kernel - Tag vm_map_entry structure, slight optimization to zalloc, misc.
[dragonfly.git] / sys / platform / pc64 / x86_64 / pmap.c
blob7b0c9cc322bae53631904882e9459229409ea65a
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2003 Peter Wemm
6 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7 * Copyright (c) 2008, 2009 The DragonFly Project.
8 * Copyright (c) 2008, 2009 Jordan Gordeev.
9 * Copyright (c) 2011-2012 Matthew Dillon
10 * All rights reserved.
12 * This code is derived from software contributed to Berkeley by
13 * the Systems Programming Group of the University of Utah Computer
14 * Science Department and William Jolitz of UUNET Technologies Inc.
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
45 * Manage physical address maps for x86-64 systems.
48 #if 0 /* JG */
49 #include "opt_disable_pse.h"
50 #include "opt_pmap.h"
51 #endif
52 #include "opt_msgbuf.h"
54 #include <sys/param.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/msgbuf.h>
58 #include <sys/vmmeter.h>
59 #include <sys/mman.h>
60 #include <sys/systm.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
65 #include <sys/lock.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
75 #include <sys/user.h>
76 #include <sys/thread2.h>
77 #include <sys/sysref2.h>
78 #include <sys/spinlock2.h>
79 #include <vm/vm_page2.h>
81 #include <machine/cputypes.h>
82 #include <machine/md_var.h>
83 #include <machine/specialreg.h>
84 #include <machine/smp.h>
85 #include <machine_base/apic/apicreg.h>
86 #include <machine/globaldata.h>
87 #include <machine/pmap.h>
88 #include <machine/pmap_inval.h>
89 #include <machine/inttypes.h>
91 #include <ddb/ddb.h>
93 #define PMAP_KEEP_PDIRS
94 #ifndef PMAP_SHPGPERPROC
95 #define PMAP_SHPGPERPROC 2000
96 #endif
98 #if defined(DIAGNOSTIC)
99 #define PMAP_DIAGNOSTIC
100 #endif
102 #define MINPV 2048
105 * pmap debugging will report who owns a pv lock when blocking.
107 #ifdef PMAP_DEBUG
109 #define PMAP_DEBUG_DECL ,const char *func, int lineno
110 #define PMAP_DEBUG_ARGS , __func__, __LINE__
111 #define PMAP_DEBUG_COPY , func, lineno
113 #define pv_get(pmap, pindex) _pv_get(pmap, pindex \
114 PMAP_DEBUG_ARGS)
115 #define pv_lock(pv) _pv_lock(pv \
116 PMAP_DEBUG_ARGS)
117 #define pv_hold_try(pv) _pv_hold_try(pv \
118 PMAP_DEBUG_ARGS)
119 #define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp \
120 PMAP_DEBUG_ARGS)
122 #else
124 #define PMAP_DEBUG_DECL
125 #define PMAP_DEBUG_ARGS
126 #define PMAP_DEBUG_COPY
128 #define pv_get(pmap, pindex) _pv_get(pmap, pindex)
129 #define pv_lock(pv) _pv_lock(pv)
130 #define pv_hold_try(pv) _pv_hold_try(pv)
131 #define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp)
133 #endif
136 * Get PDEs and PTEs for user/kernel address space
138 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
140 #define pmap_pde_v(pmap, pte) ((*(pd_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
141 #define pmap_pte_w(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_W_IDX]) != 0)
142 #define pmap_pte_m(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_M_IDX]) != 0)
143 #define pmap_pte_u(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_U_IDX]) != 0)
144 #define pmap_pte_v(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
147 * Given a map and a machine independent protection code,
148 * convert to a vax protection code.
150 #define pte_prot(m, p) \
151 (m->protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
152 static int protection_codes[PROTECTION_CODES_SIZE];
154 struct pmap kernel_pmap;
155 static TAILQ_HEAD(,pmap) pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
157 MALLOC_DEFINE(M_OBJPMAP, "objpmap", "pmaps associated with VM objects");
159 vm_paddr_t avail_start; /* PA of first available physical page */
160 vm_paddr_t avail_end; /* PA of last available physical page */
161 vm_offset_t virtual2_start; /* cutout free area prior to kernel start */
162 vm_offset_t virtual2_end;
163 vm_offset_t virtual_start; /* VA of first avail page (after kernel bss) */
164 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
165 vm_offset_t KvaStart; /* VA start of KVA space */
166 vm_offset_t KvaEnd; /* VA end of KVA space (non-inclusive) */
167 vm_offset_t KvaSize; /* max size of kernel virtual address space */
168 static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
169 //static int pgeflag; /* PG_G or-in */
170 //static int pseflag; /* PG_PS or-in */
171 uint64_t PatMsr;
173 static int ndmpdp;
174 static vm_paddr_t dmaplimit;
175 static int nkpt;
176 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
178 static pt_entry_t pat_pte_index[PAT_INDEX_SIZE]; /* PAT -> PG_ bits */
179 /*static pt_entry_t pat_pde_index[PAT_INDEX_SIZE];*/ /* PAT -> PG_ bits */
181 static uint64_t KPTbase;
182 static uint64_t KPTphys;
183 static uint64_t KPDphys; /* phys addr of kernel level 2 */
184 static uint64_t KPDbase; /* phys addr of kernel level 2 @ KERNBASE */
185 uint64_t KPDPphys; /* phys addr of kernel level 3 */
186 uint64_t KPML4phys; /* phys addr of kernel level 4 */
188 static uint64_t DMPDphys; /* phys addr of direct mapped level 2 */
189 static uint64_t DMPDPphys; /* phys addr of direct mapped level 3 */
192 * Data for the pv entry allocation mechanism
194 static vm_zone_t pvzone;
195 static struct vm_zone pvzone_store;
196 static struct vm_object pvzone_obj;
197 static int pv_entry_max=0, pv_entry_high_water=0;
198 static int pmap_pagedaemon_waken = 0;
199 static struct pv_entry *pvinit;
202 * All those kernel PT submaps that BSD is so fond of
204 pt_entry_t *CMAP1 = NULL, *ptmmap;
205 caddr_t CADDR1 = NULL, ptvmmap = NULL;
206 static pt_entry_t *msgbufmap;
207 struct msgbuf *msgbufp=NULL;
210 * PMAP default PG_* bits. Needed to be able to add
211 * EPT/NPT pagetable pmap_bits for the VMM module
213 uint64_t pmap_bits_default[] = {
214 REGULAR_PMAP, /* TYPE_IDX 0 */
215 X86_PG_V, /* PG_V_IDX 1 */
216 X86_PG_RW, /* PG_RW_IDX 2 */
217 X86_PG_U, /* PG_U_IDX 3 */
218 X86_PG_A, /* PG_A_IDX 4 */
219 X86_PG_M, /* PG_M_IDX 5 */
220 X86_PG_PS, /* PG_PS_IDX3 6 */
221 X86_PG_G, /* PG_G_IDX 7 */
222 X86_PG_AVAIL1, /* PG_AVAIL1_IDX 8 */
223 X86_PG_AVAIL2, /* PG_AVAIL2_IDX 9 */
224 X86_PG_AVAIL3, /* PG_AVAIL3_IDX 10 */
225 X86_PG_NC_PWT | X86_PG_NC_PCD, /* PG_N_IDX 11 */
228 * Crashdump maps.
