* Fix some cases where NULL was used but 0 was meant (and vice versa).
[dragonfly.git] / lib / libkvm / kvm_proc.c
blobe7e2681eb3ec12bf2b1dc1f033fbae8998a00ec1
1 /*-
2 * Copyright (c) 1989, 1992, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
37 * $FreeBSD: src/lib/libkvm/kvm_proc.c,v 1.25.2.3 2002/08/24 07:27:46 kris Exp $
38 * $DragonFly: src/lib/libkvm/kvm_proc.c,v 1.18 2008/06/05 18:06:30 swildner Exp $
40 * @(#)kvm_proc.c 8.3 (Berkeley) 9/23/93
44 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
45 * users of this code, so we've factored it out into a separate module.
46 * Thus, we keep this grunge out of the other kvm applications (i.e.,
47 * most other applications are interested only in open/close/read/nlist).
50 #include <sys/user.h> /* MUST BE FIRST */
51 #include <sys/conf.h>
52 #include <sys/param.h>
53 #include <sys/proc.h>
54 #include <sys/exec.h>
55 #include <sys/stat.h>
56 #include <sys/globaldata.h>
57 #include <sys/ioctl.h>
58 #include <sys/tty.h>
59 #include <sys/file.h>
60 #include <sys/jail.h>
61 #include <stdio.h>
62 #include <stdlib.h>
63 #include <unistd.h>
64 #include <nlist.h>
65 #include <kvm.h>
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <vm/swap_pager.h>
71 #include <sys/sysctl.h>
73 #include <limits.h>
74 #include <memory.h>
75 #include <paths.h>
77 #include "kvm_private.h"
79 #if used
80 static char *
81 kvm_readswap(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
83 #if defined(__FreeBSD__) || defined(__DragonFly__)
84 /* XXX Stubbed out, our vm system is differnet */
85 _kvm_err(kd, kd->program, "kvm_readswap not implemented");
86 return(0);
87 #endif
89 #endif
91 #define KREAD(kd, addr, obj) \
92 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
93 #define KREADSTR(kd, addr) \
94 kvm_readstr(kd, (u_long)addr, NULL, NULL)
96 static struct kinfo_proc *
97 kinfo_resize_proc(kvm_t *kd, struct kinfo_proc *bp)
99 if (bp < kd->procend)
100 return bp;
102 size_t pos = bp - kd->procend;
103 size_t size = kd->procend - kd->procbase;
105 if (size == 0)
106 size = 8;
107 else
108 size *= 2;
109 kd->procbase = _kvm_realloc(kd, kd->procbase, sizeof(*bp) * size);
110 if (kd->procbase == NULL)
111 return NULL;
112 kd->procend = kd->procbase + size;
113 bp = kd->procbase + pos;
114 return bp;
118 * note: this function is also used by /usr/src/sys/kern/kern_kinfo.c as
119 * compiled by userland.
121 dev_t
122 dev2udev(cdev_t dev)
124 if (dev == NULL)
125 return NOUDEV;
126 if ((dev->si_umajor & 0xffffff00) ||
127 (dev->si_uminor & 0x0000ff00)) {
128 return NOUDEV;
130 return((dev->si_umajor << 8) | dev->si_uminor);
134 * Helper routine which traverses the left hand side of a red-black sub-tree.
136 static uintptr_t
137 kvm_lwptraverse(kvm_t *kd, struct lwp *lwp, uintptr_t lwppos)
139 for (;;) {
140 if (KREAD(kd, lwppos, lwp)) {
141 _kvm_err(kd, kd->program, "can't read lwp at %p",
142 (void *)lwppos);
143 return ((uintptr_t)-1);
145 if (lwp->u.lwp_rbnode.rbe_left == NULL)
146 break;
147 lwppos = (uintptr_t)lwp->u.lwp_rbnode.rbe_left;
149 return(lwppos);
153 * Iterate LWPs in a process.
155 * The first lwp in a red-black tree is a left-side traversal of the tree.
157 static uintptr_t
158 kvm_firstlwp(kvm_t *kd, struct lwp *lwp, struct proc *proc)
160 return(kvm_lwptraverse(kd, lwp, (uintptr_t)proc->p_lwp_tree.rbh_root));
164 * If the current element is the left side of the parent the next element
165 * will be a left side traversal of the parent's right side. If the parent
166 * has no right side the next element will be the parent.
168 * If the current element is the right side of the parent the next element
169 * is the parent.
