctime = trans.time;
2216 modflags |= HAMMER_INODE_DDIRTY;
2218 kflags |= NOTE_ATTRIB;
2221 while (vap->va_size != VNOVAL && ip->ino_data.size != vap->va_size) {
2222 switch(ap->a_vp->v_type) {
2223 case VREG:
2224 if (vap->va_size == ip->ino_data.size)
2225 break;
2228 * Log the operation if in fast-fsync mode or if
2229 * there are unterminated redo write records present.
2231 * The second check is needed so the recovery code
2232 * properly truncates write redos even if nominal
2233 * REDO operations is turned off due to excessive
2234 * writes, because the related records might be
2235 * destroyed and never lay down a TERM_WRITE.
2237 if ((ip->flags & HAMMER_INODE_REDO) ||
2238 (ip->flags & HAMMER_INODE_RDIRTY)) {
2239 error = hammer_generate_redo(&trans, ip,
2240 vap->va_size,
2241 HAMMER_REDO_TRUNC,
2242 NULL, 0);
2244 blksize = hammer_blocksize(vap->va_size);
2247 * XXX break atomicy, we can deadlock the backend
2248 * if we do not release the lock. Probably not a
2249 * big deal here.
2251 if (vap->va_size < ip->ino_data.size) {
2252 nvtruncbuf(ap->a_vp, vap->va_size,
2253 blksize,
2254 hammer_blockoff(vap->va_size),
2256 truncating = 1;
2257 kflags |= NOTE_WRITE;
2258 } else {
2259 nvextendbuf(ap->a_vp,
2260 ip->ino_data.size,
2261 vap->va_size,
2262 hammer_blocksize(ip->ino_data.size),
2263 hammer_blocksize(vap->va_size),
2264 hammer_blockoff(ip->ino_data.size),
2265 hammer_blockoff(vap->va_size),
2267 truncating = 0;
2268 kflags |= NOTE_WRITE | NOTE_EXTEND;
2270 ip->ino_data.size = vap->va_size;
2271 ip->ino_data.mtime = trans.time;
2272 /* XXX safe to use SDIRTY instead of DDIRTY here? */
2273 modflags |= HAMMER_INODE_MTIME | HAMMER_INODE_DDIRTY;
2276 * On-media truncation is cached in the inode until
2277 * the inode is synchronized. We must immediately
2278 * handle any frontend records.
2280 if (truncating) {
2281 hammer_ip_frontend_trunc(ip, vap->va_size);
2282 if ((ip->flags & HAMMER_INODE_TRUNCATED) == 0) {
2283 ip->flags |= HAMMER_INODE_TRUNCATED;
2284 ip->trunc_off = vap->va_size;
2285 hammer_inode_dirty(ip);
2286 } else if (ip->trunc_off > vap->va_size) {
2287 ip->trunc_off = vap->va_size;
2291 #if 0
2293 * When truncating, nvtruncbuf() may have cleaned out
2294 * a portion of the last block on-disk in the buffer
2295 * cache. We must clean out any frontend records
2296 * for blocks beyond the new last block.
2298 aligned_size = (vap->va_size + (blksize - 1)) &
2299 ~(int64_t)(blksize - 1);
2300 if (truncating && vap->va_size < aligned_size) {
2301 aligned_size -= blksize;
2302 hammer_ip_frontend_trunc(ip, aligned_size);
2304 #endif
2305 break;
2306 case VDATABASE:
2307 if ((ip->flags & HAMMER_INODE_TRUNCATED) == 0) {
2308 ip->flags |= HAMMER_INODE_TRUNCATED;
2309 ip->trunc_off = vap->va_size;
2310 hammer_inode_dirty(ip);
2311 } else if (ip->trunc_off > vap->va_size) {
2312 ip->trunc_off = vap->va_size;
2314 hammer_ip_frontend_trunc(ip, vap->va_size);
2315 ip->ino_data.size = vap->va_size;
2316 ip->ino_data.mtime = trans.time;
2317 modflags |= HAMMER_INODE_MTIME | HAMMER_INODE_DDIRTY;
2318 kflags |= NOTE_ATTRIB;
2319 break;
2320 default:
2321 error = EINVAL;
2322 goto done;
2324 break;
2326 if (vap->va_atime.tv_sec != VNOVAL) {
2327 ip->ino_data.atime = hammer_timespec_to_time(&vap->va_atime);
2328 modflags |= HAMMER_INODE_ATIME;
2329 kflags |= NOTE_ATTRIB;
2331 if (vap->va_mtime.tv_sec != VNOVAL) {
2332 ip->ino_data.mtime = hammer_timespec_to_time(&vap->va_mtime);
2333 modflags |= HAMMER_INODE_MTIME;
2334 kflags |= NOTE_ATTRIB;
2336 if (vap->va_mode != (mode_t)VNOVAL) {
2337 mode_t cur_mode = ip->ino_data.mode;
2338 uid_t cur_uid = hammer_to_unix_xid(&ip->ino_data.uid);
2339 gid_t cur_gid = hammer_to_unix_xid(&ip->ino_data.gid);
2341 error = vop_helper_chmod(ap->a_vp, vap->va_mode, ap->a_cred,
2342 cur_uid, cur_gid, &cur_mode);
2343 if (error == 0 && ip->ino_data.mode != cur_mode) {
2344 ip->ino_data.mode = cur_mode;
2345 ip->ino_data.ctime = trans.time;
2346 modflags |= HAMMER_INODE_DDIRTY;
2347 kflags |= NOTE_ATTRIB;
2350 done:
2351 if (error == 0)
2352 hammer_modify_inode(&trans, ip, modflags);
2353 hammer_done_transaction(&trans);
2354 hammer_knote(ap->a_vp, kflags);
2355 lwkt_reltoken(&hmp->fs_token);
2356 return (error);
2360 * hammer_vop_nsymlink { nch, dvp, vpp, cred, vap, target }
2362 static
2364 hammer_vop_nsymlink(struct vop_nsymlink_args *ap)
2366 struct hammer_transaction trans;
2367 hammer_inode_t dip;
2368 hammer_inode_t nip;
2369 hammer_record_t record;
2370 struct nchandle *nch;
2371 hammer_mount_t hmp;
2372 int error;
2373 int bytes;
2375 ap->a_vap->va_type = VLNK;
2377 nch = ap->a_nch;
2378 dip = VTOI(ap->a_dvp);
2379 hmp = dip->hmp;
2381 if (dip->flags & HAMMER_INODE_RO)
2382 return (EROFS);
2383 if ((error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0)
2384 return (error);
2387 * Create a transaction to cover the operations we perform.
