kernel - Tag vm_map_entry structure, slight optimization to zalloc, misc.
[dragonfly.git] / sys / platform / vkernel64 / platform / pmap.c
blobf2df3b6409975fef95ded970c5a8be31b0f18eec
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1991 Regents of the University of California.
5 * Copyright (c) 1994 John S. Dyson
6 * Copyright (c) 1994 David Greenman
7 * Copyright (c) 2003 Peter Wemm
8 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
9 * Copyright (c) 2008, 2009 The DragonFly Project.
10 * Copyright (c) 2008, 2009 Jordan Gordeev.
11 * All rights reserved.
13 * This code is derived from software contributed to Berkeley by
14 * the Systems Programming Group of the University of Utah Computer
15 * Science Department and William Jolitz of UUNET Technologies Inc.
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. All advertising materials mentioning features or use of this software
26 * must display the following acknowledgement:
27 * This product includes software developed by the University of
28 * California, Berkeley and its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 * may be used to endorse or promote products derived from this software
31 * without specific prior written permission.
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
45 * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
46 * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
50 * Manages physical address maps.
53 #if JG
54 #include "opt_pmap.h"
55 #endif
56 #include "opt_msgbuf.h"
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/kernel.h>
61 #include <sys/proc.h>
62 #include <sys/msgbuf.h>
63 #include <sys/vmmeter.h>
64 #include <sys/mman.h>
65 #include <sys/vmspace.h>
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/sysctl.h>
70 #include <sys/lock.h>
71 #include <vm/vm_kern.h>
72 #include <vm/vm_page.h>
73 #include <vm/vm_map.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_pageout.h>
77 #include <vm/vm_pager.h>
78 #include <vm/vm_zone.h>
80 #include <sys/user.h>
81 #include <sys/thread2.h>
82 #include <sys/sysref2.h>
83 #include <sys/spinlock2.h>
84 #include <vm/vm_page2.h>
86 #include <machine/cputypes.h>
87 #include <machine/md_var.h>
88 #include <machine/specialreg.h>
89 #include <machine/smp.h>
90 #include <machine/globaldata.h>
91 #include <machine/pmap.h>
92 #include <machine/pmap_inval.h>
94 #include <ddb/ddb.h>
96 #include <stdio.h>
97 #include <assert.h>
98 #include <stdlib.h>
99 #include <pthread.h>
101 #define PMAP_KEEP_PDIRS
102 #ifndef PMAP_SHPGPERPROC
103 #define PMAP_SHPGPERPROC 1000
104 #endif
106 #if defined(DIAGNOSTIC)
107 #define PMAP_DIAGNOSTIC
108 #endif
110 #define MINPV 2048
112 #if !defined(PMAP_DIAGNOSTIC)
113 #define PMAP_INLINE __inline
114 #else
115 #define PMAP_INLINE
116 #endif
119 * Get PDEs and PTEs for user/kernel address space
121 static pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va);
122 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
124 #define pmap_pde_v(pte) ((*(pd_entry_t *)pte & VPTE_V) != 0)
125 #define pmap_pte_w(pte) ((*(pt_entry_t *)pte & VPTE_WIRED) != 0)
126 #define pmap_pte_m(pte) ((*(pt_entry_t *)pte & VPTE_M) != 0)
127 #define pmap_pte_u(pte) ((*(pt_entry_t *)pte & VPTE_A) != 0)
128 #define pmap_pte_v(pte) ((*(pt_entry_t *)pte & VPTE_V) != 0)
131 * Given a map and a machine independent protection code,
132 * convert to a vax protection code.
134 #define pte_prot(m, p) \
135 (protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
136 static int protection_codes[8];
138 struct pmap kernel_pmap;
139 static TAILQ_HEAD(,pmap) pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
141 static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
143 static vm_object_t kptobj;
145 static int nkpt;
147 static uint64_t KPDphys; /* phys addr of kernel level 2 */
148 uint64_t KPDPphys; /* phys addr of kernel level 3 */
149 uint64_t KPML4phys; /* phys addr of kernel level 4 */
151 extern int vmm_enabled;
152 extern void *vkernel_stack;
155 * Data for the pv entry allocation mechanism
157 static vm_zone_t pvzone;
158 static struct vm_zone pvzone_store;
159 static struct vm_object pvzone_obj;
160 static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
161 static int pmap_pagedaemon_waken = 0;
162 static struct pv_entry *pvinit;
165 * All those kernel PT submaps that BSD is so fond of
167 pt_entry_t *CMAP1 = NULL, *ptmmap;
168 caddr_t CADDR1 = NULL;
169 static pt_entry_t *msgbufmap;
171 uint64_t KPTphys;
173 static PMAP_INLINE void free_pv_entry (pv_entry_t pv);
174 static pv_entry_t get_pv_entry (void);
175 static void i386_protection_init (void);
176 static __inline void pmap_clearbit (vm_page_t m, int bit);
178 static void pmap_remove_all (vm_page_t m);
179 static int pmap_remove_pte (struct pmap *pmap, pt_entry_t *ptq,
180 vm_offset_t sva);
181 static void pmap_remove_page (struct pmap *pmap, vm_offset_t va);
182 static int pmap_remove_entry (struct pmap *pmap, vm_page_t m,
183 vm_offset_t va);
184 static boolean_t pmap_testbit (vm_page_t m, int bit);
185 static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
186 vm_page_t mpte, vm_page_t m);
188 static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);
190 static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
191 static vm_page_t _pmap_allocpte (pmap_t pmap, vm_pindex_t ptepindex);
192 #if JGPMAP32
193 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
194 #endif
195 static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
196 static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t);
199 * pmap_pte_quick:
201 * Super fast pmap_pte routine best used when scanning the pv lists.
202 * This eliminates many course-grained invltlb calls. Note that many of
203 * the pv list scans are across different pmaps and it is very wasteful
204 * to do an entire invltlb when checking a single mapping.
206 * Should only be called while in a critical section.
208 #if JGPMAP32
209 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
211 static pt_entry_t *
212 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
214 return pmap_pte(pmap, va);
216 #endif
218 /* Return a non-clipped PD index for a given VA */
219 static __inline vm_pindex_t
220 pmap_pde_pindex(vm_offset_t va)
222 return va >> PDRSHIFT;
225 /* Return various clipped indexes for a given VA */
226 static __inline vm_pindex_t
227 pmap_pte_index(vm_offset_t va)
229 return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
232 static __inline vm_pindex_t
233 pmap_pde_index(vm_offset_t va)
235 return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
238 static __inline vm_pindex_t
239 pmap_pdpe_index(vm_offset_t va)
241 return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
244 static __inline vm_pindex_t
245 pmap_pml4e_index(vm_offset_t va)
247 return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
250 /* Return a pointer to the PML4 slot that corresponds to a VA */
251 static __inline pml4_entry_t *
252 pmap_pml4e(pmap_t pmap, vm_offset_t va)
254 return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
257 /* Return a pointer to the PDP slot that corresponds to a VA */
258 static __inline pdp_entry_t *
259 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
261 pdp_entry_t *pdpe;
263 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & VPTE_FRAME);
264 return (&pdpe[pmap_pdpe_index(va)]);
267 /* Return a pointer to the PDP slot that corresponds to a VA */
268 static __inline pdp_entry_t *
269 pmap_pdpe(pmap_t pmap, vm_offset_t va)
271 pml4_entry_t *pml4e;
273 pml4e = pmap_pml4e(pmap, va);
274 if ((*pml4e & VPTE_V) == 0)
275 return NULL;
276 return (pmap_pml4e_to_pdpe(pml4e, va));
279 /* Return a pointer to the PD slot that corresponds to a VA */
280 static __inline pd_entry_t *
281 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
283 pd_entry_t *pde;
285 pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & VPTE_FRAME);
286 return (&pde[pmap_pde_index(va)]);
289 /* Return a pointer to the PD slot that corresponds to a VA */
290 static __inline pd_entry_t *
291 pmap_pde(pmap_t pmap, vm_offset_t va)
293 pdp_entry_t *pdpe;
295 pdpe = pmap_pdpe(pmap, va);
296 if (pdpe == NULL || (*pdpe & VPTE_V) == 0)
297 return NULL;
298 return (pmap_pdpe_to_pde(pdpe, va));
301 /* Return a pointer to the PT slot that corresponds to a VA */
302 static __inline pt_entry_t *
303 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
305 pt_entry_t *pte;
307 pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & VPTE_FRAME);
308 return (&pte[pmap_pte_index(va)]);
311 /* Return a pointer to the PT slot that corresponds to a VA */
312 static __inline pt_entry_t *
313 pmap_pte(pmap_t pmap, vm_offset_t va)
315 pd_entry_t *pde;
317 pde = pmap_pde(pmap, va);
318 if (pde == NULL || (*pde & VPTE_V) == 0)
319 return NULL;
320 if ((*pde & VPTE_PS) != 0) /* compat with i386 pmap_pte() */
321 return ((pt_entry_t *)pde);
322 return (pmap_pde_to_pte(pde, va));
326 #if JGV
327 PMAP_INLINE pt_entry_t *
328 vtopte(vm_offset_t va)
330 uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
331 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
333 return (PTmap + ((va >> PAGE_SHIFT) & mask));
336 static __inline pd_entry_t *
337 vtopde(vm_offset_t va)
339 uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
340 NPML4EPGSHIFT)) - 1);
342 return (PDmap + ((va >> PDRSHIFT) & mask));
344 #else
345 static PMAP_INLINE pt_entry_t *
346 vtopte(vm_offset_t va)
348 pt_entry_t *x;
349 x = pmap_pte(&kernel_pmap, va);
350 assert(x != NULL);
351 return x;
354 static __inline pd_entry_t *
355 vtopde(vm_offset_t va)
357 pd_entry_t *x;
358 x = pmap_pde(&kernel_pmap, va);
359 assert(x != NULL);
360 return x;
362 #endif
364 static uint64_t
365 allocpages(vm_paddr_t *firstaddr, int n)
367 uint64_t ret;
369 ret = *firstaddr;
370 #if JGV
371 bzero((void *)ret, n * PAGE_SIZE);
372 #endif
373 *firstaddr += n * PAGE_SIZE;
374 return (ret);
377 static void
378 create_dmap_vmm(vm_paddr_t *firstaddr)
380 void *stack_addr;
381 int pml4_stack_index;
382 int pdp_stack_index;
383 int pd_stack_index;
384 long i,j;
385 int regs[4];
386 int amd_feature;
388 uint64_t KPDP_DMAP_phys = allocpages(firstaddr, NDMPML4E);
389 uint64_t KPDP_VSTACK_phys = allocpages(firstaddr, 1);
390 uint64_t KPD_VSTACK_phys = allocpages(firstaddr, 1);
392 pml4_entry_t *KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
393 pdp_entry_t *KPDP_DMAP_virt = (pdp_entry_t *)PHYS_TO_DMAP(KPDP_DMAP_phys);
394 pdp_entry_t *KPDP_VSTACK_virt = (pdp_entry_t *)PHYS_TO_DMAP(KPDP_VSTACK_phys);
395 pd_entry_t *KPD_VSTACK_virt = (pd_entry_t *)PHYS_TO_DMAP(KPD_VSTACK_phys);
397 bzero(KPDP_DMAP_virt, NDMPML4E * PAGE_SIZE);
398 bzero(KPDP_VSTACK_virt, 1 * PAGE_SIZE);
399 bzero(KPD_VSTACK_virt, 1 * PAGE_SIZE);
401 do_cpuid(0x80000001, regs);
402 amd_feature = regs[3];
404 /* Build the mappings for the first 512GB */
405 if (amd_feature & AMDID_PAGE1GB) {
406 /* In pages of 1 GB, if supported */
407 for (i = 0; i < NPDPEPG; i++) {
408 KPDP_DMAP_virt[i] = ((uint64_t)i << PDPSHIFT);
409 KPDP_DMAP_virt[i] |= VPTE_RW | VPTE_V | VPTE_PS | VPTE_U;
411 } else {
412 /* In page of 2MB, otherwise */
413 for (i = 0; i < NPDPEPG; i++) {
414 uint64_t KPD_DMAP_phys = allocpages(firstaddr, 1);
415 pd_entry_t *KPD_DMAP_virt = (pd_entry_t *)PHYS_TO_DMAP(KPD_DMAP_phys);
417 bzero(KPD_DMAP_virt, PAGE_SIZE);
419 KPDP_DMAP_virt[i] = KPD_DMAP_phys;
420 KPDP_DMAP_virt[i] |= VPTE_RW | VPTE_V | VPTE_U;
422 /* For each PD, we have to allocate NPTEPG PT */
423 for (j = 0; j < NPTEPG; j++) {
424 KPD_DMAP_virt[j] = (i << PDPSHIFT) | (j << PDRSHIFT);
425 KPD_DMAP_virt[j] |= VPTE_RW | VPTE_V | VPTE_PS | VPTE_U;
430 /* DMAP for the first 512G */
431 KPML4virt[0] = KPDP_DMAP_phys;
432 KPML4virt[0] |= VPTE_RW | VPTE_V | VPTE_U;
434 /* create a 2 MB map of the new stack */
435 pml4_stack_index = (uint64_t)&stack_addr >> PML4SHIFT;
436 KPML4virt[pml4_stack_index] = KPDP_VSTACK_phys;
437 KPML4virt[pml4_stack_index] |= VPTE_RW | VPTE_V | VPTE_U;
439 pdp_stack_index = ((uint64_t)&stack_addr & PML4MASK) >> PDPSHIFT;
440 KPDP_VSTACK_virt[pdp_stack_index] = KPD_VSTACK_phys;
441 KPDP_VSTACK_virt[pdp_stack_index] |= VPTE_RW | VPTE_V | VPTE_U;
443 pd_stack_index = ((uint64_t)&stack_addr & PDPMASK) >> PDRSHIFT;
444 KPD_VSTACK_virt[pd_stack_index] = (uint64_t) vkernel_stack;
445 KPD_VSTACK_virt[pd_stack_index] |= VPTE_RW | VPTE_V | VPTE_U | VPTE_PS;
448 static void
449 create_pagetables(vm_paddr_t *firstaddr, int64_t ptov_offset)
451 int i;
452 pml4_entry_t *KPML4virt;
453 pdp_entry_t *KPDPvirt;
454 pd_entry_t *KPDvirt;
455 pt_entry_t *KPTvirt;
456 int kpml4i = pmap_pml4e_index(ptov_offset);
457 int kpdpi = pmap_pdpe_index(ptov_offset);
458 int kpdi = pmap_pde_index(ptov_offset);
461 * Calculate NKPT - number of kernel page tables. We have to
462 * accomodoate prealloction of the vm_page_array, dump bitmap,
463 * MSGBUF_SIZE, and other stuff. Be generous.