171 * If the parent is NULL we are done.
173 static uintptr_t
174 kvm_nextlwp(kvm_t *kd, uintptr_t lwppos, struct lwp *lwp, struct proc *proc)
176 uintptr_t nextpos;
178 nextpos = (uintptr_t)lwp->u.lwp_rbnode.rbe_parent;
179 if (nextpos) {
180 if (KREAD(kd, nextpos, lwp)) {
181 _kvm_err(kd, kd->program, "can't read lwp at %p",
182 (void *)lwppos);
183 return ((uintptr_t)-1);
185 if (lwppos == (uintptr_t)lwp->u.lwp_rbnode.rbe_left) {
187 * If we had gone down the left side the next element
188 * is a left hand traversal of the parent's right
189 * side, or the parent itself if there is no right
190 * side.
192 lwppos = (uintptr_t)lwp->u.lwp_rbnode.rbe_right;
193 if (lwppos)
194 nextpos = kvm_lwptraverse(kd, lwp, lwppos);
195 } else {
197 * If we had gone down the right side the next
198 * element is the parent.
200 /* nextpos = nextpos */
203 return(nextpos);
207 * Read proc's from memory file into buffer bp, which has space to hold
208 * at most maxcnt procs.
210 static int
211 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
212 struct kinfo_proc *bp)
214 struct pgrp pgrp;
215 struct pgrp tpgrp;
216 struct globaldata gdata;
217 struct session sess;
218 struct session tsess;
219 struct tty tty;
220 struct proc proc;
221 struct ucred ucred;
222 struct thread thread;
223 struct proc pproc;
224 struct cdev cdev;
225 struct vmspace vmspace;
226 struct prison prison;
227 struct sigacts sigacts;
228 struct lwp lwp;
229 uintptr_t lwppos;
230 int count;
231 char *wmesg;
233 count = 0;
235 for (; p != NULL; p = proc.p_list.le_next) {
236 if (KREAD(kd, (u_long)p, &proc)) {
237 _kvm_err(kd, kd->program, "can't read proc at %x", p);
238 return (-1);
240 if (KREAD(kd, (u_long)proc.p_ucred, &ucred)) {
241 _kvm_err(kd, kd->program, "can't read ucred at %p",
242 proc.p_ucred);
243 return (-1);
245 proc.p_ucred = &ucred;
247 switch(what & ~KERN_PROC_FLAGMASK) {
249 case KERN_PROC_PID:
250 if (proc.p_pid != (pid_t)arg)
251 continue;
252 break;
254 case KERN_PROC_UID:
255 if (ucred.cr_uid != (uid_t)arg)
256 continue;
257 break;
259 case KERN_PROC_RUID:
260 if (ucred.cr_ruid != (uid_t)arg)
261 continue;
262 break;
265 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
266 _kvm_err(kd, kd->program, "can't read pgrp at %x",
267 proc.p_pgrp);
268 return (-1);
270 proc.p_pgrp = &pgrp;
271 if (proc.p_pptr) {
272 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
273 _kvm_err(kd, kd->program, "can't read pproc at %x",
274 proc.p_pptr);
275 return (-1);
277 proc.p_pptr = &pproc;
280 if (proc.p_sigacts) {
281 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
282 _kvm_err(kd, kd->program,
283 "can't read sigacts at %p",
284 proc.p_sigacts);
285 return (-1);
287 proc.p_sigacts = &sigacts;
290 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
291 _kvm_err(kd, kd->program, "can't read session at %x",
292 pgrp.pg_session);
293 return (-1);
295 pgrp.pg_session = &sess;
297 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
298 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
299 _kvm_err(kd, kd->program,
300 "can't read tty at %x", sess.s_ttyp);
301 return (-1);
303 sess.s_ttyp = &tty;
304 if (tty.t_dev && tty.t_dev != NULL) {
305 if (KREAD(kd, (u_long)tty.t_dev, &cdev))
306 tty.t_dev = NULL;
307 else
308 tty.t_dev = &cdev;
310 if (tty.t_pgrp != NULL) {
311 if (KREAD(kd, (u_long)tty.t_pgrp, &tpgrp)) {
312 _kvm_err(kd, kd->program,
313 "can't read tpgrp at %x",
314 tty.t_pgrp);
315 return (-1);
317 tty.t_pgrp = &tpgrp;
