kernel - Tag vm_map_entry structure, slight optimization to zalloc, misc.
[dragonfly.git] / sys / vm / swap_pager.c
blob6e9bd74b58966b129f7b053e4daea445fc98ab19
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1998-2010 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon@backplane.com>
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * Copyright (c) 1994 John S. Dyson
37 * Copyright (c) 1990 University of Utah.
38 * Copyright (c) 1991, 1993
39 * The Regents of the University of California. All rights reserved.
41 * This code is derived from software contributed to Berkeley by
42 * the Systems Programming Group of the University of Utah Computer
43 * Science Department.
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. Neither the name of the University nor the names of its contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
69 * New Swap System
70 * Matthew Dillon
72 * Radix Bitmap 'blists'.
74 * - The new swapper uses the new radix bitmap code. This should scale
75 * to arbitrarily small or arbitrarily large swap spaces and an almost
76 * arbitrary degree of fragmentation.
78 * Features:
80 * - on the fly reallocation of swap during putpages. The new system
81 * does not try to keep previously allocated swap blocks for dirty
82 * pages.
84 * - on the fly deallocation of swap
86 * - No more garbage collection required. Unnecessarily allocated swap
87 * blocks only exist for dirty vm_page_t's now and these are already
88 * cycled (in a high-load system) by the pager. We also do on-the-fly
89 * removal of invalidated swap blocks when a page is destroyed
90 * or renamed.
92 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94
94 * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/kernel.h>
101 #include <sys/proc.h>
102 #include <sys/buf.h>
103 #include <sys/vnode.h>
104 #include <sys/malloc.h>
105 #include <sys/vmmeter.h>
106 #include <sys/sysctl.h>
107 #include <sys/blist.h>
108 #include <sys/lock.h>
109 #include <sys/thread2.h>
111 #include "opt_swap.h"
112 #include <vm/vm.h>
113 #include <vm/vm_object.h>
114 #include <vm/vm_page.h>
115 #include <vm/vm_pager.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/swap_pager.h>
118 #include <vm/vm_extern.h>
119 #include <vm/vm_zone.h>
120 #include <vm/vnode_pager.h>
122 #include <sys/buf2.h>
123 #include <vm/vm_page2.h>
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER SWB_NPAGES
127 #endif
129 #define SWM_FREE 0x02 /* free, period */
130 #define SWM_POP 0x04 /* pop out */
132 #define SWBIO_READ 0x01
133 #define SWBIO_WRITE 0x02
134 #define SWBIO_SYNC 0x04
136 struct swfreeinfo {
137 vm_object_t object;
138 vm_pindex_t basei;
139 vm_pindex_t begi;
140 vm_pindex_t endi; /* inclusive */
143 struct swswapoffinfo {
144 vm_object_t object;
145 int devidx;
146 int shared;
150 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks
151 * in the old system.
154 int swap_pager_full; /* swap space exhaustion (task killing) */
155 int swap_fail_ticks; /* when we became exhausted */
156 int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
157 int vm_swap_cache_use;
158 int vm_swap_anon_use;
159 static int vm_report_swap_allocs;
161 static int nsw_rcount; /* free read buffers */
162 static int nsw_wcount_sync; /* limit write buffers / synchronous */
163 static int nsw_wcount_async; /* limit write buffers / asynchronous */
164 static int nsw_wcount_async_max;/* assigned maximum */
165 static int nsw_cluster_max; /* maximum VOP I/O allowed */
167 struct blist *swapblist;
168 static int swap_async_max = 4; /* maximum in-progress async I/O's */
169 static int swap_burst_read = 0; /* allow burst reading */
170 static swblk_t swapiterator; /* linearize allocations */
172 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin");
174 /* from vm_swap.c */
175 extern struct vnode *swapdev_vp;
176 extern struct swdevt *swdevt;
177 extern int nswdev;
179 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
181 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
182 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
183 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
184 CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
186 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
187 CTLFLAG_RD, &vm_swap_cache_use, 0, "");
188 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
189 CTLFLAG_RD, &vm_swap_anon_use, 0, "");
190 SYSCTL_INT(_vm, OID_AUTO, swap_size,
191 CTLFLAG_RD, &vm_swap_size, 0, "");
192 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
193 CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
195 vm_zone_t swap_zone;
198 * Red-Black tree for swblock entries
200 * The caller must hold vm_token
202 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
203 vm_pindex_t, swb_index);
206 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
208 if (swb1->swb_index < swb2->swb_index)
209 return(-1);
210 if (swb1->swb_index > swb2->swb_index)
211 return(1);
212 return(0);
215 static
217 rb_swblock_scancmp(struct swblock *swb, void *data)
219 struct swfreeinfo *info = data;
221 if (swb->swb_index < info->basei)
222 return(-1);
223 if (swb->swb_index > info->endi)
224 return(1);
225 return(0);
228 static
230 rb_swblock_condcmp(struct swblock *swb, void *data)
232 struct swfreeinfo *info = data;
234 if (swb->swb_index < info->basei)
235 return(-1);
236 return(0);
240 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure
241 * calls hooked from other parts of the VM system and do not appear here.
242 * (see vm/swap_pager.h).
245 static void swap_pager_dealloc (vm_object_t object);
246 static int swap_pager_getpage (vm_object_t, vm_page_t *, int);
247 static void swap_chain_iodone(struct bio *biox);
249 struct pagerops swappagerops = {
250 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */
251 swap_pager_getpage, /* pagein */
252 swap_pager_putpages, /* pageout */
253 swap_pager_haspage /* get backing store status for page */
257 * dmmax is in page-sized chunks with the new swap system. It was
258 * dev-bsized chunks in the old. dmmax is always a power of 2.
260 * swap_*() routines are externally accessible. swp_*() routines are
261 * internal.
264 int dmmax;
265 static int dmmax_mask;
266 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */
267 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */
269 static __inline void swp_sizecheck (void);
270 static void swp_pager_async_iodone (struct bio *bio);
273 * Swap bitmap functions
276 static __inline void swp_pager_freeswapspace(vm_object_t object,
277 swblk_t blk, int npages);
278 static __inline swblk_t swp_pager_getswapspace(vm_object_t object, int npages);
281 * Metadata functions
284 static void swp_pager_meta_convert(vm_object_t);
285 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
286 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
287 static void swp_pager_meta_free_all(vm_object_t);
288 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
291 * SWP_SIZECHECK() - update swap_pager_full indication
293 * update the swap_pager_almost_full indication and warn when we are
294 * about to run out of swap space, using lowat/hiwat hysteresis.
296 * Clear swap_pager_full ( task killing ) indication when lowat is met.
298 * No restrictions on call
299 * This routine may not block.
300 * SMP races are ok.
302 static __inline void
303 swp_sizecheck(void)
305 if (vm_swap_size < nswap_lowat) {
306 if (swap_pager_almost_full == 0) {
307 kprintf("swap_pager: out of swap space\n");
308 swap_pager_almost_full = 1;
309 swap_fail_ticks = ticks;
311 } else {
312 swap_pager_full = 0;
313 if (vm_swap_size > nswap_hiwat)
314 swap_pager_almost_full = 0;
319 * SWAP_PAGER_INIT() - initialize the swap pager!
321 * Expected to be started from system init. NOTE: This code is run
322 * before much else so be careful what you depend on. Most of the VM
323 * system has yet to be initialized at this point.
325 * Called from the low level boot code only.
327 static void
328 swap_pager_init(void *arg __unused)
331 * Device Stripe, in PAGE_SIZE'd blocks
333 dmmax = SWB_NPAGES * 2;
334 dmmax_mask = ~(dmmax - 1);
336 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL);
339 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
341 * Expected to be started from pageout process once, prior to entering
342 * its main loop.
344 * Called from the low level boot code only.
346 void
347 swap_pager_swap_init(void)
349 int n, n2;
352 * Number of in-transit swap bp operations. Don't
353 * exhaust the pbufs completely. Make sure we
354 * initialize workable values (0 will work for hysteresis
355 * but it isn't very efficient).
357 * The nsw_cluster_max is constrained by the number of pages an XIO
358 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
359 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are
360 * constrained by the swap device interleave stripe size.