2389 lwkt_gettoken(&hmp->fs_token);
2390 hammer_start_transaction(&trans, hmp);
2393 * Create a new filesystem object of the requested type. The
2394 * returned inode will be referenced but not locked.
2397 error = hammer_create_inode(&trans, ap->a_vap, ap->a_cred,
2398 dip, nch->ncp->nc_name, nch->ncp->nc_nlen,
2399 NULL, &nip);
2400 if (error) {
2401 hammer_done_transaction(&trans);
2402 *ap->a_vpp = NULL;
2403 lwkt_reltoken(&hmp->fs_token);
2404 return (error);
2408 * Add a record representing the symlink. symlink stores the link
2409 * as pure data, not a string, and is no \0 terminated.
2411 if (error == 0) {
2412 bytes = strlen(ap->a_target);
2414 if (bytes <= HAMMER_INODE_BASESYMLEN) {
2415 bcopy(ap->a_target, nip->ino_data.ext.symlink, bytes);
2416 } else {
2417 record = hammer_alloc_mem_record(nip, bytes);
2418 record->type = HAMMER_MEM_RECORD_GENERAL;
2420 record->leaf.base.localization = nip->obj_localization |
2421 HAMMER_LOCALIZE_MISC;
2422 record->leaf.base.key = HAMMER_FIXKEY_SYMLINK;
2423 record->leaf.base.rec_type = HAMMER_RECTYPE_FIX;
2424 record->leaf.data_len = bytes;
2425 KKASSERT(HAMMER_SYMLINK_NAME_OFF == 0);
2426 bcopy(ap->a_target, record->data->symlink.name, bytes);
2427 error = hammer_ip_add_record(&trans, record);
2431 * Set the file size to the length of the link.
2433 if (error == 0) {
2434 nip->ino_data.size = bytes;
2435 hammer_modify_inode(&trans, nip, HAMMER_INODE_DDIRTY);
2438 if (error == 0)
2439 error = hammer_ip_add_direntry(&trans, dip, nch->ncp->nc_name,
2440 nch->ncp->nc_nlen, nip);
2443 * Finish up.
2445 if (error) {
2446 hammer_rel_inode(nip, 0);
2447 *ap->a_vpp = NULL;
2448 } else {
2449 error = hammer_get_vnode(nip, ap->a_vpp);
2450 hammer_rel_inode(nip, 0);
2451 if (error == 0) {
2452 cache_setunresolved(ap->a_nch);
2453 cache_setvp(ap->a_nch, *ap->a_vpp);
2454 hammer_knote(ap->a_dvp, NOTE_WRITE);
2457 hammer_done_transaction(&trans);
2458 lwkt_reltoken(&hmp->fs_token);
2459 return (error);
2463 * hammer_vop_nwhiteout { nch, dvp, cred, flags }
2465 static
2467 hammer_vop_nwhiteout(struct vop_nwhiteout_args *ap)
2469 struct hammer_transaction trans;
2470 hammer_inode_t dip;
2471 hammer_mount_t hmp;
2472 int error;
2474 dip = VTOI(ap->a_dvp);
2475 hmp = dip->hmp;
2477 if (hammer_nohistory(dip) == 0 &&
2478 (error = hammer_checkspace(hmp, HAMMER_CHKSPC_CREATE)) != 0) {
2479 return (error);
2482 lwkt_gettoken(&hmp->fs_token);
2483 hammer_start_transaction(&trans, hmp);
2484 error = hammer_dounlink(&trans, ap->a_nch, ap->a_dvp,
2485 ap->a_cred, ap->a_flags, -1);
2486 hammer_done_transaction(&trans);
2487 lwkt_reltoken(&hmp->fs_token);
2489 return (error);
2493 * hammer_vop_ioctl { vp, command, data, fflag, cred }
2495 static
2497 hammer_vop_ioctl(struct vop_ioctl_args *ap)
2499 hammer_inode_t ip = ap->a_vp->v_data;
2500 hammer_mount_t hmp = ip->hmp;
2501 int error;
2503 lwkt_gettoken(&hmp->fs_token);
2504 error = hammer_ioctl(ip, ap->a_command, ap->a_data,
2505 ap->a_fflag, ap->a_cred);
2506 lwkt_reltoken(&hmp->fs_token);
2507 return (error);
2510 static
2512 hammer_vop_mountctl(struct vop_mountctl_args *ap)
2514 static const struct mountctl_opt extraopt[] = {
2515 { HMNT_NOHISTORY, "nohistory" },
2516 { HMNT_MASTERID, "master" },
2517 { HMNT_NOMIRROR, "nomirror" },
2518 { 0, NULL}
2521 hammer_mount_t hmp;
2522 struct mount *mp;
2523 int usedbytes;
2524 int error;
2526 error = 0;
2527 usedbytes = 0;
2528 mp = ap->a_head.a_ops->head.vv_mount;
2529 KKASSERT(mp->mnt_data != NULL);
2530 hmp = (hammer_mount_t)mp->mnt_data;
2532 lwkt_gettoken(&hmp->fs_token);
2534 switch(ap->a_op) {
2535 case MOUNTCTL_SET_EXPORT:
2536 if (ap->a_ctllen != sizeof(struct export_args))
2537 error = EINVAL;
2538 else
2539 error = hammer_vfs_export(mp, ap->a_op,
2540 (const struct export_args *)ap->a_ctl);
2541 break;
2542 case MOUNTCTL_MOUNTFLAGS:
2544 * Call standard mountctl VOP function
2545 * so we get user mount flags.