319 if (tty.t_session != NULL) {
320 if (KREAD(kd, (u_long)tty.t_session, &tsess)) {
321 _kvm_err(kd, kd->program,
322 "can't read tsess at %p",
323 tty.t_session);
324 return (-1);
326 tty.t_session = &tsess;
330 if (KREAD(kd, (u_long)proc.p_vmspace, &vmspace)) {
331 _kvm_err(kd, kd->program, "can't read vmspace at %p",
332 proc.p_vmspace);
333 return (-1);
335 proc.p_vmspace = &vmspace;
337 if (ucred.cr_prison != NULL) {
338 if (KREAD(kd, (u_long)ucred.cr_prison, &prison)) {
339 _kvm_err(kd, kd->program, "can't read prison at %p",
340 ucred.cr_prison);
341 return (-1);
343 ucred.cr_prison = &prison;
346 switch (what & ~KERN_PROC_FLAGMASK) {
348 case KERN_PROC_PGRP:
349 if (proc.p_pgrp->pg_id != (pid_t)arg)
350 continue;
351 break;
353 case KERN_PROC_TTY:
354 if ((proc.p_flag & P_CONTROLT) == 0 ||
355 dev2udev(proc.p_pgrp->pg_session->s_ttyp->t_dev)
356 != (dev_t)arg)
357 continue;
358 break;
361 if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
362 return (-1);
363 fill_kinfo_proc(&proc, bp);
364 bp->kp_paddr = (uintptr_t)p;
366 lwppos = kvm_firstlwp(kd, &lwp, &proc);
367 if (lwppos == 0) {
368 bp++; /* Just export the proc then */
369 count++;
371 while (lwppos && lwppos != (uintptr_t)-1) {
372 if (p != lwp.lwp_proc) {
373 _kvm_err(kd, kd->program, "lwp has wrong parent");
374 return (-1);
376 lwp.lwp_proc = &proc;
377 if (KREAD(kd, (u_long)lwp.lwp_thread, &thread)) {
378 _kvm_err(kd, kd->program, "can't read thread at %x",
379 lwp.lwp_thread);
380 return (-1);
382 lwp.lwp_thread = &thread;
384 if (thread.td_gd) {
385 if (KREAD(kd, (u_long)thread.td_gd, &gdata)) {
386 _kvm_err(kd, kd->program, "can't read"
387 " gd at %p",
388 thread.td_gd);
389 return(-1);
391 thread.td_gd = &gdata;
393 if (thread.td_wmesg) {
394 wmesg = (void *)KREADSTR(kd, thread.td_wmesg);
395 if (wmesg == NULL) {
396 _kvm_err(kd, kd->program, "can't read"
397 " wmesg %p",
398 thread.td_wmesg);
399 return(-1);
401 thread.td_wmesg = wmesg;
402 } else {
403 wmesg = NULL;
406 if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
407 return (-1);
408 fill_kinfo_proc(&proc, bp);
409 fill_kinfo_lwp(&lwp, &bp->kp_lwp);
410 bp->kp_paddr = (uintptr_t)p;
411 bp++;
412 count++;
413 if (wmesg)
414 free(wmesg);
415 if ((what & KERN_PROC_FLAG_LWP) == 0)
416 break;
417 lwppos = kvm_nextlwp(kd, lwppos, &lwp, &proc);
419 if (lwppos == (uintptr_t)-1)
420 return(-1);
422 return (count);
426 * Build proc info array by reading in proc list from a crash dump.
427 * We reallocate kd->procbase as necessary.
429 static int
430 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
431 u_long a_zombproc)
433 struct kinfo_proc *bp = kd->procbase;
434 int acnt, zcnt;
435 struct proc *p;
437 if (KREAD(kd, a_allproc, &p)) {
438 _kvm_err(kd, kd->program, "cannot read allproc");
439 return (-1);
441 acnt = kvm_proclist(kd, what, arg, p, bp);
442 if (acnt < 0)
443 return (acnt);
445 if (KREAD(kd, a_zombproc, &p)) {
446 _kvm_err(kd, kd->program, "cannot read zombproc");
447 return (-1);
449 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt);
450 if (zcnt < 0)
451 zcnt = 0;
453 return (acnt + zcnt);
456 struct kinfo_proc *
457 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
459 int mib[4], st, nprocs;
460 int miblen = ((op & ~KERN_PROC_FLAGMASK) == KERN_PROC_ALL) ? 3 : 4;
461 size_t size;
463 if (kd->procbase != 0) {
464 free((void *)kd->procbase);
466 * Clear this pointer in case this call fails. Otherwise,
467 * kvm_close() will free it again.