362 * Currently we hardwire nsw_wcount_async to 4. This limit is
363 * designed to prevent other I/O from having high latencies due to
364 * our pageout I/O. The value 4 works well for one or two active swap
365 * devices but is probably a little low if you have more. Even so,
366 * a higher value would probably generate only a limited improvement
367 * with three or four active swap devices since the system does not
368 * typically have to pageout at extreme bandwidths. We will want
369 * at least 2 per swap devices, and 4 is a pretty good value if you
370 * have one NFS swap device due to the command/ack latency over NFS.
371 * So it all works out pretty well.
374 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
376 nsw_rcount = (nswbuf_kva + 1) / 2;
377 nsw_wcount_sync = (nswbuf_kva + 3) / 4;
378 nsw_wcount_async = 4;
379 nsw_wcount_async_max = nsw_wcount_async;
382 * The zone is dynamically allocated so generally size it to
383 * maxswzone (32MB to 512MB of KVM). Set a minimum size based
384 * on physical memory of around 8x (each swblock can hold 16 pages).
386 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
387 * has increased dramatically.
389 n = vmstats.v_page_count / 2;
390 if (maxswzone && n < maxswzone / sizeof(struct swblock))
391 n = maxswzone / sizeof(struct swblock);
392 n2 = n;
394 do {
395 swap_zone = zinit(
396 "SWAPMETA",
397 sizeof(struct swblock),
399 ZONE_INTERRUPT);
400 if (swap_zone != NULL)
401 break;
403 * if the allocation failed, try a zone two thirds the
404 * size of the previous attempt.
406 n -= ((n + 2) / 3);
407 } while (n > 0);
409 if (swap_zone == NULL)
410 panic("swap_pager_swap_init: swap_zone == NULL");
411 if (n2 != n)
412 kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
416 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
417 * its metadata structures.
419 * This routine is called from the mmap and fork code to create a new
420 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object
421 * and then converting it with swp_pager_meta_convert().
423 * We only support unnamed objects.
425 * No restrictions.
427 vm_object_t
428 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
430 vm_object_t object;
432 KKASSERT(handle == NULL);
433 object = vm_object_allocate_hold(OBJT_DEFAULT,
434 OFF_TO_IDX(offset + PAGE_MASK + size));
435 swp_pager_meta_convert(object);
436 vm_object_drop(object);
438 return (object);
442 * SWAP_PAGER_DEALLOC() - remove swap metadata from object
444 * The swap backing for the object is destroyed. The code is
445 * designed such that we can reinstantiate it later, but this
446 * routine is typically called only when the entire object is
447 * about to be destroyed.
449 * The object must be locked or unreferenceable.
450 * No other requirements.
452 static void
453 swap_pager_dealloc(vm_object_t object)
455 vm_object_hold(object);
456 vm_object_pip_wait(object, "swpdea");
459 * Free all remaining metadata. We only bother to free it from
460 * the swap meta data. We do not attempt to free swapblk's still
461 * associated with vm_page_t's for this object. We do not care
462 * if paging is still in progress on some objects.
464 swp_pager_meta_free_all(object);
465 vm_object_drop(object);
468 /************************************************************************
469 * SWAP PAGER BITMAP ROUTINES *
470 ************************************************************************/
473 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space
475 * Allocate swap for the requested number of pages. The starting
476 * swap block number (a page index) is returned or SWAPBLK_NONE
477 * if the allocation failed.
479 * Also has the side effect of advising that somebody made a mistake
480 * when they configured swap and didn't configure enough.
482 * The caller must hold the object.
483 * This routine may not block.
485 static __inline swblk_t
486 swp_pager_getswapspace(vm_object_t object, int npages)
488 swblk_t blk;
490 lwkt_gettoken(&vm_token);
491 blk = blist_allocat(swapblist, npages, swapiterator);
492 if (blk == SWAPBLK_NONE)
493 blk = blist_allocat(swapblist, npages, 0);
494 if (blk == SWAPBLK_NONE) {
495 if (swap_pager_full != 2) {
496 if (vm_swap_max == 0)
497 kprintf("Warning: The system would like to "
498 "page to swap but no swap space "
499 "is configured!\n");
500 else
501 kprintf("swap_pager_getswapspace: "
502 "swap full allocating %d pages\n",
503 npages);
504 swap_pager_full = 2;
505 if (swap_pager_almost_full == 0)
506 swap_fail_ticks = ticks;
507 swap_pager_almost_full = 1;
509 } else {
510 /* swapiterator = blk; disable for now, doesn't work well */
511 swapacctspace(blk, -npages);
512 if (object->type == OBJT_SWAP)
513 vm_swap_anon_use += npages;
514 else
515 vm_swap_cache_use += npages;
516 swp_sizecheck();
518 lwkt_reltoken(&vm_token);
519 return(blk);
523 * SWP_PAGER_FREESWAPSPACE() - free raw swap space
525 * This routine returns the specified swap blocks back to the bitmap.
527 * Note: This routine may not block (it could in the old swap code),
528 * and through the use of the new blist routines it does not block.
530 * We must be called at splvm() to avoid races with bitmap frees from
531 * vm_page_remove() aka swap_pager_page_removed().
533 * This routine may not block.
536 static __inline void
537 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
539 struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
541 lwkt_gettoken(&vm_token);
542 sp->sw_nused -= npages;
543 if (object->type == OBJT_SWAP)
544 vm_swap_anon_use -= npages;
545 else
546 vm_swap_cache_use -= npages;
548 if (sp->sw_flags & SW_CLOSING) {
549 lwkt_reltoken(&vm_token);
550 return;
553 blist_free(swapblist, blk, npages);
554 vm_swap_size += npages;
555 swp_sizecheck();
556 lwkt_reltoken(&vm_token);
560 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page
561 * range within an object.
563 * This is a globally accessible routine.
565 * This routine removes swapblk assignments from swap metadata.
567 * The external callers of this routine typically have already destroyed
568 * or renamed vm_page_t's associated with this range in the object so
569 * we should be ok.
571 * No requirements.
573 void
574 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
576 vm_object_hold(object);
577 swp_pager_meta_free(object, start, size);
578 vm_object_drop(object);
582 * No requirements.
584 void
585 swap_pager_freespace_all(vm_object_t object)
587 vm_object_hold(object);
588 swp_pager_meta_free_all(object);
589 vm_object_drop(object);
593 * This function conditionally frees swap cache swap starting at
594 * (*basei) in the object. (count) swap blocks will be nominally freed.
595 * The actual number of blocks freed can be more or less than the
596 * requested number.
598 * This function nominally returns the number of blocks freed. However,
599 * the actual number of blocks freed may be less then the returned value.
600 * If the function is unable to exhaust the object or if it is able to
601 * free (approximately) the requested number of blocks it returns
602 * a value n > count.
604 * If we exhaust the object we will return a value n <= count.
606 * The caller must hold the object.
608 * WARNING! If count == 0 then -1 can be returned as a degenerate case,
609 * callers should always pass a count value > 0.
611 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
614 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
616 struct swfreeinfo info;
617 int n;
618 int t;
620 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
622 info.object = object;
623 info.basei = *basei; /* skip up to this page index */
624 info.begi = count; /* max swap pages to destroy */
625 info.endi = count * 8; /* max swblocks to scan */
627 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
628 swap_pager_condfree_callback, &info);
629 *basei = info.basei;
632 * Take the higher difference swblocks vs pages
634 n = count - (int)info.begi;
635 t = count * 8 - (int)info.endi;
636 if (n < t)
637 n = t;
638 if (n < 1)
639 n = 1;
640 return(n);
644 * The idea is to free whole meta-block to avoid fragmenting
645 * the swap space or disk I/O. We only do this if NO VM pages
646 * are present.
648 * We do not have to deal with clearing PG_SWAPPED in related VM
649 * pages because there are no related VM pages.
651 * The caller must hold the object.
653 static int
654 swap_pager_condfree_callback(struct swblock *swap, void *data)
656 struct swfreeinfo *info = data;
657 vm_object_t object = info->object;
658 int i;
660 for (i = 0; i < SWAP_META_PAGES; ++i) {
661 if (vm_page_lookup(object, swap->swb_index + i))
662 break;
664 info->basei = swap->swb_index + SWAP_META_PAGES;
665 if (i == SWAP_META_PAGES) {
666 info->begi -= swap->swb_count;
667 swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
669 --info->endi;
670 if ((int)info->begi < 0 || (int)info->endi < 0)
671 return(-1);
672 lwkt_yield();
673 return(0);
677 * Called by vm_page_alloc() when a new VM page is inserted
678 * into a VM object. Checks whether swap has been assigned to
679 * the page and sets PG_SWAPPED as necessary.
