Issue 1013 - update atime on exec and mmap, add helper vop_markatime
[dragonfly.git] / sys / kern / vfs_subr.c
blob6064667c17e7e6b2364b8bf6bccee137dac42042
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40 * $DragonFly: src/sys/kern/vfs_subr.c,v 1.118 2008/09/17 21:44:18 dillon Exp $
44 * External virtual filesystem routines
46 #include "opt_ddb.h"
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/domain.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fcntl.h>
56 #include <sys/kernel.h>
57 #include <sys/kthread.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/mount.h>
61 #include <sys/proc.h>
62 #include <sys/reboot.h>
63 #include <sys/socket.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/unistd.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
71 #include <machine/limits.h>
73 #include <vm/vm.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_zone.h>
84 #include <sys/buf2.h>
85 #include <sys/thread2.h>
86 #include <sys/sysref2.h>
88 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
90 int numvnodes;
91 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
92 int vfs_fastdev = 1;
93 SYSCTL_INT(_vfs, OID_AUTO, fastdev, CTLFLAG_RW, &vfs_fastdev, 0, "");
95 enum vtype iftovt_tab[16] = {
96 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
97 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
99 int vttoif_tab[9] = {
100 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
101 S_IFSOCK, S_IFIFO, S_IFMT,
104 static int reassignbufcalls;
105 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
106 &reassignbufcalls, 0, "");
107 static int reassignbufloops;
108 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
109 &reassignbufloops, 0, "");
110 static int reassignbufsortgood;
111 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
112 &reassignbufsortgood, 0, "");
113 static int reassignbufsortbad;
114 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
115 &reassignbufsortbad, 0, "");
116 static int reassignbufmethod = 1;
117 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
118 &reassignbufmethod, 0, "");
120 int nfs_mount_type = -1;
121 static struct lwkt_token spechash_token;
122 struct nfs_public nfs_pub; /* publicly exported FS */
124 int desiredvnodes;
125 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
126 &desiredvnodes, 0, "Maximum number of vnodes");
128 static void vfs_free_addrlist (struct netexport *nep);
129 static int vfs_free_netcred (struct radix_node *rn, void *w);
130 static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
131 const struct export_args *argp);
133 extern int dev_ref_debug;
136 * Red black tree functions
138 static int rb_buf_compare(struct buf *b1, struct buf *b2);
139 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
140 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
142 static int
143 rb_buf_compare(struct buf *b1, struct buf *b2)
145 if (b1->b_loffset < b2->b_loffset)
146 return(-1);
147 if (b1->b_loffset > b2->b_loffset)
148 return(1);
149 return(0);
153 * Returns non-zero if the vnode is a candidate for lazy msyncing.
155 static __inline int
156 vshouldmsync(struct vnode *vp)
158 if (vp->v_auxrefs != 0 || vp->v_sysref.refcnt > 0)
159 return (0); /* other holders */
160 if (vp->v_object &&
161 (vp->v_object->ref_count || vp->v_object->resident_page_count)) {
162 return (0);
164 return (1);
168 * Initialize the vnode management data structures.
170 * Called from vfsinit()
172 void
173 vfs_subr_init(void)
176 * Desiredvnodes is kern.maxvnodes. We want to scale it
177 * according to available system memory but we may also have
178 * to limit it based on available KVM, which is capped on 32 bit
179 * systems.
181 desiredvnodes = min(maxproc + vmstats.v_page_count / 4,
182 KvaSize / (20 *
183 (sizeof(struct vm_object) + sizeof(struct vnode))));
185 lwkt_token_init(&spechash_token);
189 * Knob to control the precision of file timestamps:
191 * 0 = seconds only; nanoseconds zeroed.
192 * 1 = seconds and nanoseconds, accurate within 1/HZ.
193 * 2 = seconds and nanoseconds, truncated to microseconds.
194 * >=3 = seconds and nanoseconds, maximum precision.
196 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
198 static int timestamp_precision = TSP_SEC;
199 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
200 &timestamp_precision, 0, "");
203 * Get a current timestamp.
205 void
206 vfs_timestamp(struct timespec *tsp)
208 struct timeval tv;
210 switch (timestamp_precision) {
211 case TSP_SEC:
212 tsp->tv_sec = time_second;
213 tsp->tv_nsec = 0;
214 break;
215 case TSP_HZ:
216 getnanotime(tsp);
217 break;
218 case TSP_USEC:
219 microtime(&tv);
220 TIMEVAL_TO_TIMESPEC(&tv, tsp);
221 break;
222 case TSP_NSEC:
223 default:
224 nanotime(tsp);
225 break;
230 * Set vnode attributes to VNOVAL
232 void
233 vattr_null(struct vattr *vap)
235 vap->va_type = VNON;
236 vap->va_size = VNOVAL;
237 vap->va_bytes = VNOVAL;
238 vap->va_mode = VNOVAL;
239 vap->va_nlink = VNOVAL;
240 vap->va_uid = VNOVAL;
241 vap->va_gid = VNOVAL;
242 vap->va_fsid = VNOVAL;
243 vap->va_fileid = VNOVAL;
244 vap->va_blocksize = VNOVAL;
245 vap->va_rmajor = VNOVAL;
246 vap->va_rminor = VNOVAL;
247 vap->va_atime.tv_sec = VNOVAL;
248 vap->va_atime.tv_nsec = VNOVAL;
249 vap->va_mtime.tv_sec = VNOVAL;
250 vap->va_mtime.tv_nsec = VNOVAL;
251 vap->va_ctime.tv_sec = VNOVAL;
252 vap->va_ctime.tv_nsec = VNOVAL;
253 vap->va_flags = VNOVAL;
254 vap->va_gen = VNOVAL;
255 vap->va_vaflags = 0;
256 vap->va_fsmid = VNOVAL;
257 /* va_*_uuid fields are only valid if related flags are set */
261 * Flush out and invalidate all buffers associated with a vnode.
263 * vp must be locked.
265 static int vinvalbuf_bp(struct buf *bp, void *data);
267 struct vinvalbuf_bp_info {
268 struct vnode *vp;
269 int slptimeo;
270 int lkflags;
271 int flags;
274 void
275 vupdatefsmid(struct vnode *vp)
277 atomic_set_int(&vp->v_flag, VFSMID);
281 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
283 struct vinvalbuf_bp_info info;
284 int error;
285 vm_object_t object;
288 * If we are being asked to save, call fsync to ensure that the inode
289 * is updated.
291 if (flags & V_SAVE) {
292 crit_enter();
293 while (vp->v_track_write.bk_active) {
294 vp->v_track_write.bk_waitflag = 1;
295 error = tsleep(&vp->v_track_write, slpflag,
296 "vinvlbuf", slptimeo);
297 if (error) {
298 crit_exit();
299 return (error);
302 if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
303 crit_exit();
304 if ((error = VOP_FSYNC(vp, MNT_WAIT)) != 0)
305 return (error);
306 crit_enter();
309 * Dirty bufs may be left or generated via races
310 * in circumstances where vinvalbuf() is called on
311 * a vnode not undergoing reclamation. Only
312 * panic if we are trying to reclaim the vnode.