469 kd->procbase = 0;
471 if (ISALIVE(kd)) {
472 size = 0;
473 mib[0] = CTL_KERN;
474 mib[1] = KERN_PROC;
475 mib[2] = op;
476 mib[3] = arg;
477 st = sysctl(mib, miblen, NULL, &size, NULL, 0);
478 if (st == -1) {
479 _kvm_syserr(kd, kd->program, "kvm_getprocs");
480 return (0);
482 do {
483 size += size / 10;
484 kd->procbase = (struct kinfo_proc *)
485 _kvm_realloc(kd, kd->procbase, size);
486 if (kd->procbase == 0)
487 return (0);
488 st = sysctl(mib, miblen, kd->procbase, &size, NULL, 0);
489 } while (st == -1 && errno == ENOMEM);
490 if (st == -1) {
491 _kvm_syserr(kd, kd->program, "kvm_getprocs");
492 return (0);
494 if (size % sizeof(struct kinfo_proc) != 0) {
495 _kvm_err(kd, kd->program,
496 "proc size mismatch (%d total, %d chunks)",
497 size, sizeof(struct kinfo_proc));
498 return (0);
500 nprocs = size / sizeof(struct kinfo_proc);
501 } else {
502 struct nlist nl[4], *p;
504 nl[0].n_name = "_nprocs";
505 nl[1].n_name = "_allproc";
506 nl[2].n_name = "_zombproc";
507 nl[3].n_name = 0;
509 if (kvm_nlist(kd, nl) != 0) {
510 for (p = nl; p->n_type != 0; ++p)
512 _kvm_err(kd, kd->program,
513 "%s: no such symbol", p->n_name);
514 return (0);
516 if (KREAD(kd, nl[0].n_value, &nprocs)) {
517 _kvm_err(kd, kd->program, "can't read nprocs");
518 return (0);
520 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
521 nl[2].n_value);
522 #ifdef notdef
523 size = nprocs * sizeof(struct kinfo_proc);
524 (void)realloc(kd->procbase, size);
525 #endif
527 *cnt = nprocs;
528 return (kd->procbase);
531 void
532 _kvm_freeprocs(kvm_t *kd)
534 if (kd->procbase) {
535 free(kd->procbase);
536 kd->procbase = 0;
540 void *
541 _kvm_realloc(kvm_t *kd, void *p, size_t n)
543 void *np = (void *)realloc(p, n);
545 if (np == 0) {
546 free(p);
547 _kvm_err(kd, kd->program, "out of memory");
549 return (np);
552 #ifndef MAX
553 #define MAX(a, b) ((a) > (b) ? (a) : (b))
554 #endif
557 * Read in an argument vector from the user address space of process pid.
558 * addr if the user-space base address of narg null-terminated contiguous
559 * strings. This is used to read in both the command arguments and
560 * environment strings. Read at most maxcnt characters of strings.
562 static char **
563 kvm_argv(kvm_t *kd, pid_t pid, u_long addr, int narg, int maxcnt)
565 char *np, *cp, *ep, *ap;
566 u_long oaddr = -1;
567 int len, cc;
568 char **argv;
571 * Check that there aren't an unreasonable number of agruments,
572 * and that the address is in user space.
574 if (narg > 512 ||
575 addr < VM_MIN_USER_ADDRESS || addr >= VM_MAX_USER_ADDRESS) {
576 return (0);
580 * kd->argv : work space for fetching the strings from the target
581 * process's space, and is converted for returning to caller
583 if (kd->argv == 0) {
585 * Try to avoid reallocs.
587 kd->argc = MAX(narg + 1, 32);
588 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
589 sizeof(*kd->argv));
590 if (kd->argv == 0)
591 return (0);
592 } else if (narg + 1 > kd->argc) {
593 kd->argc = MAX(2 * kd->argc, narg + 1);
594 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
595 sizeof(*kd->argv));
596 if (kd->argv == 0)
597 return (0);
600 * kd->argspc : returned to user, this is where the kd->argv
601 * arrays are left pointing to the collected strings.
603 if (kd->argspc == 0) {
604 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
605 if (kd->argspc == 0)
606 return (0);
607 kd->arglen = PAGE_SIZE;
610 * kd->argbuf : used to pull in pages from the target process.
611 * the strings are copied out of here.