681 * No requirements.
683 void
684 swap_pager_page_inserted(vm_page_t m)
686 if (m->object->swblock_count) {
687 vm_object_hold(m->object);
688 if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
689 vm_page_flag_set(m, PG_SWAPPED);
690 vm_object_drop(m->object);
695 * SWAP_PAGER_RESERVE() - reserve swap blocks in object
697 * Assigns swap blocks to the specified range within the object. The
698 * swap blocks are not zerod. Any previous swap assignment is destroyed.
700 * Returns 0 on success, -1 on failure.
702 * The caller is responsible for avoiding races in the specified range.
703 * No other requirements.
706 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
708 int n = 0;
709 swblk_t blk = SWAPBLK_NONE;
710 vm_pindex_t beg = start; /* save start index */
712 vm_object_hold(object);
714 while (size) {
715 if (n == 0) {
716 n = BLIST_MAX_ALLOC;
717 while ((blk = swp_pager_getswapspace(object, n)) ==
718 SWAPBLK_NONE)
720 n >>= 1;
721 if (n == 0) {
722 swp_pager_meta_free(object, beg,
723 start - beg);
724 vm_object_drop(object);
725 return(-1);
729 swp_pager_meta_build(object, start, blk);
730 --size;
731 ++start;
732 ++blk;
733 --n;
735 swp_pager_meta_free(object, start, n);
736 vm_object_drop(object);
737 return(0);
741 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager
742 * and destroy the source.
744 * Copy any valid swapblks from the source to the destination. In
745 * cases where both the source and destination have a valid swapblk,
746 * we keep the destination's.
748 * This routine is allowed to block. It may block allocating metadata
749 * indirectly through swp_pager_meta_build() or if paging is still in
750 * progress on the source.
752 * XXX vm_page_collapse() kinda expects us not to block because we
753 * supposedly do not need to allocate memory, but for the moment we
754 * *may* have to get a little memory from the zone allocator, but
755 * it is taken from the interrupt memory. We should be ok.
757 * The source object contains no vm_page_t's (which is just as well)
758 * The source object is of type OBJT_SWAP.
760 * The source and destination objects must be held by the caller.
762 void
763 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
764 vm_pindex_t base_index, int destroysource)
766 vm_pindex_t i;
768 ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
769 ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
772 * transfer source to destination.
774 for (i = 0; i < dstobject->size; ++i) {
775 swblk_t dstaddr;
778 * Locate (without changing) the swapblk on the destination,
779 * unless it is invalid in which case free it silently, or
780 * if the destination is a resident page, in which case the
781 * source is thrown away.
783 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
785 if (dstaddr == SWAPBLK_NONE) {
787 * Destination has no swapblk and is not resident,
788 * copy source.
790 swblk_t srcaddr;
792 srcaddr = swp_pager_meta_ctl(srcobject,
793 base_index + i, SWM_POP);
795 if (srcaddr != SWAPBLK_NONE)
796 swp_pager_meta_build(dstobject, i, srcaddr);
797 } else {
799 * Destination has valid swapblk or it is represented
800 * by a resident page. We destroy the sourceblock.
802 swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
807 * Free left over swap blocks in source.
809 * We have to revert the type to OBJT_DEFAULT so we do not accidently
810 * double-remove the object from the swap queues.
812 if (destroysource) {
814 * Reverting the type is not necessary, the caller is going
815 * to destroy srcobject directly, but I'm doing it here
816 * for consistency since we've removed the object from its
817 * queues.
819 swp_pager_meta_free_all(srcobject);
820 if (srcobject->type == OBJT_SWAP)
821 srcobject->type = OBJT_DEFAULT;
826 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for
827 * the requested page.
829 * We determine whether good backing store exists for the requested
830 * page and return TRUE if it does, FALSE if it doesn't.
832 * If TRUE, we also try to determine how much valid, contiguous backing
833 * store exists before and after the requested page within a reasonable
834 * distance. We do not try to restrict it to the swap device stripe
835 * (that is handled in getpages/putpages). It probably isn't worth
836 * doing here.
838 * No requirements.
840 boolean_t
841 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
843 swblk_t blk0;
846 * do we have good backing store at the requested index ?
848 vm_object_hold(object);
849 blk0 = swp_pager_meta_ctl(object, pindex, 0);
851 if (blk0 == SWAPBLK_NONE) {
852 vm_object_drop(object);
853 return (FALSE);
855 vm_object_drop(object);
856 return (TRUE);
860 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
862 * This removes any associated swap backing store, whether valid or
863 * not, from the page. This operates on any VM object, not just OBJT_SWAP
864 * objects.
866 * This routine is typically called when a page is made dirty, at
867 * which point any associated swap can be freed. MADV_FREE also
868 * calls us in a special-case situation
870 * NOTE!!! If the page is clean and the swap was valid, the caller
871 * should make the page dirty before calling this routine. This routine
872 * does NOT change the m->dirty status of the page. Also: MADV_FREE
873 * depends on it.
875 * The page must be busied or soft-busied.
876 * The caller can hold the object to avoid blocking, else we might block.
877 * No other requirements.
879 void
880 swap_pager_unswapped(vm_page_t m)
882 if (m->flags & PG_SWAPPED) {
883 vm_object_hold(m->object);
884 KKASSERT(m->flags & PG_SWAPPED);
885 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
886 vm_page_flag_clear(m, PG_SWAPPED);
887 vm_object_drop(m->object);
892 * SWAP_PAGER_STRATEGY() - read, write, free blocks
894 * This implements a VM OBJECT strategy function using swap backing store.
895 * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
896 * types.
898 * This is intended to be a cacheless interface (i.e. caching occurs at
899 * higher levels), and is also used as a swap-based SSD cache for vnode
900 * and device objects.
902 * All I/O goes directly to and from the swap device.
904 * We currently attempt to run I/O synchronously or asynchronously as
905 * the caller requests. This isn't perfect because we loose error
906 * sequencing when we run multiple ops in parallel to satisfy a request.
907 * But this is swap, so we let it all hang out.
909 * No requirements.
911 void
912 swap_pager_strategy(vm_object_t object, struct bio *bio)
914 struct buf *bp = bio->bio_buf;
915 struct bio *nbio;
916 vm_pindex_t start;
917 vm_pindex_t biox_blkno = 0;
918 int count;
919 char *data;
920 struct bio *biox;
921 struct buf *bufx;
922 #if 0
923 struct bio_track *track;
924 #endif
926 #if 0
928 * tracking for swapdev vnode I/Os
930 if (bp->b_cmd == BUF_CMD_READ)
931 track = &swapdev_vp->v_track_read;
932 else
933 track = &swapdev_vp->v_track_write;
934 #endif
936 if (bp->b_bcount & PAGE_MASK) {
937 bp->b_error = EINVAL;
938 bp->b_flags |= B_ERROR | B_INVAL;
939 biodone(bio);
940 kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
941 "not page bounded\n",
942 bp, (long long)bio->bio_offset, (int)bp->b_bcount);
943 return;
947 * Clear error indication, initialize page index, count, data pointer.
949 bp->b_error = 0;
950 bp->b_flags &= ~B_ERROR;
951 bp->b_resid = bp->b_bcount;
953 start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
954 count = howmany(bp->b_bcount, PAGE_SIZE);
955 data = bp->b_data;
958 * Deal with BUF_CMD_FREEBLKS
960 if (bp->b_cmd == BUF_CMD_FREEBLKS) {
962 * FREE PAGE(s) - destroy underlying swap that is no longer
963 * needed.
965 vm_object_hold(object);
966 swp_pager_meta_free(object, start, count);
967 vm_object_drop(object);
968 bp->b_resid = 0;
969 biodone(bio);
970 return;
974 * We need to be able to create a new cluster of I/O's. We cannot
975 * use the caller fields of the passed bio so push a new one.
977 * Because nbio is just a placeholder for the cluster links,
978 * we can biodone() the original bio instead of nbio to make
979 * things a bit more efficient.