314 if ((vp->v_flag & VRECLAIMED) &&
315 (vp->v_track_write.bk_active > 0 ||
316 !RB_EMPTY(&vp->v_rbdirty_tree))) {
317 panic("vinvalbuf: dirty bufs");
320 crit_exit();
322 crit_enter();
323 info.slptimeo = slptimeo;
324 info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
325 if (slpflag & PCATCH)
326 info.lkflags |= LK_PCATCH;
327 info.flags = flags;
328 info.vp = vp;
331 * Flush the buffer cache until nothing is left.
333 while (!RB_EMPTY(&vp->v_rbclean_tree) ||
334 !RB_EMPTY(&vp->v_rbdirty_tree)) {
335 error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL,
336 vinvalbuf_bp, &info);
337 if (error == 0) {
338 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
339 vinvalbuf_bp, &info);
344 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
345 * have write I/O in-progress but if there is a VM object then the
346 * VM object can also have read-I/O in-progress.
348 do {
349 while (vp->v_track_write.bk_active > 0) {
350 vp->v_track_write.bk_waitflag = 1;
351 tsleep(&vp->v_track_write, 0, "vnvlbv", 0);
353 if ((object = vp->v_object) != NULL) {
354 while (object->paging_in_progress)
355 vm_object_pip_sleep(object, "vnvlbx");
357 } while (vp->v_track_write.bk_active > 0);
359 crit_exit();
362 * Destroy the copy in the VM cache, too.
364 if ((object = vp->v_object) != NULL) {
365 vm_object_page_remove(object, 0, 0,
366 (flags & V_SAVE) ? TRUE : FALSE);
369 if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
370 panic("vinvalbuf: flush failed");
371 if (!RB_EMPTY(&vp->v_rbhash_tree))
372 panic("vinvalbuf: flush failed, buffers still present");
373 return (0);
376 static int
377 vinvalbuf_bp(struct buf *bp, void *data)
379 struct vinvalbuf_bp_info *info = data;
380 int error;
382 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
383 error = BUF_TIMELOCK(bp, info->lkflags,
384 "vinvalbuf", info->slptimeo);
385 if (error == 0) {
386 BUF_UNLOCK(bp);
387 error = ENOLCK;
389 if (error == ENOLCK)
390 return(0);
391 return (-error);
394 KKASSERT(bp->b_vp == info->vp);
397 * XXX Since there are no node locks for NFS, I
398 * believe there is a slight chance that a delayed
399 * write will occur while sleeping just above, so
400 * check for it. Note that vfs_bio_awrite expects
401 * buffers to reside on a queue, while bwrite() and
402 * brelse() do not.
404 * NOTE: NO B_LOCKED CHECK. Also no buf_checkwrite()
405 * check. This code will write out the buffer, period.
407 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
408 (info->flags & V_SAVE)) {
409 if (bp->b_vp == info->vp) {
410 if (bp->b_flags & B_CLUSTEROK) {
411 vfs_bio_awrite(bp);
412 } else {
413 bremfree(bp);
414 bp->b_flags |= B_ASYNC;
415 bwrite(bp);
417 } else {
418 bremfree(bp);
419 bwrite(bp);
421 } else if (info->flags & V_SAVE) {
423 * Cannot set B_NOCACHE on a clean buffer as this will
424 * destroy the VM backing store which might actually
425 * be dirty (and unsynchronized).
427 bremfree(bp);
428 bp->b_flags |= (B_INVAL | B_RELBUF);
429 bp->b_flags &= ~B_ASYNC;
430 brelse(bp);
431 } else {
432 bremfree(bp);
433 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
434 bp->b_flags &= ~B_ASYNC;
435 brelse(bp);
437 return(0);
441 * Truncate a file's buffer and pages to a specified length. This
442 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
443 * sync activity.
445 * The vnode must be locked.
447 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
448 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
449 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
450 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
453 vtruncbuf(struct vnode *vp, off_t length, int blksize)
455 off_t truncloffset;
456 int count;
457 const char *filename;
460 * Round up to the *next* block, then destroy the buffers in question.
461 * Since we are only removing some of the buffers we must rely on the
462 * scan count to determine whether a loop is necessary.
464 if ((count = (int)(length % blksize)) != 0)
465 truncloffset = length + (blksize - count);
466 else
467 truncloffset = length;
469 crit_enter();
470 do {
471 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
472 vtruncbuf_bp_trunc_cmp,
473 vtruncbuf_bp_trunc, &truncloffset);
474 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
475 vtruncbuf_bp_trunc_cmp,
476 vtruncbuf_bp_trunc, &truncloffset);
477 } while(count);
480 * For safety, fsync any remaining metadata if the file is not being
481 * truncated to 0. Since the metadata does not represent the entire
482 * dirty list we have to rely on the hit count to ensure that we get
483 * all of it.
485 if (length > 0) {
486 do {
487 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
488 vtruncbuf_bp_metasync_cmp,
489 vtruncbuf_bp_metasync, vp);
490 } while (count);
494 * Clean out any left over VM backing store.
496 crit_exit();
498 vnode_pager_setsize(vp, length);
500 crit_enter();
503 * It is possible to have in-progress I/O from buffers that were
504 * not part of the truncation. This should not happen if we
505 * are truncating to 0-length.
507 filename = TAILQ_FIRST(&vp->v_namecache) ?
508 TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
510 while ((count = vp->v_track_write.bk_active) > 0) {
511 vp->v_track_write.bk_waitflag = 1;
512 tsleep(&vp->v_track_write, 0, "vbtrunc", 0);
513 if (length == 0) {
514 kprintf("Warning: vtruncbuf(): Had to wait for "
515 "%d buffer I/Os to finish in %s\n",
516 count, filename);
521 * Make sure no buffers were instantiated while we were trying
522 * to clean out the remaining VM pages. This could occur due
523 * to busy dirty VM pages being flushed out to disk.
525 do {
526 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
527 vtruncbuf_bp_trunc_cmp,
528 vtruncbuf_bp_trunc, &truncloffset);
529 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
530 vtruncbuf_bp_trunc_cmp,
531 vtruncbuf_bp_trunc, &truncloffset);
532 if (count) {
533 kprintf("Warning: vtruncbuf(): Had to re-clean %d "
534 "left over buffers in %s\n", count, filename);
536 } while(count);
538 crit_exit();
540 return (0);
544 * The callback buffer is beyond the new file EOF and must be destroyed.
545 * Note that the compare function must conform to the RB_SCAN's requirements.
547 static
549 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
551 if (bp->b_loffset >= *(off_t *)data)
552 return(0);
553 return(-1);
556 static
557 int
558 vtruncbuf_bp_trunc(struct buf *bp, void *data)
561 * Do not try to use a buffer we cannot immediately lock, but sleep
562 * anyway to prevent a livelock. The code will loop until all buffers
563 * can be acted upon.
565 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
566 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
567 BUF_UNLOCK(bp);
568 } else {
569 bremfree(bp);
570 bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
571 bp->b_flags &= ~B_ASYNC;
572 brelse(bp);
574 return(1);
578 * Fsync all meta-data after truncating a file to be non-zero. Only metadata
579 * blocks (with a negative loffset) are scanned.