613 if (kd->argbuf == 0) {
614 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
615 if (kd->argbuf == 0)
616 return (0);
619 /* Pull in the target process'es argv vector */
620 cc = sizeof(char *) * narg;
621 if (kvm_uread(kd, pid, addr, (char *)kd->argv, cc) != cc)
622 return (0);
624 * ap : saved start address of string we're working on in kd->argspc
625 * np : pointer to next place to write in kd->argspc
626 * len: length of data in kd->argspc
627 * argv: pointer to the argv vector that we are hunting around the
628 * target process space for, and converting to addresses in
629 * our address space (kd->argspc).
631 ap = np = kd->argspc;
632 argv = kd->argv;
633 len = 0;
635 * Loop over pages, filling in the argument vector.
636 * Note that the argv strings could be pointing *anywhere* in
637 * the user address space and are no longer contiguous.
638 * Note that *argv is modified when we are going to fetch a string
639 * that crosses a page boundary. We copy the next part of the string
640 * into to "np" and eventually convert the pointer.
642 while (argv < kd->argv + narg && *argv != 0) {
644 /* get the address that the current argv string is on */
645 addr = (u_long)*argv & ~(PAGE_SIZE - 1);
647 /* is it the same page as the last one? */
648 if (addr != oaddr) {
649 if (kvm_uread(kd, pid, addr, kd->argbuf, PAGE_SIZE) !=
650 PAGE_SIZE)
651 return (0);
652 oaddr = addr;
655 /* offset within the page... kd->argbuf */
656 addr = (u_long)*argv & (PAGE_SIZE - 1);
658 /* cp = start of string, cc = count of chars in this chunk */
659 cp = kd->argbuf + addr;
660 cc = PAGE_SIZE - addr;
662 /* dont get more than asked for by user process */
663 if (maxcnt > 0 && cc > maxcnt - len)
664 cc = maxcnt - len;
666 /* pointer to end of string if we found it in this page */
667 ep = memchr(cp, '\0', cc);
668 if (ep != 0)
669 cc = ep - cp + 1;
671 * at this point, cc is the count of the chars that we are
672 * going to retrieve this time. we may or may not have found
673 * the end of it. (ep points to the null if the end is known)
676 /* will we exceed the malloc/realloced buffer? */
677 if (len + cc > kd->arglen) {
678 int off;
679 char **pp;
680 char *op = kd->argspc;
682 kd->arglen *= 2;
683 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
684 kd->arglen);
685 if (kd->argspc == 0)
686 return (0);
688 * Adjust argv pointers in case realloc moved
689 * the string space.
691 off = kd->argspc - op;
692 for (pp = kd->argv; pp < argv; pp++)
693 *pp += off;
694 ap += off;
695 np += off;
697 /* np = where to put the next part of the string in kd->argspc*/
698 /* np is kinda redundant.. could use "kd->argspc + len" */
699 memcpy(np, cp, cc);
700 np += cc; /* inc counters */
701 len += cc;
704 * if end of string found, set the *argv pointer to the
705 * saved beginning of string, and advance. argv points to
706 * somewhere in kd->argv.. This is initially relative
707 * to the target process, but when we close it off, we set
708 * it to point in our address space.
710 if (ep != 0) {
711 *argv++ = ap;
712 ap = np;
713 } else {
714 /* update the address relative to the target process */
715 *argv += cc;
718 if (maxcnt > 0 && len >= maxcnt) {
720 * We're stopping prematurely. Terminate the
721 * current string.
723 if (ep == 0) {
724 *np = '\0';
725 *argv++ = ap;
727 break;
730 /* Make sure argv is terminated. */
731 *argv = 0;
732 return (kd->argv);
735 static void
736 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
738 *addr = (u_long)p->ps_argvstr;
739 *n = p->ps_nargvstr;
742 static void
743 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
745 *addr = (u_long)p->ps_envstr;
746 *n = p->ps_nenvstr;
750 * Determine if the proc indicated by p is still active.
751 * This test is not 100% foolproof in theory, but chances of
752 * being wrong are very low.