2547 error = vop_stdmountctl(ap);
2548 if (error)
2549 break;
2551 usedbytes = *ap->a_res;
2553 if (usedbytes > 0 && usedbytes < ap->a_buflen) {
2554 usedbytes += vfs_flagstostr(hmp->hflags, extraopt,
2555 ap->a_buf,
2556 ap->a_buflen - usedbytes,
2557 &error);
2560 *ap->a_res += usedbytes;
2561 break;
2562 default:
2563 error = vop_stdmountctl(ap);
2564 break;
2566 lwkt_reltoken(&hmp->fs_token);
2567 return(error);
2571 * hammer_vop_strategy { vp, bio }
2573 * Strategy call, used for regular file read & write only. Note that the
2574 * bp may represent a cluster.
2576 * To simplify operation and allow better optimizations in the future,
2577 * this code does not make any assumptions with regards to buffer alignment
2578 * or size.
2580 static
2582 hammer_vop_strategy(struct vop_strategy_args *ap)
2584 struct buf *bp;
2585 int error;
2587 bp = ap->a_bio->bio_buf;
2589 switch(bp->b_cmd) {
2590 case BUF_CMD_READ:
2591 error = hammer_vop_strategy_read(ap);
2592 break;
2593 case BUF_CMD_WRITE:
2594 error = hammer_vop_strategy_write(ap);
2595 break;
2596 default:
2597 bp->b_error = error = EINVAL;
2598 bp->b_flags |= B_ERROR;
2599 biodone(ap->a_bio);
2600 break;
2603 /* hammer_dump_dedup_cache(((hammer_inode_t)ap->a_vp->v_data)->hmp); */
2605 return (error);
2609 * Read from a regular file. Iterate the related records and fill in the
2610 * BIO/BUF. Gaps are zero-filled.
2612 * The support code in hammer_object.c should be used to deal with mixed
2613 * in-memory and on-disk records.
2615 * NOTE: Can be called from the cluster code with an oversized buf.
2617 * XXX atime update
2619 static
2621 hammer_vop_strategy_read(struct vop_strategy_args *ap)
2623 struct hammer_transaction trans;
2624 hammer_inode_t ip;
2625 hammer_inode_t dip;
2626 hammer_mount_t hmp;
2627 struct hammer_cursor cursor;
2628 hammer_base_elm_t base;
2629 hammer_off_t disk_offset;
2630 struct bio *bio;
2631 struct bio *nbio;
2632 struct buf *bp;
2633 int64_t rec_offset;
2634 int64_t ran_end;
2635 int64_t tmp64;
2636 int error;
2637 int boff;
2638 int roff;
2639 int n;
2640 int isdedupable;
2642 bio = ap->a_bio;
2643 bp = bio->bio_buf;
2644 ip = ap->a_vp->v_data;
2645 hmp = ip->hmp;
2648 * The zone-2 disk offset may have been set by the cluster code via
2649 * a BMAP operation, or else should be NOOFFSET.
2651 * Checking the high bits for a match against zone-2 should suffice.
2653 * In cases where a lot of data duplication is present it may be
2654 * more beneficial to drop through and doubule-buffer through the
2655 * device.
2657 nbio = push_bio(bio);
2658 if (hammer_is_zone_large_data(nbio->bio_offset)) {
2659 if (hammer_double_buffer == 0) {
2660 lwkt_gettoken(&hmp->fs_token);
2661 error = hammer_io_direct_read(hmp, nbio, NULL);
2662 lwkt_reltoken(&hmp->fs_token);
2663 return (error);
2667 * Try to shortcut requests for double_buffer mode too.
2668 * Since this mode runs through the device buffer cache
2669 * only compatible buffer sizes (meaning those generated
2670 * by normal filesystem buffers) are legal.
2672 if (hammer_live_dedup == 0 && (bp->b_flags & B_PAGING) == 0) {
2673 lwkt_gettoken(&hmp->fs_token);
2674 error = hammer_io_indirect_read(hmp, nbio, NULL);
2675 lwkt_reltoken(&hmp->fs_token);
2676 return (error);
2681 * Well, that sucked. Do it the hard way. If all the stars are
2682 * aligned we may still be able to issue a direct-read.
2684 lwkt_gettoken(&hmp->fs_token);
2685 hammer_simple_transaction(&trans, hmp);
2686 hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
2689 * Key range (begin and end inclusive) to scan. Note that the key's
2690 * stored in the actual records represent BASE+LEN, not BASE. The
2691 * first record containing bio_offset will have a key > bio_offset.
2693 cursor.key_beg.localization = ip->obj_localization |
2694 HAMMER_LOCALIZE_MISC;
2695 cursor.key_beg.obj_id = ip->obj_id;
2696 cursor.key_beg.create_tid = 0;
2697 cursor.key_beg.delete_tid = 0;
2698 cursor.key_beg.obj_type = 0;
2699 cursor.key_beg.key = bio->bio_offset + 1;
2700 cursor.asof = ip->obj_asof;
2701 cursor.flags |= HAMMER_CURSOR_ASOF;
2703 cursor.key_end = cursor.key_beg;
2704 KKASSERT(ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE);
2705 #if 0
2706 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
2707 cursor.key_beg.rec_type = HAMMER_RECTYPE_DB;
2708 cursor.key_end.rec_type = HAMMER_RECTYPE_DB;
2709 cursor.key_end.key = HAMMER_MAX_KEY;
2710 } else
2711 #endif
2713 ran_end = bio->bio_offset + bp->b_bufsize;
2714 cursor.key_beg.rec_type = HAMMER_RECTYPE_DATA;
2715 cursor.key_end.rec_type = HAMMER_RECTYPE_DATA;
2716 tmp64 = ran_end + MAXPHYS + 1; /* work-around GCC-4 bug */
2717 if (tmp64 < ran_end)
2718 cursor.key_end.key = HAMMER_MAX_KEY;
2719 else
2720 cursor.key_end.key = ran_end + MAXPHYS + 1;
2722 cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE;
2725 * Set NOSWAPCACHE for cursor data extraction if double buffering
2726 * is disabled or (if the file is not marked cacheable via chflags
2727 * and vm.swapcache_use_chflags is enabled).