580 * Note that the compare function must conform to the RB_SCAN's requirements.
582 static int
583 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data)
585 if (bp->b_loffset < 0)
586 return(0);
587 return(1);
590 static int
591 vtruncbuf_bp_metasync(struct buf *bp, void *data)
593 struct vnode *vp = data;
595 if (bp->b_flags & B_DELWRI) {
597 * Do not try to use a buffer we cannot immediately lock,
598 * but sleep anyway to prevent a livelock. The code will
599 * loop until all buffers can be acted upon.
601 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
602 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
603 BUF_UNLOCK(bp);
604 } else {
605 bremfree(bp);
606 if (bp->b_vp == vp) {
607 bp->b_flags |= B_ASYNC;
608 } else {
609 bp->b_flags &= ~B_ASYNC;
611 bwrite(bp);
613 return(1);
614 } else {
615 return(0);
620 * vfsync - implements a multipass fsync on a file which understands
621 * dependancies and meta-data. The passed vnode must be locked. The
622 * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
624 * When fsyncing data asynchronously just do one consolidated pass starting
625 * with the most negative block number. This may not get all the data due
626 * to dependancies.
628 * When fsyncing data synchronously do a data pass, then a metadata pass,
629 * then do additional data+metadata passes to try to get all the data out.
631 static int vfsync_wait_output(struct vnode *vp,
632 int (*waitoutput)(struct vnode *, struct thread *));
633 static int vfsync_data_only_cmp(struct buf *bp, void *data);
634 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
635 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
636 static int vfsync_bp(struct buf *bp, void *data);
638 struct vfsync_info {
639 struct vnode *vp;
640 int synchronous;
641 int syncdeps;
642 int lazycount;
643 int lazylimit;
644 int skippedbufs;
645 int (*checkdef)(struct buf *);
649 vfsync(struct vnode *vp, int waitfor, int passes,
650 int (*checkdef)(struct buf *),
651 int (*waitoutput)(struct vnode *, struct thread *))
653 struct vfsync_info info;
654 int error;
656 bzero(&info, sizeof(info));
657 info.vp = vp;
658 if ((info.checkdef = checkdef) == NULL)
659 info.syncdeps = 1;
661 crit_enter_id("vfsync");
663 switch(waitfor) {
664 case MNT_LAZY:
666 * Lazy (filesystem syncer typ) Asynchronous plus limit the
667 * number of data (not meta) pages we try to flush to 1MB.
668 * A non-zero return means that lazy limit was reached.
670 info.lazylimit = 1024 * 1024;
671 info.syncdeps = 1;
672 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
673 vfsync_lazy_range_cmp, vfsync_bp, &info);
674 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
675 vfsync_meta_only_cmp, vfsync_bp, &info);
676 if (error == 0)
677 vp->v_lazyw = 0;
678 else if (!RB_EMPTY(&vp->v_rbdirty_tree))
679 vn_syncer_add_to_worklist(vp, 1);
680 error = 0;
681 break;
682 case MNT_NOWAIT:
684 * Asynchronous. Do a data-only pass and a meta-only pass.
686 info.syncdeps = 1;
687 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
688 vfsync_bp, &info);
689 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
690 vfsync_bp, &info);
691 error = 0;
692 break;
693 default:
695 * Synchronous. Do a data-only pass, then a meta-data+data
696 * pass, then additional integrated passes to try to get
697 * all the dependancies flushed.
699 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
700 vfsync_bp, &info);
701 error = vfsync_wait_output(vp, waitoutput);
702 if (error == 0) {
703 info.skippedbufs = 0;
704 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
705 vfsync_bp, &info);
706 error = vfsync_wait_output(vp, waitoutput);
707 if (info.skippedbufs)
708 kprintf("Warning: vfsync skipped %d dirty bufs in pass2!\n", info.skippedbufs);
710 while (error == 0 && passes > 0 &&
711 !RB_EMPTY(&vp->v_rbdirty_tree)) {
712 if (--passes == 0) {
713 info.synchronous = 1;
714 info.syncdeps = 1;
716 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
717 vfsync_bp, &info);
718 if (error < 0)
719 error = -error;
720 info.syncdeps = 1;
721 if (error == 0)
722 error = vfsync_wait_output(vp, waitoutput);
724 break;
726 crit_exit_id("vfsync");
727 return(error);
730 static int
731 vfsync_wait_output(struct vnode *vp, int (*waitoutput)(struct vnode *, struct thread *))
733 int error = 0;
735 while (vp->v_track_write.bk_active) {
736 vp->v_track_write.bk_waitflag = 1;
737 tsleep(&vp->v_track_write, 0, "fsfsn", 0);
739 if (waitoutput)
740 error = waitoutput(vp, curthread);
741 return(error);
744 static int
745 vfsync_data_only_cmp(struct buf *bp, void *data)
747 if (bp->b_loffset < 0)
748 return(-1);
749 return(0);
752 static int
753 vfsync_meta_only_cmp(struct buf *bp, void *data)
755 if (bp->b_loffset < 0)
756 return(0);
757 return(1);
760 static int
761 vfsync_lazy_range_cmp(struct buf *bp, void *data)
763 struct vfsync_info *info = data;
764 if (bp->b_loffset < info->vp->v_lazyw)
765 return(-1);
766 return(0);
769 static int
770 vfsync_bp(struct buf *bp, void *data)
772 struct vfsync_info *info = data;
773 struct vnode *vp = info->vp;
774 int error;
777 * if syncdeps is not set we do not try to write buffers which have
778 * dependancies.
780 if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp))
781 return(0);
784 * Ignore buffers that we cannot immediately lock. XXX
786 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
787 kprintf("Warning: vfsync_bp skipping dirty buffer %p\n", bp);
788 ++info->skippedbufs;
789 return(0);
791 if ((bp->b_flags & B_DELWRI) == 0)
792 panic("vfsync_bp: buffer not dirty");
793 if (vp != bp->b_vp)
794 panic("vfsync_bp: buffer vp mismatch");
797 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
798 * has been written but an additional handshake with the device
799 * is required before we can dispose of the buffer. We have no idea
800 * how to do this so we have to skip these buffers.
802 if (bp->b_flags & B_NEEDCOMMIT) {
803 BUF_UNLOCK(bp);
804 return(0);
808 * Ask bioops if it is ok to sync
810 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
811 bremfree(bp);
812 brelse(bp);
813 return(0);
816 if (info->synchronous) {
818 * Synchronous flushing. An error may be returned.
820 bremfree(bp);
821 crit_exit_id("vfsync");
822 error = bwrite(bp);
823 crit_enter_id("vfsync");
824 } else {
826 * Asynchronous flushing. A negative return value simply
827 * stops the scan and is not considered an error. We use
828 * this to support limited MNT_LAZY flushes.
830 vp->v_lazyw = bp->b_loffset;
831 if ((vp->v_flag & VOBJBUF) && (bp->b_flags & B_CLUSTEROK)) {
832 info->lazycount += vfs_bio_awrite(bp);
833 } else {
834 info->lazycount += bp->b_bufsize;
835 bremfree(bp);
836 crit_exit_id("vfsync");
837 bawrite(bp);
838 crit_enter_id("vfsync");
840 if (info->lazylimit && info->lazycount >= info->lazylimit)
841 error = 1;
842 else
843 error = 0;
845 return(-error);
849 * Associate a buffer with a vnode.