981 nbio = push_bio(bio);
982 nbio->bio_offset = bio->bio_offset;
983 nbio->bio_caller_info1.cluster_head = NULL;
984 nbio->bio_caller_info2.cluster_tail = NULL;
986 biox = NULL;
987 bufx = NULL;
990 * Execute read or write
992 vm_object_hold(object);
994 while (count > 0) {
995 swblk_t blk;
998 * Obtain block. If block not found and writing, allocate a
999 * new block and build it into the object.
1001 blk = swp_pager_meta_ctl(object, start, 0);
1002 if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
1003 blk = swp_pager_getswapspace(object, 1);
1004 if (blk == SWAPBLK_NONE) {
1005 bp->b_error = ENOMEM;
1006 bp->b_flags |= B_ERROR;
1007 break;
1009 swp_pager_meta_build(object, start, blk);
1013 * Do we have to flush our current collection? Yes if:
1015 * - no swap block at this index
1016 * - swap block is not contiguous
1017 * - we cross a physical disk boundry in the
1018 * stripe.
1020 if (
1021 biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
1022 ((biox_blkno ^ blk) & dmmax_mask)
1025 if (bp->b_cmd == BUF_CMD_READ) {
1026 ++mycpu->gd_cnt.v_swapin;
1027 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1028 } else {
1029 ++mycpu->gd_cnt.v_swapout;
1030 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1031 bufx->b_dirtyend = bufx->b_bcount;
1035 * Finished with this buf.
1037 KKASSERT(bufx->b_bcount != 0);
1038 if (bufx->b_cmd != BUF_CMD_READ)
1039 bufx->b_dirtyend = bufx->b_bcount;
1040 biox = NULL;
1041 bufx = NULL;
1045 * Add new swapblk to biox, instantiating biox if necessary.
1046 * Zero-fill reads are able to take a shortcut.
1048 if (blk == SWAPBLK_NONE) {
1050 * We can only get here if we are reading. Since
1051 * we are at splvm() we can safely modify b_resid,
1052 * even if chain ops are in progress.
1054 bzero(data, PAGE_SIZE);
1055 bp->b_resid -= PAGE_SIZE;
1056 } else {
1057 if (biox == NULL) {
1058 /* XXX chain count > 4, wait to <= 4 */
1060 bufx = getpbuf(NULL);
1061 biox = &bufx->b_bio1;
1062 cluster_append(nbio, bufx);
1063 bufx->b_flags |= (bp->b_flags & B_ORDERED);
1064 bufx->b_cmd = bp->b_cmd;
1065 biox->bio_done = swap_chain_iodone;
1066 biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1067 biox->bio_caller_info1.cluster_parent = nbio;
1068 biox_blkno = blk;
1069 bufx->b_bcount = 0;
1070 bufx->b_data = data;
1072 bufx->b_bcount += PAGE_SIZE;
1074 --count;
1075 ++start;
1076 data += PAGE_SIZE;
1079 vm_object_drop(object);
1082 * Flush out last buffer
1084 if (biox) {
1085 if (bufx->b_cmd == BUF_CMD_READ) {
1086 ++mycpu->gd_cnt.v_swapin;
1087 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1088 } else {
1089 ++mycpu->gd_cnt.v_swapout;
1090 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1091 bufx->b_dirtyend = bufx->b_bcount;
1093 KKASSERT(bufx->b_bcount);
1094 if (bufx->b_cmd != BUF_CMD_READ)
1095 bufx->b_dirtyend = bufx->b_bcount;
1096 /* biox, bufx = NULL */
1100 * Now initiate all the I/O. Be careful looping on our chain as
1101 * I/O's may complete while we are still initiating them.
1103 * If the request is a 100% sparse read no bios will be present
1104 * and we just biodone() the buffer.
1106 nbio->bio_caller_info2.cluster_tail = NULL;
1107 bufx = nbio->bio_caller_info1.cluster_head;
1109 if (bufx) {
1110 while (bufx) {
1111 biox = &bufx->b_bio1;
1112 BUF_KERNPROC(bufx);
1113 bufx = bufx->b_cluster_next;
1114 vn_strategy(swapdev_vp, biox);
1116 } else {
1117 biodone(bio);
1121 * Completion of the cluster will also call biodone_chain(nbio).
1122 * We never call biodone(nbio) so we don't have to worry about
1123 * setting up a bio_done callback. It's handled in the sub-IO.
1125 /**/
1129 * biodone callback
1131 * No requirements.
1133 static void
1134 swap_chain_iodone(struct bio *biox)
1136 struct buf **nextp;
1137 struct buf *bufx; /* chained sub-buffer */
1138 struct bio *nbio; /* parent nbio with chain glue */
1139 struct buf *bp; /* original bp associated with nbio */
1140 int chain_empty;
1142 bufx = biox->bio_buf;
1143 nbio = biox->bio_caller_info1.cluster_parent;
1144 bp = nbio->bio_buf;
1147 * Update the original buffer
1149 KKASSERT(bp != NULL);
1150 if (bufx->b_flags & B_ERROR) {
1151 atomic_set_int(&bufx->b_flags, B_ERROR);
1152 bp->b_error = bufx->b_error; /* race ok */
1153 } else if (bufx->b_resid != 0) {
1154 atomic_set_int(&bufx->b_flags, B_ERROR);
1155 bp->b_error = EINVAL; /* race ok */
1156 } else {
1157 atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1161 * Remove us from the chain.
1163 spin_lock(&swapbp_spin);
1164 nextp = &nbio->bio_caller_info1.cluster_head;
1165 while (*nextp != bufx) {
1166 KKASSERT(*nextp != NULL);
1167 nextp = &(*nextp)->b_cluster_next;
1169 *nextp = bufx->b_cluster_next;
1170 chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1171 spin_unlock(&swapbp_spin);
1174 * Clean up bufx. If the chain is now empty we finish out
1175 * the parent. Note that we may be racing other completions
1176 * so we must use the chain_empty status from above.
1178 if (chain_empty) {
1179 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1180 atomic_set_int(&bp->b_flags, B_ERROR);
1181 bp->b_error = EINVAL;
1183 biodone_chain(nbio);
1185 relpbuf(bufx, NULL);
1189 * SWAP_PAGER_GETPAGES() - bring page in from swap
1191 * The requested page may have to be brought in from swap. Calculate the
1192 * swap block and bring in additional pages if possible. All pages must
1193 * have contiguous swap block assignments and reside in the same object.
1195 * The caller has a single vm_object_pip_add() reference prior to
1196 * calling us and we should return with the same.
1198 * The caller has BUSY'd the page. We should return with (*mpp) left busy,
1199 * and any additinal pages unbusied.
1201 * If the caller encounters a PG_RAM page it will pass it to us even though
1202 * it may be valid and dirty. We cannot overwrite the page in this case!
1203 * The case is used to allow us to issue pure read-aheads.
1205 * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1206 * the PG_RAM page is validated at the same time as mreq. What we
1207 * really need to do is issue a separate read-ahead pbuf.
1209 * No requirements.
1211 static int
1212 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1214 struct buf *bp;
1215 struct bio *bio;
1216 vm_page_t mreq;
1217 vm_page_t m;
1218 vm_offset_t kva;
1219 swblk_t blk;
1220 int i;
1221 int j;
1222 int raonly;
1223 int error;
1224 u_int32_t flags;
1225 vm_page_t marray[XIO_INTERNAL_PAGES];
1227 mreq = *mpp;
1229 vm_object_hold(object);
1230 if (mreq->object != object) {
1231 panic("swap_pager_getpages: object mismatch %p/%p",
1232 object,
1233 mreq->object
1238 * We don't want to overwrite a fully valid page as it might be
1239 * dirty. This case can occur when e.g. vm_fault hits a perfectly
1240 * valid page with PG_RAM set.
1242 * In this case we see if the next page is a suitable page-in
1243 * candidate and if it is we issue read-ahead. PG_RAM will be
1244 * set on the last page of the read-ahead to continue the pipeline.
1246 if (mreq->valid == VM_PAGE_BITS_ALL) {
1247 if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1248 vm_object_drop(object);
1249 return(VM_PAGER_OK);
1251 blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1252 if (blk == SWAPBLK_NONE) {
1253 vm_object_drop(object);
1254 return(VM_PAGER_OK);
1256 m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1257 TRUE, &error);
1258 if (error) {
1259 vm_object_drop(object);
1260 return(VM_PAGER_OK);
1261 } else if (m == NULL) {
1263 * Use VM_ALLOC_QUICK to avoid blocking on cache
1264 * page reuse.