2729 if (hammer_double_buffer == 0 ||
2730 ((ap->a_vp->v_flag & VSWAPCACHE) == 0 &&
2731 vm_swapcache_use_chflags)) {
2732 cursor.flags |= HAMMER_CURSOR_NOSWAPCACHE;
2735 error = hammer_ip_first(&cursor);
2736 boff = 0;
2738 while (error == 0) {
2740 * Get the base file offset of the record. The key for
2741 * data records is (base + bytes) rather then (base).
2743 base = &cursor.leaf->base;
2744 rec_offset = base->key - cursor.leaf->data_len;
2747 * Calculate the gap, if any, and zero-fill it.
2749 * n is the offset of the start of the record verses our
2750 * current seek offset in the bio.
2752 n = (int)(rec_offset - (bio->bio_offset + boff));
2753 if (n > 0) {
2754 if (n > bp->b_bufsize - boff)
2755 n = bp->b_bufsize - boff;
2756 bzero((char *)bp->b_data + boff, n);
2757 boff += n;
2758 n = 0;
2762 * Calculate the data offset in the record and the number
2763 * of bytes we can copy.
2765 * There are two degenerate cases. First, boff may already
2766 * be at bp->b_bufsize. Secondly, the data offset within
2767 * the record may exceed the record's size.
2769 roff = -n;
2770 rec_offset += roff;
2771 n = cursor.leaf->data_len - roff;
2772 if (n <= 0) {
2773 hdkprintf("bad n=%d roff=%d\n", n, roff);
2774 n = 0;
2775 } else if (n > bp->b_bufsize - boff) {
2776 n = bp->b_bufsize - boff;
2780 * Deal with cached truncations. This cool bit of code
2781 * allows truncate()/ftruncate() to avoid having to sync
2782 * the file.
2784 * If the frontend is truncated then all backend records are
2785 * subject to the frontend's truncation.
2787 * If the backend is truncated then backend records on-disk
2788 * (but not in-memory) are subject to the backend's
2789 * truncation. In-memory records owned by the backend
2790 * represent data written after the truncation point on the
2791 * backend and must not be truncated.
2793 * Truncate operations deal with frontend buffer cache
2794 * buffers and frontend-owned in-memory records synchronously.
2796 if (ip->flags & HAMMER_INODE_TRUNCATED) {
2797 if (hammer_cursor_ondisk(&cursor)/* ||
2798 cursor.iprec->flush_state == HAMMER_FST_FLUSH*/) {
2799 if (ip->trunc_off <= rec_offset)
2800 n = 0;
2801 else if (ip->trunc_off < rec_offset + n)
2802 n = (int)(ip->trunc_off - rec_offset);
2805 if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
2806 if (hammer_cursor_ondisk(&cursor)) {
2807 if (ip->sync_trunc_off <= rec_offset)
2808 n = 0;
2809 else if (ip->sync_trunc_off < rec_offset + n)
2810 n = (int)(ip->sync_trunc_off - rec_offset);
2815 * Try to issue a direct read into our bio if possible,
2816 * otherwise resolve the element data into a hammer_buffer
2817 * and copy.
2819 * The buffer on-disk should be zerod past any real
2820 * truncation point, but may not be for any synthesized
2821 * truncation point from above.
2823 * NOTE: disk_offset is only valid if the cursor data is
2824 * on-disk.
2826 disk_offset = cursor.leaf->data_offset + roff;
2827 isdedupable = (boff == 0 && n == bp->b_bufsize &&
2828 hammer_cursor_ondisk(&cursor) &&
2829 ((int)disk_offset & HAMMER_BUFMASK) == 0);
2831 if (isdedupable && hammer_double_buffer == 0) {
2833 * Direct read case
2835 KKASSERT(hammer_is_zone_large_data(disk_offset));
2836 nbio->bio_offset = disk_offset;
2837 error = hammer_io_direct_read(hmp, nbio, cursor.leaf);
2838 if (hammer_live_dedup && error == 0)
2839 hammer_dedup_cache_add(ip, cursor.leaf);
2840 goto done;
2841 } else if (isdedupable) {
2843 * Async I/O case for reading from backing store
2844 * and copying the data to the filesystem buffer.
2845 * live-dedup has to verify the data anyway if it
2846 * gets a hit later so we can just add the entry
2847 * now.
2849 KKASSERT(hammer_is_zone_large_data(disk_offset));
2850 nbio->bio_offset = disk_offset;
2851 if (hammer_live_dedup)
2852 hammer_dedup_cache_add(ip, cursor.leaf);
2853 error = hammer_io_indirect_read(hmp, nbio, cursor.leaf);
2854 goto done;
2855 } else if (n) {
2856 error = hammer_ip_resolve_data(&cursor);
2857 if (error == 0) {
2858 if (hammer_live_dedup && isdedupable)
2859 hammer_dedup_cache_add(ip, cursor.leaf);
2860 bcopy((char *)cursor.data + roff,
2861 (char *)bp->b_data + boff, n);
2864 if (error)
2865 break;
2868 * We have to be sure that the only elements added to the
2869 * dedup cache are those which are already on-media.
2871 if (hammer_live_dedup && hammer_cursor_ondisk(&cursor))
2872 hammer_dedup_cache_add(ip, cursor.leaf);
2875 * Iterate until we have filled the request.
2877 boff += n;
2878 if (boff == bp->b_bufsize)
2879 break;
2880 error = hammer_ip_next(&cursor);
2884 * There may have been a gap after the last record
2886 if (error == ENOENT)
2887 error = 0;
2888 if (error == 0 && boff != bp->b_bufsize) {
2889 KKASSERT(boff < bp->b_bufsize);
2890 bzero((char *)bp->b_data + boff, bp->b_bufsize - boff);
2891 /* boff = bp->b_bufsize; */
2895 * Disallow swapcache operation on the vnode buffer if double
2896 * buffering is enabled, the swapcache will get the data via
2897 * the block device buffer.
2899 if (hammer_double_buffer)
2900 bp->b_flags |= B_NOTMETA;
2903 * Cleanup
2905 bp->b_resid = 0;
2906 bp->b_error = error;
2907 if (error)
2908 bp->b_flags |= B_ERROR;
2909 biodone(ap->a_bio);
2911 done:
2913 * Cache the b-tree node for the last data read in cache[1].