851 void
852 bgetvp(struct vnode *vp, struct buf *bp)
854 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
855 KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
857 vhold(vp);
859 * Insert onto list for new vnode.
861 crit_enter();
862 bp->b_vp = vp;
863 bp->b_flags |= B_HASHED;
864 if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp))
865 panic("reassignbuf: dup lblk vp %p bp %p", vp, bp);
867 bp->b_flags |= B_VNCLEAN;
868 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
869 panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
870 crit_exit();
874 * Disassociate a buffer from a vnode.
876 void
877 brelvp(struct buf *bp)
879 struct vnode *vp;
881 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
884 * Delete from old vnode list, if on one.
886 vp = bp->b_vp;
887 crit_enter();
888 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
889 if (bp->b_flags & B_VNDIRTY)
890 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
891 else
892 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
893 bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
895 if (bp->b_flags & B_HASHED) {
896 buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
897 bp->b_flags &= ~B_HASHED;
899 if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree)) {
900 vp->v_flag &= ~VONWORKLST;
901 LIST_REMOVE(vp, v_synclist);
903 crit_exit();
904 bp->b_vp = NULL;
905 vdrop(vp);
909 * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
910 * This routine is called when the state of the B_DELWRI bit is changed.
912 void
913 reassignbuf(struct buf *bp)
915 struct vnode *vp = bp->b_vp;
916 int delay;
918 KKASSERT(vp != NULL);
919 ++reassignbufcalls;
922 * B_PAGING flagged buffers cannot be reassigned because their vp
923 * is not fully linked in.
925 if (bp->b_flags & B_PAGING)
926 panic("cannot reassign paging buffer");
928 crit_enter();
929 if (bp->b_flags & B_DELWRI) {
931 * Move to the dirty list, add the vnode to the worklist
933 if (bp->b_flags & B_VNCLEAN) {
934 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
935 bp->b_flags &= ~B_VNCLEAN;
937 if ((bp->b_flags & B_VNDIRTY) == 0) {
938 if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
939 panic("reassignbuf: dup lblk vp %p bp %p",
940 vp, bp);
942 bp->b_flags |= B_VNDIRTY;
944 if ((vp->v_flag & VONWORKLST) == 0) {
945 switch (vp->v_type) {
946 case VDIR:
947 delay = dirdelay;
948 break;
949 case VCHR:
950 case VBLK:
951 if (vp->v_rdev &&
952 vp->v_rdev->si_mountpoint != NULL) {
953 delay = metadelay;
954 break;
956 /* fall through */
957 default:
958 delay = filedelay;
960 vn_syncer_add_to_worklist(vp, delay);
962 } else {
964 * Move to the clean list, remove the vnode from the worklist
965 * if no dirty blocks remain.
967 if (bp->b_flags & B_VNDIRTY) {
968 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
969 bp->b_flags &= ~B_VNDIRTY;
971 if ((bp->b_flags & B_VNCLEAN) == 0) {
972 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
973 panic("reassignbuf: dup lblk vp %p bp %p",
974 vp, bp);
976 bp->b_flags |= B_VNCLEAN;
978 if ((vp->v_flag & VONWORKLST) &&
979 RB_EMPTY(&vp->v_rbdirty_tree)) {
980 vp->v_flag &= ~VONWORKLST;
981 LIST_REMOVE(vp, v_synclist);
984 crit_exit();
988 * Create a vnode for a block device.
989 * Used for mounting the root file system.
992 bdevvp(cdev_t dev, struct vnode **vpp)
994 struct vnode *vp;
995 struct vnode *nvp;
996 int error;
998 if (dev == NULL) {
999 *vpp = NULLVP;
1000 return (ENXIO);
1002 error = getspecialvnode(VT_NON, NULL, &spec_vnode_vops_p, &nvp, 0, 0);
1003 if (error) {
1004 *vpp = NULLVP;
1005 return (error);
1007 vp = nvp;
1008 vp->v_type = VCHR;
1009 vp->v_umajor = dev->si_umajor;
1010 vp->v_uminor = dev->si_uminor;
1011 vx_unlock(vp);
1012 *vpp = vp;
1013 return (0);
1017 v_associate_rdev(struct vnode *vp, cdev_t dev)
1019 lwkt_tokref ilock;
1021 if (dev == NULL)
1022 return(ENXIO);
1023 if (dev_is_good(dev) == 0)
1024 return(ENXIO);
1025 KKASSERT(vp->v_rdev == NULL);
1026 if (dev_ref_debug)
1027 kprintf("Z1");
1028 vp->v_rdev = reference_dev(dev);
1029 lwkt_gettoken(&ilock, &spechash_token);
1030 SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1031 lwkt_reltoken(&ilock);
1032 return(0);
1035 void
1036 v_release_rdev(struct vnode *vp)
1038 lwkt_tokref ilock;
1039 cdev_t dev;
1041 if ((dev = vp->v_rdev) != NULL) {
1042 lwkt_gettoken(&ilock, &spechash_token);
1043 SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1044 vp->v_rdev = NULL;
1045 release_dev(dev);
1046 lwkt_reltoken(&ilock);
1051 * Add a vnode to the alias list hung off the cdev_t. We only associate
1052 * the device number with the vnode. The actual device is not associated
1053 * until the vnode is opened (usually in spec_open()), and will be
1054 * disassociated on last close.
1056 void
1057 addaliasu(struct vnode *nvp, int x, int y)
1059 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1060 panic("addaliasu on non-special vnode");
1061 nvp->v_umajor = x;
1062 nvp->v_uminor = y;
1066 * Simple call that a filesystem can make to try to get rid of a
1067 * vnode. It will fail if anyone is referencing the vnode (including
1068 * the caller).
1070 * The filesystem can check whether its in-memory inode structure still
1071 * references the vp on return.
1073 void
1074 vclean_unlocked(struct vnode *vp)
1076 vx_get(vp);
1077 if (sysref_isactive(&vp->v_sysref) == 0)
1078 vgone_vxlocked(vp);
1079 vx_put(vp);
1083 * Disassociate a vnode from its underlying filesystem.
1085 * The vnode must be VX locked and referenced. In all normal situations
1086 * there are no active references. If vclean_vxlocked() is called while
1087 * there are active references, the vnode is being ripped out and we have
1088 * to call VOP_CLOSE() as appropriate before we can reclaim it.
1090 void
1091 vclean_vxlocked(struct vnode *vp, int flags)
1093 int active;
1094 int n;
1095 vm_object_t object;
1098 * If the vnode has already been reclaimed we have nothing to do.
1100 if (vp->v_flag & VRECLAIMED)
1101 return;
1102 vp->v_flag |= VRECLAIMED;
1105 * Scrap the vfs cache
1107 while (cache_inval_vp(vp, 0) != 0) {
1108 kprintf("Warning: vnode %p clean/cache_resolution race detected\n", vp);
1109 tsleep(vp, 0, "vclninv", 2);
1113 * Check to see if the vnode is in use. If so we have to reference it
1114 * before we clean it out so that its count cannot fall to zero and
1115 * generate a race against ourselves to recycle it.