465 * Maxmem is in pages.
467 nkpt = (Maxmem * (sizeof(struct vm_page) * 2) + MSGBUF_SIZE) / NBPDR;
469 * Allocate pages
471 KPML4phys = allocpages(firstaddr, 1);
472 KPDPphys = allocpages(firstaddr, NKPML4E);
473 KPDphys = allocpages(firstaddr, NKPDPE);
474 KPTphys = allocpages(firstaddr, nkpt);
476 KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
477 KPDPvirt = (pdp_entry_t *)PHYS_TO_DMAP(KPDPphys);
478 KPDvirt = (pd_entry_t *)PHYS_TO_DMAP(KPDphys);
479 KPTvirt = (pt_entry_t *)PHYS_TO_DMAP(KPTphys);
481 bzero(KPML4virt, 1 * PAGE_SIZE);
482 bzero(KPDPvirt, NKPML4E * PAGE_SIZE);
483 bzero(KPDvirt, NKPDPE * PAGE_SIZE);
484 bzero(KPTvirt, nkpt * PAGE_SIZE);
486 /* Now map the page tables at their location within PTmap */
487 for (i = 0; i < nkpt; i++) {
488 KPDvirt[i + kpdi] = KPTphys + (i << PAGE_SHIFT);
489 KPDvirt[i + kpdi] |= VPTE_RW | VPTE_V | VPTE_U;
492 /* And connect up the PD to the PDP */
493 for (i = 0; i < NKPDPE; i++) {
494 KPDPvirt[i + kpdpi] = KPDphys + (i << PAGE_SHIFT);
495 KPDPvirt[i + kpdpi] |= VPTE_RW | VPTE_V | VPTE_U;
498 /* And recursively map PML4 to itself in order to get PTmap */
499 KPML4virt[PML4PML4I] = KPML4phys;
500 KPML4virt[PML4PML4I] |= VPTE_RW | VPTE_V | VPTE_U;
502 /* Connect the KVA slot up to the PML4 */
503 KPML4virt[kpml4i] = KPDPphys;
504 KPML4virt[kpml4i] |= VPTE_RW | VPTE_V | VPTE_U;
508 * Typically used to initialize a fictitious page by vm/device_pager.c
510 void
511 pmap_page_init(struct vm_page *m)
513 vm_page_init(m);
514 TAILQ_INIT(&m->md.pv_list);
518 * Bootstrap the system enough to run with virtual memory.
520 * On the i386 this is called after mapping has already been enabled
521 * and just syncs the pmap module with what has already been done.
522 * [We can't call it easily with mapping off since the kernel is not
523 * mapped with PA == VA, hence we would have to relocate every address
524 * from the linked base (virtual) address "KERNBASE" to the actual
525 * (physical) address starting relative to 0]
527 void
528 pmap_bootstrap(vm_paddr_t *firstaddr, int64_t ptov_offset)
530 vm_offset_t va;
531 pt_entry_t *pte;
534 * Create an initial set of page tables to run the kernel in.
536 create_pagetables(firstaddr, ptov_offset);
538 /* Create the DMAP for the VMM */
539 if (vmm_enabled) {
540 create_dmap_vmm(firstaddr);
543 virtual_start = KvaStart;
544 virtual_end = KvaEnd;
547 * Initialize protection array.
549 i386_protection_init();
552 * The kernel's pmap is statically allocated so we don't have to use
553 * pmap_create, which is unlikely to work correctly at this part of
554 * the boot sequence (XXX and which no longer exists).
556 * The kernel_pmap's pm_pteobj is used only for locking and not
557 * for mmu pages.
559 kernel_pmap.pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
560 kernel_pmap.pm_count = 1;
561 /* don't allow deactivation */
562 CPUMASK_ASSALLONES(kernel_pmap.pm_active);
563 kernel_pmap.pm_pteobj = NULL; /* see pmap_init */
564 TAILQ_INIT(&kernel_pmap.pm_pvlist);
565 TAILQ_INIT(&kernel_pmap.pm_pvlist_free);
566 lwkt_token_init(&kernel_pmap.pm_token, "kpmap_tok");
567 spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
570 * Reserve some special page table entries/VA space for temporary
571 * mapping of pages.
573 #define SYSMAP(c, p, v, n) \
574 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
576 va = virtual_start;
577 pte = pmap_pte(&kernel_pmap, va);
579 * CMAP1/CMAP2 are used for zeroing and copying pages.
581 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
583 #if JGV
585 * Crashdump maps.
587 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
588 #endif
591 * ptvmmap is used for reading arbitrary physical pages via
592 * /dev/mem.
594 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
597 * msgbufp is used to map the system message buffer.
598 * XXX msgbufmap is not used.
600 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
601 atop(round_page(MSGBUF_SIZE)))
603 virtual_start = va;
605 *CMAP1 = 0;
606 /* Not ready to do an invltlb yet for VMM*/
607 if (!vmm_enabled)
608 cpu_invltlb();
613 * Initialize the pmap module.
614 * Called by vm_init, to initialize any structures that the pmap
615 * system needs to map virtual memory.
616 * pmap_init has been enhanced to support in a fairly consistant
617 * way, discontiguous physical memory.
619 void
620 pmap_init(void)
622 int i;
623 int initial_pvs;
626 * object for kernel page table pages
628 /* JG I think the number can be arbitrary */
629 kptobj = vm_object_allocate(OBJT_DEFAULT, 5);
630 kernel_pmap.pm_pteobj = kptobj;
633 * Allocate memory for random pmap data structures. Includes the
634 * pv_head_table.
636 for(i = 0; i < vm_page_array_size; i++) {
637 vm_page_t m;
639 m = &vm_page_array[i];
640 TAILQ_INIT(&m->md.pv_list);
641 m->md.pv_list_count = 0;
645 * init the pv free list
647 initial_pvs = vm_page_array_size;
648 if (initial_pvs < MINPV)
649 initial_pvs = MINPV;
650 pvzone = &pvzone_store;
651 pvinit = (struct pv_entry *)
652 kmem_alloc(&kernel_map,
653 initial_pvs * sizeof (struct pv_entry),
654 VM_SUBSYS_PVENTRY);
655 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
656 initial_pvs);
659 * Now it is safe to enable pv_table recording.
661 pmap_initialized = TRUE;
665 * Initialize the address space (zone) for the pv_entries. Set a
666 * high water mark so that the system can recover from excessive
667 * numbers of pv entries.
669 void
670 pmap_init2(void)
672 int shpgperproc = PMAP_SHPGPERPROC;
674 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
675 pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
676 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
677 pv_entry_high_water = 9 * (pv_entry_max / 10);
678 zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT);
682 /***************************************************
683 * Low level helper routines.....
684 ***************************************************/
687 * The modification bit is not tracked for any pages in this range. XXX
688 * such pages in this maps should always use pmap_k*() functions and not
689 * be managed anyhow.
691 * XXX User and kernel address spaces are independant for virtual kernels,
692 * this function only applies to the kernel pmap.
694 static int
695 pmap_track_modified(pmap_t pmap, vm_offset_t va)
697 if (pmap != &kernel_pmap)
698 return 1;
699 if ((va < clean_sva) || (va >= clean_eva))
700 return 1;
701 else
702 return 0;
706 * Extract the physical page address associated with the map/VA pair.
708 * No requirements.
710 vm_paddr_t
711 pmap_extract(pmap_t pmap, vm_offset_t va)
713 vm_paddr_t rtval;
714 pt_entry_t *pte;
715 pd_entry_t pde, *pdep;
717 lwkt_gettoken(&vm_token);
718 rtval = 0;
719 pdep = pmap_pde(pmap, va);
720 if (pdep != NULL) {
721 pde = *pdep;
722 if (pde) {
723 if ((pde & VPTE_PS) != 0) {
724 /* JGV */
725 rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
726 } else {
727 pte = pmap_pde_to_pte(pdep, va);
728 rtval = (*pte & VPTE_FRAME) | (va & PAGE_MASK);
732 lwkt_reltoken(&vm_token);
733 return rtval;
737 * Similar to extract but checks protections, SMP-friendly short-cut for
738 * vm_fault_page[_quick]().
740 vm_page_t
741 pmap_fault_page_quick(pmap_t pmap __unused, vm_offset_t vaddr __unused,
742 vm_prot_t prot __unused)
744 return(NULL);
748 * Routine: pmap_kextract
749 * Function:
750 * Extract the physical page address associated
751 * kernel virtual address.
753 vm_paddr_t
754 pmap_kextract(vm_offset_t va)
756 pd_entry_t pde;
757 vm_paddr_t pa;
759 KKASSERT(va >= KvaStart && va < KvaEnd);
762 * The DMAP region is not included in [KvaStart, KvaEnd)
764 #if 0
765 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
766 pa = DMAP_TO_PHYS(va);
767 } else {
768 #endif
769 pde = *vtopde(va);
770 if (pde & VPTE_PS) {
771 /* JGV */
772 pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
773 } else {
775 * Beware of a concurrent promotion that changes the
776 * PDE at this point! For example, vtopte() must not
777 * be used to access the PTE because it would use the
778 * new PDE. It is, however, safe to use the old PDE
779 * because the page table page is preserved by the
780 * promotion.
782 pa = *pmap_pde_to_pte(&pde, va);
783 pa = (pa & VPTE_FRAME) | (va & PAGE_MASK);
785 #if 0
787 #endif
788 return pa;
791 /***************************************************
792 * Low level mapping routines.....
793 ***************************************************/
796 * Enter a mapping into kernel_pmap. Mappings created in this fashion
797 * are not managed. Mappings must be immediately accessible on all cpus.
799 * Call pmap_inval_pte() to invalidate the virtual pte and clean out the
800 * real pmap and handle related races before storing the new vpte. The
801 * new semantics for kenter require use to do an UNCONDITIONAL invalidation,
802 * because the entry may have previously been cleared without an invalidation.