230 static pt_entry_t *pt_crashdumpmap;
231 static caddr_t crashdumpmap;
233 #ifdef PMAP_DEBUG2
234 static int pmap_enter_debug = 0;
235 SYSCTL_INT(_machdep, OID_AUTO, pmap_enter_debug, CTLFLAG_RW,
236 &pmap_enter_debug, 0, "Debug pmap_enter's");
237 #endif
238 static int pmap_yield_count = 64;
239 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
240 &pmap_yield_count, 0, "Yield during init_pt/release");
241 static int pmap_mmu_optimize = 0;
242 SYSCTL_INT(_machdep, OID_AUTO, pmap_mmu_optimize, CTLFLAG_RW,
243 &pmap_mmu_optimize, 0, "Share page table pages when possible");
244 int pmap_fast_kernel_cpusync = 0;
245 SYSCTL_INT(_machdep, OID_AUTO, pmap_fast_kernel_cpusync, CTLFLAG_RW,
246 &pmap_fast_kernel_cpusync, 0, "Share page table pages when possible");
248 #define DISABLE_PSE
250 /* Standard user access funtions */
251 extern int std_copyinstr (const void *udaddr, void *kaddr, size_t len,
252 size_t *lencopied);
253 extern int std_copyin (const void *udaddr, void *kaddr, size_t len);
254 extern int std_copyout (const void *kaddr, void *udaddr, size_t len);
255 extern int std_fubyte (const void *base);
256 extern int std_subyte (void *base, int byte);
257 extern long std_fuword (const void *base);
258 extern int std_suword (void *base, long word);
259 extern int std_suword32 (void *base, int word);
261 static void pv_hold(pv_entry_t pv);
262 static int _pv_hold_try(pv_entry_t pv
263 PMAP_DEBUG_DECL);
264 static void pv_drop(pv_entry_t pv);
265 static void _pv_lock(pv_entry_t pv
266 PMAP_DEBUG_DECL);
267 static void pv_unlock(pv_entry_t pv);
268 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
269 PMAP_DEBUG_DECL);
270 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex
271 PMAP_DEBUG_DECL);
272 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp);
273 static pv_entry_t pv_find(pmap_t pmap, vm_pindex_t pindex);
274 static void pv_put(pv_entry_t pv);
275 static void pv_free(pv_entry_t pv);
276 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
277 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
278 pv_entry_t *pvpp);
279 static pv_entry_t pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex,
280 pv_entry_t *pvpp, vm_map_entry_t entry, vm_offset_t va);
281 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
282 pmap_inval_bulk_t *bulk);
283 static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
284 static int pmap_release_pv(pv_entry_t pv, pv_entry_t pvp,
285 pmap_inval_bulk_t *bulk);
287 struct pmap_scan_info;
288 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
289 pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
290 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
291 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
292 pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
293 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
295 static void i386_protection_init (void);
296 static void create_pagetables(vm_paddr_t *firstaddr);
297 static void pmap_remove_all (vm_page_t m);
298 static boolean_t pmap_testbit (vm_page_t m, int bit);
300 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
301 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
303 static void pmap_pinit_defaults(struct pmap *pmap);
305 static unsigned pdir4mb;
307 static int
308 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
310 if (pv1->pv_pindex < pv2->pv_pindex)
311 return(-1);
312 if (pv1->pv_pindex > pv2->pv_pindex)
313 return(1);
314 return(0);
317 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
318 pv_entry_compare, vm_pindex_t, pv_pindex);
320 static __inline
321 void
322 pmap_page_stats_adding(vm_page_t m)
324 globaldata_t gd = mycpu;
326 if (TAILQ_EMPTY(&m->md.pv_list)) {
327 ++gd->gd_vmtotal.t_arm;
328 } else if (TAILQ_FIRST(&m->md.pv_list) ==
329 TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
330 ++gd->gd_vmtotal.t_armshr;
331 ++gd->gd_vmtotal.t_avmshr;
332 } else {
333 ++gd->gd_vmtotal.t_avmshr;
337 static __inline
338 void
339 pmap_page_stats_deleting(vm_page_t m)
341 globaldata_t gd = mycpu;
343 if (TAILQ_EMPTY(&m->md.pv_list)) {
344 --gd->gd_vmtotal.t_arm;
345 } else if (TAILQ_FIRST(&m->md.pv_list) ==
346 TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
347 --gd->gd_vmtotal.t_armshr;
348 --gd->gd_vmtotal.t_avmshr;
349 } else {
350 --gd->gd_vmtotal.t_avmshr;
355 * Move the kernel virtual free pointer to the next
356 * 2MB. This is used to help improve performance
357 * by using a large (2MB) page for much of the kernel
358 * (.text, .data, .bss)
360 static
361 vm_offset_t
362 pmap_kmem_choose(vm_offset_t addr)
364 vm_offset_t newaddr = addr;
366 newaddr = roundup2(addr, NBPDR);
367 return newaddr;
371 * pmap_pte_quick:
373 * Super fast pmap_pte routine best used when scanning the pv lists.
374 * This eliminates many course-grained invltlb calls. Note that many of
375 * the pv list scans are across different pmaps and it is very wasteful
376 * to do an entire invltlb when checking a single mapping.
378 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
380 static
381 pt_entry_t *
382 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
384 return pmap_pte(pmap, va);
388 * Returns the pindex of a page table entry (representing a terminal page).
389 * There are NUPTE_TOTAL page table entries possible (a huge number)
391 * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
392 * We want to properly translate negative KVAs.
394 static __inline
395 vm_pindex_t
396 pmap_pte_pindex(vm_offset_t va)
398 return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
402 * Returns the pindex of a page table.
404 static __inline
405 vm_pindex_t
406 pmap_pt_pindex(vm_offset_t va)
408 return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
412 * Returns the pindex of a page directory.
414 static __inline
415 vm_pindex_t
416 pmap_pd_pindex(vm_offset_t va)
418 return (NUPTE_TOTAL + NUPT_TOTAL +
419 ((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
422 static __inline
423 vm_pindex_t
424 pmap_pdp_pindex(vm_offset_t va)
426 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
427 ((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
430 static __inline
431 vm_pindex_t
432 pmap_pml4_pindex(void)
434 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
438 * Return various clipped indexes for a given VA
440 * Returns the index of a pt in a page directory, representing a page
441 * table.
443 static __inline
444 vm_pindex_t
445 pmap_pt_index(vm_offset_t va)
447 return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
451 * Returns the index of a pd in a page directory page, representing a page
452 * directory.
454 static __inline
455 vm_pindex_t
456 pmap_pd_index(vm_offset_t va)
458 return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
462 * Returns the index of a pdp in the pml4 table, representing a page
463 * directory page.
465 static __inline
466 vm_pindex_t
467 pmap_pdp_index(vm_offset_t va)
469 return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
473 * Generic procedure to index a pte from a pt, pd, or pdp.
475 * NOTE: Normally passed pindex as pmap_xx_index(). pmap_xx_pindex() is NOT
476 * a page table page index but is instead of PV lookup index.
478 static
479 void *
480 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
482 pt_entry_t *pte;
484 pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
485 return(&pte[pindex]);
489 * Return pointer to PDP slot in the PML4
491 static __inline
492 pml4_entry_t *
493 pmap_pdp(pmap_t pmap, vm_offset_t va)
495 return (&pmap->pm_pml4[pmap_pdp_index(va)]);
499 * Return pointer to PD slot in the PDP given a pointer to the PDP
501 static __inline
502 pdp_entry_t *
503 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
505 pdp_entry_t *pd;
507 pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
508 return (&pd[pmap_pd_index(va)]);
512 * Return pointer to PD slot in the PDP.
514 static __inline
515 pdp_entry_t *
516 pmap_pd(pmap_t pmap, vm_offset_t va)
518 pml4_entry_t *pdp;
520 pdp = pmap_pdp(pmap, va);
521 if ((*pdp & pmap->pmap_bits[PG_V_IDX]) == 0)
522 return NULL;
523 return (pmap_pdp_to_pd(*pdp, va));
527 * Return pointer to PT slot in the PD given a pointer to the PD
529 static __inline
530 pd_entry_t *
531 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
533 pd_entry_t *pt;
535 pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
536 return (&pt[pmap_pt_index(va)]);
540 * Return pointer to PT slot in the PD
542 * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
543 * so we cannot lookup the PD via the PDP. Instead we
544 * must look it up via the pmap.
546 static __inline
547 pd_entry_t *
548 pmap_pt(pmap_t pmap, vm_offset_t va)
550 pdp_entry_t *pd;
551 pv_entry_t pv;
552 vm_pindex_t pd_pindex;
554 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
555 pd_pindex = pmap_pd_pindex(va);
556 spin_lock(&pmap->pm_spin);
557 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
558 spin_unlock(&pmap->pm_spin);
559 if (pv == NULL || pv->pv_m == NULL)
560 return NULL;
561 return (pmap_pd_to_pt(VM_PAGE_TO_PHYS(pv->pv_m), va));
562 } else {
563 pd = pmap_pd(pmap, va);
564 if (pd == NULL || (*pd & pmap->pmap_bits[PG_V_IDX]) == 0)
565 return NULL;
566 return (pmap_pd_to_pt(*pd, va));
571 * Return pointer to PTE slot in the PT given a pointer to the PT
573 static __inline
574 pt_entry_t *
575 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
577 pt_entry_t *pte;
579 pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
580 return (&pte[pmap_pte_index(va)]);
584 * Return pointer to PTE slot in the PT
586 static __inline
587 pt_entry_t *
588 pmap_pte(pmap_t pmap, vm_offset_t va)
590 pd_entry_t *pt;
592 pt = pmap_pt(pmap, va);
593 if (pt == NULL || (*pt & pmap->pmap_bits[PG_V_IDX]) == 0)
594 return NULL;
595 if ((*pt & pmap->pmap_bits[PG_PS_IDX]) != 0)
596 return ((pt_entry_t *)pt);
597 return (pmap_pt_to_pte(*pt, va));
601 * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
602 * the PT layer. This will speed up core pmap operations considerably.