754 static int
755 proc_verify(kvm_t *kd, const struct kinfo_proc *p)
757 struct kinfo_proc kp;
758 int mib[4];
759 size_t len;
760 int error;
762 mib[0] = CTL_KERN;
763 mib[1] = KERN_PROC;
764 mib[2] = KERN_PROC_PID;
765 mib[3] = p->kp_pid;
767 len = sizeof(kp);
768 error = sysctl(mib, 4, &kp, &len, NULL, 0);
769 if (error)
770 return (0);
772 error = (p->kp_pid == kp.kp_pid &&
773 (kp.kp_stat != SZOMB || p->kp_stat == SZOMB));
774 return (error);
777 static char **
778 kvm_doargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr,
779 void (*info)(struct ps_strings *, u_long *, int *))
781 char **ap;
782 u_long addr;
783 int cnt;
784 static struct ps_strings arginfo;
785 static u_long ps_strings;
786 size_t len;
788 if (ps_strings == 0) {
789 len = sizeof(ps_strings);
790 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
791 0) == -1)
792 ps_strings = PS_STRINGS;
796 * Pointers are stored at the top of the user stack.
798 if (kp->kp_stat == SZOMB ||
799 kvm_uread(kd, kp->kp_pid, ps_strings, (char *)&arginfo,
800 sizeof(arginfo)) != sizeof(arginfo))
801 return (0);
803 (*info)(&arginfo, &addr, &cnt);
804 if (cnt == 0)
805 return (0);
806 ap = kvm_argv(kd, kp->kp_pid, addr, cnt, nchr);
808 * For live kernels, make sure this process didn't go away.
810 if (ap != 0 && ISALIVE(kd) &&
811 !proc_verify(kd, kp))
812 ap = 0;
813 return (ap);
817 * Get the command args. This code is now machine independent.
819 char **
820 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
822 int oid[4];
823 int i;
824 size_t bufsz;
825 static unsigned long buflen;
826 static char *buf, *p;
827 static char **bufp;
828 static int argc;
830 if (!ISALIVE(kd)) {
831 _kvm_err(kd, kd->program,
832 "cannot read user space from dead kernel");
833 return (0);
836 if (!buflen) {
837 bufsz = sizeof(buflen);
838 i = sysctlbyname("kern.ps_arg_cache_limit",
839 &buflen, &bufsz, NULL, 0);
840 if (i == -1) {
841 buflen = 0;
842 } else {
843 buf = malloc(buflen);
844 if (buf == NULL)
845 buflen = 0;
846 argc = 32;
847 bufp = malloc(sizeof(char *) * argc);
850 if (buf != NULL) {
851 oid[0] = CTL_KERN;
852 oid[1] = KERN_PROC;
853 oid[2] = KERN_PROC_ARGS;
854 oid[3] = kp->kp_pid;
855 bufsz = buflen;
856 i = sysctl(oid, 4, buf, &bufsz, 0, 0);
857 if (i == 0 && bufsz > 0) {
858 i = 0;
859 p = buf;
860 do {
861 bufp[i++] = p;
862 p += strlen(p) + 1;
863 if (i >= argc) {
864 argc += argc;
865 bufp = realloc(bufp,
866 sizeof(char *) * argc);
868 } while (p < buf + bufsz);
869 bufp[i++] = 0;
870 return (bufp);
873 if (kp->kp_flags & P_SYSTEM)
874 return (NULL);
875 return (kvm_doargv(kd, kp, nchr, ps_str_a));
878 char **
879 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
881 return (kvm_doargv(kd, kp, nchr, ps_str_e));
885 * Read from user space. The user context is given by pid.
887 ssize_t
888 kvm_uread(kvm_t *kd, pid_t pid, u_long uva, char *buf, size_t len)
890 char *cp;
891 char procfile[MAXPATHLEN];
892 ssize_t amount;
893 int fd;
895 if (!ISALIVE(kd)) {
896 _kvm_err(kd, kd->program,
897 "cannot read user space from dead kernel");
898 return (0);
901 sprintf(procfile, "/proc/%d/mem", pid);
902 fd = open(procfile, O_RDONLY, 0);
903 if (fd < 0) {
904 _kvm_err(kd, kd->program, "cannot open %s", procfile);
905 close(fd);
906 return (0);
909 cp = buf;
910 while (len > 0) {
911 errno = 0;
912 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
913 _kvm_err(kd, kd->program, "invalid address (%x) in %s",
914 uva, procfile);
915 break;
917 amount = read(fd, cp, len);
918 if (amount < 0) {
919 _kvm_syserr(kd, kd->program, "error reading %s",
920 procfile);
921 break;
923 if (amount == 0) {
924 _kvm_err(kd, kd->program, "EOF reading %s", procfile);
925 break;
927 cp += amount;
928 uva += amount;
929 len -= amount;
932 close(fd);
933 return ((ssize_t)(cp - buf));