804 void
805 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
807 pt_entry_t *pte;
808 pt_entry_t npte;
810 KKASSERT(va >= KvaStart && va < KvaEnd);
811 npte = pa | VPTE_RW | VPTE_V | VPTE_U;
812 pte = vtopte(va);
814 #if 1
815 *pte = 0;
816 pmap_inval_pte(pte, &kernel_pmap, va);
817 #else
818 if (*pte & VPTE_V)
819 pmap_inval_pte(pte, &kernel_pmap, va);
820 #endif
821 *pte = npte;
825 * Enter an unmanaged KVA mapping for the private use of the current
826 * cpu only.
828 * It is illegal for the mapping to be accessed by other cpus without
829 * proper invalidation.
832 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
834 pt_entry_t *ptep;
835 pt_entry_t npte;
836 int res;
838 KKASSERT(va >= KvaStart && va < KvaEnd);
840 npte = (vpte_t)pa | VPTE_RW | VPTE_V | VPTE_U;
841 ptep = vtopte(va);
842 #if 1
843 res = 1;
844 #else
845 /* FUTURE */
846 res = (*ptep != 0);
847 #endif
849 if (*ptep & VPTE_V)
850 pmap_inval_pte_quick(ptep, &kernel_pmap, va);
851 *ptep = npte;
853 return res;
857 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
859 pt_entry_t *ptep;
860 pt_entry_t npte;
861 int res;
863 KKASSERT(va >= KvaStart && va < KvaEnd);
865 npte = (vpte_t)pa | VPTE_RW | VPTE_V | VPTE_U;
866 ptep = vtopte(va);
867 #if 1
868 res = 1;
869 #else
870 /* FUTURE */
871 res = (*ptep != 0);
872 #endif
874 *ptep = npte;
876 return res;
880 * Remove an unmanaged mapping created with pmap_kenter*().
882 void
883 pmap_kremove(vm_offset_t va)
885 pt_entry_t *pte;
887 KKASSERT(va >= KvaStart && va < KvaEnd);
889 pte = vtopte(va);
890 *pte = 0;
891 pmap_inval_pte(pte, &kernel_pmap, va);
895 * Remove an unmanaged mapping created with pmap_kenter*() but synchronize
896 * only with this cpu.
898 * Unfortunately because we optimize new entries by testing VPTE_V later
899 * on, we actually still have to synchronize with all the cpus. XXX maybe
900 * store a junk value and test against 0 in the other places instead?
902 void
903 pmap_kremove_quick(vm_offset_t va)
905 pt_entry_t *pte;
907 KKASSERT(va >= KvaStart && va < KvaEnd);
909 pte = vtopte(va);
910 *pte = 0;
911 pmap_inval_pte(pte, &kernel_pmap, va); /* NOT _quick */
914 void
915 pmap_kremove_noinval(vm_offset_t va)
917 pt_entry_t *pte;
919 KKASSERT(va >= KvaStart && va < KvaEnd);
921 pte = vtopte(va);
922 *pte = 0;
926 * Used to map a range of physical addresses into kernel
927 * virtual address space.
929 * For now, VM is already on, we only need to map the
930 * specified memory.
932 vm_offset_t
933 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
935 return PHYS_TO_DMAP(start);
939 * Map a set of unmanaged VM pages into KVM.
941 void
942 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
944 vm_offset_t end_va;
946 end_va = va + count * PAGE_SIZE;
947 KKASSERT(va >= KvaStart && end_va < KvaEnd);
949 while (va < end_va) {
950 pt_entry_t *pte;
952 pte = vtopte(va);
953 *pte = 0;
954 pmap_inval_pte(pte, &kernel_pmap, va);
955 *pte = VM_PAGE_TO_PHYS(*m) | VPTE_RW | VPTE_V | VPTE_U;
956 va += PAGE_SIZE;
957 m++;
962 * Undo the effects of pmap_qenter*().
964 void
965 pmap_qremove(vm_offset_t va, int count)
967 vm_offset_t end_va;
969 end_va = va + count * PAGE_SIZE;
970 KKASSERT(va >= KvaStart && end_va < KvaEnd);
972 while (va < end_va) {
973 pt_entry_t *pte;
975 pte = vtopte(va);
976 atomic_swap_long(pte, 0);
977 pmap_inval_pte(pte, &kernel_pmap, va);
978 va += PAGE_SIZE;
982 void
983 pmap_qremove_quick(vm_offset_t va, int count)
985 vm_offset_t end_va;
987 end_va = va + count * PAGE_SIZE;
988 KKASSERT(va >= KvaStart && end_va < KvaEnd);
990 while (va < end_va) {
991 pt_entry_t *pte;
993 pte = vtopte(va);
994 atomic_swap_long(pte, 0);
995 cpu_invlpg((void *)va);
996 va += PAGE_SIZE;
1000 void
1001 pmap_qremove_noinval(vm_offset_t va, int count)
1003 vm_offset_t end_va;
1005 end_va = va + count * PAGE_SIZE;
1006 KKASSERT(va >= KvaStart && end_va < KvaEnd);
1008 while (va < end_va) {
1009 pt_entry_t *pte;
1011 pte = vtopte(va);
1012 atomic_swap_long(pte, 0);
1013 va += PAGE_SIZE;
1018 * This routine works like vm_page_lookup() but also blocks as long as the
1019 * page is busy. This routine does not busy the page it returns.
1021 * Unless the caller is managing objects whos pages are in a known state,
1022 * the call should be made with a critical section held so the page's object
1023 * association remains valid on return.
1025 static vm_page_t
1026 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
1028 vm_page_t m;
1030 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1031 m = vm_page_lookup_busy_wait(object, pindex, FALSE, "pplookp");
1033 return(m);
1037 * Create a new thread and optionally associate it with a (new) process.
1038 * NOTE! the new thread's cpu may not equal the current cpu.
1040 void
1041 pmap_init_thread(thread_t td)
1043 /* enforce pcb placement */
1044 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1045 td->td_savefpu = &td->td_pcb->pcb_save;
1046 td->td_sp = (char *)td->td_pcb - 16; /* JG is -16 needed on x86_64? */
1050 * This routine directly affects the fork perf for a process.
1052 void
1053 pmap_init_proc(struct proc *p)
1057 /***************************************************
1058 * Page table page management routines.....
1059 ***************************************************/
1061 static __inline int pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va,
1062 vm_page_t m);
1065 * This routine unholds page table pages, and if the hold count
1066 * drops to zero, then it decrements the wire count.
1068 * We must recheck that this is the last hold reference after busy-sleeping
1069 * on the page.
1071 static int
1072 _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
1074 vm_page_busy_wait(m, FALSE, "pmuwpt");
1075 KASSERT(m->queue == PQ_NONE,
1076 ("_pmap_unwire_pte_hold: %p->queue != PQ_NONE", m));
1078 if (m->hold_count == 1) {
1080 * Unmap the page table page.
1082 //abort(); /* JG */
1083 /* pmap_inval_add(info, pmap, -1); */
1085 if (m->pindex >= (NUPDE + NUPDPE)) {
1086 /* PDP page */
1087 pml4_entry_t *pml4;
1088 pml4 = pmap_pml4e(pmap, va);
1089 *pml4 = 0;
1090 } else if (m->pindex >= NUPDE) {
1091 /* PD page */
1092 pdp_entry_t *pdp;
1093 pdp = pmap_pdpe(pmap, va);
1094 *pdp = 0;
1095 } else {
1096 /* PT page */
1097 pd_entry_t *pd;
1098 pd = pmap_pde(pmap, va);
1099 *pd = 0;
1102 KKASSERT(pmap->pm_stats.resident_count > 0);
1103 --pmap->pm_stats.resident_count;
1105 if (pmap->pm_ptphint == m)
1106 pmap->pm_ptphint = NULL;
1108 if (m->pindex < NUPDE) {
1109 /* We just released a PT, unhold the matching PD */
1110 vm_page_t pdpg;
1112 pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & VPTE_FRAME);
1113 pmap_unwire_pte_hold(pmap, va, pdpg);
1115 if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
1116 /* We just released a PD, unhold the matching PDP */
1117 vm_page_t pdppg;
1119 pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & VPTE_FRAME);
1120 pmap_unwire_pte_hold(pmap, va, pdppg);
1124 * This was our last hold, the page had better be unwired
1125 * after we decrement wire_count.
1127 * FUTURE NOTE: shared page directory page could result in
1128 * multiple wire counts.
1130 vm_page_unhold(m);
1131 --m->wire_count;
1132 KKASSERT(m->wire_count == 0);
1133 atomic_add_int(&vmstats.v_wire_count, -1);
1134 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1135 vm_page_flash(m);
1136 vm_page_free_zero(m);
1137 return 1;
1138 } else {
1139 KKASSERT(m->hold_count > 1);
1140 vm_page_unhold(m);
1141 vm_page_wakeup(m);
1142 return 0;
1146 static __inline int
1147 pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
1149 KKASSERT(m->hold_count > 0);
1150 if (m->hold_count > 1) {
1151 vm_page_unhold(m);
1152 return 0;
1153 } else {
1154 return _pmap_unwire_pte_hold(pmap, va, m);
1159 * After removing a page table entry, this routine is used to
1160 * conditionally free the page, and manage the hold/wire counts.
1162 static int
1163 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1165 /* JG Use FreeBSD/amd64 or FreeBSD/i386 ptepde approaches? */
1166 vm_pindex_t ptepindex;
1168 ASSERT_LWKT_TOKEN_HELD(vm_object_token(pmap->pm_pteobj));
1170 if (mpte == NULL) {
1172 * page table pages in the kernel_pmap are not managed.
1174 if (pmap == &kernel_pmap)
1175 return(0);
1176 ptepindex = pmap_pde_pindex(va);
1177 if (pmap->pm_ptphint &&
1178 (pmap->pm_ptphint->pindex == ptepindex)) {
1179 mpte = pmap->pm_ptphint;
1180 } else {
1181 mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1182 pmap->pm_ptphint = mpte;
1183 vm_page_wakeup(mpte);
1187 return pmap_unwire_pte_hold(pmap, va, mpte);
1191 * Initialize pmap0/vmspace0 . Since process 0 never enters user mode we
1192 * just dummy it up so it works well enough for fork().
1194 * In DragonFly, process pmaps may only be used to manipulate user address
1195 * space, never kernel address space.
1197 void
1198 pmap_pinit0(struct pmap *pmap)
1200 pmap_pinit(pmap);
1204 * Initialize a preallocated and zeroed pmap structure,
1205 * such as one in a vmspace structure.
1207 void
1208 pmap_pinit(struct pmap *pmap)
1210 vm_page_t ptdpg;
1213 * No need to allocate page table space yet but we do need a valid
1214 * page directory table.
1216 if (pmap->pm_pml4 == NULL) {
1217 pmap->pm_pml4 = (pml4_entry_t *)
1218 kmem_alloc_pageable(&kernel_map, PAGE_SIZE,
1219 VM_SUBSYS_PML4);
1223 * Allocate an object for the ptes
1225 if (pmap->pm_pteobj == NULL)
1226 pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, NUPDE + NUPDPE + PML4PML4I + 1);
1229 * Allocate the page directory page, unless we already have
1230 * one cached. If we used the cached page the wire_count will
1231 * already be set appropriately.
1233 if ((ptdpg = pmap->pm_pdirm) == NULL) {
1234 ptdpg = vm_page_grab(pmap->pm_pteobj,
1235 NUPDE + NUPDPE + PML4PML4I,
1236 VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
1237 VM_ALLOC_ZERO);
1238 pmap->pm_pdirm = ptdpg;
1239 vm_page_flag_clear(ptdpg, PG_MAPPED);
1240 vm_page_wire(ptdpg);
1241 vm_page_wakeup(ptdpg);
1242 pmap_kenter((vm_offset_t)pmap->pm_pml4, VM_PAGE_TO_PHYS(ptdpg));
1244 pmap->pm_count = 1;
1245 CPUMASK_ASSZERO(pmap->pm_active);
1246 pmap->pm_ptphint = NULL;
1247 TAILQ_INIT(&pmap->pm_pvlist);
1248 TAILQ_INIT(&pmap->pm_pvlist_free);
1249 spin_init(&pmap->pm_spin, "pmapinit");
1250 lwkt_token_init(&pmap->pm_token, "pmap_tok");
1251 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1252 pmap->pm_stats.resident_count = 1;
1256 * Clean up a pmap structure so it can be physically freed. This routine
1257 * is called by the vmspace dtor function. A great deal of pmap data is
1258 * left passively mapped to improve vmspace management so we have a bit
1259 * of cleanup work to do here.
1261 * No requirements.