1117 active = sysref_isactive(&vp->v_sysref);
1120 * Clean out any buffers associated with the vnode and destroy its
1121 * object, if it has one.
1123 vinvalbuf(vp, V_SAVE, 0, 0);
1126 * If purging an active vnode (typically during a forced unmount
1127 * or reboot), it must be closed and deactivated before being
1128 * reclaimed. This isn't really all that safe, but what can
1129 * we do? XXX.
1131 * Note that neither of these routines unlocks the vnode.
1133 if (active && (flags & DOCLOSE)) {
1134 while ((n = vp->v_opencount) != 0) {
1135 if (vp->v_writecount)
1136 VOP_CLOSE(vp, FWRITE|FNONBLOCK);
1137 else
1138 VOP_CLOSE(vp, FNONBLOCK);
1139 if (vp->v_opencount == n) {
1140 kprintf("Warning: unable to force-close"
1141 " vnode %p\n", vp);
1142 break;
1148 * If the vnode has not been deactivated, deactivated it. Deactivation
1149 * can create new buffers and VM pages so we have to call vinvalbuf()
1150 * again to make sure they all get flushed.
1152 * This can occur if a file with a link count of 0 needs to be
1153 * truncated.
1155 if ((vp->v_flag & VINACTIVE) == 0) {
1156 vp->v_flag |= VINACTIVE;
1157 VOP_INACTIVE(vp);
1158 vinvalbuf(vp, V_SAVE, 0, 0);
1162 * If the vnode has an object, destroy it.
1164 if ((object = vp->v_object) != NULL) {
1165 if (object->ref_count == 0) {
1166 if ((object->flags & OBJ_DEAD) == 0)
1167 vm_object_terminate(object);
1168 } else {
1169 vm_pager_deallocate(object);
1171 vp->v_flag &= ~VOBJBUF;
1173 KKASSERT((vp->v_flag & VOBJBUF) == 0);
1176 * Reclaim the vnode.
1178 if (VOP_RECLAIM(vp))
1179 panic("vclean: cannot reclaim");
1182 * Done with purge, notify sleepers of the grim news.
1184 vp->v_ops = &dead_vnode_vops_p;
1185 vn_pollgone(vp);
1186 vp->v_tag = VT_NON;
1189 * If we are destroying an active vnode, reactivate it now that
1190 * we have reassociated it with deadfs. This prevents the system
1191 * from crashing on the vnode due to it being unexpectedly marked
1192 * as inactive or reclaimed.
1194 if (active && (flags & DOCLOSE)) {
1195 vp->v_flag &= ~(VINACTIVE|VRECLAIMED);
1200 * Eliminate all activity associated with the requested vnode
1201 * and with all vnodes aliased to the requested vnode.
1203 * The vnode must be referenced and vx_lock()'d
1205 * revoke { struct vnode *a_vp, int a_flags }
1208 vop_stdrevoke(struct vop_revoke_args *ap)
1210 struct vnode *vp, *vq;
1211 lwkt_tokref ilock;
1212 cdev_t dev;
1214 KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1216 vp = ap->a_vp;
1219 * If the vnode is already dead don't try to revoke it
1221 if (vp->v_flag & VRECLAIMED)
1222 return (0);
1225 * If the vnode has a device association, scrap all vnodes associated
1226 * with the device. Don't let the device disappear on us while we
1227 * are scrapping the vnodes.
1229 * The passed vp will probably show up in the list, do not VX lock
1230 * it twice!
1232 if (vp->v_type != VCHR)
1233 return(0);
1234 if ((dev = vp->v_rdev) == NULL) {
1235 if ((dev = get_dev(vp->v_umajor, vp->v_uminor)) == NULL)
1236 return(0);
1238 reference_dev(dev);
1239 lwkt_gettoken(&ilock, &spechash_token);
1240 while ((vq = SLIST_FIRST(&dev->si_hlist)) != NULL) {
1241 if (vp != vq)
1242 vx_get(vq);
1243 if (vq == SLIST_FIRST(&dev->si_hlist))
1244 vgone_vxlocked(vq);
1245 if (vp != vq)
1246 vx_put(vq);
1248 lwkt_reltoken(&ilock);
1249 release_dev(dev);
1250 return (0);
1254 * This is called when the object underlying a vnode is being destroyed,
1255 * such as in a remove(). Try to recycle the vnode immediately if the
1256 * only active reference is our reference.
1258 * Directory vnodes in the namecache with children cannot be immediately
1259 * recycled because numerous VOP_N*() ops require them to be stable.
1262 vrecycle(struct vnode *vp)
1264 if (vp->v_sysref.refcnt <= 1) {
1265 if (cache_inval_vp_nonblock(vp))
1266 return(0);
1267 vgone_vxlocked(vp);
1268 return (1);
1270 return (0);
1274 * Return the maximum I/O size allowed for strategy calls on VP.
1276 * If vp is VCHR or VBLK we dive the device, otherwise we use
1277 * the vp's mount info.
1280 vmaxiosize(struct vnode *vp)
1282 if (vp->v_type == VBLK || vp->v_type == VCHR) {
1283 return(vp->v_rdev->si_iosize_max);
1284 } else {
1285 return(vp->v_mount->mnt_iosize_max);
1290 * Eliminate all activity associated with a vnode in preparation for reuse.
1292 * The vnode must be VX locked and refd and will remain VX locked and refd
1293 * on return. This routine may be called with the vnode in any state, as
1294 * long as it is VX locked. The vnode will be cleaned out and marked
1295 * VRECLAIMED but will not actually be reused until all existing refs and
1296 * holds go away.
1298 * NOTE: This routine may be called on a vnode which has not yet been
1299 * already been deactivated (VOP_INACTIVE), or on a vnode which has
1300 * already been reclaimed.
1302 * This routine is not responsible for placing us back on the freelist.
1303 * Instead, it happens automatically when the caller releases the VX lock
1304 * (assuming there aren't any other references).
1307 void
1308 vgone_vxlocked(struct vnode *vp)
1311 * assert that the VX lock is held. This is an absolute requirement
1312 * now for vgone_vxlocked() to be called.
1314 KKASSERT(vp->v_lock.lk_exclusivecount == 1);
1317 * Clean out the filesystem specific data and set the VRECLAIMED
1318 * bit. Also deactivate the vnode if necessary.
1320 vclean_vxlocked(vp, DOCLOSE);
1323 * Delete from old mount point vnode list, if on one.
1325 if (vp->v_mount != NULL)
1326 insmntque(vp, NULL);
1329 * If special device, remove it from special device alias list
1330 * if it is on one. This should normally only occur if a vnode is
1331 * being revoked as the device should otherwise have been released
1332 * naturally.
1334 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1335 v_release_rdev(vp);
1339 * Set us to VBAD
1341 vp->v_type = VBAD;
1345 * Lookup a vnode by device number.