2915 * If we hit the file EOF then also cache the node in the
2916 * governing directory's cache[3], it will be used to initialize
2917 * the new inode's cache[1] for any inodes looked up via the directory.
2919 * This doesn't reduce disk accesses since the B-Tree chain is
2920 * likely cached, but it does reduce cpu overhead when looking
2921 * up file offsets for cpdup/tar/cpio style iterations.
2923 if (cursor.node)
2924 hammer_cache_node(&ip->cache[1], cursor.node);
2925 if (ran_end >= ip->ino_data.size) {
2926 dip = hammer_find_inode(&trans, ip->ino_data.parent_obj_id,
2927 ip->obj_asof, ip->obj_localization);
2928 if (dip) {
2929 hammer_cache_node(&dip->cache[3], cursor.node);
2930 hammer_rel_inode(dip, 0);
2933 hammer_done_cursor(&cursor);
2934 hammer_done_transaction(&trans);
2935 lwkt_reltoken(&hmp->fs_token);
2936 return(error);
2940 * BMAP operation - used to support cluster_read() only.
2942 * (struct vnode *vp, off_t loffset, off_t *doffsetp, int *runp, int *runb)
2944 * This routine may return EOPNOTSUPP if the opration is not supported for
2945 * the specified offset. The contents of the pointer arguments do not
2946 * need to be initialized in that case.
2948 * If a disk address is available and properly aligned return 0 with
2949 * *doffsetp set to the zone-2 address, and *runp / *runb set appropriately
2950 * to the run-length relative to that offset. Callers may assume that
2951 * *doffsetp is valid if 0 is returned, even if *runp is not sufficiently
2952 * large, so return EOPNOTSUPP if it is not sufficiently large.
2954 static
2956 hammer_vop_bmap(struct vop_bmap_args *ap)
2958 struct hammer_transaction trans;
2959 hammer_inode_t ip;
2960 hammer_mount_t hmp;
2961 struct hammer_cursor cursor;
2962 hammer_base_elm_t base;
2963 int64_t rec_offset;
2964 int64_t ran_end;
2965 int64_t tmp64;
2966 int64_t base_offset;
2967 int64_t base_disk_offset;
2968 int64_t last_offset;
2969 hammer_off_t last_disk_offset;
2970 hammer_off_t disk_offset;
2971 int rec_len;
2972 int error;
2973 int blksize;
2975 ip = ap->a_vp->v_data;
2976 hmp = ip->hmp;
2979 * We can only BMAP regular files. We can't BMAP database files,
2980 * directories, etc.
2982 if (ip->ino_data.obj_type != HAMMER_OBJTYPE_REGFILE)
2983 return(EOPNOTSUPP);
2986 * bmap is typically called with runp/runb both NULL when used
2987 * for writing. We do not support BMAP for writing atm.
2989 if (ap->a_cmd != BUF_CMD_READ)
2990 return(EOPNOTSUPP);
2993 * Scan the B-Tree to acquire blockmap addresses, then translate
2994 * to raw addresses.
2996 lwkt_gettoken(&hmp->fs_token);
2997 hammer_simple_transaction(&trans, hmp);
2999 hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
3002 * Key range (begin and end inclusive) to scan. Note that the key's
3003 * stored in the actual records represent BASE+LEN, not BASE. The
3004 * first record containing bio_offset will have a key > bio_offset.
3006 cursor.key_beg.localization = ip->obj_localization |
3007 HAMMER_LOCALIZE_MISC;
3008 cursor.key_beg.obj_id = ip->obj_id;
3009 cursor.key_beg.create_tid = 0;
3010 cursor.key_beg.delete_tid = 0;
3011 cursor.key_beg.obj_type = 0;
3012 if (ap->a_runb)
3013 cursor.key_beg.key = ap->a_loffset - MAXPHYS + 1;
3014 else
3015 cursor.key_beg.key = ap->a_loffset + 1;
3016 if (cursor.key_beg.key < 0)
3017 cursor.key_beg.key = 0;
3018 cursor.asof = ip->obj_asof;
3019 cursor.flags |= HAMMER_CURSOR_ASOF;
3021 cursor.key_end = cursor.key_beg;
3022 KKASSERT(ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE);
3024 ran_end = ap->a_loffset + MAXPHYS;
3025 cursor.key_beg.rec_type = HAMMER_RECTYPE_DATA;
3026 cursor.key_end.rec_type = HAMMER_RECTYPE_DATA;
3027 tmp64 = ran_end + MAXPHYS + 1; /* work-around GCC-4 bug */
3028 if (tmp64 < ran_end)
3029 cursor.key_end.key = HAMMER_MAX_KEY;
3030 else
3031 cursor.key_end.key = ran_end + MAXPHYS + 1;
3033 cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE;
3035 error = hammer_ip_first(&cursor);
3036 base_offset = last_offset = 0;
3037 base_disk_offset = last_disk_offset = 0;
3039 while (error == 0) {
3041 * Get the base file offset of the record. The key for
3042 * data records is (base + bytes) rather then (base).
3044 * NOTE: rec_offset + rec_len may exceed the end-of-file.
3045 * The extra bytes should be zero on-disk and the BMAP op
3046 * should still be ok.
3048 base = &cursor.leaf->base;
3049 rec_offset = base->key - cursor.leaf->data_len;
3050 rec_len = cursor.leaf->data_len;
3053 * Incorporate any cached truncation.
3055 * NOTE: Modifications to rec_len based on synthesized
3056 * truncation points remove the guarantee that any extended
3057 * data on disk is zero (since the truncations may not have
3058 * taken place on-media yet).
3060 if (ip->flags & HAMMER_INODE_TRUNCATED) {
3061 if (hammer_cursor_ondisk(&cursor) ||
3062 cursor.iprec->flush_state == HAMMER_FST_FLUSH) {
3063 if (ip->trunc_off <= rec_offset)
3064 rec_len = 0;
3065 else if (ip->trunc_off < rec_offset + rec_len)
3066 rec_len = (int)(ip->trunc_off - rec_offset);
3069 if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
3070 if (hammer_cursor_ondisk(&cursor)) {
3071 if (ip->sync_trunc_off <= rec_offset)
3072 rec_len = 0;
3073 else if (ip->sync_trunc_off < rec_offset + rec_len)
3074 rec_len = (int)(ip->sync_trunc_off - rec_offset);
3079 * Accumulate information. If we have hit a discontiguous
3080 * block reset base_offset unless we are already beyond the
3081 * requested offset. If we are, that's it, we stop.