1263 void
1264 pmap_puninit(pmap_t pmap)
1266 vm_page_t p;
1268 KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
1269 if ((p = pmap->pm_pdirm) != NULL) {
1270 KKASSERT(pmap->pm_pml4 != NULL);
1271 pmap_kremove((vm_offset_t)pmap->pm_pml4);
1272 vm_page_busy_wait(p, FALSE, "pgpun");
1273 p->wire_count--;
1274 atomic_add_int(&vmstats.v_wire_count, -1);
1275 vm_page_free_zero(p);
1276 pmap->pm_pdirm = NULL;
1278 if (pmap->pm_pml4) {
1279 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1280 pmap->pm_pml4 = NULL;
1282 if (pmap->pm_pteobj) {
1283 vm_object_deallocate(pmap->pm_pteobj);
1284 pmap->pm_pteobj = NULL;
1289 * Wire in kernel global address entries. To avoid a race condition
1290 * between pmap initialization and pmap_growkernel, this procedure
1291 * adds the pmap to the master list (which growkernel scans to update),
1292 * then copies the template.
1294 * In a virtual kernel there are no kernel global address entries.
1296 * No requirements.
1298 void
1299 pmap_pinit2(struct pmap *pmap)
1301 spin_lock(&pmap_spin);
1302 TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1303 spin_unlock(&pmap_spin);
1307 * Attempt to release and free a vm_page in a pmap. Returns 1 on success,
1308 * 0 on failure (if the procedure had to sleep).
1310 * When asked to remove the page directory page itself, we actually just
1311 * leave it cached so we do not have to incur the SMP inval overhead of
1312 * removing the kernel mapping. pmap_puninit() will take care of it.
1314 static int
1315 pmap_release_free_page(struct pmap *pmap, vm_page_t p)
1318 * This code optimizes the case of freeing non-busy
1319 * page-table pages. Those pages are zero now, and
1320 * might as well be placed directly into the zero queue.
1322 if (vm_page_busy_try(p, FALSE)) {
1323 vm_page_sleep_busy(p, FALSE, "pmaprl");
1324 return 0;
1328 * Remove the page table page from the processes address space.
1330 if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1332 * We are the pml4 table itself.
1334 /* XXX anything to do here? */
1335 } else if (p->pindex >= (NUPDE + NUPDPE)) {
1337 * We are a PDP page.
1338 * We look for the PML4 entry that points to us.
1340 vm_page_t m4 = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + PML4PML4I);
1341 KKASSERT(m4 != NULL);
1342 pml4_entry_t *pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m4));
1343 int idx = (p->pindex - (NUPDE + NUPDPE)) % NPML4EPG;
1344 KKASSERT(pml4[idx] != 0);
1345 pml4[idx] = 0;
1346 m4->hold_count--;
1347 /* JG What about wire_count? */
1348 } else if (p->pindex >= NUPDE) {
1350 * We are a PD page.
1351 * We look for the PDP entry that points to us.
1353 vm_page_t m3 = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + (p->pindex - NUPDE) / NPDPEPG);
1354 KKASSERT(m3 != NULL);
1355 pdp_entry_t *pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m3));
1356 int idx = (p->pindex - NUPDE) % NPDPEPG;
1357 KKASSERT(pdp[idx] != 0);
1358 pdp[idx] = 0;
1359 m3->hold_count--;
1360 /* JG What about wire_count? */
1361 } else {
1362 /* We are a PT page.
1363 * We look for the PD entry that points to us.
1365 vm_page_t m2 = vm_page_lookup(pmap->pm_pteobj, NUPDE + p->pindex / NPDEPG);
1366 KKASSERT(m2 != NULL);
1367 pd_entry_t *pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m2));
1368 int idx = p->pindex % NPDEPG;
1369 pd[idx] = 0;
1370 m2->hold_count--;
1371 /* JG What about wire_count? */
1373 KKASSERT(pmap->pm_stats.resident_count > 0);
1374 --pmap->pm_stats.resident_count;
1376 if (p->hold_count) {
1377 panic("pmap_release: freeing held pt page "
1378 "pmap=%p pg=%p dmap=%p pi=%ld {%ld,%ld,%ld}",
1379 pmap, p, (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(p)),
1380 p->pindex, NUPDE, NUPDPE, PML4PML4I);
1382 if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1383 pmap->pm_ptphint = NULL;
1386 * We leave the top-level page table page cached, wired, and mapped in
1387 * the pmap until the dtor function (pmap_puninit()) gets called.
1388 * However, still clean it up.
1390 if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1391 bzero(pmap->pm_pml4, PAGE_SIZE);
1392 vm_page_wakeup(p);
1393 } else {
1394 abort();
1395 p->wire_count--;
1396 atomic_add_int(&vmstats.v_wire_count, -1);
1397 /* JG eventually revert to using vm_page_free_zero() */
1398 vm_page_free(p);
1400 return 1;
1404 * this routine is called if the page table page is not
1405 * mapped correctly.
1407 static vm_page_t
1408 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex)
1410 vm_page_t m, pdppg, pdpg;
1413 * Find or fabricate a new pagetable page. Handle allocation
1414 * races by checking m->valid.
1416 m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1417 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1419 KASSERT(m->queue == PQ_NONE,
1420 ("_pmap_allocpte: %p->queue != PQ_NONE", m));
1423 * Increment the hold count for the page we will be returning to
1424 * the caller.
1426 m->hold_count++;
1427 vm_page_wire(m);
1430 * Map the pagetable page into the process address space, if
1431 * it isn't already there.
1433 ++pmap->pm_stats.resident_count;
1435 if (ptepindex >= (NUPDE + NUPDPE)) {
1436 pml4_entry_t *pml4;
1437 vm_pindex_t pml4index;
1439 /* Wire up a new PDP page */
1440 pml4index = ptepindex - (NUPDE + NUPDPE);
1441 pml4 = &pmap->pm_pml4[pml4index];
1442 *pml4 = VM_PAGE_TO_PHYS(m) |
1443 VPTE_RW | VPTE_V | VPTE_U |
1444 VPTE_A | VPTE_M;
1445 } else if (ptepindex >= NUPDE) {
1446 vm_pindex_t pml4index;
1447 vm_pindex_t pdpindex;
1448 pml4_entry_t *pml4;
1449 pdp_entry_t *pdp;
1451 /* Wire up a new PD page */
1452 pdpindex = ptepindex - NUPDE;
1453 pml4index = pdpindex >> NPML4EPGSHIFT;
1455 pml4 = &pmap->pm_pml4[pml4index];
1456 if ((*pml4 & VPTE_V) == 0) {
1457 /* Have to allocate a new PDP page, recurse */
1458 if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index)
1459 == NULL) {
1460 --m->wire_count;
1461 vm_page_free(m);
1462 return (NULL);
1464 } else {
1465 /* Add reference to the PDP page */
1466 pdppg = PHYS_TO_VM_PAGE(*pml4 & VPTE_FRAME);
1467 pdppg->hold_count++;
1469 pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1471 /* Now find the pdp page */
1472 pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1473 KKASSERT(*pdp == 0); /* JG DEBUG64 */
1474 *pdp = VM_PAGE_TO_PHYS(m) | VPTE_RW | VPTE_V | VPTE_U |
1475 VPTE_A | VPTE_M;
1476 } else {
1477 vm_pindex_t pml4index;
1478 vm_pindex_t pdpindex;
1479 pml4_entry_t *pml4;
1480 pdp_entry_t *pdp;
1481 pd_entry_t *pd;
1483 /* Wire up a new PT page */
1484 pdpindex = ptepindex >> NPDPEPGSHIFT;
1485 pml4index = pdpindex >> NPML4EPGSHIFT;
1487 /* First, find the pdp and check that its valid. */
1488 pml4 = &pmap->pm_pml4[pml4index];
1489 if ((*pml4 & VPTE_V) == 0) {
1490 /* We miss a PDP page. We ultimately need a PD page.
1491 * Recursively allocating a PD page will allocate
1492 * the missing PDP page and will also allocate
1493 * the PD page we need.
1495 /* Have to allocate a new PD page, recurse */
1496 if (_pmap_allocpte(pmap, NUPDE + pdpindex)
1497 == NULL) {
1498 --m->wire_count;
1499 vm_page_free(m);
1500 return (NULL);
1502 pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1503 pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1504 } else {
1505 pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1506 pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1507 if ((*pdp & VPTE_V) == 0) {
1508 /* Have to allocate a new PD page, recurse */
1509 if (_pmap_allocpte(pmap, NUPDE + pdpindex)
1510 == NULL) {
1511 --m->wire_count;
1512 vm_page_free(m);
1513 return (NULL);
1515 } else {
1516 /* Add reference to the PD page */
1517 pdpg = PHYS_TO_VM_PAGE(*pdp & VPTE_FRAME);
1518 pdpg->hold_count++;
1521 pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & VPTE_FRAME);
1523 /* Now we know where the page directory page is */
1524 pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
1525 KKASSERT(*pd == 0); /* JG DEBUG64 */
1526 *pd = VM_PAGE_TO_PHYS(m) | VPTE_RW | VPTE_V | VPTE_U |
1527 VPTE_A | VPTE_M;
1531 * Set the page table hint
1533 pmap->pm_ptphint = m;
1534 vm_page_flag_set(m, PG_MAPPED);
1535 vm_page_wakeup(m);
1537 return m;
1541 * Determine the page table page required to access the VA in the pmap
1542 * and allocate it if necessary. Return a held vm_page_t for the page.
1544 * Only used with user pmaps.
1546 static vm_page_t
1547 pmap_allocpte(pmap_t pmap, vm_offset_t va)
1549 vm_pindex_t ptepindex;
1550 pd_entry_t *pd;
1551 vm_page_t m;
1553 ASSERT_LWKT_TOKEN_HELD(vm_object_token(pmap->pm_pteobj));
1556 * Calculate pagetable page index
1558 ptepindex = pmap_pde_pindex(va);
1561 * Get the page directory entry
1563 pd = pmap_pde(pmap, va);
1566 * This supports switching from a 2MB page to a
1567 * normal 4K page.
1569 if (pd != NULL && (*pd & (VPTE_PS | VPTE_V)) == (VPTE_PS | VPTE_V)) {
1570 panic("no promotion/demotion yet");
1571 *pd = 0;
1572 pd = NULL;
1573 /*cpu_invltlb();*/
1574 /*smp_invltlb();*/
1578 * If the page table page is mapped, we just increment the
1579 * hold count, and activate it.
1581 if (pd != NULL && (*pd & VPTE_V) != 0) {
1582 /* YYY hint is used here on i386 */
1583 m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1584 pmap->pm_ptphint = m;
1585 vm_page_hold(m);
1586 vm_page_wakeup(m);
1587 return m;
1590 * Here if the pte page isn't mapped, or if it has been deallocated.
1592 return _pmap_allocpte(pmap, ptepindex);
1596 /***************************************************
1597 * Pmap allocation/deallocation routines.
1598 ***************************************************/
1601 * Release any resources held by the given physical map.
1602 * Called when a pmap initialized by pmap_pinit is being released.
1603 * Should only be called if the map contains no valid mappings.
1605 * Caller must hold pmap->pm_token
1607 static int pmap_release_callback(struct vm_page *p, void *data);
1609 void
1610 pmap_release(struct pmap *pmap)
1612 vm_object_t object = pmap->pm_pteobj;
1613 struct rb_vm_page_scan_info info;
1615 KKASSERT(pmap != &kernel_pmap);
1617 lwkt_gettoken(&vm_token);
1618 #if defined(DIAGNOSTIC)
1619 if (object->ref_count != 1)
1620 panic("pmap_release: pteobj reference count != 1");
1621 #endif
1623 info.pmap = pmap;
1624 info.object = object;
1626 KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
1627 ("pmap %p still active! %016jx",
1628 pmap,
1629 (uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
1631 spin_lock(&pmap_spin);
1632 TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
1633 spin_unlock(&pmap_spin);
1635 vm_object_hold(object);
1636 do {
1637 info.error = 0;
1638 info.mpte = NULL;
1639 info.limit = object->generation;
1641 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1642 pmap_release_callback, &info);
1643 if (info.error == 0 && info.mpte) {
1644 if (!pmap_release_free_page(pmap, info.mpte))
1645 info.error = 1;
1647 } while (info.error);
1648 vm_object_drop(object);
1649 lwkt_reltoken(&vm_token);
1652 static int
1653 pmap_release_callback(struct vm_page *p, void *data)
1655 struct rb_vm_page_scan_info *info = data;
1657 if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1658 info->mpte = p;
1659 return(0);
1661 if (!pmap_release_free_page(info->pmap, p)) {
1662 info->error = 1;
1663 return(-1);
1665 if (info->object->generation != info->limit) {
1666 info->error = 1;
1667 return(-1);
1669 return(0);
1673 * Grow the number of kernel page table entries, if needed.