1266 m = vm_page_alloc(object, mreq->pindex + 1,
1267 VM_ALLOC_QUICK);
1268 if (m == NULL) {
1269 vm_object_drop(object);
1270 return(VM_PAGER_OK);
1272 } else {
1273 if (m->valid) {
1274 vm_page_wakeup(m);
1275 vm_object_drop(object);
1276 return(VM_PAGER_OK);
1278 vm_page_unqueue_nowakeup(m);
1280 /* page is busy */
1281 mreq = m;
1282 raonly = 1;
1283 } else {
1284 raonly = 0;
1288 * Try to block-read contiguous pages from swap if sequential,
1289 * otherwise just read one page. Contiguous pages from swap must
1290 * reside within a single device stripe because the I/O cannot be
1291 * broken up across multiple stripes.
1293 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1294 * set up such that the case(s) are handled implicitly.
1296 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1297 marray[0] = mreq;
1299 for (i = 1; swap_burst_read &&
1300 i < XIO_INTERNAL_PAGES &&
1301 mreq->pindex + i < object->size; ++i) {
1302 swblk_t iblk;
1304 iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1305 if (iblk != blk + i)
1306 break;
1307 if ((blk ^ iblk) & dmmax_mask)
1308 break;
1309 m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1310 TRUE, &error);
1311 if (error) {
1312 break;
1313 } else if (m == NULL) {
1315 * Use VM_ALLOC_QUICK to avoid blocking on cache
1316 * page reuse.
1318 m = vm_page_alloc(object, mreq->pindex + i,
1319 VM_ALLOC_QUICK);
1320 if (m == NULL)
1321 break;
1322 } else {
1323 if (m->valid) {
1324 vm_page_wakeup(m);
1325 break;
1327 vm_page_unqueue_nowakeup(m);
1329 /* page is busy */
1330 marray[i] = m;
1332 if (i > 1)
1333 vm_page_flag_set(marray[i - 1], PG_RAM);
1336 * If mreq is the requested page and we have nothing to do return
1337 * VM_PAGER_FAIL. If raonly is set mreq is just another read-ahead
1338 * page and must be cleaned up.
1340 if (blk == SWAPBLK_NONE) {
1341 KKASSERT(i == 1);
1342 if (raonly) {
1343 vnode_pager_freepage(mreq);
1344 vm_object_drop(object);
1345 return(VM_PAGER_OK);
1346 } else {
1347 vm_object_drop(object);
1348 return(VM_PAGER_FAIL);
1353 * map our page(s) into kva for input
1355 bp = getpbuf_kva(&nsw_rcount);
1356 bio = &bp->b_bio1;
1357 kva = (vm_offset_t) bp->b_kvabase;
1358 bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1359 pmap_qenter(kva, bp->b_xio.xio_pages, i);
1361 bp->b_data = (caddr_t)kva;
1362 bp->b_bcount = PAGE_SIZE * i;
1363 bp->b_xio.xio_npages = i;
1364 bio->bio_done = swp_pager_async_iodone;
1365 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1366 bio->bio_caller_info1.index = SWBIO_READ;
1369 * Set index. If raonly set the index beyond the array so all
1370 * the pages are treated the same, otherwise the original mreq is
1371 * at index 0.
1373 if (raonly)
1374 bio->bio_driver_info = (void *)(intptr_t)i;
1375 else
1376 bio->bio_driver_info = (void *)(intptr_t)0;
1378 for (j = 0; j < i; ++j)
1379 vm_page_flag_set(bp->b_xio.xio_pages[j], PG_SWAPINPROG);
1381 mycpu->gd_cnt.v_swapin++;
1382 mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1385 * We still hold the lock on mreq, and our automatic completion routine
1386 * does not remove it.
1388 vm_object_pip_add(object, bp->b_xio.xio_npages);
1391 * perform the I/O. NOTE!!! bp cannot be considered valid after
1392 * this point because we automatically release it on completion.
1393 * Instead, we look at the one page we are interested in which we
1394 * still hold a lock on even through the I/O completion.
1396 * The other pages in our m[] array are also released on completion,
1397 * so we cannot assume they are valid anymore either.
1399 bp->b_cmd = BUF_CMD_READ;
1400 BUF_KERNPROC(bp);
1401 vn_strategy(swapdev_vp, bio);
1404 * Wait for the page we want to complete. PG_SWAPINPROG is always
1405 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE
1406 * is set in the meta-data.
1408 * If this is a read-ahead only we return immediately without
1409 * waiting for I/O.
1411 if (raonly) {
1412 vm_object_drop(object);
1413 return(VM_PAGER_OK);
1417 * Read-ahead includes originally requested page case.
1419 for (;;) {
1420 flags = mreq->flags;
1421 cpu_ccfence();
1422 if ((flags & PG_SWAPINPROG) == 0)
1423 break;
1424 tsleep_interlock(mreq, 0);
1425 if (!atomic_cmpset_int(&mreq->flags, flags,
1426 flags | PG_WANTED | PG_REFERENCED)) {
1427 continue;
1429 mycpu->gd_cnt.v_intrans++;
1430 if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1431 kprintf(
1432 "swap_pager: indefinite wait buffer: "
1433 " bp %p offset: %lld, size: %ld\n",
1435 (long long)bio->bio_offset,
1436 (long)bp->b_bcount
1442 * mreq is left bussied after completion, but all the other pages
1443 * are freed. If we had an unrecoverable read error the page will
1444 * not be valid.
1446 vm_object_drop(object);
1447 if (mreq->valid != VM_PAGE_BITS_ALL)
1448 return(VM_PAGER_ERROR);
1449 else
1450 return(VM_PAGER_OK);
1453 * A final note: in a low swap situation, we cannot deallocate swap
1454 * and mark a page dirty here because the caller is likely to mark
1455 * the page clean when we return, causing the page to possibly revert
1456 * to all-zero's later.
1461 * swap_pager_putpages:
1463 * Assign swap (if necessary) and initiate I/O on the specified pages.
1465 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects
1466 * are automatically converted to SWAP objects.
1468 * In a low memory situation we may block in vn_strategy(), but the new
1469 * vm_page reservation system coupled with properly written VFS devices
1470 * should ensure that no low-memory deadlock occurs. This is an area
1471 * which needs work.
1473 * The parent has N vm_object_pip_add() references prior to
1474 * calling us and will remove references for rtvals[] that are
1475 * not set to VM_PAGER_PEND. We need to remove the rest on I/O
1476 * completion.
1478 * The parent has soft-busy'd the pages it passes us and will unbusy
1479 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1480 * We need to unbusy the rest on I/O completion.
1482 * No requirements.
1484 void
1485 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1486 int sync, int *rtvals)
1488 int i;
1489 int n = 0;
1491 vm_object_hold(object);
1493 if (count && m[0]->object != object) {
1494 panic("swap_pager_getpages: object mismatch %p/%p",
1495 object,
1496 m[0]->object
1501 * Step 1
1503 * Turn object into OBJT_SWAP
1504 * check for bogus sysops
1505 * force sync if not pageout process
1507 if (object->type == OBJT_DEFAULT) {
1508 if (object->type == OBJT_DEFAULT)
1509 swp_pager_meta_convert(object);
1512 if (curthread != pagethread)
1513 sync = TRUE;
1516 * Step 2
1518 * Update nsw parameters from swap_async_max sysctl values.
1519 * Do not let the sysop crash the machine with bogus numbers.
1521 if (swap_async_max != nsw_wcount_async_max) {
1522 int n;
1525 * limit range
1527 if ((n = swap_async_max) > nswbuf_kva / 2)
1528 n = nswbuf_kva / 2;
1529 if (n < 1)
1530 n = 1;
1531 swap_async_max = n;
1534 * Adjust difference ( if possible ). If the current async
1535 * count is too low, we may not be able to make the adjustment
1536 * at this time.
1538 * vm_token needed for nsw_wcount sleep interlock
1540 lwkt_gettoken(&vm_token);
1541 n -= nsw_wcount_async_max;
1542 if (nsw_wcount_async + n >= 0) {
1543 nsw_wcount_async_max += n;
1544 pbuf_adjcount(&nsw_wcount_async, n);
1546 lwkt_reltoken(&vm_token);
1550 * Step 3
1552 * Assign swap blocks and issue I/O. We reallocate swap on the fly.
