kernel - Tag vm_map_entry structure, slight optimization to zalloc, misc.
[dragonfly.git] / sys / vm / vm_object.c
blob34975447fa3aea90fec96ad6c6d779d8d19a30b2
1 /*
2 * Copyright (c) 1991, 1993, 2013
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 * Carnegie Mellon requests users of this software to return to
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
60 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
64 * Virtual memory object module.
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h> /* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/refcount.h>
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
92 #include <vm/vm_page2.h>
94 #include <machine/specialreg.h>
96 #define EASY_SCAN_FACTOR 8
98 static void vm_object_qcollapse(vm_object_t object,
99 vm_object_t backing_object);
100 static void vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101 int pagerflags);
102 static void vm_object_lock_init(vm_object_t);
106 * Virtual memory objects maintain the actual data
107 * associated with allocated virtual memory. A given
108 * page of memory exists within exactly one object.
110 * An object is only deallocated when all "references"
111 * are given up. Only one "reference" to a given
112 * region of an object should be writeable.
114 * Associated with each object is a list of all resident
115 * memory pages belonging to that object; this list is
116 * maintained by the "vm_page" module, and locked by the object's
117 * lock.
119 * Each object also records a "pager" routine which is
120 * used to retrieve (and store) pages to the proper backing
121 * storage. In addition, objects may be backed by other
122 * objects from which they were virtual-copied.
124 * The only items within the object structure which are
125 * modified after time of creation are:
126 * reference count locked by object's lock
127 * pager routine locked by object's lock
131 struct vm_object kernel_object;
133 static long vm_object_count;
135 static long object_collapses;
136 static long object_bypasses;
137 static vm_zone_t obj_zone;
138 static struct vm_zone obj_zone_store;
139 #define VM_OBJECTS_INIT 256
140 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
142 struct object_q vm_object_lists[VMOBJ_HSIZE];
143 struct lwkt_token vmobj_tokens[VMOBJ_HSIZE];
145 #if defined(DEBUG_LOCKS)
147 #define vm_object_vndeallocate(obj, vpp) \
148 debugvm_object_vndeallocate(obj, vpp, __FILE__, __LINE__)
151 * Debug helper to track hold/drop/ref/deallocate calls.
153 static void
154 debugvm_object_add(vm_object_t obj, char *file, int line, int addrem)
156 int i;
158 i = atomic_fetchadd_int(&obj->debug_index, 1);
159 i = i & (VMOBJ_DEBUG_ARRAY_SIZE - 1);
160 ksnprintf(obj->debug_hold_thrs[i],
161 sizeof(obj->debug_hold_thrs[i]),
162 "%c%d:(%d):%s",
163 (addrem == -1 ? '-' : (addrem == 1 ? '+' : '=')),
164 (curthread->td_proc ? curthread->td_proc->p_pid : -1),
165 obj->ref_count,
166 curthread->td_comm);
167 obj->debug_hold_file[i] = file;
168 obj->debug_hold_line[i] = line;
169 #if 0
170 /* Uncomment for debugging obj refs/derefs in reproducable cases */
171 if (strcmp(curthread->td_comm, "sshd") == 0) {
172 kprintf("%d %p refs=%d ar=%d file: %s/%d\n",
173 (curthread->td_proc ? curthread->td_proc->p_pid : -1),
174 obj, obj->ref_count, addrem, file, line);
176 #endif
179 #endif
182 * Misc low level routines
184 static void
185 vm_object_lock_init(vm_object_t obj)
187 #if defined(DEBUG_LOCKS)
188 int i;
190 obj->debug_index = 0;
191 for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
192 obj->debug_hold_thrs[i][0] = 0;
193 obj->debug_hold_file[i] = NULL;
194 obj->debug_hold_line[i] = 0;
196 #endif
199 void
200 vm_object_lock_swap(void)
202 lwkt_token_swap();
205 void
206 vm_object_lock(vm_object_t obj)
208 lwkt_gettoken(&obj->token);
212 * Returns TRUE on sucesss
214 static int
215 vm_object_lock_try(vm_object_t obj)
217 return(lwkt_trytoken(&obj->token));
220 void
221 vm_object_lock_shared(vm_object_t obj)
223 lwkt_gettoken_shared(&obj->token);
226 void
227 vm_object_unlock(vm_object_t obj)
229 lwkt_reltoken(&obj->token);
232 void
233 vm_object_upgrade(vm_object_t obj)
235 lwkt_reltoken(&obj->token);
236 lwkt_gettoken(&obj->token);
239 void
240 vm_object_downgrade(vm_object_t obj)
242 lwkt_reltoken(&obj->token);
243 lwkt_gettoken_shared(&obj->token);
246 static __inline void
247 vm_object_assert_held(vm_object_t obj)
249 ASSERT_LWKT_TOKEN_HELD(&obj->token);
252 static __inline int
253 vm_quickcolor(void)
255 globaldata_t gd = mycpu;
256 int pg_color;
258 pg_color = (int)(intptr_t)gd->gd_curthread >> 10;
259 pg_color += gd->gd_quick_color;
260 gd->gd_quick_color += PQ_PRIME2;
262 return pg_color;
265 void
266 VMOBJDEBUG(vm_object_hold)(vm_object_t obj VMOBJDBARGS)
268 KKASSERT(obj != NULL);
271 * Object must be held (object allocation is stable due to callers
272 * context, typically already holding the token on a parent object)
273 * prior to potentially blocking on the lock, otherwise the object
274 * can get ripped away from us.
276 refcount_acquire(&obj->hold_count);
277 vm_object_lock(obj);
279 #if defined(DEBUG_LOCKS)
280 debugvm_object_add(obj, file, line, 1);
281 #endif
285 VMOBJDEBUG(vm_object_hold_try)(vm_object_t obj VMOBJDBARGS)
287 KKASSERT(obj != NULL);
290 * Object must be held (object allocation is stable due to callers
291 * context, typically already holding the token on a parent object)
292 * prior to potentially blocking on the lock, otherwise the object
293 * can get ripped away from us.
295 refcount_acquire(&obj->hold_count);
296 if (vm_object_lock_try(obj) == 0) {
297 if (refcount_release(&obj->hold_count)) {
298 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
299 zfree(obj_zone, obj);
301 return(0);
304 #if defined(DEBUG_LOCKS)
305 debugvm_object_add(obj, file, line, 1);
306 #endif
307 return(1);
310 void
311 VMOBJDEBUG(vm_object_hold_shared)(vm_object_t obj VMOBJDBARGS)
313 KKASSERT(obj != NULL);
316 * Object must be held (object allocation is stable due to callers
317 * context, typically already holding the token on a parent object)
318 * prior to potentially blocking on the lock, otherwise the object
319 * can get ripped away from us.
321 refcount_acquire(&obj->hold_count);
322 vm_object_lock_shared(obj);
324 #if defined(DEBUG_LOCKS)
325 debugvm_object_add(obj, file, line, 1);
326 #endif
330 * Drop the token and hold_count on the object.
332 * WARNING! Token might be shared.
334 void
335 VMOBJDEBUG(vm_object_drop)(vm_object_t obj VMOBJDBARGS)
337 if (obj == NULL)
338 return;
341 * No new holders should be possible once we drop hold_count 1->0 as
342 * there is no longer any way to reference the object.
344 KKASSERT(obj->hold_count > 0);
345 if (refcount_release(&obj->hold_count)) {
346 #if defined(DEBUG_LOCKS)
347 debugvm_object_add(obj, file, line, -1);
348 #endif
350 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
351 vm_object_unlock(obj);
352 zfree(obj_zone, obj);
353 } else {
354 vm_object_unlock(obj);
356 } else {
357 #if defined(DEBUG_LOCKS)
358 debugvm_object_add(obj, file, line, -1);
359 #endif
360 vm_object_unlock(obj);
365 * Initialize a freshly allocated object, returning a held object.
367 * Used only by vm_object_allocate() and zinitna().
369 * No requirements.
371 void
372 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
374 int n;
376 RB_INIT(&object->rb_memq);
377 LIST_INIT(&object->shadow_head);
378 lwkt_token_init(&object->token, "vmobj");
380 object->type = type;
381 object->size = size;
382 object->ref_count = 1;
383 object->memattr = VM_MEMATTR_DEFAULT;
384 object->hold_count = 0;
385 object->flags = 0;
386 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
387 vm_object_set_flag(object, OBJ_ONEMAPPING);
388 object->paging_in_progress = 0;
389 object->resident_page_count = 0;
390 object->agg_pv_list_count = 0;
391 object->shadow_count = 0;
392 /* cpu localization twist */
393 object->pg_color = vm_quickcolor();
394 object->handle = NULL;
395 object->backing_object = NULL;
396 object->backing_object_offset = (vm_ooffset_t)0;
398 object->generation++;
399 object->swblock_count = 0;
400 RB_INIT(&object->swblock_root);
401 vm_object_lock_init(object);
402 pmap_object_init(object);
404 vm_object_hold(object);
406 n = VMOBJ_HASH(object);
407 atomic_add_long(&vm_object_count, 1);
408 lwkt_gettoken(&vmobj_tokens[n]);
409 TAILQ_INSERT_TAIL(&vm_object_lists[n], object, object_list);
410 lwkt_reltoken(&vmobj_tokens[n]);
414 * Initialize the VM objects module.
416 * Called from the low level boot code only.
418 void
419 vm_object_init(void)
421 int i;
423 for (i = 0; i < VMOBJ_HSIZE; ++i) {
424 TAILQ_INIT(&vm_object_lists[i]);
425 lwkt_token_init(&vmobj_tokens[i], "vmobjlst");
428 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
429 &kernel_object);
430 vm_object_drop(&kernel_object);
432 obj_zone = &obj_zone_store;
433 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
434 vm_objects_init, VM_OBJECTS_INIT);
437 void
438 vm_object_init2(void)
440 zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL);
444 * Allocate and return a new object of the specified type and size.
446 * No requirements.
448 vm_object_t
449 vm_object_allocate(objtype_t type, vm_pindex_t size)
451 vm_object_t result;
453 result = (vm_object_t) zalloc(obj_zone);
455 _vm_object_allocate(type, size, result);
456 vm_object_drop(result);
458 return (result);
462 * This version returns a held object, allowing further atomic initialization
463 * of the object.
465 vm_object_t
466 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
468 vm_object_t result;
470 result = (vm_object_t) zalloc(obj_zone);
472 _vm_object_allocate(type, size, result);
474 return (result);
478 * Add an additional reference to a vm_object. The object must already be
479 * held. The original non-lock version is no longer supported. The object
480 * must NOT be chain locked by anyone at the time the reference is added.
482 * Referencing a chain-locked object can blow up the fairly sensitive
483 * ref_count and shadow_count tests in the deallocator. Most callers
484 * will call vm_object_chain_wait() prior to calling
485 * vm_object_reference_locked() to avoid the case.
487 * The object must be held, but may be held shared if desired (hence why
488 * we use an atomic op).