1675 * No requirements.
1677 void
1678 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
1680 vm_offset_t addr;
1681 vm_paddr_t paddr;
1682 vm_offset_t ptppaddr;
1683 vm_page_t nkpg;
1684 pd_entry_t *pde, newpdir;
1685 pdp_entry_t newpdp;
1687 addr = kend;
1689 vm_object_hold(kptobj);
1690 if (kernel_vm_end == 0) {
1691 kernel_vm_end = KvaStart;
1692 nkpt = 0;
1693 while ((*pmap_pde(&kernel_pmap, kernel_vm_end) & VPTE_V) != 0) {
1694 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1695 nkpt++;
1696 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1697 kernel_vm_end = kernel_map.max_offset;
1698 break;
1702 addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1703 if (addr - 1 >= kernel_map.max_offset)
1704 addr = kernel_map.max_offset;
1705 while (kernel_vm_end < addr) {
1706 pde = pmap_pde(&kernel_pmap, kernel_vm_end);
1707 if (pde == NULL) {
1708 /* We need a new PDP entry */
1709 nkpg = vm_page_alloc(kptobj, nkpt,
1710 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM
1711 | VM_ALLOC_INTERRUPT);
1712 if (nkpg == NULL) {
1713 panic("pmap_growkernel: no memory to "
1714 "grow kernel");
1716 paddr = VM_PAGE_TO_PHYS(nkpg);
1717 pmap_zero_page(paddr);
1718 newpdp = (pdp_entry_t)(paddr |
1719 VPTE_V | VPTE_RW | VPTE_U |
1720 VPTE_A | VPTE_M);
1721 *pmap_pdpe(&kernel_pmap, kernel_vm_end) = newpdp;
1722 nkpt++;
1723 continue; /* try again */
1725 if ((*pde & VPTE_V) != 0) {
1726 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1727 ~(PAGE_SIZE * NPTEPG - 1);
1728 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1729 kernel_vm_end = kernel_map.max_offset;
1730 break;
1732 continue;
1736 * This index is bogus, but out of the way
1738 nkpg = vm_page_alloc(kptobj, nkpt,
1739 VM_ALLOC_NORMAL |
1740 VM_ALLOC_SYSTEM |
1741 VM_ALLOC_INTERRUPT);
1742 if (nkpg == NULL)
1743 panic("pmap_growkernel: no memory to grow kernel");
1745 vm_page_wire(nkpg);
1746 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1747 pmap_zero_page(ptppaddr);
1748 newpdir = (pd_entry_t)(ptppaddr |
1749 VPTE_V | VPTE_RW | VPTE_U |
1750 VPTE_A | VPTE_M);
1751 *pmap_pde(&kernel_pmap, kernel_vm_end) = newpdir;
1752 nkpt++;
1754 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1755 ~(PAGE_SIZE * NPTEPG - 1);
1756 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1757 kernel_vm_end = kernel_map.max_offset;
1758 break;
1761 vm_object_drop(kptobj);
1765 * Add a reference to the specified pmap.
1767 * No requirements.
1769 void
1770 pmap_reference(pmap_t pmap)
1772 if (pmap) {
1773 lwkt_gettoken(&vm_token);
1774 ++pmap->pm_count;
1775 lwkt_reltoken(&vm_token);
1779 /************************************************************************
1780 * VMSPACE MANAGEMENT *
1781 ************************************************************************
1783 * The VMSPACE management we do in our virtual kernel must be reflected
1784 * in the real kernel. This is accomplished by making vmspace system
1785 * calls to the real kernel.
1787 void
1788 cpu_vmspace_alloc(struct vmspace *vm)
1790 int r;
1791 void *rp;
1792 vpte_t vpte;
1795 * If VMM enable, don't do nothing, we
1796 * are able to use real page tables
1798 if (vmm_enabled)
1799 return;
1801 #define USER_SIZE (VM_MAX_USER_ADDRESS - VM_MIN_USER_ADDRESS)
1803 if (vmspace_create(&vm->vm_pmap, 0, NULL) < 0)
1804 panic("vmspace_create() failed");
1806 rp = vmspace_mmap(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1807 PROT_READ|PROT_WRITE,
1808 MAP_FILE|MAP_SHARED|MAP_VPAGETABLE|MAP_FIXED,
1809 MemImageFd, 0);
1810 if (rp == MAP_FAILED)
1811 panic("vmspace_mmap: failed");
1812 vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1813 MADV_NOSYNC, 0);
1814 vpte = VM_PAGE_TO_PHYS(vmspace_pmap(vm)->pm_pdirm) | VPTE_RW | VPTE_V | VPTE_U;
1815 r = vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1816 MADV_SETMAP, vpte);
1817 if (r < 0)
1818 panic("vmspace_mcontrol: failed");
1821 void
1822 cpu_vmspace_free(struct vmspace *vm)
1825 * If VMM enable, don't do nothing, we
1826 * are able to use real page tables
1828 if (vmm_enabled)
1829 return;
1831 if (vmspace_destroy(&vm->vm_pmap) < 0)
1832 panic("vmspace_destroy() failed");
1835 /***************************************************
1836 * page management routines.
1837 ***************************************************/
1840 * free the pv_entry back to the free list. This function may be
1841 * called from an interrupt.
1843 static __inline void
1844 free_pv_entry(pv_entry_t pv)
1846 pv_entry_count--;
1847 KKASSERT(pv_entry_count >= 0);
1848 zfree(pvzone, pv);
1852 * get a new pv_entry, allocating a block from the system
1853 * when needed. This function may be called from an interrupt.
1855 static pv_entry_t
1856 get_pv_entry(void)
1858 pv_entry_count++;
1859 if (pv_entry_high_water &&
1860 (pv_entry_count > pv_entry_high_water) &&
1861 (pmap_pagedaemon_waken == 0)) {
1862 pmap_pagedaemon_waken = 1;
1863 wakeup(&vm_pages_needed);
1865 return zalloc(pvzone);
1869 * This routine is very drastic, but can save the system
1870 * in a pinch.
1872 * No requirements.
1874 void
1875 pmap_collect(void)
1877 int i;
1878 vm_page_t m;
1879 static int warningdone=0;
1881 if (pmap_pagedaemon_waken == 0)
1882 return;
1883 lwkt_gettoken(&vm_token);
1884 pmap_pagedaemon_waken = 0;
1886 if (warningdone < 5) {
1887 kprintf("pmap_collect: collecting pv entries -- "
1888 "suggest increasing PMAP_SHPGPERPROC\n");
1889 warningdone++;
1892 for (i = 0; i < vm_page_array_size; i++) {
1893 m = &vm_page_array[i];
1894 if (m->wire_count || m->hold_count)
1895 continue;
1896 if (vm_page_busy_try(m, TRUE) == 0) {
1897 if (m->wire_count == 0 && m->hold_count == 0) {
1898 pmap_remove_all(m);
1900 vm_page_wakeup(m);
1903 lwkt_reltoken(&vm_token);
1908 * If it is the first entry on the list, it is actually
1909 * in the header and we must copy the following entry up
1910 * to the header. Otherwise we must search the list for
1911 * the entry. In either case we free the now unused entry.
1913 * caller must hold vm_token.
1915 static int
1916 pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va)
1918 pv_entry_t pv;
1919 int rtval;
1921 if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1922 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1923 if (pmap == pv->pv_pmap && va == pv->pv_va)
1924 break;
1926 } else {
1927 TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1928 if (va == pv->pv_va)
1929 break;
1934 * Note that pv_ptem is NULL if the page table page itself is not
1935 * managed, even if the page being removed IS managed.
1937 rtval = 0;
1938 /* JGXXX When can 'pv' be NULL? */
1939 if (pv) {
1940 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1941 m->md.pv_list_count--;
1942 atomic_add_int(&m->object->agg_pv_list_count, -1);
1943 KKASSERT(m->md.pv_list_count >= 0);
1944 if (TAILQ_EMPTY(&m->md.pv_list))
1945 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1946 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1947 ++pmap->pm_generation;
1948 KKASSERT(pmap->pm_pteobj != NULL);
1949 vm_object_hold(pmap->pm_pteobj);
1950 rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1951 vm_object_drop(pmap->pm_pteobj);
1952 free_pv_entry(pv);
1954 return rtval;
1958 * Create a pv entry for page at pa for (pmap, va). If the page table page
1959 * holding the VA is managed, mpte will be non-NULL.
1961 static void
1962 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1964 pv_entry_t pv;
1966 crit_enter();
1967 pv = get_pv_entry();
1968 pv->pv_va = va;
1969 pv->pv_pmap = pmap;
1970 pv->pv_ptem = mpte;
1972 TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1973 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1974 m->md.pv_list_count++;
1975 atomic_add_int(&m->object->agg_pv_list_count, 1);
1977 crit_exit();
1981 * pmap_remove_pte: do the things to unmap a page in a process
1983 static int
1984 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1986 pt_entry_t oldpte;
1987 vm_page_t m;
1989 oldpte = pmap_inval_loadandclear(ptq, pmap, va);
1990 if (oldpte & VPTE_WIRED)
1991 --pmap->pm_stats.wired_count;
1992 KKASSERT(pmap->pm_stats.wired_count >= 0);
1994 #if 0
1996 * Machines that don't support invlpg, also don't support
1997 * PG_G. XXX PG_G is disabled for SMP so don't worry about
1998 * the SMP case.
2000 if (oldpte & PG_G)
2001 cpu_invlpg((void *)va);
2002 #endif
2003 KKASSERT(pmap->pm_stats.resident_count > 0);
2004 --pmap->pm_stats.resident_count;
2005 if (oldpte & VPTE_MANAGED) {
2006 m = PHYS_TO_VM_PAGE(oldpte);
2007 if (oldpte & VPTE_M) {
2008 #if defined(PMAP_DIAGNOSTIC)
2009 if (pmap_nw_modified(oldpte)) {
2010 kprintf("pmap_remove: modified page not "
2011 "writable: va: 0x%lx, pte: 0x%lx\n",
2012 va, oldpte);
2014 #endif
2015 if (pmap_track_modified(pmap, va))
2016 vm_page_dirty(m);
2018 if (oldpte & VPTE_A)
2019 vm_page_flag_set(m, PG_REFERENCED);
2020 return pmap_remove_entry(pmap, m, va);
2021 } else {
2022 return pmap_unuse_pt(pmap, va, NULL);
2025 return 0;
2029 * pmap_remove_page:
2031 * Remove a single page from a process address space.
2033 * This function may not be called from an interrupt if the pmap is
2034 * not kernel_pmap.
2036 static void
2037 pmap_remove_page(struct pmap *pmap, vm_offset_t va)
2039 pt_entry_t *pte;
2041 pte = pmap_pte(pmap, va);
2042 if (pte == NULL)
2043 return;
2044 if ((*pte & VPTE_V) == 0)
2045 return;
2046 pmap_remove_pte(pmap, pte, va);
2050 * Remove the given range of addresses from the specified map.
2052 * It is assumed that the start and end are properly rounded to
2053 * the page size.
2055 * This function may not be called from an interrupt if the pmap is
2056 * not kernel_pmap.
2058 * No requirements.
2060 void
2061 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
2063 vm_offset_t va_next;
2064 pml4_entry_t *pml4e;
2065 pdp_entry_t *pdpe;
2066 pd_entry_t ptpaddr, *pde;
2067 pt_entry_t *pte;
2069 if (pmap == NULL)
2070 return;
2072 vm_object_hold(pmap->pm_pteobj);
2073 lwkt_gettoken(&vm_token);
2074 KKASSERT(pmap->pm_stats.resident_count >= 0);
2075 if (pmap->pm_stats.resident_count == 0) {
2076 lwkt_reltoken(&vm_token);
2077 vm_object_drop(pmap->pm_pteobj);
2078 return;
2082 * special handling of removing one page. a very
2083 * common operation and easy to short circuit some
2084 * code.