604 * NOTE: The pmap spinlock does not need to be held but the passed-in pv
605 * must be in a known associated state (typically by being locked when
606 * the pmap spinlock isn't held). We allow the race for that case.
608 static __inline
609 void
610 pv_cache(pv_entry_t pv, vm_pindex_t pindex)
612 if (pindex >= pmap_pt_pindex(0) && pindex <= pmap_pd_pindex(0))
613 pv->pv_pmap->pm_pvhint = pv;
618 * Return address of PT slot in PD (KVM only)
620 * Cannot be used for user page tables because it might interfere with
621 * the shared page-table-page optimization (pmap_mmu_optimize).
623 static __inline
624 pd_entry_t *
625 vtopt(vm_offset_t va)
627 uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
628 NPML4EPGSHIFT)) - 1);
630 return (PDmap + ((va >> PDRSHIFT) & mask));
634 * KVM - return address of PTE slot in PT
636 static __inline
637 pt_entry_t *
638 vtopte(vm_offset_t va)
640 uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
641 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
643 return (PTmap + ((va >> PAGE_SHIFT) & mask));
646 static uint64_t
647 allocpages(vm_paddr_t *firstaddr, long n)
649 uint64_t ret;
651 ret = *firstaddr;
652 bzero((void *)ret, n * PAGE_SIZE);
653 *firstaddr += n * PAGE_SIZE;
654 return (ret);
657 static
658 void
659 create_pagetables(vm_paddr_t *firstaddr)
661 long i; /* must be 64 bits */
662 long nkpt_base;
663 long nkpt_phys;
664 int j;
667 * We are running (mostly) V=P at this point
669 * Calculate NKPT - number of kernel page tables. We have to
670 * accomodoate prealloction of the vm_page_array, dump bitmap,
671 * MSGBUF_SIZE, and other stuff. Be generous.
673 * Maxmem is in pages.
675 * ndmpdp is the number of 1GB pages we wish to map.
677 ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
678 if (ndmpdp < 4) /* Minimum 4GB of dirmap */
679 ndmpdp = 4;
680 KKASSERT(ndmpdp <= NKPDPE * NPDEPG);
683 * Starting at the beginning of kvm (not KERNBASE).
685 nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
686 nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
687 nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E +
688 ndmpdp) + 511) / 512;
689 nkpt_phys += 128;
692 * Starting at KERNBASE - map 2G worth of page table pages.
693 * KERNBASE is offset -2G from the end of kvm.
695 nkpt_base = (NPDPEPG - KPDPI) * NPTEPG; /* typically 2 x 512 */
698 * Allocate pages
700 KPTbase = allocpages(firstaddr, nkpt_base);
701 KPTphys = allocpages(firstaddr, nkpt_phys);
702 KPML4phys = allocpages(firstaddr, 1);
703 KPDPphys = allocpages(firstaddr, NKPML4E);
704 KPDphys = allocpages(firstaddr, NKPDPE);
707 * Calculate the page directory base for KERNBASE,
708 * that is where we start populating the page table pages.
709 * Basically this is the end - 2.
711 KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
713 DMPDPphys = allocpages(firstaddr, NDMPML4E);
714 if ((amd_feature & AMDID_PAGE1GB) == 0)
715 DMPDphys = allocpages(firstaddr, ndmpdp);
716 dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
719 * Fill in the underlying page table pages for the area around
720 * KERNBASE. This remaps low physical memory to KERNBASE.
722 * Read-only from zero to physfree
723 * XXX not fully used, underneath 2M pages
725 for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
726 ((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
727 ((pt_entry_t *)KPTbase)[i] |=
728 pmap_bits_default[PG_RW_IDX] |
729 pmap_bits_default[PG_V_IDX] |
730 pmap_bits_default[PG_G_IDX];
734 * Now map the initial kernel page tables. One block of page
735 * tables is placed at the beginning of kernel virtual memory,
736 * and another block is placed at KERNBASE to map the kernel binary,
737 * data, bss, and initial pre-allocations.
739 for (i = 0; i < nkpt_base; i++) {
740 ((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
741 ((pd_entry_t *)KPDbase)[i] |=
742 pmap_bits_default[PG_RW_IDX] |
743 pmap_bits_default[PG_V_IDX];
745 for (i = 0; i < nkpt_phys; i++) {
746 ((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
747 ((pd_entry_t *)KPDphys)[i] |=
748 pmap_bits_default[PG_RW_IDX] |
749 pmap_bits_default[PG_V_IDX];
753 * Map from zero to end of allocations using 2M pages as an
754 * optimization. This will bypass some of the KPTBase pages
755 * above in the KERNBASE area.
757 for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
758 ((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
759 ((pd_entry_t *)KPDbase)[i] |=
760 pmap_bits_default[PG_RW_IDX] |
761 pmap_bits_default[PG_V_IDX] |
762 pmap_bits_default[PG_PS_IDX] |
763 pmap_bits_default[PG_G_IDX];
767 * And connect up the PD to the PDP. The kernel pmap is expected
768 * to pre-populate all of its PDs. See NKPDPE in vmparam.h.
770 for (i = 0; i < NKPDPE; i++) {
771 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
772 KPDphys + (i << PAGE_SHIFT);
773 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
774 pmap_bits_default[PG_RW_IDX] |
775 pmap_bits_default[PG_V_IDX] |
776 pmap_bits_default[PG_U_IDX];
780 * Now set up the direct map space using either 2MB or 1GB pages
781 * Preset PG_M and PG_A because demotion expects it.
783 * When filling in entries in the PD pages make sure any excess
784 * entries are set to zero as we allocated enough PD pages
786 if ((amd_feature & AMDID_PAGE1GB) == 0) {
787 for (i = 0; i < NPDEPG * ndmpdp; i++) {
788 ((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
789 ((pd_entry_t *)DMPDphys)[i] |=
790 pmap_bits_default[PG_RW_IDX] |
791 pmap_bits_default[PG_V_IDX] |
792 pmap_bits_default[PG_PS_IDX] |
793 pmap_bits_default[PG_G_IDX] |
794 pmap_bits_default[PG_M_IDX] |
795 pmap_bits_default[PG_A_IDX];
799 * And the direct map space's PDP
801 for (i = 0; i < ndmpdp; i++) {
802 ((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
803 (i << PAGE_SHIFT);
804 ((pdp_entry_t *)DMPDPphys)[i] |=
805 pmap_bits_default[PG_RW_IDX] |
806 pmap_bits_default[PG_V_IDX] |
807 pmap_bits_default[PG_U_IDX];
809 } else {
810 for (i = 0; i < ndmpdp; i++) {
811 ((pdp_entry_t *)DMPDPphys)[i] =
812 (vm_paddr_t)i << PDPSHIFT;
813 ((pdp_entry_t *)DMPDPphys)[i] |=
814 pmap_bits_default[PG_RW_IDX] |
815 pmap_bits_default[PG_V_IDX] |
816 pmap_bits_default[PG_PS_IDX] |
817 pmap_bits_default[PG_G_IDX] |
818 pmap_bits_default[PG_M_IDX] |
819 pmap_bits_default[PG_A_IDX];
823 /* And recursively map PML4 to itself in order to get PTmap */
824 ((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
825 ((pdp_entry_t *)KPML4phys)[PML4PML4I] |=
826 pmap_bits_default[PG_RW_IDX] |
827 pmap_bits_default[PG_V_IDX] |
828 pmap_bits_default[PG_U_IDX];
831 * Connect the Direct Map slots up to the PML4
833 for (j = 0; j < NDMPML4E; ++j) {
834 ((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
835 (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
836 pmap_bits_default[PG_RW_IDX] |
837 pmap_bits_default[PG_V_IDX] |
838 pmap_bits_default[PG_U_IDX];
842 * Connect the KVA slot up to the PML4
844 ((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
845 ((pdp_entry_t *)KPML4phys)[KPML4I] |=
846 pmap_bits_default[PG_RW_IDX] |
847 pmap_bits_default[PG_V_IDX] |
848 pmap_bits_default[PG_U_IDX];
852 * Bootstrap the system enough to run with virtual memory.
854 * On the i386 this is called after mapping has already been enabled
855 * and just syncs the pmap module with what has already been done.