490 void
491 VMOBJDEBUG(vm_object_reference_locked)(vm_object_t object VMOBJDBARGS)
493 KKASSERT(object != NULL);
494 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
495 KKASSERT((object->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) == 0);
496 atomic_add_int(&object->ref_count, 1);
497 if (object->type == OBJT_VNODE) {
498 vref(object->handle);
499 /* XXX what if the vnode is being destroyed? */
501 #if defined(DEBUG_LOCKS)
502 debugvm_object_add(object, file, line, 1);
503 #endif
507 * This version is only allowed for vnode objects.
509 void
510 VMOBJDEBUG(vm_object_reference_quick)(vm_object_t object VMOBJDBARGS)
512 KKASSERT(object->type == OBJT_VNODE);
513 atomic_add_int(&object->ref_count, 1);
514 vref(object->handle);
515 #if defined(DEBUG_LOCKS)
516 debugvm_object_add(object, file, line, 1);
517 #endif
521 * Object OBJ_CHAINLOCK lock handling.
523 * The caller can chain-lock backing objects recursively and then
524 * use vm_object_chain_release_all() to undo the whole chain.
526 * Chain locks are used to prevent collapses and are only applicable
527 * to OBJT_DEFAULT and OBJT_SWAP objects. Chain locking operations
528 * on other object types are ignored. This is also important because
529 * it allows e.g. the vnode underlying a memory mapping to take concurrent
530 * faults.
532 * The object must usually be held on entry, though intermediate
533 * objects need not be held on release. The object must be held exclusively,
534 * NOT shared. Note that the prefault path checks the shared state and
535 * avoids using the chain functions.
537 void
538 vm_object_chain_wait(vm_object_t object, int shared)
540 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
541 for (;;) {
542 uint32_t chainlk = object->chainlk;
544 cpu_ccfence();
545 if (shared) {
546 if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
547 tsleep_interlock(object, 0);
548 if (atomic_cmpset_int(&object->chainlk,
549 chainlk,
550 chainlk | CHAINLK_WAIT)) {
551 tsleep(object, PINTERLOCKED,
552 "objchns", 0);
554 /* retry */
555 } else {
556 break;
558 /* retry */
559 } else {
560 if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
561 tsleep_interlock(object, 0);
562 if (atomic_cmpset_int(&object->chainlk,
563 chainlk,
564 chainlk | CHAINLK_WAIT))
566 tsleep(object, PINTERLOCKED,
567 "objchnx", 0);
569 /* retry */
570 } else {
571 if (atomic_cmpset_int(&object->chainlk,
572 chainlk,
573 chainlk & ~CHAINLK_WAIT))
575 if (chainlk & CHAINLK_WAIT)
576 wakeup(object);
577 break;
579 /* retry */
582 /* retry */
586 void
587 vm_object_chain_acquire(vm_object_t object, int shared)
589 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
590 return;
591 if (vm_shared_fault == 0)
592 shared = 0;
594 for (;;) {
595 uint32_t chainlk = object->chainlk;
597 cpu_ccfence();
598 if (shared) {
599 if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
600 tsleep_interlock(object, 0);
601 if (atomic_cmpset_int(&object->chainlk,
602 chainlk,
603 chainlk | CHAINLK_WAIT)) {
604 tsleep(object, PINTERLOCKED,
605 "objchns", 0);
607 /* retry */
608 } else if (atomic_cmpset_int(&object->chainlk,
609 chainlk, chainlk + 1)) {
610 break;
612 /* retry */
613 } else {
614 if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
615 tsleep_interlock(object, 0);
616 if (atomic_cmpset_int(&object->chainlk,
617 chainlk,
618 chainlk |
619 CHAINLK_WAIT |
620 CHAINLK_EXCLREQ)) {
621 tsleep(object, PINTERLOCKED,
622 "objchnx", 0);
624 /* retry */
625 } else {
626 if (atomic_cmpset_int(&object->chainlk,
627 chainlk,
628 (chainlk | CHAINLK_EXCL) &
629 ~(CHAINLK_EXCLREQ |
630 CHAINLK_WAIT))) {
631 if (chainlk & CHAINLK_WAIT)
632 wakeup(object);
633 break;
635 /* retry */
638 /* retry */
642 void
643 vm_object_chain_release(vm_object_t object)
645 /*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/
646 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
647 return;
648 KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
649 for (;;) {
650 uint32_t chainlk = object->chainlk;
652 cpu_ccfence();
653 if (chainlk & CHAINLK_MASK) {
654 if ((chainlk & CHAINLK_MASK) == 1 &&
655 atomic_cmpset_int(&object->chainlk,
656 chainlk,
657 (chainlk - 1) & ~CHAINLK_WAIT)) {
658 if (chainlk & CHAINLK_WAIT)
659 wakeup(object);
660 break;
662 if ((chainlk & CHAINLK_MASK) > 1 &&
663 atomic_cmpset_int(&object->chainlk,
664 chainlk, chainlk - 1)) {
665 break;
667 /* retry */
668 } else {
669 KKASSERT(chainlk & CHAINLK_EXCL);
670 if (atomic_cmpset_int(&object->chainlk,
671 chainlk,
672 chainlk & ~(CHAINLK_EXCL |
673 CHAINLK_WAIT))) {
674 if (chainlk & CHAINLK_WAIT)
675 wakeup(object);
676 break;
683 * Release the chain from first_object through and including stopobj.
684 * The caller is typically holding the first and last object locked
685 * (shared or exclusive) to prevent destruction races.
687 * We release stopobj first as an optimization as this object is most
688 * likely to be shared across multiple processes.
690 void
691 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
693 vm_object_t backing_object;
694 vm_object_t object;
696 vm_object_chain_release(stopobj);
697 object = first_object;
699 while (object != stopobj) {
700 KKASSERT(object);
701 backing_object = object->backing_object;
702 vm_object_chain_release(object);
703 object = backing_object;
708 * Dereference an object and its underlying vnode. The object may be
709 * held shared. On return the object will remain held.
711 * This function may return a vnode in *vpp which the caller must release
712 * after the caller drops its own lock. If vpp is NULL, we assume that
713 * the caller was holding an exclusive lock on the object and we vrele()
714 * the vp ourselves.
716 static void
717 VMOBJDEBUG(vm_object_vndeallocate)(vm_object_t object, struct vnode **vpp
718 VMOBJDBARGS)
720 struct vnode *vp = (struct vnode *) object->handle;
722 KASSERT(object->type == OBJT_VNODE,
723 ("vm_object_vndeallocate: not a vnode object"));
724 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
725 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
726 #ifdef INVARIANTS
727 if (object->ref_count == 0) {
728 vprint("vm_object_vndeallocate", vp);
729 panic("vm_object_vndeallocate: bad object reference count");
731 #endif
732 for (;;) {
733 int count = object->ref_count;
734 cpu_ccfence();
735 if (count == 1) {
736 vm_object_upgrade(object);
737 if (atomic_cmpset_int(&object->ref_count, count, 0)) {
738 vclrflags(vp, VTEXT);
739 break;
741 } else {
742 if (atomic_cmpset_int(&object->ref_count,
743 count, count - 1)) {
744 break;
747 /* retry */
749 #if defined(DEBUG_LOCKS)
750 debugvm_object_add(object, file, line, -1);
751 #endif
754 * vrele or return the vp to vrele. We can only safely vrele(vp)
755 * if the object was locked exclusively. But there are two races
756 * here.
758 * We had to upgrade the object above to safely clear VTEXT
759 * but the alternative path where the shared lock is retained
760 * can STILL race to 0 in other paths and cause our own vrele()
761 * to terminate the vnode. We can't allow that if the VM object
762 * is still locked shared.
764 if (vpp)
765 *vpp = vp;
766 else
767 vrele(vp);
771 * Release a reference to the specified object, gained either through a
772 * vm_object_allocate or a vm_object_reference call. When all references
773 * are gone, storage associated with this object may be relinquished.
775 * The caller does not have to hold the object locked but must have control
776 * over the reference in question in order to guarantee that the object
777 * does not get ripped out from under us.
779 * XXX Currently all deallocations require an exclusive lock.
781 void
782 VMOBJDEBUG(vm_object_deallocate)(vm_object_t object VMOBJDBARGS)
784 struct vnode *vp;
785 int count;
787 if (object == NULL)
788 return;
790 for (;;) {
791 count = object->ref_count;
792 cpu_ccfence();
795 * If decrementing the count enters into special handling
796 * territory (0, 1, or 2) we have to do it the hard way.
797 * Fortunate though, objects with only a few refs like this
798 * are not likely to be heavily contended anyway.
800 * For vnode objects we only care about 1->0 transitions.
802 if (count <= 3 || (object->type == OBJT_VNODE && count <= 1)) {
803 #if defined(DEBUG_LOCKS)
804 debugvm_object_add(object, file, line, 0);
805 #endif
806 vm_object_hold(object);
807 vm_object_deallocate_locked(object);
808 vm_object_drop(object);
809 break;
813 * Try to decrement ref_count without acquiring a hold on
814 * the object. This is particularly important for the exec*()
815 * and exit*() code paths because the program binary may
816 * have a great deal of sharing and an exclusive lock will
817 * crowbar performance in those circumstances.
819 if (object->type == OBJT_VNODE) {
820 vp = (struct vnode *)object->handle;
821 if (atomic_cmpset_int(&object->ref_count,
822 count, count - 1)) {
823 #if defined(DEBUG_LOCKS)
824 debugvm_object_add(object, file, line, -1);
825 #endif
827 vrele(vp);
828 break;
830 /* retry */
831 } else {
832 if (atomic_cmpset_int(&object->ref_count,
833 count, count - 1)) {
834 #if defined(DEBUG_LOCKS)
835 debugvm_object_add(object, file, line, -1);
836 #endif
837 break;
839 /* retry */
841 /* retry */
845 void
846 VMOBJDEBUG(vm_object_deallocate_locked)(vm_object_t object VMOBJDBARGS)
848 struct vm_object_dealloc_list *dlist = NULL;
849 struct vm_object_dealloc_list *dtmp;
850 vm_object_t temp;
851 int must_drop = 0;
854 * We may chain deallocate object, but additional objects may
855 * collect on the dlist which also have to be deallocated. We
856 * must avoid a recursion, vm_object chains can get deep.
859 again:
860 while (object != NULL) {
862 * vnode case, caller either locked the object exclusively
863 * or this is a recursion with must_drop != 0 and the vnode
864 * object will be locked shared.
866 * If locked shared we have to drop the object before we can
867 * call vrele() or risk a shared/exclusive livelock.
869 if (object->type == OBJT_VNODE) {
870 ASSERT_LWKT_TOKEN_HELD(&object->token);
871 if (must_drop) {
872 struct vnode *tmp_vp;
874 vm_object_vndeallocate(object, &tmp_vp);
875 vm_object_drop(object);
876 must_drop = 0;
877 object = NULL;
878 vrele(tmp_vp);
879 } else {
880 vm_object_vndeallocate(object, NULL);
882 break;
884 ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
887 * Normal case (object is locked exclusively)
889 if (object->ref_count == 0) {
890 panic("vm_object_deallocate: object deallocated "
891 "too many times: %d", object->type);
893 if (object->ref_count > 2) {
894 atomic_add_int(&object->ref_count, -1);
895 #if defined(DEBUG_LOCKS)
896 debugvm_object_add(object, file, line, -1);
897 #endif
898 break;
902 * Here on ref_count of one or two, which are special cases for
903 * objects.