2086 if (sva + PAGE_SIZE == eva) {
2087 pde = pmap_pde(pmap, sva);
2088 if (pde && (*pde & VPTE_PS) == 0) {
2089 pmap_remove_page(pmap, sva);
2090 lwkt_reltoken(&vm_token);
2091 vm_object_drop(pmap->pm_pteobj);
2092 return;
2096 for (; sva < eva; sva = va_next) {
2097 pml4e = pmap_pml4e(pmap, sva);
2098 if ((*pml4e & VPTE_V) == 0) {
2099 va_next = (sva + NBPML4) & ~PML4MASK;
2100 if (va_next < sva)
2101 va_next = eva;
2102 continue;
2105 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2106 if ((*pdpe & VPTE_V) == 0) {
2107 va_next = (sva + NBPDP) & ~PDPMASK;
2108 if (va_next < sva)
2109 va_next = eva;
2110 continue;
2114 * Calculate index for next page table.
2116 va_next = (sva + NBPDR) & ~PDRMASK;
2117 if (va_next < sva)
2118 va_next = eva;
2120 pde = pmap_pdpe_to_pde(pdpe, sva);
2121 ptpaddr = *pde;
2124 * Weed out invalid mappings.
2126 if (ptpaddr == 0)
2127 continue;
2130 * Check for large page.
2132 if ((ptpaddr & VPTE_PS) != 0) {
2133 /* JG FreeBSD has more complex treatment here */
2134 KKASSERT(*pde != 0);
2135 pmap_inval_pde(pde, pmap, sva);
2136 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2137 continue;
2141 * Limit our scan to either the end of the va represented
2142 * by the current page table page, or to the end of the
2143 * range being removed.
2145 if (va_next > eva)
2146 va_next = eva;
2149 * NOTE: pmap_remove_pte() can block.
2151 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2152 sva += PAGE_SIZE) {
2153 if (*pte == 0)
2154 continue;
2155 if (pmap_remove_pte(pmap, pte, sva))
2156 break;
2159 lwkt_reltoken(&vm_token);
2160 vm_object_drop(pmap->pm_pteobj);
2164 * Removes this physical page from all physical maps in which it resides.
2165 * Reflects back modify bits to the pager.
2167 * This routine may not be called from an interrupt.
2169 * No requirements.
2171 static void
2172 pmap_remove_all(vm_page_t m)
2174 pt_entry_t *pte, tpte;
2175 pv_entry_t pv;
2177 #if defined(PMAP_DIAGNOSTIC)
2179 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
2180 * pages!
2182 if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
2183 panic("pmap_page_protect: illegal for unmanaged page, va: 0x%08llx", (long long)VM_PAGE_TO_PHYS(m));
2185 #endif
2187 lwkt_gettoken(&vm_token);
2188 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2189 KKASSERT(pv->pv_pmap->pm_stats.resident_count > 0);
2190 --pv->pv_pmap->pm_stats.resident_count;
2192 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2193 KKASSERT(pte != NULL);
2195 tpte = pmap_inval_loadandclear(pte, pv->pv_pmap, pv->pv_va);
2196 if (tpte & VPTE_WIRED)
2197 pv->pv_pmap->pm_stats.wired_count--;
2198 KKASSERT(pv->pv_pmap->pm_stats.wired_count >= 0);
2200 if (tpte & VPTE_A)
2201 vm_page_flag_set(m, PG_REFERENCED);
2204 * Update the vm_page_t clean and reference bits.
2206 if (tpte & VPTE_M) {
2207 #if defined(PMAP_DIAGNOSTIC)
2208 if (pmap_nw_modified(tpte)) {
2209 kprintf(
2210 "pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2211 pv->pv_va, tpte);
2213 #endif
2214 if (pmap_track_modified(pv->pv_pmap, pv->pv_va))
2215 vm_page_dirty(m);
2217 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2218 TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2219 ++pv->pv_pmap->pm_generation;
2220 m->md.pv_list_count--;
2221 atomic_add_int(&m->object->agg_pv_list_count, -1);
2222 KKASSERT(m->md.pv_list_count >= 0);
2223 if (TAILQ_EMPTY(&m->md.pv_list))
2224 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2225 vm_object_hold(pv->pv_pmap->pm_pteobj);
2226 pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2227 vm_object_drop(pv->pv_pmap->pm_pteobj);
2228 free_pv_entry(pv);
2230 KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
2231 lwkt_reltoken(&vm_token);
2235 * Set the physical protection on the specified range of this map
2236 * as requested.
2238 * This function may not be called from an interrupt if the map is
2239 * not the kernel_pmap.
2241 * No requirements.
2243 void
2244 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2246 vm_offset_t va_next;
2247 pml4_entry_t *pml4e;
2248 pdp_entry_t *pdpe;
2249 pd_entry_t ptpaddr, *pde;
2250 pt_entry_t *pte;
2252 /* JG review for NX */
2254 if (pmap == NULL)
2255 return;
2257 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2258 pmap_remove(pmap, sva, eva);
2259 return;
2262 if (prot & VM_PROT_WRITE)
2263 return;
2265 lwkt_gettoken(&vm_token);
2267 for (; sva < eva; sva = va_next) {
2269 pml4e = pmap_pml4e(pmap, sva);
2270 if ((*pml4e & VPTE_V) == 0) {
2271 va_next = (sva + NBPML4) & ~PML4MASK;
2272 if (va_next < sva)
2273 va_next = eva;
2274 continue;
2277 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2278 if ((*pdpe & VPTE_V) == 0) {
2279 va_next = (sva + NBPDP) & ~PDPMASK;
2280 if (va_next < sva)
2281 va_next = eva;
2282 continue;
2285 va_next = (sva + NBPDR) & ~PDRMASK;
2286 if (va_next < sva)
2287 va_next = eva;
2289 pde = pmap_pdpe_to_pde(pdpe, sva);
2290 ptpaddr = *pde;
2293 * Check for large page.
2295 if ((ptpaddr & VPTE_PS) != 0) {
2296 /* JG correct? */
2297 pmap_clean_pde(pde, pmap, sva);
2298 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2299 continue;
2303 * Weed out invalid mappings. Note: we assume that the page
2304 * directory table is always allocated, and in kernel virtual.
2306 if (ptpaddr == 0)
2307 continue;
2309 if (va_next > eva)
2310 va_next = eva;
2312 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2313 sva += PAGE_SIZE) {
2314 pt_entry_t pbits;
2315 vm_page_t m;
2318 * Clean managed pages and also check the accessed
2319 * bit. Just remove write perms for unmanaged
2320 * pages. Be careful of races, turning off write
2321 * access will force a fault rather then setting
2322 * the modified bit at an unexpected time.
2324 if (*pte & VPTE_MANAGED) {
2325 pbits = pmap_clean_pte(pte, pmap, sva);
2326 m = NULL;
2327 if (pbits & VPTE_A) {
2328 m = PHYS_TO_VM_PAGE(pbits & VPTE_FRAME);
2329 vm_page_flag_set(m, PG_REFERENCED);
2330 atomic_clear_long(pte, VPTE_A);
2332 if (pbits & VPTE_M) {
2333 if (pmap_track_modified(pmap, sva)) {
2334 if (m == NULL)
2335 m = PHYS_TO_VM_PAGE(pbits & VPTE_FRAME);
2336 vm_page_dirty(m);
2339 } else {
2340 pbits = pmap_setro_pte(pte, pmap, sva);
2344 lwkt_reltoken(&vm_token);
2348 * Enter a managed page into a pmap. If the page is not wired related pmap
2349 * data can be destroyed at any time for later demand-operation.
2351 * Insert the vm_page (m) at virtual address (v) in (pmap), with the
2352 * specified protection, and wire the mapping if requested.
2354 * NOTE: This routine may not lazy-evaluate or lose information. The
2355 * page must actually be inserted into the given map NOW.
2357 * NOTE: When entering a page at a KVA address, the pmap must be the
2358 * kernel_pmap.
2360 * No requirements.
2362 void
2363 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2364 boolean_t wired, vm_map_entry_t entry __unused)
2366 vm_paddr_t pa;
2367 pd_entry_t *pde;
2368 pt_entry_t *pte;
2369 vm_paddr_t opa;
2370 pt_entry_t origpte, newpte;
2371 vm_page_t mpte;
2373 if (pmap == NULL)
2374 return;
2376 va = trunc_page(va);
2378 vm_object_hold(pmap->pm_pteobj);
2379 lwkt_gettoken(&vm_token);
2382 * Get the page table page. The kernel_pmap's page table pages
2383 * are preallocated and have no associated vm_page_t.
2385 if (pmap == &kernel_pmap)
2386 mpte = NULL;
2387 else
2388 mpte = pmap_allocpte(pmap, va);
2390 pde = pmap_pde(pmap, va);
2391 if (pde != NULL && (*pde & VPTE_V) != 0) {
2392 if ((*pde & VPTE_PS) != 0)
2393 panic("pmap_enter: attempted pmap_enter on 2MB page");
2394 pte = pmap_pde_to_pte(pde, va);
2395 } else {
2396 panic("pmap_enter: invalid page directory va=%#lx", va);
2399 KKASSERT(pte != NULL);
2401 * Deal with races on the original mapping (though don't worry
2402 * about VPTE_A races) by cleaning it. This will force a fault
2403 * if an attempt is made to write to the page.
2405 pa = VM_PAGE_TO_PHYS(m);
2406 origpte = pmap_clean_pte(pte, pmap, va);
2407 opa = origpte & VPTE_FRAME;
2409 if (origpte & VPTE_PS)
2410 panic("pmap_enter: attempted pmap_enter on 2MB page");
2413 * Mapping has not changed, must be protection or wiring change.
2415 if (origpte && (opa == pa)) {
2417 * Wiring change, just update stats. We don't worry about
2418 * wiring PT pages as they remain resident as long as there
2419 * are valid mappings in them. Hence, if a user page is wired,
2420 * the PT page will be also.
2422 if (wired && ((origpte & VPTE_WIRED) == 0))
2423 ++pmap->pm_stats.wired_count;
2424 else if (!wired && (origpte & VPTE_WIRED))
2425 --pmap->pm_stats.wired_count;
2428 * Remove the extra pte reference. Note that we cannot
2429 * optimize the RO->RW case because we have adjusted the
2430 * wiring count above and may need to adjust the wiring
2431 * bits below.
2433 if (mpte)
2434 mpte->hold_count--;
2437 * We might be turning off write access to the page,
2438 * so we go ahead and sense modify status.
2440 if (origpte & VPTE_MANAGED) {
2441 if ((origpte & VPTE_M) &&
2442 pmap_track_modified(pmap, va)) {
2443 vm_page_t om;
2444 om = PHYS_TO_VM_PAGE(opa);
2445 vm_page_dirty(om);
2447 pa |= VPTE_MANAGED;
2448 KKASSERT(m->flags & PG_MAPPED);
2450 goto validate;
2453 * Mapping has changed, invalidate old range and fall through to
2454 * handle validating new mapping.
2456 if (opa) {
2457 int err;
2458 err = pmap_remove_pte(pmap, pte, va);
2459 if (err)
2460 panic("pmap_enter: pte vanished, va: 0x%lx", va);
2464 * Enter on the PV list if part of our managed memory. Note that we
2465 * raise IPL while manipulating pv_table since pmap_enter can be
2466 * called at interrupt time.
2468 if (pmap_initialized &&
2469 (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2470 pmap_insert_entry(pmap, va, mpte, m);
2471 pa |= VPTE_MANAGED;
2472 vm_page_flag_set(m, PG_MAPPED);
2476 * Increment counters
2478 ++pmap->pm_stats.resident_count;
2479 if (wired)
2480 pmap->pm_stats.wired_count++;
2482 validate:
2484 * Now validate mapping with desired protection/wiring.
2486 newpte = (pt_entry_t) (pa | pte_prot(pmap, prot) | VPTE_V | VPTE_U);
2488 if (wired)
2489 newpte |= VPTE_WIRED;
2490 // if (pmap != &kernel_pmap)
2491 newpte |= VPTE_U;
2494 * If the mapping or permission bits are different from the
2495 * (now cleaned) original pte, an update is needed. We've
2496 * already downgraded or invalidated the page so all we have
2497 * to do now is update the bits.
2499 * XXX should we synchronize RO->RW changes to avoid another
2500 * fault?