856 * [We can't call it easily with mapping off since the kernel is not
857 * mapped with PA == VA, hence we would have to relocate every address
858 * from the linked base (virtual) address "KERNBASE" to the actual
859 * (physical) address starting relative to 0]
861 void
862 pmap_bootstrap(vm_paddr_t *firstaddr)
864 vm_offset_t va;
865 pt_entry_t *pte;
867 KvaStart = VM_MIN_KERNEL_ADDRESS;
868 KvaEnd = VM_MAX_KERNEL_ADDRESS;
869 KvaSize = KvaEnd - KvaStart;
871 avail_start = *firstaddr;
874 * Create an initial set of page tables to run the kernel in.
876 create_pagetables(firstaddr);
878 virtual2_start = KvaStart;
879 virtual2_end = PTOV_OFFSET;
881 virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
882 virtual_start = pmap_kmem_choose(virtual_start);
884 virtual_end = VM_MAX_KERNEL_ADDRESS;
886 /* XXX do %cr0 as well */
887 load_cr4(rcr4() | CR4_PGE | CR4_PSE);
888 load_cr3(KPML4phys);
891 * Initialize protection array.
893 i386_protection_init();
896 * The kernel's pmap is statically allocated so we don't have to use
897 * pmap_create, which is unlikely to work correctly at this part of
898 * the boot sequence (XXX and which no longer exists).
900 kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
901 kernel_pmap.pm_count = 1;
902 CPUMASK_ASSALLONES(kernel_pmap.pm_active);
903 RB_INIT(&kernel_pmap.pm_pvroot);
904 spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
905 lwkt_token_init(&kernel_pmap.pm_token, "kpmap_tok");
908 * Reserve some special page table entries/VA space for temporary
909 * mapping of pages.
911 #define SYSMAP(c, p, v, n) \
912 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
914 va = virtual_start;
915 pte = vtopte(va);
918 * CMAP1/CMAP2 are used for zeroing and copying pages.
920 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
923 * Crashdump maps.
925 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
928 * ptvmmap is used for reading arbitrary physical pages via
929 * /dev/mem.
931 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
934 * msgbufp is used to map the system message buffer.
935 * XXX msgbufmap is not used.
937 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
938 atop(round_page(MSGBUF_SIZE)))
940 virtual_start = va;
941 virtual_start = pmap_kmem_choose(virtual_start);
943 *CMAP1 = 0;
946 * PG_G is terribly broken on SMP because we IPI invltlb's in some
947 * cases rather then invl1pg. Actually, I don't even know why it
948 * works under UP because self-referential page table mappings
950 // pgeflag = 0;
953 * Initialize the 4MB page size flag
955 // pseflag = 0;
957 * The 4MB page version of the initial
958 * kernel page mapping.
960 pdir4mb = 0;
962 #if !defined(DISABLE_PSE)
963 if (cpu_feature & CPUID_PSE) {
964 pt_entry_t ptditmp;
966 * Note that we have enabled PSE mode
968 // pseflag = kernel_pmap.pmap_bits[PG_PS_IDX];
969 ptditmp = *(PTmap + x86_64_btop(KERNBASE));
970 ptditmp &= ~(NBPDR - 1);
971 ptditmp |= pmap_bits_default[PG_V_IDX] |
972 pmap_bits_default[PG_RW_IDX] |
973 pmap_bits_default[PG_PS_IDX] |
974 pmap_bits_default[PG_U_IDX];
975 // pgeflag;
976 pdir4mb = ptditmp;
978 #endif
979 cpu_invltlb();
981 /* Initialize the PAT MSR */
982 pmap_init_pat();
983 pmap_pinit_defaults(&kernel_pmap);
985 TUNABLE_INT_FETCH("machdep.pmap_fast_kernel_cpusync",
986 &pmap_fast_kernel_cpusync);
991 * Setup the PAT MSR.
993 void
994 pmap_init_pat(void)
996 uint64_t pat_msr;
997 u_long cr0, cr4;
1000 * Default values mapping PATi,PCD,PWT bits at system reset.
1001 * The default values effectively ignore the PATi bit by
1002 * repeating the encodings for 0-3 in 4-7, and map the PCD
1003 * and PWT bit combinations to the expected PAT types.
1005 pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) | /* 000 */
1006 PAT_VALUE(1, PAT_WRITE_THROUGH) | /* 001 */
1007 PAT_VALUE(2, PAT_UNCACHED) | /* 010 */
1008 PAT_VALUE(3, PAT_UNCACHEABLE) | /* 011 */
1009 PAT_VALUE(4, PAT_WRITE_BACK) | /* 100 */
1010 PAT_VALUE(5, PAT_WRITE_THROUGH) | /* 101 */
1011 PAT_VALUE(6, PAT_UNCACHED) | /* 110 */
1012 PAT_VALUE(7, PAT_UNCACHEABLE); /* 111 */
1013 pat_pte_index[PAT_WRITE_BACK] = 0;
1014 pat_pte_index[PAT_WRITE_THROUGH]= 0 | X86_PG_NC_PWT;
1015 pat_pte_index[PAT_UNCACHED] = X86_PG_NC_PCD;
1016 pat_pte_index[PAT_UNCACHEABLE] = X86_PG_NC_PCD | X86_PG_NC_PWT;
1017 pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
1018 pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
1020 if (cpu_feature & CPUID_PAT) {
1022 * If we support the PAT then set-up entries for
1023 * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
1024 * 4 and 5.
1026 pat_msr = (pat_msr & ~PAT_MASK(4)) |
1027 PAT_VALUE(4, PAT_WRITE_PROTECTED);
1028 pat_msr = (pat_msr & ~PAT_MASK(5)) |
1029 PAT_VALUE(5, PAT_WRITE_COMBINING);
1030 pat_pte_index[PAT_WRITE_PROTECTED] = X86_PG_PTE_PAT | 0;
1031 pat_pte_index[PAT_WRITE_COMBINING] = X86_PG_PTE_PAT | X86_PG_NC_PWT;
1034 * Then enable the PAT
1037 /* Disable PGE. */
1038 cr4 = rcr4();
1039 load_cr4(cr4 & ~CR4_PGE);
1041 /* Disable caches (CD = 1, NW = 0). */
1042 cr0 = rcr0();
1043 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1045 /* Flushes caches and TLBs. */
1046 wbinvd();
1047 cpu_invltlb();
1049 /* Update PAT and index table. */
1050 wrmsr(MSR_PAT, pat_msr);
1052 /* Flush caches and TLBs again. */
1053 wbinvd();
1054 cpu_invltlb();
1056 /* Restore caches and PGE. */
1057 load_cr0(cr0);
1058 load_cr4(cr4);
1059 PatMsr = pat_msr;
1064 * Set 4mb pdir for mp startup
1066 void
1067 pmap_set_opt(void)
1069 if (cpu_feature & CPUID_PSE) {
1070 load_cr4(rcr4() | CR4_PSE);
1071 if (pdir4mb && mycpu->gd_cpuid == 0) { /* only on BSP */
1072 cpu_invltlb();
1078 * Initialize the pmap module.
1079 * Called by vm_init, to initialize any structures that the pmap
1080 * system needs to map virtual memory.
1081 * pmap_init has been enhanced to support in a fairly consistant
1082 * way, discontiguous physical memory.
1084 void
1085 pmap_init(void)
1087 int i;
1088 int initial_pvs;
1091 * Allocate memory for random pmap data structures. Includes the
1092 * pv_head_table.
1095 for (i = 0; i < vm_page_array_size; i++) {
1096 vm_page_t m;
1098 m = &vm_page_array[i];
1099 TAILQ_INIT(&m->md.pv_list);
1103 * init the pv free list
1105 initial_pvs = vm_page_array_size;
1106 if (initial_pvs < MINPV)
1107 initial_pvs = MINPV;
1108 pvzone = &pvzone_store;
1109 pvinit = (void *)kmem_alloc(&kernel_map,
1110 initial_pvs * sizeof (struct pv_entry),
1111 VM_SUBSYS_PVENTRY);
1112 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
1113 pvinit, initial_pvs);
1116 * Now it is safe to enable pv_table recording.
1118 pmap_initialized = TRUE;
1122 * Initialize the address space (zone) for the pv_entries. Set a
1123 * high water mark so that the system can recover from excessive
1124 * numbers of pv entries.