1348 vfinddev(cdev_t dev, enum vtype type, struct vnode **vpp)
1350 lwkt_tokref ilock;
1351 struct vnode *vp;
1353 lwkt_gettoken(&ilock, &spechash_token);
1354 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1355 if (type == vp->v_type) {
1356 *vpp = vp;
1357 lwkt_reltoken(&ilock);
1358 return (1);
1361 lwkt_reltoken(&ilock);
1362 return (0);
1366 * Calculate the total number of references to a special device. This
1367 * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1368 * an overloaded field. Since udev2dev can now return NULL, we have
1369 * to check for a NULL v_rdev.
1372 count_dev(cdev_t dev)
1374 lwkt_tokref ilock;
1375 struct vnode *vp;
1376 int count = 0;
1378 if (SLIST_FIRST(&dev->si_hlist)) {
1379 lwkt_gettoken(&ilock, &spechash_token);
1380 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1381 if (vp->v_sysref.refcnt > 0)
1382 count += vp->v_sysref.refcnt;
1384 lwkt_reltoken(&ilock);
1386 return(count);
1390 count_udev(int x, int y)
1392 cdev_t dev;
1394 if ((dev = get_dev(x, y)) == NULL)
1395 return(0);
1396 return(count_dev(dev));
1400 vcount(struct vnode *vp)
1402 if (vp->v_rdev == NULL)
1403 return(0);
1404 return(count_dev(vp->v_rdev));
1408 * Initialize VMIO for a vnode. This routine MUST be called before a
1409 * VFS can issue buffer cache ops on a vnode. It is typically called
1410 * when a vnode is initialized from its inode.
1413 vinitvmio(struct vnode *vp, off_t filesize)
1415 vm_object_t object;
1416 int error = 0;
1418 retry:
1419 if ((object = vp->v_object) == NULL) {
1420 object = vnode_pager_alloc(vp, filesize, 0, 0);
1422 * Dereference the reference we just created. This assumes
1423 * that the object is associated with the vp.
1425 object->ref_count--;
1426 vrele(vp);
1427 } else {
1428 if (object->flags & OBJ_DEAD) {
1429 vn_unlock(vp);
1430 vm_object_dead_sleep(object, "vodead");
1431 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1432 goto retry;
1435 KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1436 vp->v_flag |= VOBJBUF;
1437 return (error);
1442 * Print out a description of a vnode.
1444 static char *typename[] =
1445 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1447 void
1448 vprint(char *label, struct vnode *vp)
1450 char buf[96];
1452 if (label != NULL)
1453 kprintf("%s: %p: ", label, (void *)vp);
1454 else
1455 kprintf("%p: ", (void *)vp);
1456 kprintf("type %s, sysrefs %d, writecount %d, holdcnt %d,",
1457 typename[vp->v_type],
1458 vp->v_sysref.refcnt, vp->v_writecount, vp->v_auxrefs);
1459 buf[0] = '\0';
1460 if (vp->v_flag & VROOT)
1461 strcat(buf, "|VROOT");
1462 if (vp->v_flag & VPFSROOT)
1463 strcat(buf, "|VPFSROOT");
1464 if (vp->v_flag & VTEXT)
1465 strcat(buf, "|VTEXT");
1466 if (vp->v_flag & VSYSTEM)
1467 strcat(buf, "|VSYSTEM");
1468 if (vp->v_flag & VFREE)
1469 strcat(buf, "|VFREE");
1470 if (vp->v_flag & VOBJBUF)
1471 strcat(buf, "|VOBJBUF");
1472 if (buf[0] != '\0')
1473 kprintf(" flags (%s)", &buf[1]);
1474 if (vp->v_data == NULL) {
1475 kprintf("\n");
1476 } else {
1477 kprintf("\n\t");
1478 VOP_PRINT(vp);
1482 #ifdef DDB
1483 #include <ddb/ddb.h>
1485 static int db_show_locked_vnodes(struct mount *mp, void *data);
1488 * List all of the locked vnodes in the system.
1489 * Called when debugging the kernel.
1491 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1493 kprintf("Locked vnodes\n");
1494 mountlist_scan(db_show_locked_vnodes, NULL,
1495 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1498 static int
1499 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1501 struct vnode *vp;
1503 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1504 if (vn_islocked(vp))
1505 vprint((char *)0, vp);
1507 return(0);
1509 #endif
1512 * Top level filesystem related information gathering.
1514 static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1516 static int
1517 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1519 int *name = (int *)arg1 - 1; /* XXX */
1520 u_int namelen = arg2 + 1; /* XXX */
1521 struct vfsconf *vfsp;
1522 int maxtypenum;
1524 #if 1 || defined(COMPAT_PRELITE2)
1525 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1526 if (namelen == 1)
1527 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1528 #endif
1530 #ifdef notyet
1531 /* all sysctl names at this level are at least name and field */
1532 if (namelen < 2)
1533 return (ENOTDIR); /* overloaded */
1534 if (name[0] != VFS_GENERIC) {
1535 vfsp = vfsconf_find_by_typenum(name[0]);
1536 if (vfsp == NULL)
1537 return (EOPNOTSUPP);
1538 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1539 oldp, oldlenp, newp, newlen, p));
1541 #endif
1542 switch (name[1]) {
1543 case VFS_MAXTYPENUM:
1544 if (namelen != 2)
1545 return (ENOTDIR);
1546 maxtypenum = vfsconf_get_maxtypenum();
1547 return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
1548 case VFS_CONF:
1549 if (namelen != 3)
1550 return (ENOTDIR); /* overloaded */
1551 vfsp = vfsconf_find_by_typenum(name[2]);
1552 if (vfsp == NULL)
1553 return (EOPNOTSUPP);
1554 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1556 return (EOPNOTSUPP);
1559 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1560 "Generic filesystem");
1562 #if 1 || defined(COMPAT_PRELITE2)
1564 static int
1565 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
1567 int error;
1568 struct ovfsconf ovfs;
1569 struct sysctl_req *req = (struct sysctl_req*) data;
1571 bzero(&ovfs, sizeof(ovfs));
1572 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
1573 strcpy(ovfs.vfc_name, vfsp->vfc_name);
1574 ovfs.vfc_index = vfsp->vfc_typenum;
1575 ovfs.vfc_refcount = vfsp->vfc_refcount;
1576 ovfs.vfc_flags = vfsp->vfc_flags;
1577 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1578 if (error)
1579 return error; /* abort iteration with error code */
1580 else
1581 return 0; /* continue iterating with next element */
1584 static int
1585 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1587 return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
1590 #endif /* 1 || COMPAT_PRELITE2 */
1593 * Check to see if a filesystem is mounted on a block device.
1596 vfs_mountedon(struct vnode *vp)
1598 cdev_t dev;
1600 if ((dev = vp->v_rdev) == NULL) {
1601 if (vp->v_type != VBLK)
1602 dev = get_dev(vp->v_uminor, vp->v_umajor);
1604 if (dev != NULL && dev->si_mountpoint)
1605 return (EBUSY);
1606 return (0);
1610 * Unmount all filesystems. The list is traversed in reverse order
1611 * of mounting to avoid dependencies.