3083 if (error)
3084 break;
3085 if (hammer_cursor_ondisk(&cursor)) {
3086 disk_offset = cursor.leaf->data_offset;
3087 if (rec_offset != last_offset ||
3088 disk_offset != last_disk_offset) {
3089 if (rec_offset > ap->a_loffset)
3090 break;
3091 base_offset = rec_offset;
3092 base_disk_offset = disk_offset;
3094 last_offset = rec_offset + rec_len;
3095 last_disk_offset = disk_offset + rec_len;
3097 if (hammer_live_dedup)
3098 hammer_dedup_cache_add(ip, cursor.leaf);
3101 error = hammer_ip_next(&cursor);
3104 if (cursor.node)
3105 hammer_cache_node(&ip->cache[1], cursor.node);
3107 hammer_done_cursor(&cursor);
3108 hammer_done_transaction(&trans);
3109 lwkt_reltoken(&hmp->fs_token);
3112 * If we couldn't find any records or the records we did find were
3113 * all behind the requested offset, return failure. A forward
3114 * truncation can leave a hole w/ no on-disk records.
3116 if (last_offset == 0 || last_offset < ap->a_loffset)
3117 return (EOPNOTSUPP);
3120 * Figure out the block size at the requested offset and adjust
3121 * our limits so the cluster_read() does not create inappropriately
3122 * sized buffer cache buffers.
3124 blksize = hammer_blocksize(ap->a_loffset);
3125 if (hammer_blocksize(base_offset) != blksize) {
3126 base_offset = hammer_blockdemarc(base_offset, ap->a_loffset);
3128 if (last_offset != ap->a_loffset &&
3129 hammer_blocksize(last_offset - 1) != blksize) {
3130 last_offset = hammer_blockdemarc(ap->a_loffset,
3131 last_offset - 1);
3135 * Returning EOPNOTSUPP simply prevents the direct-IO optimization
3136 * from occuring.
3138 disk_offset = base_disk_offset + (ap->a_loffset - base_offset);
3140 if (!hammer_is_zone_large_data(disk_offset)) {
3142 * Only large-data zones can be direct-IOd
3144 error = EOPNOTSUPP;
3145 } else if ((disk_offset & HAMMER_BUFMASK) ||
3146 (last_offset - ap->a_loffset) < blksize) {
3148 * doffsetp is not aligned or the forward run size does
3149 * not cover a whole buffer, disallow the direct I/O.
3151 error = EOPNOTSUPP;
3152 } else {
3154 * We're good.
3156 *ap->a_doffsetp = disk_offset;
3157 if (ap->a_runb) {
3158 *ap->a_runb = ap->a_loffset - base_offset;
3159 KKASSERT(*ap->a_runb >= 0);
3161 if (ap->a_runp) {
3162 *ap->a_runp = last_offset - ap->a_loffset;
3163 KKASSERT(*ap->a_runp >= 0);
3165 error = 0;
3167 return(error);
3171 * Write to a regular file. Because this is a strategy call the OS is
3172 * trying to actually get data onto the media.
3174 static
3176 hammer_vop_strategy_write(struct vop_strategy_args *ap)
3178 hammer_record_t record;
3179 hammer_mount_t hmp;
3180 hammer_inode_t ip;
3181 struct bio *bio;
3182 struct buf *bp;
3183 int blksize __debugvar;
3184 int bytes;
3185 int error;
3187 bio = ap->a_bio;
3188 bp = bio->bio_buf;
3189 ip = ap->a_vp->v_data;
3190 hmp = ip->hmp;
3192 blksize = hammer_blocksize(bio->bio_offset);
3193 KKASSERT(bp->b_bufsize == blksize);
3195 if (ip->flags & HAMMER_INODE_RO) {
3196 bp->b_error = EROFS;
3197 bp->b_flags |= B_ERROR;
3198 biodone(ap->a_bio);
3199 return(EROFS);
3202 lwkt_gettoken(&hmp->fs_token);
3205 * Disallow swapcache operation on the vnode buffer if double
3206 * buffering is enabled, the swapcache will get the data via
3207 * the block device buffer.
3209 if (hammer_double_buffer)
3210 bp->b_flags |= B_NOTMETA;
3213 * Interlock with inode destruction (no in-kernel or directory
3214 * topology visibility). If we queue new IO while trying to
3215 * destroy the inode we can deadlock the vtrunc call in
3216 * hammer_inode_unloadable_check().
3218 * Besides, there's no point flushing a bp associated with an
3219 * inode that is being destroyed on-media and has no kernel
3220 * references.
3222 if ((ip->flags | ip->sync_flags) &
3223 (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) {
3224 bp->b_resid = 0;
3225 biodone(ap->a_bio);
3226 lwkt_reltoken(&hmp->fs_token);
3227 return(0);
3231 * Reserve space and issue a direct-write from the front-end.
3232 * NOTE: The direct_io code will hammer_bread/bcopy smaller
3233 * allocations.
3235 * An in-memory record will be installed to reference the storage
3236 * until the flusher can get to it.
3238 * Since we own the high level bio the front-end will not try to
3239 * do a direct-read until the write completes.
3241 * NOTE: The only time we do not reserve a full-sized buffers
3242 * worth of data is if the file is small. We do not try to
3243 * allocate a fragment (from the small-data zone) at the end of
3244 * an otherwise large file as this can lead to wildly separated
3245 * data.
3247 KKASSERT((bio->bio_offset & HAMMER_BUFMASK) == 0);
3248 KKASSERT(bio->bio_offset < ip->ino_data.size);
3249 if (bio->bio_offset || ip->ino_data.size > HAMMER_HBUFSIZE)
3250 bytes = bp->b_bufsize;
3251 else
3252 bytes = HAMMER_DATA_DOALIGN_WITH(int, ip->ino_data.size);
3254 record = hammer_ip_add_bulk(ip, bio->bio_offset, bp->b_data,
3255 bytes, &error);
3258 * B_VFSFLAG1 indicates that a REDO_WRITE entry was generated
3259 * in hammer_vop_write(). We must flag the record so the proper
3260 * REDO_TERM_WRITE entry is generated during the flush.