1126 void
1127 pmap_init2(void)
1129 int shpgperproc = PMAP_SHPGPERPROC;
1130 int entry_max;
1132 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1133 pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
1134 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1135 pv_entry_high_water = 9 * (pv_entry_max / 10);
1138 * Subtract out pages already installed in the zone (hack)
1140 entry_max = pv_entry_max - vm_page_array_size;
1141 if (entry_max <= 0)
1142 entry_max = 1;
1144 zinitna(pvzone, &pvzone_obj, NULL, 0, entry_max, ZONE_INTERRUPT);
1148 * Typically used to initialize a fictitious page by vm/device_pager.c
1150 void
1151 pmap_page_init(struct vm_page *m)
1153 vm_page_init(m);
1154 TAILQ_INIT(&m->md.pv_list);
1157 /***************************************************
1158 * Low level helper routines.....
1159 ***************************************************/
1162 * this routine defines the region(s) of memory that should
1163 * not be tested for the modified bit.
1165 static __inline
1167 pmap_track_modified(vm_pindex_t pindex)
1169 vm_offset_t va = (vm_offset_t)pindex << PAGE_SHIFT;
1170 if ((va < clean_sva) || (va >= clean_eva))
1171 return 1;
1172 else
1173 return 0;
1177 * Extract the physical page address associated with the map/VA pair.
1178 * The page must be wired for this to work reliably.
1180 * XXX for the moment we're using pv_find() instead of pv_get(), as
1181 * callers might be expecting non-blocking operation.
1183 vm_paddr_t
1184 pmap_extract(pmap_t pmap, vm_offset_t va)
1186 vm_paddr_t rtval;
1187 pv_entry_t pt_pv;
1188 pt_entry_t *ptep;
1190 rtval = 0;
1191 if (va >= VM_MAX_USER_ADDRESS) {
1193 * Kernel page directories might be direct-mapped and
1194 * there is typically no PV tracking of pte's
1196 pd_entry_t *pt;
1198 pt = pmap_pt(pmap, va);
1199 if (pt && (*pt & pmap->pmap_bits[PG_V_IDX])) {
1200 if (*pt & pmap->pmap_bits[PG_PS_IDX]) {
1201 rtval = *pt & PG_PS_FRAME;
1202 rtval |= va & PDRMASK;
1203 } else {
1204 ptep = pmap_pt_to_pte(*pt, va);
1205 if (*pt & pmap->pmap_bits[PG_V_IDX]) {
1206 rtval = *ptep & PG_FRAME;
1207 rtval |= va & PAGE_MASK;
1211 } else {
1213 * User pages currently do not direct-map the page directory
1214 * and some pages might not used managed PVs. But all PT's
1215 * will have a PV.
1217 pt_pv = pv_find(pmap, pmap_pt_pindex(va));
1218 if (pt_pv) {
1219 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1220 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1221 rtval = *ptep & PG_FRAME;
1222 rtval |= va & PAGE_MASK;
1224 pv_drop(pt_pv);
1227 return rtval;
1231 * Similar to extract but checks protections, SMP-friendly short-cut for
1232 * vm_fault_page[_quick](). Can return NULL to cause the caller to
1233 * fall-through to the real fault code.
1235 * The returned page, if not NULL, is held (and not busied).
1237 vm_page_t
1238 pmap_fault_page_quick(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1240 if (pmap && va < VM_MAX_USER_ADDRESS) {
1241 pv_entry_t pt_pv;
1242 pv_entry_t pte_pv;
1243 pt_entry_t *ptep;
1244 pt_entry_t req;
1245 vm_page_t m;
1246 int error;
1248 req = pmap->pmap_bits[PG_V_IDX] |
1249 pmap->pmap_bits[PG_U_IDX];
1250 if (prot & VM_PROT_WRITE)
1251 req |= pmap->pmap_bits[PG_RW_IDX];
1253 pt_pv = pv_find(pmap, pmap_pt_pindex(va));
1254 if (pt_pv == NULL)
1255 return (NULL);
1256 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1257 if ((*ptep & req) != req) {
1258 pv_drop(pt_pv);
1259 return (NULL);
1261 pte_pv = pv_get_try(pmap, pmap_pte_pindex(va), &error);
1262 if (pte_pv && error == 0) {
1263 m = pte_pv->pv_m;
1264 vm_page_hold(m);
1265 if (prot & VM_PROT_WRITE)
1266 vm_page_dirty(m);
1267 pv_put(pte_pv);
1268 } else if (pte_pv) {
1269 pv_drop(pte_pv);
1270 m = NULL;
1271 } else {
1272 m = NULL;
1274 pv_drop(pt_pv);
1275 return(m);
1276 } else {
1277 return(NULL);
1282 * Extract the physical page address associated kernel virtual address.
1284 vm_paddr_t
1285 pmap_kextract(vm_offset_t va)
1287 pd_entry_t pt; /* pt entry in pd */
1288 vm_paddr_t pa;
1290 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1291 pa = DMAP_TO_PHYS(va);
1292 } else {
1293 pt = *vtopt(va);
1294 if (pt & kernel_pmap.pmap_bits[PG_PS_IDX]) {
1295 pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1296 } else {
1298 * Beware of a concurrent promotion that changes the
1299 * PDE at this point! For example, vtopte() must not
1300 * be used to access the PTE because it would use the
1301 * new PDE. It is, however, safe to use the old PDE
1302 * because the page table page is preserved by the
1303 * promotion.
1305 pa = *pmap_pt_to_pte(pt, va);
1306 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1309 return pa;
1312 /***************************************************
1313 * Low level mapping routines.....
1314 ***************************************************/
1317 * Routine: pmap_kenter
1318 * Function:
1319 * Add a wired page to the KVA
1320 * NOTE! note that in order for the mapping to take effect -- you
1321 * should do an invltlb after doing the pmap_kenter().
1323 void
1324 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1326 pt_entry_t *ptep;
1327 pt_entry_t npte;
1329 npte = pa |
1330 kernel_pmap.pmap_bits[PG_RW_IDX] |
1331 kernel_pmap.pmap_bits[PG_V_IDX];
1332 // pgeflag;
1333 ptep = vtopte(va);
1334 #if 1
1335 pmap_inval_smp(&kernel_pmap, va, 1, ptep, npte);
1336 #else
1337 /* FUTURE */
1338 if (*ptep)
1339 pmap_inval_smp(&kernel_pmap, va, ptep, npte);
1340 else
1341 *ptep = npte;
1342 #endif
1346 * Similar to pmap_kenter(), except we only invalidate the mapping on the
1347 * current CPU. Returns 0 if the previous pte was 0, 1 if it wasn't
1348 * (caller can conditionalize calling smp_invltlb()).
1351 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1353 pt_entry_t *ptep;
1354 pt_entry_t npte;
1355 int res;
1357 npte = pa |
1358 kernel_pmap.pmap_bits[PG_RW_IDX] |
1359 kernel_pmap.pmap_bits[PG_V_IDX];
1360 // pgeflag;
1361 ptep = vtopte(va);
1362 #if 1
1363 res = 1;
1364 #else
1365 /* FUTURE */
1366 res = (*ptep != 0);
1367 #endif
1368 *ptep = npte;
1369 cpu_invlpg((void *)va);
1371 return res;
1375 * Enter addresses into the kernel pmap but don't bother
1376 * doing any tlb invalidations. Caller will do a rollup
1377 * invalidation via pmap_rollup_inval().
1380 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
1382 pt_entry_t *ptep;
1383 pt_entry_t npte;
1384 int res;
1386 npte = pa |
1387 kernel_pmap.pmap_bits[PG_RW_IDX] |
1388 kernel_pmap.pmap_bits[PG_V_IDX];
1389 // pgeflag;
1390 ptep = vtopte(va);
1391 #if 1
1392 res = 1;
1393 #else
1394 /* FUTURE */
1395 res = (*ptep != 0);
1396 #endif
1397 *ptep = npte;
1398 cpu_invlpg((void *)va);
1400 return res;
1404 * remove a page from the kernel pagetables
1406 void
1407 pmap_kremove(vm_offset_t va)
1409 pt_entry_t *ptep;
1411 ptep = vtopte(va);
1412 pmap_inval_smp(&kernel_pmap, va, 1, ptep, 0);
1415 void
1416 pmap_kremove_quick(vm_offset_t va)
1418 pt_entry_t *ptep;
1420 ptep = vtopte(va);
1421 (void)pte_load_clear(ptep);
1422 cpu_invlpg((void *)va);
1426 * Remove addresses from the kernel pmap but don't bother
1427 * doing any tlb invalidations. Caller will do a rollup
1428 * invalidation via pmap_rollup_inval().