905 * Nominal ref_count > 1 case if the second ref is not from
906 * a shadow.
908 * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
910 if (object->ref_count == 2 && object->shadow_count == 0) {
911 if (object->type == OBJT_DEFAULT ||
912 object->type == OBJT_SWAP) {
913 vm_object_set_flag(object, OBJ_ONEMAPPING);
915 atomic_add_int(&object->ref_count, -1);
916 #if defined(DEBUG_LOCKS)
917 debugvm_object_add(object, file, line, -1);
918 #endif
919 break;
923 * If the second ref is from a shadow we chain along it
924 * upwards if object's handle is exhausted.
926 * We have to decrement object->ref_count before potentially
927 * collapsing the first shadow object or the collapse code
928 * will not be able to handle the degenerate case to remove
929 * object. However, if we do it too early the object can
930 * get ripped out from under us.
932 if (object->ref_count == 2 && object->shadow_count == 1 &&
933 object->handle == NULL && (object->type == OBJT_DEFAULT ||
934 object->type == OBJT_SWAP)) {
935 temp = LIST_FIRST(&object->shadow_head);
936 KKASSERT(temp != NULL);
937 vm_object_hold(temp);
940 * Wait for any paging to complete so the collapse
941 * doesn't (or isn't likely to) qcollapse. pip
942 * waiting must occur before we acquire the
943 * chainlock.
945 while (
946 temp->paging_in_progress ||
947 object->paging_in_progress
949 vm_object_pip_wait(temp, "objde1");
950 vm_object_pip_wait(object, "objde2");
954 * If the parent is locked we have to give up, as
955 * otherwise we would be acquiring locks in the
956 * wrong order and potentially deadlock.
958 if (temp->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) {
959 vm_object_drop(temp);
960 goto skip;
962 vm_object_chain_acquire(temp, 0);
965 * Recheck/retry after the hold and the paging
966 * wait, both of which can block us.
968 if (object->ref_count != 2 ||
969 object->shadow_count != 1 ||
970 object->handle ||
971 LIST_FIRST(&object->shadow_head) != temp ||
972 (object->type != OBJT_DEFAULT &&
973 object->type != OBJT_SWAP)) {
974 vm_object_chain_release(temp);
975 vm_object_drop(temp);
976 continue;
980 * We can safely drop object's ref_count now.
982 KKASSERT(object->ref_count == 2);
983 atomic_add_int(&object->ref_count, -1);
984 #if defined(DEBUG_LOCKS)
985 debugvm_object_add(object, file, line, -1);
986 #endif
989 * If our single parent is not collapseable just
990 * decrement ref_count (2->1) and stop.
992 if (temp->handle || (temp->type != OBJT_DEFAULT &&
993 temp->type != OBJT_SWAP)) {
994 vm_object_chain_release(temp);
995 vm_object_drop(temp);
996 break;
1000 * At this point we have already dropped object's
1001 * ref_count so it is possible for a race to
1002 * deallocate obj out from under us. Any collapse
1003 * will re-check the situation. We must not block
1004 * until we are able to collapse.
1006 * Bump temp's ref_count to avoid an unwanted
1007 * degenerate recursion (can't call
1008 * vm_object_reference_locked() because it asserts
1009 * that CHAINLOCK is not set).
1011 atomic_add_int(&temp->ref_count, 1);
1012 KKASSERT(temp->ref_count > 1);
1015 * Collapse temp, then deallocate the extra ref
1016 * formally.
1018 vm_object_collapse(temp, &dlist);
1019 vm_object_chain_release(temp);
1020 if (must_drop) {
1021 vm_object_lock_swap();
1022 vm_object_drop(object);
1024 object = temp;
1025 must_drop = 1;
1026 continue;
1030 * Drop the ref and handle termination on the 1->0 transition.
1031 * We may have blocked above so we have to recheck.
1033 skip:
1034 KKASSERT(object->ref_count != 0);
1035 if (object->ref_count >= 2) {
1036 atomic_add_int(&object->ref_count, -1);
1037 #if defined(DEBUG_LOCKS)
1038 debugvm_object_add(object, file, line, -1);
1039 #endif
1040 break;
1042 KKASSERT(object->ref_count == 1);
1045 * 1->0 transition. Chain through the backing_object.
1046 * Maintain the ref until we've located the backing object,
1047 * then re-check.
1049 while ((temp = object->backing_object) != NULL) {
1050 if (temp->type == OBJT_VNODE)
1051 vm_object_hold_shared(temp);
1052 else
1053 vm_object_hold(temp);
1054 if (temp == object->backing_object)
1055 break;
1056 vm_object_drop(temp);
1060 * 1->0 transition verified, retry if ref_count is no longer
1061 * 1. Otherwise disconnect the backing_object (temp) and
1062 * clean up.
1064 if (object->ref_count != 1) {
1065 vm_object_drop(temp);
1066 continue;
1070 * It shouldn't be possible for the object to be chain locked
1071 * if we're removing the last ref on it.
1073 * Removing object from temp's shadow list requires dropping
1074 * temp, which we will do on loop.
1076 * NOTE! vnodes do not use the shadow list, but still have
1077 * the backing_object reference.
1079 KKASSERT((object->chainlk & (CHAINLK_EXCL|CHAINLK_MASK)) == 0);
1081 if (temp) {
1082 if (object->flags & OBJ_ONSHADOW) {
1083 LIST_REMOVE(object, shadow_list);
1084 temp->shadow_count--;
1085 temp->generation++;
1086 vm_object_clear_flag(object, OBJ_ONSHADOW);
1088 object->backing_object = NULL;
1091 atomic_add_int(&object->ref_count, -1);
1092 if ((object->flags & OBJ_DEAD) == 0)
1093 vm_object_terminate(object);
1094 if (must_drop && temp)
1095 vm_object_lock_swap();
1096 if (must_drop)
1097 vm_object_drop(object);
1098 object = temp;
1099 must_drop = 1;
1102 if (must_drop && object)
1103 vm_object_drop(object);
1106 * Additional tail recursion on dlist. Avoid a recursion. Objects
1107 * on the dlist have a hold count but are not locked.
1109 if ((dtmp = dlist) != NULL) {
1110 dlist = dtmp->next;
1111 object = dtmp->object;
1112 kfree(dtmp, M_TEMP);
1114 vm_object_lock(object); /* already held, add lock */
1115 must_drop = 1; /* and we're responsible for it */
1116 goto again;
1121 * Destroy the specified object, freeing up related resources.
1123 * The object must have zero references.
1125 * The object must held. The caller is responsible for dropping the object
1126 * after terminate returns. Terminate does NOT drop the object.
1128 static int vm_object_terminate_callback(vm_page_t p, void *data);
1130 void
1131 vm_object_terminate(vm_object_t object)
1133 struct rb_vm_page_scan_info info;
1134 int n;
1137 * Make sure no one uses us. Once we set OBJ_DEAD we should be
1138 * able to safely block.
1140 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1141 KKASSERT((object->flags & OBJ_DEAD) == 0);
1142 vm_object_set_flag(object, OBJ_DEAD);
1145 * Wait for the pageout daemon to be done with the object
1147 vm_object_pip_wait(object, "objtrm1");
1149 KASSERT(!object->paging_in_progress,
1150 ("vm_object_terminate: pageout in progress"));
1153 * Clean and free the pages, as appropriate. All references to the
1154 * object are gone, so we don't need to lock it.
1156 if (object->type == OBJT_VNODE) {
1157 struct vnode *vp;
1160 * Clean pages and flush buffers.
1162 * NOTE! TMPFS buffer flushes do not typically flush the
1163 * actual page to swap as this would be highly
1164 * inefficient, and normal filesystems usually wrap
1165 * page flushes with buffer cache buffers.
1167 * To deal with this we have to call vinvalbuf() both
1168 * before and after the vm_object_page_clean().
1170 vp = (struct vnode *) object->handle;
1171 vinvalbuf(vp, V_SAVE, 0, 0);
1172 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
1173 vinvalbuf(vp, V_SAVE, 0, 0);
1177 * Wait for any I/O to complete, after which there had better not
1178 * be any references left on the object.
1180 vm_object_pip_wait(object, "objtrm2");
1182 if (object->ref_count != 0) {
1183 panic("vm_object_terminate: object with references, "
1184 "ref_count=%d", object->ref_count);
1188 * Cleanup any shared pmaps associated with this object.
1190 pmap_object_free(object);
1193 * Now free any remaining pages. For internal objects, this also
1194 * removes them from paging queues. Don't free wired pages, just
1195 * remove them from the object.
1197 info.count = 0;
1198 info.object = object;
1199 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1200 vm_object_terminate_callback, &info);
1203 * Let the pager know object is dead.
1205 vm_pager_deallocate(object);
1208 * Wait for the object hold count to hit 1, clean out pages as
1209 * we go. vmobj_token interlocks any race conditions that might
1210 * pick the object up from the vm_object_list after we have cleared
1211 * rb_memq.
1213 for (;;) {
1214 if (RB_ROOT(&object->rb_memq) == NULL)
1215 break;
1216 kprintf("vm_object_terminate: Warning, object %p "
1217 "still has %d pages\n",
1218 object, object->resident_page_count);
1219 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1220 vm_object_terminate_callback, &info);
1224 * There had better not be any pages left
1226 KKASSERT(object->resident_page_count == 0);
1229 * Remove the object from the global object list.
1231 n = VMOBJ_HASH(object);
1232 lwkt_gettoken(&vmobj_tokens[n]);
1233 TAILQ_REMOVE(&vm_object_lists[n], object, object_list);
1234 lwkt_reltoken(&vmobj_tokens[n]);
1235 atomic_add_long(&vm_object_count, -1);
1237 if (object->ref_count != 0) {
1238 panic("vm_object_terminate2: object with references, "
1239 "ref_count=%d", object->ref_count);
1243 * NOTE: The object hold_count is at least 1, so we cannot zfree()
1244 * the object here. See vm_object_drop().
1249 * The caller must hold the object.
1251 static int
1252 vm_object_terminate_callback(vm_page_t p, void *data)
1254 struct rb_vm_page_scan_info *info = data;
1255 vm_object_t object;
1257 if ((++info->count & 63) == 0)
1258 lwkt_user_yield();
1259 object = p->object;
1260 if (object != info->object) {
1261 kprintf("vm_object_terminate_callback: obj/pg race %p/%p\n",
1262 info->object, p);
1263 return(0);
1265 vm_page_busy_wait(p, TRUE, "vmpgtrm");
1266 if (object != p->object) {
1267 kprintf("vm_object_terminate: Warning: Encountered "
1268 "busied page %p on queue %d\n", p, p->queue);
1269 vm_page_wakeup(p);
1270 } else if (p->wire_count == 0) {
1272 * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1274 vm_page_free(p);
1275 mycpu->gd_cnt.v_pfree++;
1276 } else {
1277 if (p->queue != PQ_NONE)
1278 kprintf("vm_object_terminate: Warning: Encountered "
1279 "wired page %p on queue %d\n", p, p->queue);
1280 vm_page_remove(p);
1281 vm_page_wakeup(p);
1283 return(0);
1287 * Clean all dirty pages in the specified range of object. Leaves page
1288 * on whatever queue it is currently on. If NOSYNC is set then do not
1289 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1290 * leaving the object dirty.