3262 if (record) {
3263 if (bp->b_flags & B_VFSFLAG1) {
3264 record->flags |= HAMMER_RECF_REDO;
3265 bp->b_flags &= ~B_VFSFLAG1;
3267 if (record->flags & HAMMER_RECF_DEDUPED) {
3268 bp->b_resid = 0;
3269 hammer_ip_replace_bulk(hmp, record);
3270 biodone(ap->a_bio);
3271 } else {
3272 hammer_io_direct_write(hmp, bio, record);
3274 if (ip->rsv_recs > 1 && hmp->rsv_recs > hammer_limit_recs)
3275 hammer_flush_inode(ip, 0);
3276 } else {
3277 bp->b_bio2.bio_offset = NOOFFSET;
3278 bp->b_error = error;
3279 bp->b_flags |= B_ERROR;
3280 biodone(ap->a_bio);
3282 lwkt_reltoken(&hmp->fs_token);
3283 return(error);
3287 * dounlink - disconnect a directory entry
3289 * XXX whiteout support not really in yet
3291 static int
3292 hammer_dounlink(hammer_transaction_t trans, struct nchandle *nch,
3293 struct vnode *dvp, struct ucred *cred,
3294 int flags, int isdir)
3296 struct namecache *ncp;
3297 hammer_inode_t dip;
3298 hammer_inode_t ip;
3299 hammer_mount_t hmp;
3300 struct hammer_cursor cursor;
3301 int64_t namekey;
3302 uint32_t max_iterations;
3303 int nlen, error;
3306 * Calculate the namekey and setup the key range for the scan. This
3307 * works kinda like a chained hash table where the lower 32 bits
3308 * of the namekey synthesize the chain.
3310 * The key range is inclusive of both key_beg and key_end.
3312 dip = VTOI(dvp);
3313 ncp = nch->ncp;
3314 hmp = dip->hmp;
3316 if (dip->flags & HAMMER_INODE_RO)
3317 return (EROFS);
3319 namekey = hammer_direntry_namekey(dip, ncp->nc_name, ncp->nc_nlen,
3320 &max_iterations);
3321 retry:
3322 hammer_init_cursor(trans, &cursor, &dip->cache[1], dip);
3323 cursor.key_beg.localization = dip->obj_localization |
3324 hammer_dir_localization(dip);
3325 cursor.key_beg.obj_id = dip->obj_id;
3326 cursor.key_beg.key = namekey;
3327 cursor.key_beg.create_tid = 0;
3328 cursor.key_beg.delete_tid = 0;
3329 cursor.key_beg.rec_type = HAMMER_RECTYPE_DIRENTRY;
3330 cursor.key_beg.obj_type = 0;
3332 cursor.key_end = cursor.key_beg;
3333 cursor.key_end.key += max_iterations;
3334 cursor.asof = dip->obj_asof;
3335 cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
3338 * Scan all matching records (the chain), locate the one matching
3339 * the requested path component. info->last_error contains the
3340 * error code on search termination and could be 0, ENOENT, or
3341 * something else.
3343 * The hammer_ip_*() functions merge in-memory records with on-disk
3344 * records for the purposes of the search.
3346 error = hammer_ip_first(&cursor);
3348 while (error == 0) {
3349 error = hammer_ip_resolve_data(&cursor);
3350 if (error)
3351 break;
3352 nlen = cursor.leaf->data_len - HAMMER_ENTRY_NAME_OFF;
3353 KKASSERT(nlen > 0);
3354 if (ncp->nc_nlen == nlen &&
3355 bcmp(ncp->nc_name, cursor.data->entry.name, nlen) == 0) {
3356 break;
3358 error = hammer_ip_next(&cursor);
3362 * If all is ok we have to get the inode so we can adjust nlinks.
3363 * To avoid a deadlock with the flusher we must release the inode
3364 * lock on the directory when acquiring the inode for the entry.
3366 * If the target is a directory, it must be empty.
3368 if (error == 0) {
3369 hammer_unlock(&cursor.ip->lock);
3370 ip = hammer_get_inode(trans, dip, cursor.data->entry.obj_id,
3371 hmp->asof,
3372 cursor.data->entry.localization,
3373 0, &error);
3374 hammer_lock_sh(&cursor.ip->lock);
3375 if (error == ENOENT) {
3376 hkprintf("WARNING: Removing dirent w/missing inode "
3377 "\"%s\"\n"
3378 "\tobj_id = %016jx\n",
3379 ncp->nc_name,
3380 (intmax_t)cursor.data->entry.obj_id);
3381 error = 0;
3385 * If isdir >= 0 we validate that the entry is or is not a
3386 * directory. If isdir < 0 we don't care.
3388 if (error == 0 && isdir >= 0 && ip) {
3389 if (isdir &&
3390 ip->ino_data.obj_type != HAMMER_OBJTYPE_DIRECTORY) {
3391 error = ENOTDIR;
3392 } else if (isdir == 0 &&
3393 ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
3394 error = EISDIR;
3399 * If we are trying to remove a directory the directory must
3400 * be empty.
3402 * The check directory code can loop and deadlock/retry. Our
3403 * own cursor's node locks must be released to avoid a 3-way
3404 * deadlock with the flusher if the check directory code
3405 * blocks.
3407 * If any changes whatsoever have been made to the cursor
3408 * set EDEADLK and retry.
3410 * WARNING: See warnings in hammer_unlock_cursor()
3411 * function.
3413 if (error == 0 && ip && ip->ino_data.obj_type ==
3414 HAMMER_OBJTYPE_DIRECTORY) {
3415 hammer_unlock_cursor(&cursor);
3416 error = hammer_ip_check_directory_empty(trans, ip);
3417 hammer_lock_cursor(&cursor);
3418 if (cursor.flags & HAMMER_CURSOR_RETEST) {
3419 hkprintf("Warning: avoided deadlock "
3420 "on rmdir '%s'\n",
3421 ncp->nc_name);
3422 error = EDEADLK;
3427 * Delete the directory entry.