1553 * The page is left dirty until the pageout operation completes
1554 * successfully.
1557 for (i = 0; i < count; i += n) {
1558 struct buf *bp;
1559 struct bio *bio;
1560 swblk_t blk;
1561 int j;
1564 * Maximum I/O size is limited by a number of factors.
1567 n = min(BLIST_MAX_ALLOC, count - i);
1568 n = min(n, nsw_cluster_max);
1570 lwkt_gettoken(&vm_token);
1573 * Get biggest block of swap we can. If we fail, fall
1574 * back and try to allocate a smaller block. Don't go
1575 * overboard trying to allocate space if it would overly
1576 * fragment swap.
1578 while (
1579 (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1580 n > 4
1582 n >>= 1;
1584 if (blk == SWAPBLK_NONE) {
1585 for (j = 0; j < n; ++j)
1586 rtvals[i+j] = VM_PAGER_FAIL;
1587 lwkt_reltoken(&vm_token);
1588 continue;
1590 if (vm_report_swap_allocs > 0) {
1591 kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1592 --vm_report_swap_allocs;
1596 * The I/O we are constructing cannot cross a physical
1597 * disk boundry in the swap stripe. Note: we are still
1598 * at splvm().
1600 if ((blk ^ (blk + n)) & dmmax_mask) {
1601 j = ((blk + dmmax) & dmmax_mask) - blk;
1602 swp_pager_freeswapspace(object, blk + j, n - j);
1603 n = j;
1607 * All I/O parameters have been satisfied, build the I/O
1608 * request and assign the swap space.
1610 if (sync == TRUE)
1611 bp = getpbuf_kva(&nsw_wcount_sync);
1612 else
1613 bp = getpbuf_kva(&nsw_wcount_async);
1614 bio = &bp->b_bio1;
1616 lwkt_reltoken(&vm_token);
1618 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1620 bp->b_bcount = PAGE_SIZE * n;
1621 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1623 for (j = 0; j < n; ++j) {
1624 vm_page_t mreq = m[i+j];
1626 swp_pager_meta_build(mreq->object, mreq->pindex,
1627 blk + j);
1628 if (object->type == OBJT_SWAP)
1629 vm_page_dirty(mreq);
1630 rtvals[i+j] = VM_PAGER_OK;
1632 vm_page_flag_set(mreq, PG_SWAPINPROG);
1633 bp->b_xio.xio_pages[j] = mreq;
1635 bp->b_xio.xio_npages = n;
1637 mycpu->gd_cnt.v_swapout++;
1638 mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1640 bp->b_dirtyoff = 0; /* req'd for NFS */
1641 bp->b_dirtyend = bp->b_bcount; /* req'd for NFS */
1642 bp->b_cmd = BUF_CMD_WRITE;
1643 bio->bio_caller_info1.index = SWBIO_WRITE;
1646 * asynchronous
1648 if (sync == FALSE) {
1649 bio->bio_done = swp_pager_async_iodone;
1650 BUF_KERNPROC(bp);
1651 vn_strategy(swapdev_vp, bio);
1653 for (j = 0; j < n; ++j)
1654 rtvals[i+j] = VM_PAGER_PEND;
1655 continue;
1659 * Issue synchrnously.
1661 * Wait for the sync I/O to complete, then update rtvals.
1662 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1663 * our async completion routine at the end, thus avoiding a
1664 * double-free.
1666 bio->bio_caller_info1.index |= SWBIO_SYNC;
1667 bio->bio_done = biodone_sync;
1668 bio->bio_flags |= BIO_SYNC;
1669 vn_strategy(swapdev_vp, bio);
1670 biowait(bio, "swwrt");
1672 for (j = 0; j < n; ++j)
1673 rtvals[i+j] = VM_PAGER_PEND;
1676 * Now that we are through with the bp, we can call the
1677 * normal async completion, which frees everything up.
1679 swp_pager_async_iodone(bio);
1681 vm_object_drop(object);
1685 * No requirements.
1687 * Recalculate the low and high-water marks.
1689 void
1690 swap_pager_newswap(void)
1692 if (vm_swap_max) {
1693 nswap_lowat = vm_swap_max * 4 / 100; /* 4% left */
1694 nswap_hiwat = vm_swap_max * 6 / 100; /* 6% left */
1695 kprintf("swap low/high-water marks set to %d/%d\n",
1696 nswap_lowat, nswap_hiwat);
1697 } else {
1698 nswap_lowat = 128;
1699 nswap_hiwat = 512;
1701 swp_sizecheck();
1705 * swp_pager_async_iodone:
1707 * Completion routine for asynchronous reads and writes from/to swap.
1708 * Also called manually by synchronous code to finish up a bp.
1710 * For READ operations, the pages are PG_BUSY'd. For WRITE operations,
1711 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY
1712 * unbusy all pages except the 'main' request page. For WRITE
1713 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1714 * because we marked them all VM_PAGER_PEND on return from putpages ).
1716 * This routine may not block.
1718 * No requirements.
1720 static void
1721 swp_pager_async_iodone(struct bio *bio)
1723 struct buf *bp = bio->bio_buf;
1724 vm_object_t object = NULL;
1725 int i;
1726 int *nswptr;
1729 * report error
1731 if (bp->b_flags & B_ERROR) {
1732 kprintf(
1733 "swap_pager: I/O error - %s failed; offset %lld,"
1734 "size %ld, error %d\n",
1735 ((bio->bio_caller_info1.index & SWBIO_READ) ?
1736 "pagein" : "pageout"),
1737 (long long)bio->bio_offset,
1738 (long)bp->b_bcount,
1739 bp->b_error
1744 * set object, raise to splvm().
1746 if (bp->b_xio.xio_npages)
1747 object = bp->b_xio.xio_pages[0]->object;
1750 * remove the mapping for kernel virtual
1752 pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1755 * cleanup pages. If an error occurs writing to swap, we are in
1756 * very serious trouble. If it happens to be a disk error, though,
1757 * we may be able to recover by reassigning the swap later on. So
1758 * in this case we remove the m->swapblk assignment for the page
1759 * but do not free it in the rlist. The errornous block(s) are thus
1760 * never reallocated as swap. Redirty the page and continue.
1762 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1763 vm_page_t m = bp->b_xio.xio_pages[i];
1765 if (bp->b_flags & B_ERROR) {
1767 * If an error occurs I'd love to throw the swapblk
1768 * away without freeing it back to swapspace, so it
1769 * can never be used again. But I can't from an
1770 * interrupt.
1773 if (bio->bio_caller_info1.index & SWBIO_READ) {
1775 * When reading, reqpage needs to stay
1776 * locked for the parent, but all other
1777 * pages can be freed. We still want to
1778 * wakeup the parent waiting on the page,
1779 * though. ( also: pg_reqpage can be -1 and
1780 * not match anything ).
1782 * We have to wake specifically requested pages
1783 * up too because we cleared PG_SWAPINPROG and
1784 * someone may be waiting for that.
1786 * NOTE: for reads, m->dirty will probably
1787 * be overridden by the original caller of
1788 * getpages so don't play cute tricks here.
1790 * NOTE: We can't actually free the page from
1791 * here, because this is an interrupt. It
1792 * is not legal to mess with object->memq
1793 * from an interrupt. Deactivate the page
1794 * instead.
1797 m->valid = 0;
1798 vm_page_flag_clear(m, PG_SWAPINPROG);
1801 * bio_driver_info holds the requested page
1802 * index.
1804 if (i != (int)(intptr_t)bio->bio_driver_info) {
1805 vm_page_deactivate(m);
1806 vm_page_wakeup(m);
1807 } else {
1808 vm_page_flash(m);
1811 * If i == bp->b_pager.pg_reqpage, do not wake
1812 * the page up. The caller needs to.
1814 } else {
1816 * If a write error occurs remove the swap
1817 * assignment (note that PG_SWAPPED may or
1818 * may not be set depending on prior activity).
1820 * Re-dirty OBJT_SWAP pages as there is no
1821 * other backing store, we can't throw the
1822 * page away.
1824 * Non-OBJT_SWAP pages (aka swapcache) must
1825 * not be dirtied since they may not have
1826 * been dirty in the first place, and they
1827 * do have backing store (the vnode).