2502 if ((origpte & ~(VPTE_RW|VPTE_M|VPTE_A)) != newpte) {
2503 *pte = newpte | VPTE_A;
2504 if (newpte & VPTE_RW)
2505 vm_page_flag_set(m, PG_WRITEABLE);
2507 KKASSERT((newpte & VPTE_MANAGED) == 0 || (m->flags & PG_MAPPED));
2508 lwkt_reltoken(&vm_token);
2509 vm_object_drop(pmap->pm_pteobj);
2513 * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
2515 * Currently this routine may only be used on user pmaps, not kernel_pmap.
2517 * No requirements.
2519 void
2520 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
2522 pt_entry_t *pte;
2523 vm_paddr_t pa;
2524 vm_page_t mpte;
2525 vm_pindex_t ptepindex;
2526 pd_entry_t *ptepa;
2528 KKASSERT(pmap != &kernel_pmap);
2530 KKASSERT(va >= VM_MIN_USER_ADDRESS && va < VM_MAX_USER_ADDRESS);
2533 * Calculate pagetable page index
2535 ptepindex = pmap_pde_pindex(va);
2537 vm_object_hold(pmap->pm_pteobj);
2538 lwkt_gettoken(&vm_token);
2540 do {
2542 * Get the page directory entry
2544 ptepa = pmap_pde(pmap, va);
2547 * If the page table page is mapped, we just increment
2548 * the hold count, and activate it.
2550 if (ptepa && (*ptepa & VPTE_V) != 0) {
2551 if (*ptepa & VPTE_PS)
2552 panic("pmap_enter_quick: unexpected mapping into 2MB page");
2553 if (pmap->pm_ptphint &&
2554 (pmap->pm_ptphint->pindex == ptepindex)) {
2555 mpte = pmap->pm_ptphint;
2556 } else {
2557 mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2558 pmap->pm_ptphint = mpte;
2559 vm_page_wakeup(mpte);
2561 if (mpte)
2562 mpte->hold_count++;
2563 } else {
2564 mpte = _pmap_allocpte(pmap, ptepindex);
2566 } while (mpte == NULL);
2569 * Ok, now that the page table page has been validated, get the pte.
2570 * If the pte is already mapped undo mpte's hold_count and
2571 * just return.
2573 pte = pmap_pte(pmap, va);
2574 if (*pte & VPTE_V) {
2575 KKASSERT(mpte != NULL);
2576 pmap_unwire_pte_hold(pmap, va, mpte);
2577 pa = VM_PAGE_TO_PHYS(m);
2578 KKASSERT(((*pte ^ pa) & VPTE_FRAME) == 0);
2579 lwkt_reltoken(&vm_token);
2580 vm_object_drop(pmap->pm_pteobj);
2581 return;
2585 * Enter on the PV list if part of our managed memory
2587 if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2588 pmap_insert_entry(pmap, va, mpte, m);
2589 vm_page_flag_set(m, PG_MAPPED);
2593 * Increment counters
2595 ++pmap->pm_stats.resident_count;
2597 pa = VM_PAGE_TO_PHYS(m);
2600 * Now validate mapping with RO protection
2602 if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2603 *pte = (vpte_t)pa | VPTE_V | VPTE_U;
2604 else
2605 *pte = (vpte_t)pa | VPTE_V | VPTE_U | VPTE_MANAGED;
2606 /*pmap_inval_add(&info, pmap, va); shouldn't be needed 0->valid */
2607 /*pmap_inval_flush(&info); don't need for vkernel */
2608 lwkt_reltoken(&vm_token);
2609 vm_object_drop(pmap->pm_pteobj);
2613 * Make a temporary mapping for a physical address. This is only intended
2614 * to be used for panic dumps.
2616 * The caller is responsible for calling smp_invltlb().
2618 void *
2619 pmap_kenter_temporary(vm_paddr_t pa, long i)
2621 pmap_kenter_quick(crashdumpmap + (i * PAGE_SIZE), pa);
2622 return ((void *)crashdumpmap);
2625 #define MAX_INIT_PT (96)
2628 * This routine preloads the ptes for a given object into the specified pmap.
2629 * This eliminates the blast of soft faults on process startup and
2630 * immediately after an mmap.
2632 * No requirements.
2634 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
2636 void
2637 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
2638 vm_object_t object, vm_pindex_t pindex,
2639 vm_size_t size, int limit)
2641 struct rb_vm_page_scan_info info;
2642 struct lwp *lp;
2643 vm_size_t psize;
2646 * We can't preinit if read access isn't set or there is no pmap
2647 * or object.
2649 if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
2650 return;
2653 * We can't preinit if the pmap is not the current pmap
2655 lp = curthread->td_lwp;
2656 if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
2657 return;
2659 psize = x86_64_btop(size);
2661 if ((object->type != OBJT_VNODE) ||
2662 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2663 (object->resident_page_count > MAX_INIT_PT))) {
2664 return;
2667 if (psize + pindex > object->size) {
2668 if (object->size < pindex)
2669 return;
2670 psize = object->size - pindex;
2673 if (psize == 0)
2674 return;
2677 * Use a red-black scan to traverse the requested range and load
2678 * any valid pages found into the pmap.
2680 * We cannot safely scan the object's memq unless we are in a
2681 * critical section since interrupts can remove pages from objects.
2683 info.start_pindex = pindex;
2684 info.end_pindex = pindex + psize - 1;
2685 info.limit = limit;
2686 info.mpte = NULL;
2687 info.addr = addr;
2688 info.pmap = pmap;
2690 vm_object_hold_shared(object);
2691 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2692 pmap_object_init_pt_callback, &info);
2693 vm_object_drop(object);
2696 static
2698 pmap_object_init_pt_callback(vm_page_t p, void *data)
2700 struct rb_vm_page_scan_info *info = data;
2701 vm_pindex_t rel_index;
2703 * don't allow an madvise to blow away our really
2704 * free pages allocating pv entries.
2706 if ((info->limit & MAP_PREFAULT_MADVISE) &&
2707 vmstats.v_free_count < vmstats.v_free_reserved) {
2708 return(-1);
2712 * Ignore list markers and ignore pages we cannot instantly
2713 * busy (while holding the object token).
2715 if (p->flags & PG_MARKER)
2716 return 0;
2717 if (vm_page_busy_try(p, TRUE))
2718 return 0;
2719 if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2720 (p->flags & PG_FICTITIOUS) == 0) {
2721 if ((p->queue - p->pc) == PQ_CACHE)
2722 vm_page_deactivate(p);
2723 rel_index = p->pindex - info->start_pindex;
2724 pmap_enter_quick(info->pmap,
2725 info->addr + x86_64_ptob(rel_index), p);
2727 vm_page_wakeup(p);
2728 return(0);
2732 * Return TRUE if the pmap is in shape to trivially
2733 * pre-fault the specified address.
2735 * Returns FALSE if it would be non-trivial or if a
2736 * pte is already loaded into the slot.
2738 * No requirements.
2741 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
2743 pt_entry_t *pte;
2744 pd_entry_t *pde;
2745 int ret;
2747 lwkt_gettoken(&vm_token);
2748 pde = pmap_pde(pmap, addr);
2749 if (pde == NULL || *pde == 0) {
2750 ret = 0;
2751 } else {
2752 pte = pmap_pde_to_pte(pde, addr);
2753 ret = (*pte) ? 0 : 1;
2755 lwkt_reltoken(&vm_token);
2756 return (ret);
2760 * Change the wiring attribute for a map/virtual-address pair.
2762 * The mapping must already exist in the pmap.
2763 * No other requirements.
2765 void
2766 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired,
2767 vm_map_entry_t entry __unused)
2769 pt_entry_t *pte;
2771 if (pmap == NULL)
2772 return;
2774 lwkt_gettoken(&vm_token);
2775 pte = pmap_pte(pmap, va);
2777 if (wired && !pmap_pte_w(pte))
2778 pmap->pm_stats.wired_count++;
2779 else if (!wired && pmap_pte_w(pte))
2780 pmap->pm_stats.wired_count--;
2783 * Wiring is not a hardware characteristic so there is no need to
2784 * invalidate TLB. However, in an SMP environment we must use
2785 * a locked bus cycle to update the pte (if we are not using
2786 * the pmap_inval_*() API that is)... it's ok to do this for simple
2787 * wiring changes.
2789 if (wired)
2790 atomic_set_long(pte, VPTE_WIRED);
2791 else
2792 atomic_clear_long(pte, VPTE_WIRED);
2793 lwkt_reltoken(&vm_token);
2797 * Copy the range specified by src_addr/len
2798 * from the source map to the range dst_addr/len
2799 * in the destination map.
2801 * This routine is only advisory and need not do anything.
2803 void
2804 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2805 vm_size_t len, vm_offset_t src_addr)
2808 * XXX BUGGY. Amoung other things srcmpte is assumed to remain
2809 * valid through blocking calls, and that's just not going to
2810 * be the case.
2812 * FIXME!
2814 return;
2818 * pmap_zero_page:
2820 * Zero the specified physical page.
2822 * This function may be called from an interrupt and no locking is
2823 * required.
2825 void
2826 pmap_zero_page(vm_paddr_t phys)
2828 vm_offset_t va = PHYS_TO_DMAP(phys);
2830 bzero((void *)va, PAGE_SIZE);
2834 * pmap_zero_page:
2836 * Zero part of a physical page by mapping it into memory and clearing
2837 * its contents with bzero.
2839 * off and size may not cover an area beyond a single hardware page.
2841 void
2842 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
2844 crit_enter();
2845 vm_offset_t virt = PHYS_TO_DMAP(phys);
2846 bzero((char *)virt + off, size);
2847 crit_exit();
2851 * pmap_copy_page:
2853 * Copy the physical page from the source PA to the target PA.
2854 * This function may be called from an interrupt. No locking
2855 * is required.
2857 void
2858 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
2860 vm_offset_t src_virt, dst_virt;
2862 crit_enter();
2863 src_virt = PHYS_TO_DMAP(src);
2864 dst_virt = PHYS_TO_DMAP(dst);
2865 bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
2866 crit_exit();
2870 * pmap_copy_page_frag:
2872 * Copy the physical page from the source PA to the target PA.
2873 * This function may be called from an interrupt. No locking
2874 * is required.
2876 void
2877 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
2879 vm_offset_t src_virt, dst_virt;
2881 crit_enter();
2882 src_virt = PHYS_TO_DMAP(src);
2883 dst_virt = PHYS_TO_DMAP(dst);
2884 bcopy((char *)src_virt + (src & PAGE_MASK),
2885 (char *)dst_virt + (dst & PAGE_MASK),
2886 bytes);
2887 crit_exit();
2891 * Returns true if the pmap's pv is one of the first 16 pvs linked to
2892 * from this page. This count may be changed upwards or downwards
2893 * in the future; it is only necessary that true be returned for a small
2894 * subset of pmaps for proper page aging.
2896 * No other requirements.
2898 boolean_t
2899 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2901 pv_entry_t pv;
2902 int loops = 0;
2904 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2905 return FALSE;
2907 crit_enter();
2908 lwkt_gettoken(&vm_token);
2910 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2911 if (pv->pv_pmap == pmap) {
2912 lwkt_reltoken(&vm_token);
2913 crit_exit();
2914 return TRUE;
2916 loops++;
2917 if (loops >= 16)
2918 break;
2920 lwkt_reltoken(&vm_token);
2921 crit_exit();
2922 return (FALSE);
2926 * Remove all pages from specified address space this aids process
2927 * exit speeds. Also, this code is special cased for current
2928 * process only, but can have the more generic (and slightly slower)
2929 * mode enabled. This is much faster than pmap_remove in the case
2930 * of running down an entire address space.
2932 * No other requirements.
2934 void
2935 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2937 pt_entry_t *pte, tpte;
2938 pv_entry_t pv, npv;
2939 vm_page_t m;
2940 int save_generation;
2942 if (pmap->pm_pteobj)
2943 vm_object_hold(pmap->pm_pteobj);
2944 lwkt_gettoken(&vm_token);
2946 for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2947 if (pv->pv_va >= eva || pv->pv_va < sva) {
2948 npv = TAILQ_NEXT(pv, pv_plist);
2949 continue;
2952 KKASSERT(pmap == pv->pv_pmap);
2954 pte = pmap_pte(pmap, pv->pv_va);
2957 * We cannot remove wired pages from a process' mapping
2958 * at this time
2960 if (*pte & VPTE_WIRED) {
2961 npv = TAILQ_NEXT(pv, pv_plist);
2962 continue;
2964 tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2966 m = PHYS_TO_VM_PAGE(tpte & VPTE_FRAME);
2968 KASSERT(m < &vm_page_array[vm_page_array_size],
2969 ("pmap_remove_pages: bad tpte %lx", tpte));
2971 KKASSERT(pmap->pm_stats.resident_count > 0);
2972 --pmap->pm_stats.resident_count;
2975 * Update the vm_page_t clean and reference bits.