1614 static int vfs_umountall_callback(struct mount *mp, void *data);
1616 void
1617 vfs_unmountall(void)
1619 int count;
1621 do {
1622 count = mountlist_scan(vfs_umountall_callback,
1623 NULL, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1624 } while (count);
1627 static
1629 vfs_umountall_callback(struct mount *mp, void *data)
1631 int error;
1633 error = dounmount(mp, MNT_FORCE);
1634 if (error) {
1635 mountlist_remove(mp);
1636 kprintf("unmount of filesystem mounted from %s failed (",
1637 mp->mnt_stat.f_mntfromname);
1638 if (error == EBUSY)
1639 kprintf("BUSY)\n");
1640 else
1641 kprintf("%d)\n", error);
1643 return(1);
1647 * Build hash lists of net addresses and hang them off the mount point.
1648 * Called by ufs_mount() to set up the lists of export addresses.
1650 static int
1651 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1652 const struct export_args *argp)
1654 struct netcred *np;
1655 struct radix_node_head *rnh;
1656 int i;
1657 struct radix_node *rn;
1658 struct sockaddr *saddr, *smask = 0;
1659 struct domain *dom;
1660 int error;
1662 if (argp->ex_addrlen == 0) {
1663 if (mp->mnt_flag & MNT_DEFEXPORTED)
1664 return (EPERM);
1665 np = &nep->ne_defexported;
1666 np->netc_exflags = argp->ex_flags;
1667 np->netc_anon = argp->ex_anon;
1668 np->netc_anon.cr_ref = 1;
1669 mp->mnt_flag |= MNT_DEFEXPORTED;
1670 return (0);
1673 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1674 return (EINVAL);
1675 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1676 return (EINVAL);
1678 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1679 np = (struct netcred *) kmalloc(i, M_NETADDR, M_WAITOK | M_ZERO);
1680 saddr = (struct sockaddr *) (np + 1);
1681 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1682 goto out;
1683 if (saddr->sa_len > argp->ex_addrlen)
1684 saddr->sa_len = argp->ex_addrlen;
1685 if (argp->ex_masklen) {
1686 smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1687 error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1688 if (error)
1689 goto out;
1690 if (smask->sa_len > argp->ex_masklen)
1691 smask->sa_len = argp->ex_masklen;
1693 i = saddr->sa_family;
1694 if ((rnh = nep->ne_rtable[i]) == 0) {
1696 * Seems silly to initialize every AF when most are not used,
1697 * do so on demand here
1699 SLIST_FOREACH(dom, &domains, dom_next)
1700 if (dom->dom_family == i && dom->dom_rtattach) {
1701 dom->dom_rtattach((void **) &nep->ne_rtable[i],
1702 dom->dom_rtoffset);
1703 break;
1705 if ((rnh = nep->ne_rtable[i]) == 0) {
1706 error = ENOBUFS;
1707 goto out;
1710 rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1711 np->netc_rnodes);
1712 if (rn == 0 || np != (struct netcred *) rn) { /* already exists */
1713 error = EPERM;
1714 goto out;
1716 np->netc_exflags = argp->ex_flags;
1717 np->netc_anon = argp->ex_anon;
1718 np->netc_anon.cr_ref = 1;
1719 return (0);
1720 out:
1721 kfree(np, M_NETADDR);
1722 return (error);
1725 /* ARGSUSED */
1726 static int
1727 vfs_free_netcred(struct radix_node *rn, void *w)
1729 struct radix_node_head *rnh = (struct radix_node_head *) w;
1731 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1732 kfree((caddr_t) rn, M_NETADDR);
1733 return (0);
1737 * Free the net address hash lists that are hanging off the mount points.
1739 static void
1740 vfs_free_addrlist(struct netexport *nep)
1742 int i;
1743 struct radix_node_head *rnh;
1745 for (i = 0; i <= AF_MAX; i++)
1746 if ((rnh = nep->ne_rtable[i])) {
1747 (*rnh->rnh_walktree) (rnh, vfs_free_netcred,
1748 (caddr_t) rnh);
1749 kfree((caddr_t) rnh, M_RTABLE);
1750 nep->ne_rtable[i] = 0;
1755 vfs_export(struct mount *mp, struct netexport *nep,
1756 const struct export_args *argp)
1758 int error;
1760 if (argp->ex_flags & MNT_DELEXPORT) {
1761 if (mp->mnt_flag & MNT_EXPUBLIC) {
1762 vfs_setpublicfs(NULL, NULL, NULL);
1763 mp->mnt_flag &= ~MNT_EXPUBLIC;
1765 vfs_free_addrlist(nep);
1766 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
1768 if (argp->ex_flags & MNT_EXPORTED) {
1769 if (argp->ex_flags & MNT_EXPUBLIC) {
1770 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
1771 return (error);
1772 mp->mnt_flag |= MNT_EXPUBLIC;
1774 if ((error = vfs_hang_addrlist(mp, nep, argp)))
1775 return (error);
1776 mp->mnt_flag |= MNT_EXPORTED;
1778 return (0);
1783 * Set the publicly exported filesystem (WebNFS). Currently, only
1784 * one public filesystem is possible in the spec (RFC 2054 and 2055)
1787 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
1788 const struct export_args *argp)
1790 int error;
1791 struct vnode *rvp;
1792 char *cp;
1795 * mp == NULL -> invalidate the current info, the FS is
1796 * no longer exported. May be called from either vfs_export
1797 * or unmount, so check if it hasn't already been done.
1799 if (mp == NULL) {
1800 if (nfs_pub.np_valid) {
1801 nfs_pub.np_valid = 0;
1802 if (nfs_pub.np_index != NULL) {
1803 FREE(nfs_pub.np_index, M_TEMP);
1804 nfs_pub.np_index = NULL;
1807 return (0);
1811 * Only one allowed at a time.
1813 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
1814 return (EBUSY);
1817 * Get real filehandle for root of exported FS.
1819 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
1820 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
1822 if ((error = VFS_ROOT(mp, &rvp)))
1823 return (error);
1825 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
1826 return (error);
1828 vput(rvp);
1831 * If an indexfile was specified, pull it in.
1833 if (argp->ex_indexfile != NULL) {
1834 int namelen;
1836 error = vn_get_namelen(rvp, &namelen);
1837 if (error)
1838 return (error);
1839 MALLOC(nfs_pub.np_index, char *, namelen, M_TEMP,
1840 M_WAITOK);
1841 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
1842 namelen, (size_t *)0);
1843 if (!error) {
1845 * Check for illegal filenames.
1847 for (cp = nfs_pub.np_index; *cp; cp++) {
1848 if (*cp == '/') {
1849 error = EINVAL;
1850 break;
1854 if (error) {
1855 FREE(nfs_pub.np_index, M_TEMP);
1856 return (error);
1860 nfs_pub.np_mount = mp;
1861 nfs_pub.np_valid = 1;
1862 return (0);
1865 struct netcred *
1866 vfs_export_lookup(struct mount *mp, struct netexport *nep,
1867 struct sockaddr *nam)
1869 struct netcred *np;
1870 struct radix_node_head *rnh;
1871 struct sockaddr *saddr;
1873 np = NULL;
1874 if (mp->mnt_flag & MNT_EXPORTED) {
1876 * Lookup in the export list first.