1829 vm_page_busy_wait(m, FALSE, "swadpg");
1830 swp_pager_meta_ctl(m->object, m->pindex,
1831 SWM_FREE);
1832 vm_page_flag_clear(m, PG_SWAPPED);
1833 if (m->object->type == OBJT_SWAP) {
1834 vm_page_dirty(m);
1835 vm_page_activate(m);
1837 vm_page_flag_clear(m, PG_SWAPINPROG);
1838 vm_page_io_finish(m);
1839 vm_page_wakeup(m);
1841 } else if (bio->bio_caller_info1.index & SWBIO_READ) {
1843 * NOTE: for reads, m->dirty will probably be
1844 * overridden by the original caller of getpages so
1845 * we cannot set them in order to free the underlying
1846 * swap in a low-swap situation. I don't think we'd
1847 * want to do that anyway, but it was an optimization
1848 * that existed in the old swapper for a time before
1849 * it got ripped out due to precisely this problem.
1851 * If not the requested page then deactivate it.
1853 * Note that the requested page, reqpage, is left
1854 * busied, but we still have to wake it up. The
1855 * other pages are released (unbusied) by
1856 * vm_page_wakeup(). We do not set reqpage's
1857 * valid bits here, it is up to the caller.
1861 * NOTE: can't call pmap_clear_modify(m) from an
1862 * interrupt thread, the pmap code may have to map
1863 * non-kernel pmaps and currently asserts the case.
1865 /*pmap_clear_modify(m);*/
1866 m->valid = VM_PAGE_BITS_ALL;
1867 vm_page_undirty(m);
1868 vm_page_flag_clear(m, PG_SWAPINPROG);
1869 vm_page_flag_set(m, PG_SWAPPED);
1872 * We have to wake specifically requested pages
1873 * up too because we cleared PG_SWAPINPROG and
1874 * could be waiting for it in getpages. However,
1875 * be sure to not unbusy getpages specifically
1876 * requested page - getpages expects it to be
1877 * left busy.
1879 * bio_driver_info holds the requested page
1881 if (i != (int)(intptr_t)bio->bio_driver_info) {
1882 vm_page_deactivate(m);
1883 vm_page_wakeup(m);
1884 } else {
1885 vm_page_flash(m);
1887 } else {
1889 * Mark the page clean but do not mess with the
1890 * pmap-layer's modified state. That state should
1891 * also be clear since the caller protected the
1892 * page VM_PROT_READ, but allow the case.
1894 * We are in an interrupt, avoid pmap operations.
1896 * If we have a severe page deficit, deactivate the
1897 * page. Do not try to cache it (which would also
1898 * involve a pmap op), because the page might still
1899 * be read-heavy.
1901 * When using the swap to cache clean vnode pages
1902 * we do not mess with the page dirty bits.
1904 vm_page_busy_wait(m, FALSE, "swadpg");
1905 if (m->object->type == OBJT_SWAP)
1906 vm_page_undirty(m);
1907 vm_page_flag_clear(m, PG_SWAPINPROG);
1908 vm_page_flag_set(m, PG_SWAPPED);
1909 if (vm_page_count_severe())
1910 vm_page_deactivate(m);
1911 #if 0
1912 if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1913 vm_page_protect(m, VM_PROT_READ);
1914 #endif
1915 vm_page_io_finish(m);
1916 vm_page_wakeup(m);
1921 * adjust pip. NOTE: the original parent may still have its own
1922 * pip refs on the object.
1925 if (object)
1926 vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
1929 * Release the physical I/O buffer.
1931 * NOTE: Due to synchronous operations in the write case b_cmd may
1932 * already be set to BUF_CMD_DONE and BIO_SYNC may have already
1933 * been cleared.
1935 * Use vm_token to interlock nsw_rcount/wcount wakeup?
1937 lwkt_gettoken(&vm_token);
1938 if (bio->bio_caller_info1.index & SWBIO_READ)
1939 nswptr = &nsw_rcount;
1940 else if (bio->bio_caller_info1.index & SWBIO_SYNC)
1941 nswptr = &nsw_wcount_sync;
1942 else
1943 nswptr = &nsw_wcount_async;
1944 bp->b_cmd = BUF_CMD_DONE;
1945 relpbuf(bp, nswptr);
1946 lwkt_reltoken(&vm_token);
1950 * Fault-in a potentially swapped page and remove the swap reference.
1951 * (used by swapoff code)
1953 * object must be held.
1955 static __inline void
1956 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
1958 struct vnode *vp;
1959 vm_page_t m;
1960 int error;
1962 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1964 if (object->type == OBJT_VNODE) {
1966 * Any swap related to a vnode is due to swapcache. We must
1967 * vget() the vnode in case it is not active (otherwise
1968 * vref() will panic). Calling vm_object_page_remove() will
1969 * ensure that any swap ref is removed interlocked with the
1970 * page. clean_only is set to TRUE so we don't throw away
1971 * dirty pages.
1973 vp = object->handle;
1974 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
1975 if (error == 0) {
1976 vm_object_page_remove(object, pindex, pindex + 1, TRUE);
1977 vput(vp);
1979 } else {
1981 * Otherwise it is a normal OBJT_SWAP object and we can
1982 * fault the page in and remove the swap.
1984 m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
1985 VM_PROT_NONE,
1986 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
1987 sharedp, &error);
1988 if (m)
1989 vm_page_unhold(m);
1994 * This removes all swap blocks related to a particular device. We have
1995 * to be careful of ripups during the scan.
1997 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
2000 swap_pager_swapoff(int devidx)
2002 struct swswapoffinfo info;
2003 struct vm_object marker;
2004 vm_object_t object;
2005 int n;
2007 bzero(&marker, sizeof(marker));
2008 marker.type = OBJT_MARKER;
2010 for (n = 0; n < VMOBJ_HSIZE; ++n) {
2011 lwkt_gettoken(&vmobj_tokens[n]);
2012 TAILQ_INSERT_HEAD(&vm_object_lists[n], &marker, object_list);
2014 while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) {
2015 if (object->type == OBJT_MARKER)
2016 goto skip;
2017 if (object->type != OBJT_SWAP &&
2018 object->type != OBJT_VNODE)
2019 goto skip;
2020 vm_object_hold(object);
2021 if (object->type != OBJT_SWAP &&
2022 object->type != OBJT_VNODE) {
2023 vm_object_drop(object);
2024 goto skip;
2026 info.object = object;
2027 info.shared = 0;
2028 info.devidx = devidx;
2029 swblock_rb_tree_RB_SCAN(&object->swblock_root,
2030 NULL, swp_pager_swapoff_callback,
2031 &info);
2032 vm_object_drop(object);
2033 skip:
2034 if (object == TAILQ_NEXT(&marker, object_list)) {
2035 TAILQ_REMOVE(&vm_object_lists[n],
2036 &marker, object_list);
2037 TAILQ_INSERT_AFTER(&vm_object_lists[n], object,
2038 &marker, object_list);
2041 TAILQ_REMOVE(&vm_object_lists[n], &marker, object_list);
2042 lwkt_reltoken(&vmobj_tokens[n]);
2046 * If we fail to locate all swblocks we just fail gracefully and
2047 * do not bother to restore paging on the swap device. If the
2048 * user wants to retry the user can retry.
2050 if (swdevt[devidx].sw_nused)
2051 return (1);
2052 else
2053 return (0);
2056 static
2058 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2060 struct swswapoffinfo *info = data;
2061 vm_object_t object = info->object;
2062 vm_pindex_t index;
2063 swblk_t v;
2064 int i;
2066 index = swap->swb_index;
2067 for (i = 0; i < SWAP_META_PAGES; ++i) {
2069 * Make sure we don't race a dying object. This will
2070 * kill the scan of the object's swap blocks entirely.
2072 if (object->flags & OBJ_DEAD)
2073 return(-1);
2076 * Fault the page, which can obviously block. If the swap
2077 * structure disappears break out.
2079 v = swap->swb_pages[i];
2080 if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2081 swp_pager_fault_page(object, &info->shared,
2082 swap->swb_index + i);
2083 /* swap ptr might go away */
2084 if (RB_LOOKUP(swblock_rb_tree,
2085 &object->swblock_root, index) != swap) {
2086 break;
2090 return(0);
2093 /************************************************************************
2094 * SWAP META DATA *
2095 ************************************************************************
2097 * These routines manipulate the swap metadata stored in the
2098 * OBJT_SWAP object. All swp_*() routines must be called at
2099 * splvm() because swap can be freed up by the low level vm_page
2100 * code which might be called from interrupts beyond what splbio() covers.