1292 * When stuffing pages asynchronously, allow clustering. XXX we need a
1293 * synchronous clustering mode implementation.
1295 * Odd semantics: if start == end, we clean everything.
1297 * The object must be locked? XXX
1299 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1300 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1302 void
1303 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1304 int flags)
1306 struct rb_vm_page_scan_info info;
1307 struct vnode *vp;
1308 int wholescan;
1309 int pagerflags;
1310 int generation;
1312 vm_object_hold(object);
1313 if (object->type != OBJT_VNODE ||
1314 (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1315 vm_object_drop(object);
1316 return;
1319 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
1320 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1321 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1323 vp = object->handle;
1326 * Interlock other major object operations. This allows us to
1327 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1329 vm_object_set_flag(object, OBJ_CLEANING);
1332 * Handle 'entire object' case
1334 info.start_pindex = start;
1335 if (end == 0) {
1336 info.end_pindex = object->size - 1;
1337 } else {
1338 info.end_pindex = end - 1;
1340 wholescan = (start == 0 && info.end_pindex == object->size - 1);
1341 info.limit = flags;
1342 info.pagerflags = pagerflags;
1343 info.object = object;
1346 * If cleaning the entire object do a pass to mark the pages read-only.
1347 * If everything worked out ok, clear OBJ_WRITEABLE and
1348 * OBJ_MIGHTBEDIRTY.
1350 if (wholescan) {
1351 info.error = 0;
1352 info.count = 0;
1353 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1354 vm_object_page_clean_pass1, &info);
1355 if (info.error == 0) {
1356 vm_object_clear_flag(object,
1357 OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1358 if (object->type == OBJT_VNODE &&
1359 (vp = (struct vnode *)object->handle) != NULL) {
1361 * Use new-style interface to clear VISDIRTY
1362 * because the vnode is not necessarily removed
1363 * from the syncer list(s) as often as it was
1364 * under the old interface, which can leave
1365 * the vnode on the syncer list after reclaim.
1367 vclrobjdirty(vp);
1373 * Do a pass to clean all the dirty pages we find.
1375 do {
1376 info.error = 0;
1377 info.count = 0;
1378 generation = object->generation;
1379 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1380 vm_object_page_clean_pass2, &info);
1381 } while (info.error || generation != object->generation);
1383 vm_object_clear_flag(object, OBJ_CLEANING);
1384 vm_object_drop(object);
1388 * The caller must hold the object.
1390 static
1392 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1394 struct rb_vm_page_scan_info *info = data;
1396 if ((++info->count & 63) == 0)
1397 lwkt_user_yield();
1398 if (p->object != info->object ||
1399 p->pindex < info->start_pindex ||
1400 p->pindex > info->end_pindex) {
1401 kprintf("vm_object_page_clean_pass1: obj/pg race %p/%p\n",
1402 info->object, p);
1403 return(0);
1405 vm_page_flag_set(p, PG_CLEANCHK);
1406 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1407 info->error = 1;
1408 } else if (vm_page_busy_try(p, FALSE) == 0) {
1409 if (p->object == info->object)
1410 vm_page_protect(p, VM_PROT_READ);
1411 vm_page_wakeup(p);
1412 } else {
1413 info->error = 1;
1415 return(0);
1419 * The caller must hold the object
1421 static
1423 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1425 struct rb_vm_page_scan_info *info = data;
1426 int generation;
1428 if (p->object != info->object ||
1429 p->pindex < info->start_pindex ||
1430 p->pindex > info->end_pindex) {
1431 kprintf("vm_object_page_clean_pass2: obj/pg race %p/%p\n",
1432 info->object, p);
1433 return(0);
1437 * Do not mess with pages that were inserted after we started
1438 * the cleaning pass.
1440 if ((p->flags & PG_CLEANCHK) == 0)
1441 goto done;
1443 generation = info->object->generation;
1444 vm_page_busy_wait(p, TRUE, "vpcwai");
1446 if (p->object != info->object ||
1447 p->pindex < info->start_pindex ||
1448 p->pindex > info->end_pindex ||
1449 info->object->generation != generation) {
1450 info->error = 1;
1451 vm_page_wakeup(p);
1452 goto done;
1456 * Before wasting time traversing the pmaps, check for trivial
1457 * cases where the page cannot be dirty.
1459 if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1460 KKASSERT((p->dirty & p->valid) == 0 &&
1461 (p->flags & PG_NEED_COMMIT) == 0);
1462 vm_page_wakeup(p);
1463 goto done;
1467 * Check whether the page is dirty or not. The page has been set
1468 * to be read-only so the check will not race a user dirtying the
1469 * page.
1471 vm_page_test_dirty(p);
1472 if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1473 vm_page_flag_clear(p, PG_CLEANCHK);
1474 vm_page_wakeup(p);
1475 goto done;
1479 * If we have been asked to skip nosync pages and this is a
1480 * nosync page, skip it. Note that the object flags were
1481 * not cleared in this case (because pass1 will have returned an
1482 * error), so we do not have to set them.
1484 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1485 vm_page_flag_clear(p, PG_CLEANCHK);
1486 vm_page_wakeup(p);
1487 goto done;
1491 * Flush as many pages as we can. PG_CLEANCHK will be cleared on
1492 * the pages that get successfully flushed. Set info->error if
1493 * we raced an object modification.
1495 vm_object_page_collect_flush(info->object, p, info->pagerflags);
1496 /* vm_wait_nominal(); this can deadlock the system in syncer/pageout */
1497 done:
1498 if ((++info->count & 63) == 0)
1499 lwkt_user_yield();
1501 return(0);
1505 * Collect the specified page and nearby pages and flush them out.
1506 * The number of pages flushed is returned. The passed page is busied
1507 * by the caller and we are responsible for its disposition.
1509 * The caller must hold the object.
1511 static void
1512 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1514 int error;
1515 int is;
1516 int ib;
1517 int i;
1518 int page_base;
1519 vm_pindex_t pi;
1520 vm_page_t ma[BLIST_MAX_ALLOC];
1522 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1524 pi = p->pindex;
1525 page_base = pi % BLIST_MAX_ALLOC;
1526 ma[page_base] = p;
1527 ib = page_base - 1;
1528 is = page_base + 1;
1530 while (ib >= 0) {
1531 vm_page_t tp;
1533 tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
1534 TRUE, &error);
1535 if (error)
1536 break;
1537 if (tp == NULL)
1538 break;
1539 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1540 (tp->flags & PG_CLEANCHK) == 0) {
1541 vm_page_wakeup(tp);
1542 break;
1544 if ((tp->queue - tp->pc) == PQ_CACHE) {
1545 vm_page_flag_clear(tp, PG_CLEANCHK);
1546 vm_page_wakeup(tp);
1547 break;
1549 vm_page_test_dirty(tp);
1550 if ((tp->dirty & tp->valid) == 0 &&
1551 (tp->flags & PG_NEED_COMMIT) == 0) {
1552 vm_page_flag_clear(tp, PG_CLEANCHK);
1553 vm_page_wakeup(tp);
1554 break;
1556 ma[ib] = tp;
1557 --ib;
1559 ++ib; /* fixup */
1561 while (is < BLIST_MAX_ALLOC &&
1562 pi - page_base + is < object->size) {
1563 vm_page_t tp;
1565 tp = vm_page_lookup_busy_try(object, pi - page_base + is,
1566 TRUE, &error);
1567 if (error)
1568 break;
1569 if (tp == NULL)
1570 break;
1571 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1572 (tp->flags & PG_CLEANCHK) == 0) {
1573 vm_page_wakeup(tp);
1574 break;
1576 if ((tp->queue - tp->pc) == PQ_CACHE) {
1577 vm_page_flag_clear(tp, PG_CLEANCHK);
1578 vm_page_wakeup(tp);
1579 break;
1581 vm_page_test_dirty(tp);
1582 if ((tp->dirty & tp->valid) == 0 &&
1583 (tp->flags & PG_NEED_COMMIT) == 0) {
1584 vm_page_flag_clear(tp, PG_CLEANCHK);
1585 vm_page_wakeup(tp);
1586 break;
1588 ma[is] = tp;
1589 ++is;
1593 * All pages in the ma[] array are busied now
1595 for (i = ib; i < is; ++i) {
1596 vm_page_flag_clear(ma[i], PG_CLEANCHK);
1597 vm_page_hold(ma[i]); /* XXX need this any more? */
1599 vm_pageout_flush(&ma[ib], is - ib, pagerflags);
1600 for (i = ib; i < is; ++i) /* XXX need this any more? */
1601 vm_page_unhold(ma[i]);
1605 * Same as vm_object_pmap_copy, except range checking really
1606 * works, and is meant for small sections of an object.
1608 * This code protects resident pages by making them read-only
1609 * and is typically called on a fork or split when a page
1610 * is converted to copy-on-write.
1612 * NOTE: If the page is already at VM_PROT_NONE, calling
1613 * vm_page_protect will have no effect.
1615 void
1616 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1618 vm_pindex_t idx;
1619 vm_page_t p;
1621 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1622 return;
1624 vm_object_hold(object);
1625 for (idx = start; idx < end; idx++) {
1626 p = vm_page_lookup(object, idx);
1627 if (p == NULL)
1628 continue;
1629 vm_page_protect(p, VM_PROT_READ);
1631 vm_object_drop(object);
1635 * Removes all physical pages in the specified object range from all
1636 * physical maps.
1638 * The object must *not* be locked.
1641 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1643 void
1644 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1646 struct rb_vm_page_scan_info info;
1648 if (object == NULL)
1649 return;
1650 info.start_pindex = start;
1651 info.end_pindex = end - 1;
1652 info.count = 0;
1653 info.object = object;
1655 vm_object_hold(object);
1656 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1657 vm_object_pmap_remove_callback, &info);
1658 if (start == 0 && end == object->size)
1659 vm_object_clear_flag(object, OBJ_WRITEABLE);
1660 vm_object_drop(object);
1664 * The caller must hold the object
1666 static int
1667 vm_object_pmap_remove_callback(vm_page_t p, void *data)
1669 struct rb_vm_page_scan_info *info = data;
1671 if ((++info->count & 63) == 0)
1672 lwkt_user_yield();
1674 if (info->object != p->object ||
1675 p->pindex < info->start_pindex ||
1676 p->pindex > info->end_pindex) {
1677 kprintf("vm_object_pmap_remove_callback: obj/pg race %p/%p\n",
1678 info->object, p);
1679 return(0);
1682 vm_page_protect(p, VM_PROT_NONE);
1684 return(0);
1688 * Implements the madvise function at the object/page level.