1878 if (nam != NULL) {
1879 saddr = nam;
1880 rnh = nep->ne_rtable[saddr->sa_family];
1881 if (rnh != NULL) {
1882 np = (struct netcred *)
1883 (*rnh->rnh_matchaddr)((char *)saddr,
1884 rnh);
1885 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
1886 np = NULL;
1890 * If no address match, use the default if it exists.
1892 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
1893 np = &nep->ne_defexported;
1895 return (np);
1899 * perform msync on all vnodes under a mount point. The mount point must
1900 * be locked. This code is also responsible for lazy-freeing unreferenced
1901 * vnodes whos VM objects no longer contain pages.
1903 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
1905 * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
1906 * but vnode_pager_putpages() doesn't lock the vnode. We have to do it
1907 * way up in this high level function.
1909 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
1910 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
1912 void
1913 vfs_msync(struct mount *mp, int flags)
1915 int vmsc_flags;
1917 vmsc_flags = VMSC_GETVP;
1918 if (flags != MNT_WAIT)
1919 vmsc_flags |= VMSC_NOWAIT;
1920 vmntvnodescan(mp, vmsc_flags, vfs_msync_scan1, vfs_msync_scan2,
1921 (void *)flags);
1925 * scan1 is a fast pre-check. There could be hundreds of thousands of
1926 * vnodes, we cannot afford to do anything heavy weight until we have a
1927 * fairly good indication that there is work to do.
1929 static
1931 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
1933 int flags = (int)data;
1935 if ((vp->v_flag & VRECLAIMED) == 0) {
1936 if (vshouldmsync(vp))
1937 return(0); /* call scan2 */
1938 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
1939 (vp->v_flag & VOBJDIRTY) &&
1940 (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
1941 return(0); /* call scan2 */
1946 * do not call scan2, continue the loop
1948 return(-1);
1952 * This callback is handed a locked vnode.
1954 static
1956 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
1958 vm_object_t obj;
1959 int flags = (int)data;
1961 if (vp->v_flag & VRECLAIMED)
1962 return(0);
1964 if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
1965 if ((obj = vp->v_object) != NULL) {
1966 vm_object_page_clean(obj, 0, 0,
1967 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
1970 return(0);
1974 * Record a process's interest in events which might happen to
1975 * a vnode. Because poll uses the historic select-style interface
1976 * internally, this routine serves as both the ``check for any
1977 * pending events'' and the ``record my interest in future events''
1978 * functions. (These are done together, while the lock is held,
1979 * to avoid race conditions.)
1982 vn_pollrecord(struct vnode *vp, int events)
1984 lwkt_tokref ilock;
1986 KKASSERT(curthread->td_proc != NULL);
1988 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1989 if (vp->v_pollinfo.vpi_revents & events) {
1991 * This leaves events we are not interested
1992 * in available for the other process which
1993 * which presumably had requested them
1994 * (otherwise they would never have been
1995 * recorded).
1997 events &= vp->v_pollinfo.vpi_revents;
1998 vp->v_pollinfo.vpi_revents &= ~events;
2000 lwkt_reltoken(&ilock);
2001 return events;
2003 vp->v_pollinfo.vpi_events |= events;
2004 selrecord(curthread, &vp->v_pollinfo.vpi_selinfo);
2005 lwkt_reltoken(&ilock);
2006 return 0;
2010 * Note the occurrence of an event. If the VN_POLLEVENT macro is used,
2011 * it is possible for us to miss an event due to race conditions, but
2012 * that condition is expected to be rare, so for the moment it is the
2013 * preferred interface.
2015 void
2016 vn_pollevent(struct vnode *vp, int events)
2018 lwkt_tokref ilock;
2020 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
2021 if (vp->v_pollinfo.vpi_events & events) {
2023 * We clear vpi_events so that we don't
2024 * call selwakeup() twice if two events are
2025 * posted before the polling process(es) is
2026 * awakened. This also ensures that we take at
2027 * most one selwakeup() if the polling process
2028 * is no longer interested. However, it does
2029 * mean that only one event can be noticed at
2030 * a time. (Perhaps we should only clear those
2031 * event bits which we note?) XXX
2033 vp->v_pollinfo.vpi_events = 0; /* &= ~events ??? */
2034 vp->v_pollinfo.vpi_revents |= events;
2035 selwakeup(&vp->v_pollinfo.vpi_selinfo);
2037 lwkt_reltoken(&ilock);
2041 * Wake up anyone polling on vp because it is being revoked.
2042 * This depends on dead_poll() returning POLLHUP for correct
2043 * behavior.
2045 void
2046 vn_pollgone(struct vnode *vp)
2048 lwkt_tokref ilock;
2050 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
2051 if (vp->v_pollinfo.vpi_events) {
2052 vp->v_pollinfo.vpi_events = 0;
2053 selwakeup(&vp->v_pollinfo.vpi_selinfo);
2055 lwkt_reltoken(&ilock);
2059 * extract the cdev_t from a VBLK or VCHR. The vnode must have been opened
2060 * (or v_rdev might be NULL).
2062 cdev_t
2063 vn_todev(struct vnode *vp)
2065 if (vp->v_type != VBLK && vp->v_type != VCHR)
2066 return (NULL);
2067 KKASSERT(vp->v_rdev != NULL);
2068 return (vp->v_rdev);
2072 * Check if vnode represents a disk device. The vnode does not need to be
2073 * opened.
2076 vn_isdisk(struct vnode *vp, int *errp)
2078 cdev_t dev;
2080 if (vp->v_type != VCHR) {
2081 if (errp != NULL)
2082 *errp = ENOTBLK;
2083 return (0);
2086 if ((dev = vp->v_rdev) == NULL)
2087 dev = get_dev(vp->v_umajor, vp->v_uminor);
2089 if (dev == NULL) {
2090 if (errp != NULL)
2091 *errp = ENXIO;
2092 return (0);
2094 if (dev_is_good(dev) == 0) {
2095 if (errp != NULL)
2096 *errp = ENXIO;
2097 return (0);
2099 if ((dev_dflags(dev) & D_DISK) == 0) {
2100 if (errp != NULL)
2101 *errp = ENOTBLK;
2102 return (0);
2104 if (errp != NULL)
2105 *errp = 0;
2106 return (1);
2110 vn_get_namelen(struct vnode *vp, int *namelen)
2112 int error, retval[2];
2114 error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2115 if (error)
2116 return (error);
2117 *namelen = *retval;
2118 return (0);
2122 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2123 uint16_t d_namlen, const char *d_name)
2125 struct dirent *dp;
2126 size_t len;
2128 len = _DIRENT_RECLEN(d_namlen);
2129 if (len > uio->uio_resid)
2130 return(1);
2132 dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2134 dp->d_ino = d_ino;
2135 dp->d_namlen = d_namlen;
2136 dp->d_type = d_type;
2137 bcopy(d_name, dp->d_name, d_namlen);
2139 *error = uiomove((caddr_t)dp, len, uio);
2141 kfree(dp, M_TEMP);
2143 return(0);
2146 void
2147 vn_mark_atime(struct vnode *vp, struct thread *td)
2149 struct proc *p = td->td_proc;
2150 struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2152 if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2153 VOP_MARKATIME(vp, cred);