1430 void
1431 pmap_kremove_noinval(vm_offset_t va)
1433 pt_entry_t *ptep;
1435 ptep = vtopte(va);
1436 (void)pte_load_clear(ptep);
1440 * XXX these need to be recoded. They are not used in any critical path.
1442 void
1443 pmap_kmodify_rw(vm_offset_t va)
1445 atomic_set_long(vtopte(va), kernel_pmap.pmap_bits[PG_RW_IDX]);
1446 cpu_invlpg((void *)va);
1449 /* NOT USED
1450 void
1451 pmap_kmodify_nc(vm_offset_t va)
1453 atomic_set_long(vtopte(va), PG_N);
1454 cpu_invlpg((void *)va);
1459 * Used to map a range of physical addresses into kernel virtual
1460 * address space during the low level boot, typically to map the
1461 * dump bitmap, message buffer, and vm_page_array.
1463 * These mappings are typically made at some pointer after the end of the
1464 * kernel text+data.
1466 * We could return PHYS_TO_DMAP(start) here and not allocate any
1467 * via (*virtp), but then kmem from userland and kernel dumps won't
1468 * have access to the related pointers.
1470 vm_offset_t
1471 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1473 vm_offset_t va;
1474 vm_offset_t va_start;
1476 /*return PHYS_TO_DMAP(start);*/
1478 va_start = *virtp;
1479 va = va_start;
1481 while (start < end) {
1482 pmap_kenter_quick(va, start);
1483 va += PAGE_SIZE;
1484 start += PAGE_SIZE;
1486 *virtp = va;
1487 return va_start;
1490 #define PMAP_CLFLUSH_THRESHOLD (2 * 1024 * 1024)
1493 * Remove the specified set of pages from the data and instruction caches.
1495 * In contrast to pmap_invalidate_cache_range(), this function does not
1496 * rely on the CPU's self-snoop feature, because it is intended for use
1497 * when moving pages into a different cache domain.
1499 void
1500 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1502 vm_offset_t daddr, eva;
1503 int i;
1505 if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1506 (cpu_feature & CPUID_CLFSH) == 0)
1507 wbinvd();
1508 else {
1509 cpu_mfence();
1510 for (i = 0; i < count; i++) {
1511 daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1512 eva = daddr + PAGE_SIZE;
1513 for (; daddr < eva; daddr += cpu_clflush_line_size)
1514 clflush(daddr);
1516 cpu_mfence();
1520 void
1521 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1523 KASSERT((sva & PAGE_MASK) == 0,
1524 ("pmap_invalidate_cache_range: sva not page-aligned"));
1525 KASSERT((eva & PAGE_MASK) == 0,
1526 ("pmap_invalidate_cache_range: eva not page-aligned"));
1528 if (cpu_feature & CPUID_SS) {
1529 ; /* If "Self Snoop" is supported, do nothing. */
1530 } else {
1531 /* Globally invalidate caches */
1532 cpu_wbinvd_on_all_cpus();
1537 * Invalidate the specified range of virtual memory on all cpus associated
1538 * with the pmap.
1540 void
1541 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1543 pmap_inval_smp(pmap, sva, (eva - sva) >> PAGE_SHIFT, NULL, 0);
1547 * Add a list of wired pages to the kva. This routine is used for temporary
1548 * kernel mappings such as those found in buffer cache buffer. Page
1549 * modifications and accesses are not tracked or recorded.
1551 * NOTE! Old mappings are simply overwritten, and we cannot assume relaxed
1552 * semantics as previous mappings may have been zerod without any
1553 * invalidation.
1555 * The page *must* be wired.
1557 void
1558 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
1560 vm_offset_t end_va;
1561 vm_offset_t va;
1563 end_va = beg_va + count * PAGE_SIZE;
1565 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1566 pt_entry_t *pte;
1568 pte = vtopte(va);
1569 *pte = VM_PAGE_TO_PHYS(*m) |
1570 kernel_pmap.pmap_bits[PG_RW_IDX] |
1571 kernel_pmap.pmap_bits[PG_V_IDX] |
1572 kernel_pmap.pmap_cache_bits[(*m)->pat_mode];
1573 // pgeflag;
1574 m++;
1576 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1580 * This routine jerks page mappings from the kernel -- it is meant only
1581 * for temporary mappings such as those found in buffer cache buffers.
1582 * No recording modified or access status occurs.
1584 * MPSAFE, INTERRUPT SAFE (cluster callback)
1586 void
1587 pmap_qremove(vm_offset_t beg_va, int count)
1589 vm_offset_t end_va;
1590 vm_offset_t va;
1592 end_va = beg_va + count * PAGE_SIZE;
1594 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1595 pt_entry_t *pte;
1597 pte = vtopte(va);
1598 (void)pte_load_clear(pte);
1599 cpu_invlpg((void *)va);
1601 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1605 * This routine removes temporary kernel mappings, only invalidating them
1606 * on the current cpu. It should only be used under carefully controlled
1607 * conditions.
1609 void
1610 pmap_qremove_quick(vm_offset_t beg_va, int count)
1612 vm_offset_t end_va;
1613 vm_offset_t va;
1615 end_va = beg_va + count * PAGE_SIZE;
1617 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1618 pt_entry_t *pte;
1620 pte = vtopte(va);
1621 (void)pte_load_clear(pte);
1622 cpu_invlpg((void *)va);
1627 * This routine removes temporary kernel mappings *without* invalidating
1628 * the TLB. It can only be used on permanent kva reservations such as those
1629 * found in buffer cache buffers, under carefully controlled circumstances.
1631 * NOTE: Repopulating these KVAs requires unconditional invalidation.
1632 * (pmap_qenter() does unconditional invalidation).
1634 void
1635 pmap_qremove_noinval(vm_offset_t beg_va, int count)
1637 vm_offset_t end_va;
1638 vm_offset_t va;
1640 end_va = beg_va + count * PAGE_SIZE;
1642 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1643 pt_entry_t *pte;
1645 pte = vtopte(va);
1646 (void)pte_load_clear(pte);
1651 * Create a new thread and optionally associate it with a (new) process.
1652 * NOTE! the new thread's cpu may not equal the current cpu.
1654 void
1655 pmap_init_thread(thread_t td)
1657 /* enforce pcb placement & alignment */
1658 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1659 td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1660 td->td_savefpu = &td->td_pcb->pcb_save;
1661 td->td_sp = (char *)td->td_pcb; /* no -16 */
1665 * This routine directly affects the fork perf for a process.
1667 void
1668 pmap_init_proc(struct proc *p)
1672 static void
1673 pmap_pinit_defaults(struct pmap *pmap)
1675 bcopy(pmap_bits_default, pmap->pmap_bits,
1676 sizeof(pmap_bits_default));
1677 bcopy(protection_codes, pmap->protection_codes,
1678 sizeof(protection_codes));
1679 bcopy(pat_pte_index, pmap->pmap_cache_bits,
1680 sizeof(pat_pte_index));
1681 pmap->pmap_cache_mask = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PTE_PAT;
1682 pmap->copyinstr = std_copyinstr;
1683 pmap->copyin = std_copyin;
1684 pmap->copyout = std_copyout;
1685 pmap->fubyte = std_fubyte;
1686 pmap->subyte = std_subyte;
1687 pmap->fuword = std_fuword;
1688 pmap->suword = std_suword;
1689 pmap->suword32 = std_suword32;
1692 * Initialize pmap0/vmspace0. This pmap is not added to pmap_list because
1693 * it, and IdlePTD, represents the template used to update all other pmaps.
1695 * On architectures where the kernel pmap is not integrated into the user
1696 * process pmap, this pmap represents the process pmap, not the kernel pmap.
1697 * kernel_pmap should be used to directly access the kernel_pmap.
1699 void
1700 pmap_pinit0(struct pmap *pmap)
1702 pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1703 pmap->pm_count = 1;
1704 CPUMASK_ASSZERO(pmap->pm_active);
1705 pmap->pm_pvhint = NULL;
1706 RB_INIT(&pmap->pm_pvroot);
1707 spin_init(&pmap->pm_spin, "pmapinit0");
1708 lwkt_token_init(&pmap->pm_token, "pmap_tok");
1709 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1710 pmap_pinit_defaults(pmap);
1714 * Initialize a preallocated and zeroed pmap structure,
1715 * such as one in a vmspace structure.