1690 * MADV_WILLNEED (any object)
1692 * Activate the specified pages if they are resident.
1694 * MADV_DONTNEED (any object)
1696 * Deactivate the specified pages if they are resident.
1698 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1700 * Deactivate and clean the specified pages if they are
1701 * resident. This permits the process to reuse the pages
1702 * without faulting or the kernel to reclaim the pages
1703 * without I/O.
1705 * No requirements.
1707 void
1708 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1710 vm_pindex_t end, tpindex;
1711 vm_object_t tobject;
1712 vm_object_t xobj;
1713 vm_page_t m;
1714 int error;
1716 if (object == NULL)
1717 return;
1719 end = pindex + count;
1721 vm_object_hold(object);
1722 tobject = object;
1725 * Locate and adjust resident pages
1727 for (; pindex < end; pindex += 1) {
1728 relookup:
1729 if (tobject != object)
1730 vm_object_drop(tobject);
1731 tobject = object;
1732 tpindex = pindex;
1733 shadowlookup:
1735 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1736 * and those pages must be OBJ_ONEMAPPING.
1738 if (advise == MADV_FREE) {
1739 if ((tobject->type != OBJT_DEFAULT &&
1740 tobject->type != OBJT_SWAP) ||
1741 (tobject->flags & OBJ_ONEMAPPING) == 0) {
1742 continue;
1746 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1748 if (error) {
1749 vm_page_sleep_busy(m, TRUE, "madvpo");
1750 goto relookup;
1752 if (m == NULL) {
1754 * There may be swap even if there is no backing page
1756 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1757 swap_pager_freespace(tobject, tpindex, 1);
1760 * next object
1762 while ((xobj = tobject->backing_object) != NULL) {
1763 KKASSERT(xobj != object);
1764 vm_object_hold(xobj);
1765 if (xobj == tobject->backing_object)
1766 break;
1767 vm_object_drop(xobj);
1769 if (xobj == NULL)
1770 continue;
1771 tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1772 if (tobject != object) {
1773 vm_object_lock_swap();
1774 vm_object_drop(tobject);
1776 tobject = xobj;
1777 goto shadowlookup;
1781 * If the page is not in a normal active state, we skip it.
1782 * If the page is not managed there are no page queues to
1783 * mess with. Things can break if we mess with pages in
1784 * any of the below states.
1786 if (m->wire_count ||
1787 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1788 m->valid != VM_PAGE_BITS_ALL
1790 vm_page_wakeup(m);
1791 continue;
1795 * Theoretically once a page is known not to be busy, an
1796 * interrupt cannot come along and rip it out from under us.
1799 if (advise == MADV_WILLNEED) {
1800 vm_page_activate(m);
1801 } else if (advise == MADV_DONTNEED) {
1802 vm_page_dontneed(m);
1803 } else if (advise == MADV_FREE) {
1805 * Mark the page clean. This will allow the page
1806 * to be freed up by the system. However, such pages
1807 * are often reused quickly by malloc()/free()
1808 * so we do not do anything that would cause
1809 * a page fault if we can help it.
1811 * Specifically, we do not try to actually free
1812 * the page now nor do we try to put it in the
1813 * cache (which would cause a page fault on reuse).
1815 * But we do make the page is freeable as we
1816 * can without actually taking the step of unmapping
1817 * it.
1819 pmap_clear_modify(m);
1820 m->dirty = 0;
1821 m->act_count = 0;
1822 vm_page_dontneed(m);
1823 if (tobject->type == OBJT_SWAP)
1824 swap_pager_freespace(tobject, tpindex, 1);
1826 vm_page_wakeup(m);
1828 if (tobject != object)
1829 vm_object_drop(tobject);
1830 vm_object_drop(object);
1834 * Create a new object which is backed by the specified existing object
1835 * range. Replace the pointer and offset that was pointing at the existing
1836 * object with the pointer/offset for the new object.
1838 * If addref is non-zero the returned object is given an additional reference.
1839 * This mechanic exists to avoid the situation where refs might be 1 and
1840 * race against a collapse when the caller intends to bump it. So the
1841 * caller cannot add the ref after the fact. Used when the caller is
1842 * duplicating a vm_map_entry.
1844 * No other requirements.
1846 void
1847 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1848 int addref)
1850 vm_object_t source;
1851 vm_object_t result;
1852 int useshadowlist;
1854 source = *objectp;
1857 * Don't create the new object if the old object isn't shared.
1858 * We have to chain wait before adding the reference to avoid
1859 * racing a collapse or deallocation.
1861 * Clear OBJ_ONEMAPPING flag when shadowing.
1863 * The caller owns a ref on source via *objectp which we are going
1864 * to replace. This ref is inherited by the backing_object assignment.
1865 * from nobject and does not need to be incremented here.
1867 * However, we add a temporary extra reference to the original source
1868 * prior to holding nobject in case we block, to avoid races where
1869 * someone else might believe that the source can be collapsed.
1871 useshadowlist = 0;
1872 if (source) {
1873 if (source->type != OBJT_VNODE) {
1874 useshadowlist = 1;
1875 vm_object_hold(source);
1876 vm_object_chain_wait(source, 0);
1877 if (source->ref_count == 1 &&
1878 source->handle == NULL &&
1879 (source->type == OBJT_DEFAULT ||
1880 source->type == OBJT_SWAP)) {
1881 if (addref) {
1882 vm_object_reference_locked(source);
1883 vm_object_clear_flag(source,
1884 OBJ_ONEMAPPING);
1886 vm_object_drop(source);
1887 return;
1889 vm_object_reference_locked(source);
1890 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1891 } else {
1892 vm_object_reference_quick(source);
1893 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1898 * Allocate a new object with the given length. The new object
1899 * is returned referenced but we may have to add another one.
1900 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1901 * (typically because the caller is about to clone a vm_map_entry).
1903 * The source object currently has an extra reference to prevent
1904 * collapses into it while we mess with its shadow list, which
1905 * we will remove later in this routine.
1907 * The target object may require a second reference if asked for one
1908 * by the caller.
1910 result = vm_object_allocate(OBJT_DEFAULT, length);
1911 if (result == NULL)
1912 panic("vm_object_shadow: no object for shadowing");
1913 vm_object_hold(result);
1914 if (addref) {
1915 vm_object_reference_locked(result);
1916 vm_object_clear_flag(result, OBJ_ONEMAPPING);
1920 * The new object shadows the source object. Chain wait before
1921 * adjusting shadow_count or the shadow list to avoid races.
1923 * Try to optimize the result object's page color when shadowing
1924 * in order to maintain page coloring consistency in the combined
1925 * shadowed object.
1927 * The backing_object reference to source requires adding a ref to
1928 * source. We simply inherit the ref from the original *objectp
1929 * (which we are replacing) so no additional refs need to be added.
1930 * (we must still clean up the extra ref we had to prevent collapse
1931 * races).
1933 * SHADOWING IS NOT APPLICABLE TO OBJT_VNODE OBJECTS
1935 KKASSERT(result->backing_object == NULL);
1936 result->backing_object = source;
1937 if (source) {
1938 if (useshadowlist) {
1939 vm_object_chain_wait(source, 0);
1940 LIST_INSERT_HEAD(&source->shadow_head,
1941 result, shadow_list);
1942 source->shadow_count++;
1943 source->generation++;
1944 vm_object_set_flag(result, OBJ_ONSHADOW);
1946 /* cpu localization twist */
1947 result->pg_color = vm_quickcolor();
1951 * Adjust the return storage. Drop the ref on source before
1952 * returning.
1954 result->backing_object_offset = *offset;
1955 vm_object_drop(result);
1956 *offset = 0;
1957 if (source) {
1958 if (useshadowlist) {
1959 vm_object_deallocate_locked(source);
1960 vm_object_drop(source);
1961 } else {
1962 vm_object_deallocate(source);
1967 * Return the new things
1969 *objectp = result;
1972 #define OBSC_TEST_ALL_SHADOWED 0x0001
1973 #define OBSC_COLLAPSE_NOWAIT 0x0002
1974 #define OBSC_COLLAPSE_WAIT 0x0004
1976 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1979 * The caller must hold the object.
1981 static __inline int
1982 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1984 struct rb_vm_page_scan_info info;
1985 int n;
1987 vm_object_assert_held(object);
1988 vm_object_assert_held(backing_object);
1990 KKASSERT(backing_object == object->backing_object);
1991 info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1994 * Initial conditions
1996 if (op & OBSC_TEST_ALL_SHADOWED) {
1998 * We do not want to have to test for the existence of
1999 * swap pages in the backing object. XXX but with the
2000 * new swapper this would be pretty easy to do.
2002 * XXX what about anonymous MAP_SHARED memory that hasn't
2003 * been ZFOD faulted yet? If we do not test for this, the
2004 * shadow test may succeed! XXX
2006 if (backing_object->type != OBJT_DEFAULT)
2007 return(0);
2009 if (op & OBSC_COLLAPSE_WAIT) {
2010 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
2011 vm_object_set_flag(backing_object, OBJ_DEAD);
2013 n = VMOBJ_HASH(backing_object);
2014 lwkt_gettoken(&vmobj_tokens[n]);
2015 TAILQ_REMOVE(&vm_object_lists[n], backing_object, object_list);
2016 lwkt_reltoken(&vmobj_tokens[n]);
2017 atomic_add_long(&vm_object_count, -1);
2021 * Our scan. We have to retry if a negative error code is returned,
2022 * otherwise 0 or 1 will be returned in info.error. 0 Indicates that
2023 * the scan had to be stopped because the parent does not completely
2024 * shadow the child.
2026 info.object = object;
2027 info.backing_object = backing_object;
2028 info.limit = op;
2029 info.count = 0;
2030 do {
2031 info.error = 1;
2032 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
2033 vm_object_backing_scan_callback,
2034 &info);
2035 } while (info.error < 0);
2037 return(info.error);
2041 * The caller must hold the object.
2043 static int
2044 vm_object_backing_scan_callback(vm_page_t p, void *data)
2046 struct rb_vm_page_scan_info *info = data;
2047 vm_object_t backing_object;
2048 vm_object_t object;
2049 vm_pindex_t pindex;
2050 vm_pindex_t new_pindex;
2051 vm_pindex_t backing_offset_index;
2052 int op;
2054 pindex = p->pindex;
2055 new_pindex = pindex - info->backing_offset_index;
2056 op = info->limit;
2057 object = info->object;
2058 backing_object = info->backing_object;
2059 backing_offset_index = info->backing_offset_index;
2061 if (op & OBSC_TEST_ALL_SHADOWED) {
2062 vm_page_t pp;
2065 * Ignore pages outside the parent object's range
2066 * and outside the parent object's mapping of the
2067 * backing object.
2069 * note that we do not busy the backing object's
2070 * page.