3429 * WARNING: hammer_ip_del_direntry() may have to terminate
3430 * the cursor to avoid a deadlock. It is ok to call
3431 * hammer_done_cursor() twice.
3433 if (error == 0) {
3434 error = hammer_ip_del_direntry(trans, &cursor,
3435 dip, ip);
3437 hammer_done_cursor(&cursor);
3438 if (error == 0) {
3440 * Tell the namecache that we are now unlinked.
3442 cache_unlink(nch);
3445 * NOTE: ip->vp, if non-NULL, cannot be directly
3446 * referenced without formally acquiring the
3447 * vp since the vp might have zero refs on it,
3448 * or in the middle of a reclaim, etc.
3450 * NOTE: The cache_setunresolved() can rip the vp
3451 * out from under us since the vp may not have
3452 * any refs, in which case ip->vp will be NULL
3453 * from the outset.
3455 while (ip && ip->vp) {
3456 struct vnode *vp;
3458 error = hammer_get_vnode(ip, &vp);
3459 if (error == 0 && vp) {
3460 vn_unlock(vp);
3461 hammer_knote(ip->vp, NOTE_DELETE);
3462 #if 0
3464 * Don't do this, it can deadlock
3465 * on concurrent rm's of hardlinks.
3466 * Shouldn't be needed any more.
3468 cache_inval_vp(ip->vp, CINV_DESTROY);
3469 #endif
3470 vrele(vp);
3471 break;
3473 hdkprintf("ip/vp race1 avoided\n");
3476 if (ip)
3477 hammer_rel_inode(ip, 0);
3478 } else {
3479 hammer_done_cursor(&cursor);
3481 if (error == EDEADLK)
3482 goto retry;
3484 return (error);
3487 /************************************************************************
3488 * FIFO AND SPECFS OPS *
3489 ************************************************************************
3492 static int
3493 hammer_vop_fifoclose (struct vop_close_args *ap)
3495 /* XXX update itimes */
3496 return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3499 static int
3500 hammer_vop_fiforead (struct vop_read_args *ap)
3502 int error;
3504 error = VOCALL(&fifo_vnode_vops, &ap->a_head);
3505 /* XXX update access time */
3506 return (error);
3509 static int
3510 hammer_vop_fifowrite (struct vop_write_args *ap)
3512 int error;
3514 error = VOCALL(&fifo_vnode_vops, &ap->a_head);
3515 /* XXX update access time */
3516 return (error);
3519 static
3521 hammer_vop_fifokqfilter(struct vop_kqfilter_args *ap)
3523 int error;
3525 error = VOCALL(&fifo_vnode_vops, &ap->a_head);
3526 if (error)
3527 error = hammer_vop_kqfilter(ap);
3528 return(error);
3531 /************************************************************************
3532 * KQFILTER OPS *
3533 ************************************************************************
3536 static void filt_hammerdetach(struct knote *kn);
3537 static int filt_hammerread(struct knote *kn, long hint);
3538 static int filt_hammerwrite(struct knote *kn, long hint);
3539 static int filt_hammervnode(struct knote *kn, long hint);
3541 static struct filterops hammerread_filtops =
3542 { FILTEROP_ISFD | FILTEROP_MPSAFE,
3543 NULL, filt_hammerdetach, filt_hammerread };
3544 static struct filterops hammerwrite_filtops =
3545 { FILTEROP_ISFD | FILTEROP_MPSAFE,
3546 NULL, filt_hammerdetach, filt_hammerwrite };
3547 static struct filterops hammervnode_filtops =
3548 { FILTEROP_ISFD | FILTEROP_MPSAFE,
3549 NULL, filt_hammerdetach, filt_hammervnode };
3551 static
3553 hammer_vop_kqfilter(struct vop_kqfilter_args *ap)
3555 struct vnode *vp = ap->a_vp;
3556 struct knote *kn = ap->a_kn;
3558 switch (kn->kn_filter) {
3559 case EVFILT_READ:
3560 kn->kn_fop = &hammerread_filtops;
3561 break;
3562 case EVFILT_WRITE:
3563 kn->kn_fop = &hammerwrite_filtops;
3564 break;
3565 case EVFILT_VNODE:
3566 kn->kn_fop = &hammervnode_filtops;
3567 break;
3568 default:
3569 return (EOPNOTSUPP);
3572 kn->kn_hook = (caddr_t)vp;
3574 knote_insert(&vp->v_pollinfo.vpi_kqinfo.ki_note, kn);
3576 return(0);
3579 static void
3580 filt_hammerdetach(struct knote *kn)
3582 struct vnode *vp = (void *)kn->kn_hook;
3584 knote_remove(&vp->v_pollinfo.vpi_kqinfo.ki_note, kn);
3587 static int
3588 filt_hammerread(struct knote *kn, long hint)
3590 struct vnode *vp = (void *)kn->kn_hook;
3591 hammer_inode_t ip = VTOI(vp);
3592 hammer_mount_t hmp = ip->hmp;
3593 off_t off;
3595 if (hint == NOTE_REVOKE) {
3596 kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT);
3597 return(1);
3599 lwkt_gettoken(&hmp->fs_token); /* XXX use per-ip-token */
3600 off = ip->ino_data.size - kn->kn_fp->f_offset;
3601 kn->kn_data = (off < INTPTR_MAX) ? off : INTPTR_MAX;
3602 lwkt_reltoken(&hmp->fs_token);
3603 if (kn->kn_sfflags & NOTE_OLDAPI)
3604 return(1);
3605 return (kn->kn_data != 0);
3608 static int
3609 filt_hammerwrite(struct knote *kn, long hint)
3611 if (hint == NOTE_REVOKE)
3612 kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT);
3613 kn->kn_data = 0;
3614 return (1);
3617 static int
3618 filt_hammervnode(struct knote *kn, long hint)
3620 if (kn->kn_sfflags & hint)
3621 kn->kn_fflags |= hint;
3622 if (hint == NOTE_REVOKE) {
3623 kn->kn_flags |= (EV_EOF | EV_NODATA);
3624 return (1);
3626 return (kn->kn_fflags != 0);