1717 static void
1718 pmap_pinit_simple(struct pmap *pmap)
1721 * Misc initialization
1723 pmap->pm_count = 1;
1724 CPUMASK_ASSZERO(pmap->pm_active);
1725 pmap->pm_pvhint = NULL;
1726 pmap->pm_flags = PMAP_FLAG_SIMPLE;
1728 pmap_pinit_defaults(pmap);
1731 * Don't blow up locks/tokens on re-use (XXX fix/use drop code
1732 * for this).
1734 if (pmap->pm_pmlpv == NULL) {
1735 RB_INIT(&pmap->pm_pvroot);
1736 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1737 spin_init(&pmap->pm_spin, "pmapinitsimple");
1738 lwkt_token_init(&pmap->pm_token, "pmap_tok");
1742 void
1743 pmap_pinit(struct pmap *pmap)
1745 pv_entry_t pv;
1746 int j;
1748 if (pmap->pm_pmlpv) {
1749 if (pmap->pmap_bits[TYPE_IDX] != REGULAR_PMAP) {
1750 pmap_puninit(pmap);
1754 pmap_pinit_simple(pmap);
1755 pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
1758 * No need to allocate page table space yet but we do need a valid
1759 * page directory table.
1761 if (pmap->pm_pml4 == NULL) {
1762 pmap->pm_pml4 =
1763 (pml4_entry_t *)kmem_alloc_pageable(&kernel_map,
1764 PAGE_SIZE,
1765 VM_SUBSYS_PML4);
1769 * Allocate the page directory page, which wires it even though
1770 * it isn't being entered into some higher level page table (it
1771 * being the highest level). If one is already cached we don't
1772 * have to do anything.
1774 if ((pv = pmap->pm_pmlpv) == NULL) {
1775 pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1776 pmap->pm_pmlpv = pv;
1777 pmap_kenter((vm_offset_t)pmap->pm_pml4,
1778 VM_PAGE_TO_PHYS(pv->pv_m));
1779 pv_put(pv);
1782 * Install DMAP and KMAP.
1784 for (j = 0; j < NDMPML4E; ++j) {
1785 pmap->pm_pml4[DMPML4I + j] =
1786 (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
1787 pmap->pmap_bits[PG_RW_IDX] |
1788 pmap->pmap_bits[PG_V_IDX] |
1789 pmap->pmap_bits[PG_U_IDX];
1791 pmap->pm_pml4[KPML4I] = KPDPphys |
1792 pmap->pmap_bits[PG_RW_IDX] |
1793 pmap->pmap_bits[PG_V_IDX] |
1794 pmap->pmap_bits[PG_U_IDX];
1797 * install self-referential address mapping entry
1799 pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
1800 pmap->pmap_bits[PG_V_IDX] |
1801 pmap->pmap_bits[PG_RW_IDX] |
1802 pmap->pmap_bits[PG_A_IDX] |
1803 pmap->pmap_bits[PG_M_IDX];
1804 } else {
1805 KKASSERT(pv->pv_m->flags & PG_MAPPED);
1806 KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
1808 KKASSERT(pmap->pm_pml4[255] == 0);
1809 KKASSERT(RB_ROOT(&pmap->pm_pvroot) == pv);
1810 KKASSERT(pv->pv_entry.rbe_left == NULL);
1811 KKASSERT(pv->pv_entry.rbe_right == NULL);
1815 * Clean up a pmap structure so it can be physically freed. This routine
1816 * is called by the vmspace dtor function. A great deal of pmap data is
1817 * left passively mapped to improve vmspace management so we have a bit
1818 * of cleanup work to do here.
1820 void
1821 pmap_puninit(pmap_t pmap)
1823 pv_entry_t pv;
1824 vm_page_t p;
1826 KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
1827 if ((pv = pmap->pm_pmlpv) != NULL) {
1828 if (pv_hold_try(pv) == 0)
1829 pv_lock(pv);
1830 KKASSERT(pv == pmap->pm_pmlpv);
1831 p = pmap_remove_pv_page(pv);
1832 pv_free(pv);
1833 pmap_kremove((vm_offset_t)pmap->pm_pml4);
1834 vm_page_busy_wait(p, FALSE, "pgpun");
1835 KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
1836 vm_page_unwire(p, 0);
1837 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1840 * XXX eventually clean out PML4 static entries and
1841 * use vm_page_free_zero()
1843 vm_page_free(p);
1844 pmap->pm_pmlpv = NULL;
1846 if (pmap->pm_pml4) {
1847 KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1848 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1849 pmap->pm_pml4 = NULL;
1851 KKASSERT(pmap->pm_stats.resident_count == 0);
1852 KKASSERT(pmap->pm_stats.wired_count == 0);
1856 * Wire in kernel global address entries. To avoid a race condition
1857 * between pmap initialization and pmap_growkernel, this procedure
1858 * adds the pmap to the master list (which growkernel scans to update),
1859 * then copies the template.
1861 void
1862 pmap_pinit2(struct pmap *pmap)
1864 spin_lock(&pmap_spin);
1865 TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1866 spin_unlock(&pmap_spin);
1870 * This routine is called when various levels in the page table need to
1871 * be populated. This routine cannot fail.
1873 * This function returns two locked pv_entry's, one representing the
1874 * requested pv and one representing the requested pv's parent pv. If
1875 * the pv did not previously exist it will be mapped into its parent
1876 * and wired, otherwise no additional wire count will be added.
1878 static
1879 pv_entry_t
1880 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
1882 pt_entry_t *ptep;
1883 pv_entry_t pv;
1884 pv_entry_t pvp;
1885 vm_pindex_t pt_pindex;
1886 vm_page_t m;
1887 int isnew;
1888 int ispt;
1891 * If the pv already exists and we aren't being asked for the
1892 * parent page table page we can just return it. A locked+held pv
1893 * is returned. The pv will also have a second hold related to the
1894 * pmap association that we don't have to worry about.
1896 ispt = 0;
1897 pv = pv_alloc(pmap, ptepindex, &isnew);
1898 if (isnew == 0 && pvpp == NULL)
1899 return(pv);
1902 * Special case terminal PVs. These are not page table pages so
1903 * no vm_page is allocated (the caller supplied the vm_page). If
1904 * pvpp is non-NULL we are being asked to also removed the pt_pv
1905 * for this pv.
1907 * Note that pt_pv's are only returned for user VAs. We assert that
1908 * a pt_pv is not being requested for kernel VAs.
1910 if (ptepindex < pmap_pt_pindex(0)) {
1911 if (ptepindex >= NUPTE_USER)
1912 KKASSERT(pvpp == NULL);
1913 else
1914 KKASSERT(pvpp != NULL);
1915 if (pvpp) {
1916 pt_pindex = NUPTE_TOTAL + (ptepindex >> NPTEPGSHIFT);
1917 pvp = pmap_allocpte(pmap, pt_pindex, NULL);
1918 if (isnew)
1919 vm_page_wire_quick(pvp->pv_m);
1920 *pvpp = pvp;
1921 } else {
1922 pvp = NULL;
1924 return(pv);
1928 * Non-terminal PVs allocate a VM page to represent the page table,
1929 * so we have to resolve pvp and calculate ptepindex for the pvp
1930 * and then for the page table entry index in the pvp for
1931 * fall-through.
1933 if (ptepindex < pmap_pd_pindex(0)) {
1935 * pv is PT, pvp is PD
1937 ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
1938 ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
1939 pvp = pmap_allocpte(pmap, ptepindex, NULL);
1940 if (!isnew)
1941 goto notnew;
1944 * PT index in PD
1946 ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
1947 ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
1948 ispt = 1;
1949 } else if (ptepindex < pmap_pdp_pindex(0)) {
1951 * pv is PD, pvp is PDP
1953 * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
1954 * the PD.
1956 ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
1957 ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
1959 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
1960 KKASSERT(pvpp == NULL);
1961 pvp = NULL;
1962 } else {
1963 pvp = pmap_allocpte(pmap, ptepindex, NULL);
1965 if (!isnew)
1966 goto notnew;
1969 * PD index in PDP
1971 ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
1972 ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
1973 } else if (ptepindex < pmap_pml4_pindex()) {
1975 * pv is PDP, pvp is the root pml4 table
1977 pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1978 if (!isnew)
1979 goto notnew;
1982 * PDP index in PML4
1984 ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
1985 ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
1986 } else {
1988 * pv represents the top-level PML4, there is no parent.
1990 pvp = NULL;
1991 if (!isnew)
1992 goto notnew;
1996 * This code is only reached if isnew is TRUE and this is not a
1997 * terminal PV. We need to allocate a vm_page for the page table
1998 * at this level and enter it into the parent page table.