2072 if (pindex < backing_offset_index ||
2073 new_pindex >= object->size
2075 return(0);
2079 * See if the parent has the page or if the parent's
2080 * object pager has the page. If the parent has the
2081 * page but the page is not valid, the parent's
2082 * object pager must have the page.
2084 * If this fails, the parent does not completely shadow
2085 * the object and we might as well give up now.
2087 pp = vm_page_lookup(object, new_pindex);
2088 if ((pp == NULL || pp->valid == 0) &&
2089 !vm_pager_has_page(object, new_pindex)
2091 info->error = 0; /* problemo */
2092 return(-1); /* stop the scan */
2097 * Check for busy page. Note that we may have lost (p) when we
2098 * possibly blocked above.
2100 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
2101 vm_page_t pp;
2103 if (vm_page_busy_try(p, TRUE)) {
2104 if (op & OBSC_COLLAPSE_NOWAIT) {
2105 return(0);
2106 } else {
2108 * If we slept, anything could have
2109 * happened. Ask that the scan be restarted.
2111 * Since the object is marked dead, the
2112 * backing offset should not have changed.
2114 vm_page_sleep_busy(p, TRUE, "vmocol");
2115 info->error = -1;
2116 return(-1);
2121 * If (p) is no longer valid restart the scan.
2123 if (p->object != backing_object || p->pindex != pindex) {
2124 kprintf("vm_object_backing_scan: Warning: page "
2125 "%p ripped out from under us\n", p);
2126 vm_page_wakeup(p);
2127 info->error = -1;
2128 return(-1);
2131 if (op & OBSC_COLLAPSE_NOWAIT) {
2132 if (p->valid == 0 ||
2133 p->wire_count ||
2134 (p->flags & PG_NEED_COMMIT)) {
2135 vm_page_wakeup(p);
2136 return(0);
2138 } else {
2139 /* XXX what if p->valid == 0 , hold_count, etc? */
2142 KASSERT(
2143 p->object == backing_object,
2144 ("vm_object_qcollapse(): object mismatch")
2148 * Destroy any associated swap
2150 if (backing_object->type == OBJT_SWAP)
2151 swap_pager_freespace(backing_object, p->pindex, 1);
2153 if (
2154 p->pindex < backing_offset_index ||
2155 new_pindex >= object->size
2158 * Page is out of the parent object's range, we
2159 * can simply destroy it.
2161 vm_page_protect(p, VM_PROT_NONE);
2162 vm_page_free(p);
2163 return(0);
2166 pp = vm_page_lookup(object, new_pindex);
2167 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
2169 * page already exists in parent OR swap exists
2170 * for this location in the parent. Destroy
2171 * the original page from the backing object.
2173 * Leave the parent's page alone
2175 vm_page_protect(p, VM_PROT_NONE);
2176 vm_page_free(p);
2177 return(0);
2181 * Page does not exist in parent, rename the
2182 * page from the backing object to the main object.
2184 * If the page was mapped to a process, it can remain
2185 * mapped through the rename.
2187 if ((p->queue - p->pc) == PQ_CACHE)
2188 vm_page_deactivate(p);
2190 vm_page_rename(p, object, new_pindex);
2191 vm_page_wakeup(p);
2192 /* page automatically made dirty by rename */
2194 return(0);
2198 * This version of collapse allows the operation to occur earlier and
2199 * when paging_in_progress is true for an object... This is not a complete
2200 * operation, but should plug 99.9% of the rest of the leaks.
2202 * The caller must hold the object and backing_object and both must be
2203 * chainlocked.
2205 * (only called from vm_object_collapse)
2207 static void
2208 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
2210 if (backing_object->ref_count == 1) {
2211 atomic_add_int(&backing_object->ref_count, 2);
2212 #if defined(DEBUG_LOCKS)
2213 debugvm_object_add(backing_object, "qcollapse", 1, 2);
2214 #endif
2215 vm_object_backing_scan(object, backing_object,
2216 OBSC_COLLAPSE_NOWAIT);
2217 atomic_add_int(&backing_object->ref_count, -2);
2218 #if defined(DEBUG_LOCKS)
2219 debugvm_object_add(backing_object, "qcollapse", 2, -2);
2220 #endif
2225 * Collapse an object with the object backing it. Pages in the backing
2226 * object are moved into the parent, and the backing object is deallocated.
2227 * Any conflict is resolved in favor of the parent's existing pages.
2229 * object must be held and chain-locked on call.
2231 * The caller must have an extra ref on object to prevent a race from
2232 * destroying it during the collapse.
2234 void
2235 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
2237 struct vm_object_dealloc_list *dlist = NULL;
2238 vm_object_t backing_object;
2241 * Only one thread is attempting a collapse at any given moment.
2242 * There are few restrictions for (object) that callers of this
2243 * function check so reentrancy is likely.
2245 KKASSERT(object != NULL);
2246 vm_object_assert_held(object);
2247 KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
2249 for (;;) {
2250 vm_object_t bbobj;
2251 int dodealloc;
2254 * We can only collapse a DEFAULT/SWAP object with a
2255 * DEFAULT/SWAP object.
2257 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) {
2258 backing_object = NULL;
2259 break;
2262 backing_object = object->backing_object;
2263 if (backing_object == NULL)
2264 break;
2265 if (backing_object->type != OBJT_DEFAULT &&
2266 backing_object->type != OBJT_SWAP) {
2267 backing_object = NULL;
2268 break;
2272 * Hold the backing_object and check for races
2274 vm_object_hold(backing_object);
2275 if (backing_object != object->backing_object ||
2276 (backing_object->type != OBJT_DEFAULT &&
2277 backing_object->type != OBJT_SWAP)) {
2278 vm_object_drop(backing_object);
2279 continue;
2283 * Chain-lock the backing object too because if we
2284 * successfully merge its pages into the top object we
2285 * will collapse backing_object->backing_object as the
2286 * new backing_object. Re-check that it is still our
2287 * backing object.
2289 vm_object_chain_acquire(backing_object, 0);
2290 if (backing_object != object->backing_object) {
2291 vm_object_chain_release(backing_object);
2292 vm_object_drop(backing_object);
2293 continue;
2297 * we check the backing object first, because it is most likely
2298 * not collapsable.
2300 if (backing_object->handle != NULL ||
2301 (backing_object->type != OBJT_DEFAULT &&
2302 backing_object->type != OBJT_SWAP) ||
2303 (backing_object->flags & OBJ_DEAD) ||
2304 object->handle != NULL ||
2305 (object->type != OBJT_DEFAULT &&
2306 object->type != OBJT_SWAP) ||
2307 (object->flags & OBJ_DEAD)) {
2308 break;
2312 * If paging is in progress we can't do a normal collapse.
2314 if (
2315 object->paging_in_progress != 0 ||
2316 backing_object->paging_in_progress != 0
2318 vm_object_qcollapse(object, backing_object);
2319 break;
2323 * We know that we can either collapse the backing object (if
2324 * the parent is the only reference to it) or (perhaps) have
2325 * the parent bypass the object if the parent happens to shadow
2326 * all the resident pages in the entire backing object.
2328 * This is ignoring pager-backed pages such as swap pages.
2329 * vm_object_backing_scan fails the shadowing test in this
2330 * case.
2332 if (backing_object->ref_count == 1) {
2334 * If there is exactly one reference to the backing
2335 * object, we can collapse it into the parent.
2337 KKASSERT(object->backing_object == backing_object);
2338 vm_object_backing_scan(object, backing_object,
2339 OBSC_COLLAPSE_WAIT);
2342 * Move the pager from backing_object to object.
2344 if (backing_object->type == OBJT_SWAP) {
2345 vm_object_pip_add(backing_object, 1);
2348 * scrap the paging_offset junk and do a
2349 * discrete copy. This also removes major
2350 * assumptions about how the swap-pager
2351 * works from where it doesn't belong. The
2352 * new swapper is able to optimize the
2353 * destroy-source case.
2355 vm_object_pip_add(object, 1);
2356 swap_pager_copy(backing_object, object,
2357 OFF_TO_IDX(object->backing_object_offset),
2358 TRUE);
2359 vm_object_pip_wakeup(object);
2360 vm_object_pip_wakeup(backing_object);
2364 * Object now shadows whatever backing_object did.
2365 * Remove object from backing_object's shadow_list.
2367 * Removing object from backing_objects shadow list
2368 * requires releasing object, which we will do below.
2370 KKASSERT(object->backing_object == backing_object);
2371 if (object->flags & OBJ_ONSHADOW) {
2372 LIST_REMOVE(object, shadow_list);
2373 backing_object->shadow_count--;
2374 backing_object->generation++;
2375 vm_object_clear_flag(object, OBJ_ONSHADOW);
2379 * backing_object->backing_object moves from within
2380 * backing_object to within object.
2382 * OBJT_VNODE bbobj's should have empty shadow lists.
2384 while ((bbobj = backing_object->backing_object) != NULL) {
2385 if (bbobj->type == OBJT_VNODE)
2386 vm_object_hold_shared(bbobj);
2387 else
2388 vm_object_hold(bbobj);
2389 if (bbobj == backing_object->backing_object)
2390 break;
2391 vm_object_drop(bbobj);
2395 * We are removing backing_object from bbobj's
2396 * shadow list and adding object to bbobj's shadow
2397 * list, so the ref_count on bbobj is unchanged.
2399 if (bbobj) {
2400 if (backing_object->flags & OBJ_ONSHADOW) {
2401 /* not locked exclusively if vnode */
2402 KKASSERT(bbobj->type != OBJT_VNODE);
2403 LIST_REMOVE(backing_object,
2404 shadow_list);
2405 bbobj->shadow_count--;
2406 bbobj->generation++;
2407 vm_object_clear_flag(backing_object,
2408 OBJ_ONSHADOW);
2410 backing_object->backing_object = NULL;
2412 object->backing_object = bbobj;
2413 if (bbobj) {
2414 if (bbobj->type != OBJT_VNODE) {
2415 LIST_INSERT_HEAD(&bbobj->shadow_head,
2416 object, shadow_list);
2417 bbobj->shadow_count++;
2418 bbobj->generation++;
2419 vm_object_set_flag(object,
2420 OBJ_ONSHADOW);
2424 object->backing_object_offset +=
2425 backing_object->backing_object_offset;
2427 vm_object_drop(bbobj);
2430 * Discard the old backing_object. Nothing should be
2431 * able to ref it, other than a vm_map_split(),
2432 * and vm_map_split() will stall on our chain lock.
2433 * And we control the parent so it shouldn't be
2434 * possible for it to go away either.
2436 * Since the backing object has no pages, no pager
2437 * left, and no object references within it, all
2438 * that is necessary is to dispose of it.
2440 KASSERT(backing_object->ref_count == 1,
2441 ("backing_object %p was somehow "
2442 "re-referenced during collapse!",
2443 backing_object));
2444 KASSERT(RB_EMPTY(&backing_object->rb_memq),
2445 ("backing_object %p somehow has left "
2446 "over pages during collapse!",
2447 backing_object));
2450 * The object can be destroyed.
2452 * XXX just fall through and dodealloc instead
2453 * of forcing destruction?