2977 if (tpte & VPTE_M) {
2978 vm_page_dirty(m);
2981 npv = TAILQ_NEXT(pv, pv_plist);
2982 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2983 save_generation = ++pmap->pm_generation;
2985 m->md.pv_list_count--;
2986 atomic_add_int(&m->object->agg_pv_list_count, -1);
2987 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2988 if (TAILQ_EMPTY(&m->md.pv_list))
2989 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2991 pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2992 free_pv_entry(pv);
2995 * Restart the scan if we blocked during the unuse or free
2996 * calls and other removals were made.
2998 if (save_generation != pmap->pm_generation) {
2999 kprintf("Warning: pmap_remove_pages race-A avoided\n");
3000 npv = TAILQ_FIRST(&pmap->pm_pvlist);
3003 lwkt_reltoken(&vm_token);
3004 if (pmap->pm_pteobj)
3005 vm_object_drop(pmap->pm_pteobj);
3009 * pmap_testbit tests bits in active mappings of a VM page.
3011 static boolean_t
3012 pmap_testbit(vm_page_t m, int bit)
3014 pv_entry_t pv;
3015 pt_entry_t *pte;
3017 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3018 return FALSE;
3020 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3021 return FALSE;
3023 crit_enter();
3025 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3027 * if the bit being tested is the modified bit, then
3028 * mark clean_map and ptes as never
3029 * modified.
3031 if (bit & (VPTE_A|VPTE_M)) {
3032 if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
3033 continue;
3036 #if defined(PMAP_DIAGNOSTIC)
3037 if (pv->pv_pmap == NULL) {
3038 kprintf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
3039 continue;
3041 #endif
3042 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3043 if (*pte & bit) {
3044 crit_exit();
3045 return TRUE;
3048 crit_exit();
3049 return (FALSE);
3053 * This routine is used to clear bits in ptes. Certain bits require special
3054 * handling, in particular (on virtual kernels) the VPTE_M (modify) bit.
3056 * This routine is only called with certain VPTE_* bit combinations.
3058 static __inline void
3059 pmap_clearbit(vm_page_t m, int bit)
3061 pv_entry_t pv;
3062 pt_entry_t *pte;
3063 pt_entry_t pbits;
3065 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3066 return;
3068 crit_enter();
3071 * Loop over all current mappings setting/clearing as appropos If
3072 * setting RO do we need to clear the VAC?
3074 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3076 * don't write protect pager mappings
3078 if (bit == VPTE_RW) {
3079 if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
3080 continue;
3083 #if defined(PMAP_DIAGNOSTIC)
3084 if (pv->pv_pmap == NULL) {
3085 kprintf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
3086 continue;
3088 #endif
3091 * Careful here. We can use a locked bus instruction to
3092 * clear VPTE_A or VPTE_M safely but we need to synchronize
3093 * with the target cpus when we mess with VPTE_RW.
3095 * On virtual kernels we must force a new fault-on-write
3096 * in the real kernel if we clear the Modify bit ourselves,
3097 * otherwise the real kernel will not get a new fault and
3098 * will never set our Modify bit again.
3100 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3101 if (*pte & bit) {
3102 if (bit == VPTE_RW) {
3104 * We must also clear VPTE_M when clearing
3105 * VPTE_RW
3107 pbits = pmap_clean_pte(pte, pv->pv_pmap,
3108 pv->pv_va);
3109 if (pbits & VPTE_M)
3110 vm_page_dirty(m);
3111 } else if (bit == VPTE_M) {
3113 * We do not have to make the page read-only
3114 * when clearing the Modify bit. The real
3115 * kernel will make the real PTE read-only
3116 * or otherwise detect the write and set
3117 * our VPTE_M again simply by us invalidating
3118 * the real kernel VA for the pmap (as we did
3119 * above). This allows the real kernel to
3120 * handle the write fault without forwarding
3121 * the fault to us.
3123 atomic_clear_long(pte, VPTE_M);
3124 } else if ((bit & (VPTE_RW|VPTE_M)) == (VPTE_RW|VPTE_M)) {
3126 * We've been asked to clear W & M, I guess
3127 * the caller doesn't want us to update
3128 * the dirty status of the VM page.
3130 pmap_clean_pte(pte, pv->pv_pmap, pv->pv_va);
3131 } else {
3133 * We've been asked to clear bits that do
3134 * not interact with hardware.
3136 atomic_clear_long(pte, bit);
3140 crit_exit();
3144 * Lower the permission for all mappings to a given page.
3146 * No other requirements.
3148 void
3149 pmap_page_protect(vm_page_t m, vm_prot_t prot)
3151 /* JG NX support? */
3152 if ((prot & VM_PROT_WRITE) == 0) {
3153 lwkt_gettoken(&vm_token);
3154 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3155 pmap_clearbit(m, VPTE_RW);
3156 vm_page_flag_clear(m, PG_WRITEABLE);
3157 } else {
3158 pmap_remove_all(m);
3160 lwkt_reltoken(&vm_token);
3164 vm_paddr_t
3165 pmap_phys_address(vm_pindex_t ppn)
3167 return (x86_64_ptob(ppn));
3171 * Return a count of reference bits for a page, clearing those bits.
3172 * It is not necessary for every reference bit to be cleared, but it
3173 * is necessary that 0 only be returned when there are truly no
3174 * reference bits set.
3176 * XXX: The exact number of bits to check and clear is a matter that
3177 * should be tested and standardized at some point in the future for
3178 * optimal aging of shared pages.
3180 * No other requirements.
3183 pmap_ts_referenced(vm_page_t m)
3185 pv_entry_t pv, pvf, pvn;
3186 pt_entry_t *pte;
3187 int rtval = 0;
3189 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3190 return (rtval);
3192 crit_enter();
3193 lwkt_gettoken(&vm_token);
3195 if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3197 pvf = pv;
3199 do {
3200 pvn = TAILQ_NEXT(pv, pv_list);
3202 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3204 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3206 if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
3207 continue;
3209 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3211 if (pte && (*pte & VPTE_A)) {
3212 atomic_clear_long(pte, VPTE_A);
3213 rtval++;
3214 if (rtval > 4) {
3215 break;
3218 } while ((pv = pvn) != NULL && pv != pvf);
3220 lwkt_reltoken(&vm_token);
3221 crit_exit();
3223 return (rtval);
3227 * Return whether or not the specified physical page was modified
3228 * in any physical maps.
3230 * No other requirements.
3232 boolean_t
3233 pmap_is_modified(vm_page_t m)
3235 boolean_t res;
3237 lwkt_gettoken(&vm_token);
3238 res = pmap_testbit(m, VPTE_M);
3239 lwkt_reltoken(&vm_token);
3240 return (res);
3244 * Clear the modify bits on the specified physical page.
3246 * No other requirements.
3248 void
3249 pmap_clear_modify(vm_page_t m)
3251 lwkt_gettoken(&vm_token);
3252 pmap_clearbit(m, VPTE_M);
3253 lwkt_reltoken(&vm_token);
3257 * Clear the reference bit on the specified physical page.
3259 * No other requirements.
3261 void
3262 pmap_clear_reference(vm_page_t m)
3264 lwkt_gettoken(&vm_token);
3265 pmap_clearbit(m, VPTE_A);
3266 lwkt_reltoken(&vm_token);
3270 * Miscellaneous support routines follow
3273 static void
3274 i386_protection_init(void)
3276 int *kp, prot;
3278 kp = protection_codes;
3279 for (prot = 0; prot < 8; prot++) {
3280 if (prot & VM_PROT_READ)
3281 *kp |= 0; /* if it's VALID is readeable */
3282 if (prot & VM_PROT_WRITE)
3283 *kp |= VPTE_RW;
3284 if (prot & VM_PROT_EXECUTE)
3285 *kp |= 0; /* if it's VALID is executable */
3286 ++kp;
3291 * Sets the memory attribute for the specified page.
3293 void
3294 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3296 /* This is a vkernel, do nothing */
3300 * Change the PAT attribute on an existing kernel memory map. Caller
3301 * must ensure that the virtual memory in question is not accessed
3302 * during the adjustment.
3304 void
3305 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
3307 /* This is a vkernel, do nothing */
3311 * Perform the pmap work for mincore
3313 * No other requirements.
3316 pmap_mincore(pmap_t pmap, vm_offset_t addr)
3318 pt_entry_t *ptep, pte;
3319 vm_page_t m;
3320 int val = 0;
3322 lwkt_gettoken(&vm_token);
3323 ptep = pmap_pte(pmap, addr);
3325 if (ptep && (pte = *ptep) != 0) {
3326 vm_paddr_t pa;
3328 val = MINCORE_INCORE;
3329 if ((pte & VPTE_MANAGED) == 0)
3330 goto done;
3332 pa = pte & VPTE_FRAME;
3334 m = PHYS_TO_VM_PAGE(pa);
3337 * Modified by us
3339 if (pte & VPTE_M)
3340 val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3342 * Modified by someone
3344 else if (m->dirty || pmap_is_modified(m))
3345 val |= MINCORE_MODIFIED_OTHER;
3347 * Referenced by us
3349 if (pte & VPTE_A)
3350 val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3353 * Referenced by someone
3355 else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3356 val |= MINCORE_REFERENCED_OTHER;
3357 vm_page_flag_set(m, PG_REFERENCED);
3360 done:
3361 lwkt_reltoken(&vm_token);
3362 return val;
3366 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
3367 * vmspace will be ref'd and the old one will be deref'd.
3369 * Caller must hold vmspace->vm_map.token for oldvm and newvm
3371 void
3372 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3374 struct vmspace *oldvm;
3375 struct lwp *lp;
3377 crit_enter();
3378 oldvm = p->p_vmspace;
3379 if (oldvm != newvm) {
3380 if (adjrefs)
3381 vmspace_ref(newvm);
3382 p->p_vmspace = newvm;
3383 KKASSERT(p->p_nthreads == 1);
3384 lp = RB_ROOT(&p->p_lwp_tree);
3385 pmap_setlwpvm(lp, newvm);
3386 if (adjrefs)
3387 vmspace_rel(oldvm);
3389 crit_exit();
3393 * Set the vmspace for a LWP. The vmspace is almost universally set the
3394 * same as the process vmspace, but virtual kernels need to swap out contexts
3395 * on a per-lwp basis.
3397 void
3398 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3400 struct vmspace *oldvm;
3401 struct pmap *pmap;
3403 oldvm = lp->lwp_vmspace;
3404 if (oldvm != newvm) {
3405 crit_enter();
3406 lp->lwp_vmspace = newvm;
3407 if (curthread->td_lwp == lp) {
3408 pmap = vmspace_pmap(newvm);
3409 ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
3410 if (pmap->pm_active_lock & CPULOCK_EXCL)
3411 pmap_interlock_wait(newvm);
3412 #if defined(SWTCH_OPTIM_STATS)
3413 tlb_flush_count++;
3414 #endif
3415 pmap = vmspace_pmap(oldvm);
3416 ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
3417 mycpu->gd_cpuid);
3419 crit_exit();
3424 * The swtch code tried to switch in a heavy weight process whos pmap
3425 * is locked by another cpu. We have to wait for the lock to clear before
3426 * the pmap can be used.
3428 void
3429 pmap_interlock_wait (struct vmspace *vm)
3431 pmap_t pmap = vmspace_pmap(vm);
3433 if (pmap->pm_active_lock & CPULOCK_EXCL) {
3434 crit_enter();
3435 while (pmap->pm_active_lock & CPULOCK_EXCL) {
3436 cpu_ccfence();
3437 pthread_yield();
3439 crit_exit();
3443 vm_offset_t
3444 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3447 if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3448 return addr;
3451 addr = roundup2(addr, NBPDR);
3452 return addr;
3456 * Used by kmalloc/kfree, page already exists at va
3458 vm_page_t
3459 pmap_kvtom(vm_offset_t va)
3461 vpte_t *ptep;
3463 KKASSERT(va >= KvaStart && va < KvaEnd);
3464 ptep = vtopte(va);
3465 return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
3468 void
3469 pmap_object_init(vm_object_t object)
3471 /* empty */
3474 void
3475 pmap_object_free(vm_object_t object)
3477 /* empty */