2102 * Swap metadata is implemented with a global hash and not directly
2103 * linked into the object. Instead the object simply contains
2104 * appropriate tracking counters.
2108 * Lookup the swblock containing the specified swap block index.
2110 * The caller must hold the object.
2112 static __inline
2113 struct swblock *
2114 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2116 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2117 index &= ~(vm_pindex_t)SWAP_META_MASK;
2118 return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2122 * Remove a swblock from the RB tree.
2124 * The caller must hold the object.
2126 static __inline
2127 void
2128 swp_pager_remove(vm_object_t object, struct swblock *swap)
2130 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2131 RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2135 * Convert default object to swap object if necessary
2137 * The caller must hold the object.
2139 static void
2140 swp_pager_meta_convert(vm_object_t object)
2142 if (object->type == OBJT_DEFAULT) {
2143 object->type = OBJT_SWAP;
2144 KKASSERT(object->swblock_count == 0);
2149 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object
2151 * We first convert the object to a swap object if it is a default
2152 * object. Vnode objects do not need to be converted.
2154 * The specified swapblk is added to the object's swap metadata. If
2155 * the swapblk is not valid, it is freed instead. Any previously
2156 * assigned swapblk is freed.
2158 * The caller must hold the object.
2160 static void
2161 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2163 struct swblock *swap;
2164 struct swblock *oswap;
2165 vm_pindex_t v;
2167 KKASSERT(swapblk != SWAPBLK_NONE);
2168 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2171 * Convert object if necessary
2173 if (object->type == OBJT_DEFAULT)
2174 swp_pager_meta_convert(object);
2177 * Locate swblock. If not found create, but if we aren't adding
2178 * anything just return. If we run out of space in the map we wait
2179 * and, since the hash table may have changed, retry.
2181 retry:
2182 swap = swp_pager_lookup(object, index);
2184 if (swap == NULL) {
2185 int i;
2187 swap = zalloc(swap_zone);
2188 if (swap == NULL) {
2189 vm_wait(0);
2190 goto retry;
2192 swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2193 swap->swb_count = 0;
2195 ++object->swblock_count;
2197 for (i = 0; i < SWAP_META_PAGES; ++i)
2198 swap->swb_pages[i] = SWAPBLK_NONE;
2199 oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2200 KKASSERT(oswap == NULL);
2204 * Delete prior contents of metadata.
2206 * NOTE: Decrement swb_count after the freeing operation (which
2207 * might block) to prevent racing destruction of the swblock.
2209 index &= SWAP_META_MASK;
2211 while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2212 swap->swb_pages[index] = SWAPBLK_NONE;
2213 /* can block */
2214 swp_pager_freeswapspace(object, v, 1);
2215 --swap->swb_count;
2216 --mycpu->gd_vmtotal.t_vm;
2220 * Enter block into metadata
2222 swap->swb_pages[index] = swapblk;
2223 if (swapblk != SWAPBLK_NONE) {
2224 ++swap->swb_count;
2225 ++mycpu->gd_vmtotal.t_vm;
2230 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2232 * The requested range of blocks is freed, with any associated swap
2233 * returned to the swap bitmap.
2235 * This routine will free swap metadata structures as they are cleaned
2236 * out. This routine does *NOT* operate on swap metadata associated
2237 * with resident pages.
2239 * The caller must hold the object.
2241 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2243 static void
2244 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2246 struct swfreeinfo info;
2248 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2251 * Nothing to do
2253 if (object->swblock_count == 0) {
2254 KKASSERT(RB_EMPTY(&object->swblock_root));
2255 return;
2257 if (count == 0)
2258 return;
2261 * Setup for RB tree scan. Note that the pindex range can be huge
2262 * due to the 64 bit page index space so we cannot safely iterate.
2264 info.object = object;
2265 info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2266 info.begi = index;
2267 info.endi = index + count - 1;
2268 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2269 swp_pager_meta_free_callback, &info);
2273 * The caller must hold the object.
2275 static
2277 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2279 struct swfreeinfo *info = data;
2280 vm_object_t object = info->object;
2281 int index;
2282 int eindex;
2285 * Figure out the range within the swblock. The wider scan may
2286 * return edge-case swap blocks when the start and/or end points
2287 * are in the middle of a block.
2289 if (swap->swb_index < info->begi)
2290 index = (int)info->begi & SWAP_META_MASK;
2291 else
2292 index = 0;
2294 if (swap->swb_index + SWAP_META_PAGES > info->endi)
2295 eindex = (int)info->endi & SWAP_META_MASK;
2296 else
2297 eindex = SWAP_META_MASK;
2300 * Scan and free the blocks. The loop terminates early
2301 * if (swap) runs out of blocks and could be freed.
2303 * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2304 * to deal with a zfree race.
2306 while (index <= eindex) {
2307 swblk_t v = swap->swb_pages[index];
2309 if (v != SWAPBLK_NONE) {
2310 swap->swb_pages[index] = SWAPBLK_NONE;
2311 /* can block */
2312 swp_pager_freeswapspace(object, v, 1);
2313 --mycpu->gd_vmtotal.t_vm;
2314 if (--swap->swb_count == 0) {
2315 swp_pager_remove(object, swap);
2316 zfree(swap_zone, swap);
2317 --object->swblock_count;
2318 break;
2321 ++index;
2324 /* swap may be invalid here due to zfree above */
2325 lwkt_yield();
2327 return(0);
2331 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2333 * This routine locates and destroys all swap metadata associated with
2334 * an object.
2336 * NOTE: Decrement swb_count after the freeing operation (which
2337 * might block) to prevent racing destruction of the swblock.
2339 * The caller must hold the object.
2341 static void
2342 swp_pager_meta_free_all(vm_object_t object)
2344 struct swblock *swap;
2345 int i;
2347 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2349 while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2350 swp_pager_remove(object, swap);
2351 for (i = 0; i < SWAP_META_PAGES; ++i) {
2352 swblk_t v = swap->swb_pages[i];
2353 if (v != SWAPBLK_NONE) {
2354 /* can block */
2355 swp_pager_freeswapspace(object, v, 1);
2356 --swap->swb_count;
2357 --mycpu->gd_vmtotal.t_vm;
2360 if (swap->swb_count != 0)
2361 panic("swap_pager_meta_free_all: swb_count != 0");
2362 zfree(swap_zone, swap);
2363 --object->swblock_count;
2364 lwkt_yield();
2366 KKASSERT(object->swblock_count == 0);
2370 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data.
2372 * This routine is capable of looking up, popping, or freeing
2373 * swapblk assignments in the swap meta data or in the vm_page_t.
2374 * The routine typically returns the swapblk being looked-up, or popped,
2375 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2376 * was invalid. This routine will automatically free any invalid
2377 * meta-data swapblks.
2379 * It is not possible to store invalid swapblks in the swap meta data
2380 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2382 * When acting on a busy resident page and paging is in progress, we
2383 * have to wait until paging is complete but otherwise can act on the
2384 * busy page.
2386 * SWM_FREE remove and free swap block from metadata
2387 * SWM_POP remove from meta data but do not free.. pop it out
2389 * The caller must hold the object.
2391 static swblk_t
2392 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2394 struct swblock *swap;
2395 swblk_t r1;
2397 if (object->swblock_count == 0)
2398 return(SWAPBLK_NONE);
2400 r1 = SWAPBLK_NONE;
2401 swap = swp_pager_lookup(object, index);
2403 if (swap != NULL) {
2404 index &= SWAP_META_MASK;
2405 r1 = swap->swb_pages[index];
2407 if (r1 != SWAPBLK_NONE) {
2408 if (flags & (SWM_FREE|SWM_POP)) {
2409 swap->swb_pages[index] = SWAPBLK_NONE;
2410 --mycpu->gd_vmtotal.t_vm;
2411 if (--swap->swb_count == 0) {
2412 swp_pager_remove(object, swap);
2413 zfree(swap_zone, swap);
2414 --object->swblock_count;
2417 /* swap ptr may be invalid */
2418 if (flags & SWM_FREE) {
2419 swp_pager_freeswapspace(object, r1, 1);
2420 r1 = SWAPBLK_NONE;
2423 /* swap ptr may be invalid */
2425 return(r1);