2455 atomic_add_int(&backing_object->ref_count, -1);
2456 #if defined(DEBUG_LOCKS)
2457 debugvm_object_add(backing_object, "collapse", 1, -1);
2458 #endif
2459 if ((backing_object->flags & OBJ_DEAD) == 0)
2460 vm_object_terminate(backing_object);
2461 object_collapses++;
2462 dodealloc = 0;
2463 } else {
2465 * If we do not entirely shadow the backing object,
2466 * there is nothing we can do so we give up.
2468 if (vm_object_backing_scan(object, backing_object,
2469 OBSC_TEST_ALL_SHADOWED) == 0) {
2470 break;
2474 * bbobj is backing_object->backing_object. Since
2475 * object completely shadows backing_object we can
2476 * bypass it and become backed by bbobj instead.
2478 * The shadow list for vnode backing objects is not
2479 * used and a shared hold is allowed.
2481 while ((bbobj = backing_object->backing_object) != NULL) {
2482 if (bbobj->type == OBJT_VNODE)
2483 vm_object_hold_shared(bbobj);
2484 else
2485 vm_object_hold(bbobj);
2486 if (bbobj == backing_object->backing_object)
2487 break;
2488 vm_object_drop(bbobj);
2492 * Make object shadow bbobj instead of backing_object.
2493 * Remove object from backing_object's shadow list.
2495 * Deallocating backing_object will not remove
2496 * it, since its reference count is at least 2.
2498 * Removing object from backing_object's shadow
2499 * list requires releasing a ref, which we do
2500 * below by setting dodealloc to 1.
2502 KKASSERT(object->backing_object == backing_object);
2503 if (object->flags & OBJ_ONSHADOW) {
2504 LIST_REMOVE(object, shadow_list);
2505 backing_object->shadow_count--;
2506 backing_object->generation++;
2507 vm_object_clear_flag(object, OBJ_ONSHADOW);
2511 * Add a ref to bbobj, bbobj now shadows object.
2513 * NOTE: backing_object->backing_object still points
2514 * to bbobj. That relationship remains intact
2515 * because backing_object has > 1 ref, so
2516 * someone else is pointing to it (hence why
2517 * we can't collapse it into object and can
2518 * only handle the all-shadowed bypass case).
2520 if (bbobj) {
2521 if (bbobj->type != OBJT_VNODE) {
2522 vm_object_chain_wait(bbobj, 0);
2523 vm_object_reference_locked(bbobj);
2524 LIST_INSERT_HEAD(&bbobj->shadow_head,
2525 object, shadow_list);
2526 bbobj->shadow_count++;
2527 bbobj->generation++;
2528 vm_object_set_flag(object,
2529 OBJ_ONSHADOW);
2530 } else {
2531 vm_object_reference_quick(bbobj);
2533 object->backing_object_offset +=
2534 backing_object->backing_object_offset;
2535 object->backing_object = bbobj;
2536 vm_object_drop(bbobj);
2537 } else {
2538 object->backing_object = NULL;
2542 * Drop the reference count on backing_object. To
2543 * handle ref_count races properly we can't assume
2544 * that the ref_count is still at least 2 so we
2545 * have to actually call vm_object_deallocate()
2546 * (after clearing the chainlock).
2548 object_bypasses++;
2549 dodealloc = 1;
2553 * Ok, we want to loop on the new object->bbobj association,
2554 * possibly collapsing it further. However if dodealloc is
2555 * non-zero we have to deallocate the backing_object which
2556 * itself can potentially undergo a collapse, creating a
2557 * recursion depth issue with the LWKT token subsystem.
2559 * In the case where we must deallocate the backing_object
2560 * it is possible now that the backing_object has a single
2561 * shadow count on some other object (not represented here
2562 * as yet), since it no longer shadows us. Thus when we
2563 * call vm_object_deallocate() it may attempt to collapse
2564 * itself into its remaining parent.
2566 if (dodealloc) {
2567 struct vm_object_dealloc_list *dtmp;
2569 vm_object_chain_release(backing_object);
2570 vm_object_unlock(backing_object);
2571 /* backing_object remains held */
2574 * Auto-deallocation list for caller convenience.
2576 if (dlistp == NULL)
2577 dlistp = &dlist;
2579 dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2580 dtmp->object = backing_object;
2581 dtmp->next = *dlistp;
2582 *dlistp = dtmp;
2583 } else {
2584 vm_object_chain_release(backing_object);
2585 vm_object_drop(backing_object);
2587 /* backing_object = NULL; not needed */
2588 /* loop */
2592 * Clean up any left over backing_object
2594 if (backing_object) {
2595 vm_object_chain_release(backing_object);
2596 vm_object_drop(backing_object);
2600 * Clean up any auto-deallocation list. This is a convenience
2601 * for top-level callers so they don't have to pass &dlist.
2602 * Do not clean up any caller-passed dlistp, the caller will
2603 * do that.
2605 if (dlist)
2606 vm_object_deallocate_list(&dlist);
2611 * vm_object_collapse() may collect additional objects in need of
2612 * deallocation. This routine deallocates these objects. The
2613 * deallocation itself can trigger additional collapses (which the
2614 * deallocate function takes care of). This procedure is used to
2615 * reduce procedural recursion since these vm_object shadow chains
2616 * can become quite long.
2618 void
2619 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2621 struct vm_object_dealloc_list *dlist;
2623 while ((dlist = *dlistp) != NULL) {
2624 *dlistp = dlist->next;
2625 vm_object_lock(dlist->object);
2626 vm_object_deallocate_locked(dlist->object);
2627 vm_object_drop(dlist->object);
2628 kfree(dlist, M_TEMP);
2633 * Removes all physical pages in the specified object range from the
2634 * object's list of pages.
2636 * No requirements.
2638 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2640 void
2641 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2642 boolean_t clean_only)
2644 struct rb_vm_page_scan_info info;
2645 int all;
2648 * Degenerate cases and assertions
2650 vm_object_hold(object);
2651 if (object == NULL ||
2652 (object->resident_page_count == 0 && object->swblock_count == 0)) {
2653 vm_object_drop(object);
2654 return;
2656 KASSERT(object->type != OBJT_PHYS,
2657 ("attempt to remove pages from a physical object"));
2660 * Indicate that paging is occuring on the object
2662 vm_object_pip_add(object, 1);
2665 * Figure out the actual removal range and whether we are removing
2666 * the entire contents of the object or not. If removing the entire
2667 * contents, be sure to get all pages, even those that might be
2668 * beyond the end of the object.
2670 info.object = object;
2671 info.start_pindex = start;
2672 if (end == 0)
2673 info.end_pindex = (vm_pindex_t)-1;
2674 else
2675 info.end_pindex = end - 1;
2676 info.limit = clean_only;
2677 info.count = 0;
2678 all = (start == 0 && info.end_pindex >= object->size - 1);
2681 * Loop until we are sure we have gotten them all.
2683 do {
2684 info.error = 0;
2685 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2686 vm_object_page_remove_callback, &info);
2687 } while (info.error);
2690 * Remove any related swap if throwing away pages, or for
2691 * non-swap objects (the swap is a clean copy in that case).
2693 if (object->type != OBJT_SWAP || clean_only == FALSE) {
2694 if (all)
2695 swap_pager_freespace_all(object);
2696 else
2697 swap_pager_freespace(object, info.start_pindex,
2698 info.end_pindex - info.start_pindex + 1);
2702 * Cleanup
2704 vm_object_pip_wakeup(object);
2705 vm_object_drop(object);
2709 * The caller must hold the object.
2711 * NOTE: User yields are allowed when removing more than one page, but not
2712 * allowed if only removing one page (the path for single page removals
2713 * might hold a spinlock).
2715 static int
2716 vm_object_page_remove_callback(vm_page_t p, void *data)
2718 struct rb_vm_page_scan_info *info = data;
2720 if ((++info->count & 63) == 0)
2721 lwkt_user_yield();
2723 if (info->object != p->object ||
2724 p->pindex < info->start_pindex ||
2725 p->pindex > info->end_pindex) {
2726 kprintf("vm_object_page_remove_callbackA: obj/pg race %p/%p\n",
2727 info->object, p);
2728 return(0);
2730 if (vm_page_busy_try(p, TRUE)) {
2731 vm_page_sleep_busy(p, TRUE, "vmopar");
2732 info->error = 1;
2733 return(0);
2735 if (info->object != p->object) {
2736 /* this should never happen */
2737 kprintf("vm_object_page_remove_callbackB: obj/pg race %p/%p\n",
2738 info->object, p);
2739 vm_page_wakeup(p);
2740 return(0);
2744 * Wired pages cannot be destroyed, but they can be invalidated
2745 * and we do so if clean_only (limit) is not set.
2747 * WARNING! The page may be wired due to being part of a buffer
2748 * cache buffer, and the buffer might be marked B_CACHE.
2749 * This is fine as part of a truncation but VFSs must be
2750 * sure to fix the buffer up when re-extending the file.
2752 * NOTE! PG_NEED_COMMIT is ignored.
2754 if (p->wire_count != 0) {
2755 vm_page_protect(p, VM_PROT_NONE);
2756 if (info->limit == 0)
2757 p->valid = 0;
2758 vm_page_wakeup(p);
2759 return(0);
2763 * limit is our clean_only flag. If set and the page is dirty or
2764 * requires a commit, do not free it. If set and the page is being
2765 * held by someone, do not free it.
2767 if (info->limit && p->valid) {
2768 vm_page_test_dirty(p);
2769 if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2770 vm_page_wakeup(p);
2771 return(0);
2776 * Destroy the page
2778 vm_page_protect(p, VM_PROT_NONE);
2779 vm_page_free(p);
2781 return(0);
2785 * Coalesces two objects backing up adjoining regions of memory into a
2786 * single object.
2788 * returns TRUE if objects were combined.
2790 * NOTE: Only works at the moment if the second object is NULL -
2791 * if it's not, which object do we lock first?
2793 * Parameters:
2794 * prev_object First object to coalesce
2795 * prev_offset Offset into prev_object
2796 * next_object Second object into coalesce
2797 * next_offset Offset into next_object
2799 * prev_size Size of reference to prev_object
2800 * next_size Size of reference to next_object
2802 * The caller does not need to hold (prev_object) but must have a stable
2803 * pointer to it (typically by holding the vm_map locked).
2805 boolean_t
2806 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2807 vm_size_t prev_size, vm_size_t next_size)
2809 vm_pindex_t next_pindex;
2811 if (prev_object == NULL)
2812 return (TRUE);
2814 vm_object_hold(prev_object);
2816 if (prev_object->type != OBJT_DEFAULT &&
2817 prev_object->type != OBJT_SWAP) {
2818 vm_object_drop(prev_object);
2819 return (FALSE);
2823 * Try to collapse the object first
2825 vm_object_chain_acquire(prev_object, 0);
2826 vm_object_collapse(prev_object, NULL);
2829 * Can't coalesce if: . more than one reference . paged out . shadows
2830 * another object . has a copy elsewhere (any of which mean that the
2831 * pages not mapped to prev_entry may be in use anyway)
2834 if (prev_object->backing_object != NULL) {
2835 vm_object_chain_release(prev_object);
2836 vm_object_drop(prev_object);
2837 return (FALSE);
2840 prev_size >>= PAGE_SHIFT;
2841 next_size >>= PAGE_SHIFT;
2842 next_pindex = prev_pindex + prev_size;
2844 if ((prev_object->ref_count > 1) &&
2845 (prev_object->size != next_pindex)) {
2846 vm_object_chain_release(prev_object);
2847 vm_object_drop(prev_object);
2848 return (FALSE);
2852 * Remove any pages that may still be in the object from a previous
2853 * deallocation.
2855 if (next_pindex < prev_object->size) {
2856 vm_object_page_remove(prev_object,
2857 next_pindex,
2858 next_pindex + next_size, FALSE);
2859 if (prev_object->type == OBJT_SWAP)
2860 swap_pager_freespace(prev_object,
2861 next_pindex, next_size);
2865 * Extend the object if necessary.
2867 if (next_pindex + next_size > prev_object->size)
2868 prev_object->size = next_pindex + next_size;
2870 vm_object_chain_release(prev_object);
2871 vm_object_drop(prev_object);
2872 return (TRUE);
2876 * Make the object writable and flag is being possibly dirty.
2878 * The object might not be held (or might be held but held shared),
2879 * the related vnode is probably not held either. Object and vnode are
2880 * stable by virtue of the vm_page busied by the caller preventing
2881 * destruction.
2883 * If the related mount is flagged MNTK_THR_SYNC we need to call
2884 * vsetobjdirty(). Filesystems using this option usually shortcut
2885 * synchronization by only scanning the syncer list.
2887 void
2888 vm_object_set_writeable_dirty(vm_object_t object)
2890 struct vnode *vp;
2892 /*vm_object_assert_held(object);*/
2894 * Avoid contention in vm fault path by checking the state before
2895 * issuing an atomic op on it.
2897 if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2898 (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2899 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2901 if (object->type == OBJT_VNODE &&
2902 (vp = (struct vnode *)object->handle) != NULL) {
2903 if ((vp->v_flag & VOBJDIRTY) == 0) {
2904 if (vp->v_mount &&
2905 (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
2907 * New style THR_SYNC places vnodes on the
2908 * syncer list more deterministically.
2910 vsetobjdirty(vp);
2911 } else {
2913 * Old style scan would not necessarily place
2914 * a vnode on the syncer list when possibly
2915 * modified via mmap.
2917 vsetflags(vp, VOBJDIRTY);
2923 #include "opt_ddb.h"
2924 #ifdef DDB
2925 #include <sys/kernel.h>
2927 #include <sys/cons.h>
2929 #include <ddb/ddb.h>
2931 static int _vm_object_in_map (vm_map_t map, vm_object_t object,
2932 vm_map_entry_t entry);
2933 static int vm_object_in_map (vm_object_t object);
2936 * The caller must hold the object.
2938 static int
2939 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2941 vm_map_t tmpm;
2942 vm_map_entry_t tmpe;
2943 vm_object_t obj, nobj;
2944 int entcount;
2946 if (map == 0)
2947 return 0;
2948 if (entry == 0) {
2949 tmpe = map->header.next;
2950 entcount = map->nentries;
2951 while (entcount-- && (tmpe != &map->header)) {
2952 if( _vm_object_in_map(map, object, tmpe)) {
2953 return 1;
2955 tmpe = tmpe->next;
2957 return (0);
2959 switch(entry->maptype) {
2960 case VM_MAPTYPE_SUBMAP:
2961 tmpm = entry->object.sub_map;
2962 tmpe = tmpm->header.next;
2963 entcount = tmpm->nentries;
2964 while (entcount-- && tmpe != &tmpm->header) {
2965 if( _vm_object_in_map(tmpm, object, tmpe)) {
2966 return 1;
2968 tmpe = tmpe->next;
2970 break;
2971 case VM_MAPTYPE_NORMAL:
2972 case VM_MAPTYPE_VPAGETABLE:
2973 obj = entry->object.vm_object;
2974 while (obj) {
2975 if (obj == object) {
2976 if (obj != entry->object.vm_object)
2977 vm_object_drop(obj);
2978 return 1;
2980 while ((nobj = obj->backing_object) != NULL) {
2981 vm_object_hold(nobj);
2982 if (nobj == obj->backing_object)
2983 break;
2984 vm_object_drop(nobj);
2986 if (obj != entry->object.vm_object) {
2987 if (nobj)
2988 vm_object_lock_swap();
2989 vm_object_drop(obj);
2991 obj = nobj;
2993 break;
2994 default:
2995 break;
2997 return 0;
3000 static int vm_object_in_map_callback(struct proc *p, void *data);
3002 struct vm_object_in_map_info {
3003 vm_object_t object;
3004 int rv;
3008 * Debugging only
3010 static int
3011 vm_object_in_map(vm_object_t object)
3013 struct vm_object_in_map_info info;
3015 info.rv = 0;
3016 info.object = object;
3018 allproc_scan(vm_object_in_map_callback, &info);
3019 if (info.rv)
3020 return 1;
3021 if( _vm_object_in_map(&kernel_map, object, 0))
3022 return 1;
3023 if( _vm_object_in_map(&pager_map, object, 0))
3024 return 1;
3025 if( _vm_object_in_map(&buffer_map, object, 0))
3026 return 1;
3027 return 0;
3031 * Debugging only
3033 static int
3034 vm_object_in_map_callback(struct proc *p, void *data)
3036 struct vm_object_in_map_info *info = data;
3038 if (p->p_vmspace) {
3039 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
3040 info->rv = 1;
3041 return -1;
3044 return (0);
3047 DB_SHOW_COMMAND(vmochk, vm_object_check)
3049 vm_object_t object;
3050 int n;
3053 * make sure that internal objs are in a map somewhere
3054 * and none have zero ref counts.
3056 for (n = 0; n < VMOBJ_HSIZE; ++n) {
3057 for (object = TAILQ_FIRST(&vm_object_lists[n]);
3058 object != NULL;
3059 object = TAILQ_NEXT(object, object_list)) {
3060 if (object->type == OBJT_MARKER)
3061 continue;
3062 if (object->handle != NULL ||
3063 (object->type != OBJT_DEFAULT &&
3064 object->type != OBJT_SWAP)) {
3065 continue;
3067 if (object->ref_count == 0) {
3068 db_printf("vmochk: internal obj has "
3069 "zero ref count: %ld\n",
3070 (long)object->size);
3072 if (vm_object_in_map(object))
3073 continue;
3074 db_printf("vmochk: internal obj is not in a map: "
3075 "ref: %d, size: %lu: 0x%lx, "
3076 "backing_object: %p\n",
3077 object->ref_count, (u_long)object->size,
3078 (u_long)object->size,
3079 (void *)object->backing_object);
3085 * Debugging only
3087 DB_SHOW_COMMAND(object, vm_object_print_static)
3089 /* XXX convert args. */
3090 vm_object_t object = (vm_object_t)addr;
3091 boolean_t full = have_addr;
3093 vm_page_t p;
3095 /* XXX count is an (unused) arg. Avoid shadowing it. */
3096 #define count was_count
3098 int count;
3100 if (object == NULL)
3101 return;
3103 db_iprintf(
3104 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
3105 object, (int)object->type, (u_long)object->size,
3106 object->resident_page_count, object->ref_count, object->flags);
3108 * XXX no %qd in kernel. Truncate object->backing_object_offset.
3110 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
3111 object->shadow_count,
3112 object->backing_object ? object->backing_object->ref_count : 0,
3113 object->backing_object, (long)object->backing_object_offset);
3115 if (!full)
3116 return;
3118 db_indent += 2;
3119 count = 0;
3120 RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
3121 if (count == 0)
3122 db_iprintf("memory:=");
3123 else if (count == 6) {
3124 db_printf("\n");
3125 db_iprintf(" ...");
3126 count = 0;
3127 } else
3128 db_printf(",");
3129 count++;
3131 db_printf("(off=0x%lx,page=0x%lx)",
3132 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
3134 if (count != 0)
3135 db_printf("\n");
3136 db_indent -= 2;
3139 /* XXX. */
3140 #undef count
3143 * XXX need this non-static entry for calling from vm_map_print.
3145 * Debugging only
3147 void
3148 vm_object_print(/* db_expr_t */ long addr,
3149 boolean_t have_addr,
3150 /* db_expr_t */ long count,
3151 char *modif)
3153 vm_object_print_static(addr, have_addr, count, modif);
3157 * Debugging only
3159 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
3161 vm_object_t object;
3162 int nl = 0;
3163 int c;
3164 int n;
3166 for (n = 0; n < VMOBJ_HSIZE; ++n) {
3167 for (object = TAILQ_FIRST(&vm_object_lists[n]);
3168 object != NULL;
3169 object = TAILQ_NEXT(object, object_list)) {
3170 vm_pindex_t idx, fidx;
3171 vm_pindex_t osize;
3172 vm_paddr_t pa = -1, padiff;
3173 int rcount;
3174 vm_page_t m;
3176 if (object->type == OBJT_MARKER)
3177 continue;
3178 db_printf("new object: %p\n", (void *)object);
3179 if ( nl > 18) {
3180 c = cngetc();
3181 if (c != ' ')
3182 return;
3183 nl = 0;
3185 nl++;
3186 rcount = 0;
3187 fidx = 0;
3188 osize = object->size;
3189 if (osize > 128)
3190 osize = 128;
3191 for (idx = 0; idx < osize; idx++) {
3192 m = vm_page_lookup(object, idx);
3193 if (m == NULL) {
3194 if (rcount) {
3195 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3196 (long)fidx, rcount, (long)pa);
3197 if ( nl > 18) {
3198 c = cngetc();
3199 if (c != ' ')
3200 return;
3201 nl = 0;
3203 nl++;
3204 rcount = 0;
3206 continue;
3209 if (rcount &&
3210 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
3211 ++rcount;
3212 continue;
3214 if (rcount) {
3215 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
3216 padiff >>= PAGE_SHIFT;
3217 padiff &= PQ_L2_MASK;
3218 if (padiff == 0) {
3219 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
3220 ++rcount;
3221 continue;
3223 db_printf(" index(%ld)run(%d)pa(0x%lx)",
3224 (long)fidx, rcount, (long)pa);
3225 db_printf("pd(%ld)\n", (long)padiff);
3226 if ( nl > 18) {
3227 c = cngetc();
3228 if (c != ' ')
3229 return;
3230 nl = 0;
3232 nl++;
3234 fidx = idx;
3235 pa = VM_PAGE_TO_PHYS(m);
3236 rcount = 1;
3238 if (rcount) {
3239 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3240 (long)fidx, rcount, (long)pa);
3241 if ( nl > 18) {
3242 c = cngetc();
3243 if (c != ' ')
3244 return;
3245 nl = 0;
3247 nl++;
3252 #endif /* DDB */