2000 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
2002 for (;;) {
2003 m = vm_page_alloc(NULL, pv->pv_pindex,
2004 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2005 VM_ALLOC_INTERRUPT);
2006 if (m)
2007 break;
2008 vm_wait(0);
2010 vm_page_spin_lock(m);
2011 pmap_page_stats_adding(m);
2012 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2013 pv->pv_m = m;
2014 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
2015 vm_page_spin_unlock(m);
2016 vm_page_unmanage(m); /* m must be spinunlocked */
2018 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2019 m->valid = VM_PAGE_BITS_ALL;
2020 vm_page_wire(m); /* wire for mapping in parent */
2023 * Wire the page into pvp, bump the wire-count for pvp's page table
2024 * page. Bump the resident_count for the pmap. There is no pvp
2025 * for the top level, address the pm_pml4[] array directly.
2027 * If the caller wants the parent we return it, otherwise
2028 * we just put it away.
2030 * No interlock is needed for pte 0 -> non-zero.
2032 * In the situation where *ptep is valid we might have an unmanaged
2033 * page table page shared from another page table which we need to
2034 * unshare before installing our private page table page.
2036 if (pvp) {
2037 ptep = pv_pte_lookup(pvp, ptepindex);
2038 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
2039 pt_entry_t pte;
2041 if (ispt == 0) {
2042 panic("pmap_allocpte: unexpected pte %p/%d",
2043 pvp, (int)ptepindex);
2045 pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, 0);
2046 if (vm_page_unwire_quick(
2047 PHYS_TO_VM_PAGE(pte & PG_FRAME))) {
2048 panic("pmap_allocpte: shared pgtable "
2049 "pg bad wirecount");
2051 atomic_add_long(&pmap->pm_stats.resident_count, -1);
2052 } else {
2053 vm_page_wire_quick(pvp->pv_m);
2055 *ptep = VM_PAGE_TO_PHYS(m) |
2056 (pmap->pmap_bits[PG_U_IDX] |
2057 pmap->pmap_bits[PG_RW_IDX] |
2058 pmap->pmap_bits[PG_V_IDX] |
2059 pmap->pmap_bits[PG_A_IDX] |
2060 pmap->pmap_bits[PG_M_IDX]);
2062 vm_page_wakeup(m);
2063 notnew:
2064 if (pvpp)
2065 *pvpp = pvp;
2066 else if (pvp)
2067 pv_put(pvp);
2068 return (pv);
2072 * This version of pmap_allocpte() checks for possible segment optimizations
2073 * that would allow page-table sharing. It can be called for terminal
2074 * page or page table page ptepindex's.
2076 * The function is called with page table page ptepindex's for fictitious
2077 * and unmanaged terminal pages. That is, we don't want to allocate a
2078 * terminal pv, we just want the pt_pv. pvpp is usually passed as NULL
2079 * for this case.
2081 * This function can return a pv and *pvpp associated with the passed in pmap
2082 * OR a pv and *pvpp associated with the shared pmap. In the latter case
2083 * an unmanaged page table page will be entered into the pass in pmap.
2085 static
2086 pv_entry_t
2087 pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp,
2088 vm_map_entry_t entry, vm_offset_t va)
2090 vm_object_t object;
2091 pmap_t obpmap;
2092 pmap_t *obpmapp;
2093 vm_offset_t b;
2094 pv_entry_t pte_pv; /* in original or shared pmap */
2095 pv_entry_t pt_pv; /* in original or shared pmap */
2096 pv_entry_t proc_pd_pv; /* in original pmap */
2097 pv_entry_t proc_pt_pv; /* in original pmap */
2098 pv_entry_t xpv; /* PT in shared pmap */
2099 pd_entry_t *pt; /* PT entry in PD of original pmap */
2100 pd_entry_t opte; /* contents of *pt */
2101 pd_entry_t npte; /* contents of *pt */
2102 vm_page_t m;
2104 retry:
2106 * Basic tests, require a non-NULL vm_map_entry, require proper
2107 * alignment and type for the vm_map_entry, require that the
2108 * underlying object already be allocated.
2110 * We allow almost any type of object to use this optimization.
2111 * The object itself does NOT have to be sized to a multiple of the
2112 * segment size, but the memory mapping does.
2114 * XXX don't handle devices currently, because VM_PAGE_TO_PHYS()
2115 * won't work as expected.
2117 if (entry == NULL ||
2118 pmap_mmu_optimize == 0 || /* not enabled */
2119 (pmap->pm_flags & PMAP_HVM) || /* special pmap */
2120 ptepindex >= pmap_pd_pindex(0) || /* not terminal or pt */
2121 entry->inheritance != VM_INHERIT_SHARE || /* not shared */
2122 entry->maptype != VM_MAPTYPE_NORMAL || /* weird map type */
2123 entry->object.vm_object == NULL || /* needs VM object */
2124 entry->object.vm_object->type == OBJT_DEVICE || /* ick */
2125 entry->object.vm_object->type == OBJT_MGTDEVICE || /* ick */
2126 (entry->offset & SEG_MASK) || /* must be aligned */
2127 (entry->start & SEG_MASK)) {
2128 return(pmap_allocpte(pmap, ptepindex, pvpp));
2132 * Make sure the full segment can be represented.
2134 b = va & ~(vm_offset_t)SEG_MASK;
2135 if (b < entry->start || b + SEG_SIZE > entry->end)
2136 return(pmap_allocpte(pmap, ptepindex, pvpp));
2139 * If the full segment can be represented dive the VM object's
2140 * shared pmap, allocating as required.
2142 object = entry->object.vm_object;
2144 if (entry->protection & VM_PROT_WRITE)
2145 obpmapp = &object->md.pmap_rw;
2146 else
2147 obpmapp = &object->md.pmap_ro;
2149 #ifdef PMAP_DEBUG2
2150 if (pmap_enter_debug > 0) {
2151 --pmap_enter_debug;
2152 kprintf("pmap_allocpte_seg: va=%jx prot %08x o=%p "
2153 "obpmapp %p %p\n",
2154 va, entry->protection, object,
2155 obpmapp, *obpmapp);
2156 kprintf("pmap_allocpte_seg: entry %p %jx-%jx\n",
2157 entry, entry->start, entry->end);
2159 #endif
2162 * We allocate what appears to be a normal pmap but because portions
2163 * of this pmap are shared with other unrelated pmaps we have to
2164 * set pm_active to point to all cpus.
2166 * XXX Currently using pmap_spin to interlock the update, can't use
2167 * vm_object_hold/drop because the token might already be held
2168 * shared OR exclusive and we don't know.
2170 while ((obpmap = *obpmapp) == NULL) {
2171 obpmap = kmalloc(sizeof(*obpmap), M_OBJPMAP, M_WAITOK|M_ZERO);
2172 pmap_pinit_simple(obpmap);
2173 pmap_pinit2(obpmap);
2174 spin_lock(&pmap_spin);
2175 if (*obpmapp != NULL) {
2177 * Handle race
2179 spin_unlock(&pmap_spin);
2180 pmap_release(obpmap);
2181 pmap_puninit(obpmap);
2182 kfree(obpmap, M_OBJPMAP);
2183 obpmap = *obpmapp; /* safety */
2184 } else {
2185 obpmap->pm_active = smp_active_mask;
2186 obpmap->pm_flags |= PMAP_SEGSHARED;
2187 *obpmapp = obpmap;
2188 spin_unlock(&pmap_spin);
2193 * Layering is: PTE, PT, PD, PDP, PML4. We have to return the
2194 * pte/pt using the shared pmap from the object but also adjust
2195 * the process pmap's page table page as a side effect.
2199 * Resolve the terminal PTE and PT in the shared pmap. This is what
2200 * we will return. This is true if ptepindex represents a terminal
2201 * page, otherwise pte_pv is actually the PT and pt_pv is actually
2202 * the PD.
2204 pt_pv = NULL;
2205 pte_pv = pmap_allocpte(obpmap, ptepindex, &pt_pv);
2206 if (ptepindex >= pmap_pt_pindex(0))
2207 xpv = pte_pv;
2208 else
2209 xpv = pt_pv;
2212 * Resolve the PD in the process pmap so we can properly share the
2213 * page table page. Lock order is bottom-up (leaf first)!
2215 * NOTE: proc_pt_pv can be NULL.
2217 proc_pt_pv = pv_get(pmap, pmap_pt_pindex(b));
2218 proc_pd_pv = pmap_allocpte(pmap, pmap_pd_pindex(b), NULL);
2219 #ifdef PMAP_DEBUG2
2220 if (pmap_enter_debug > 0) {
2221 --pmap_enter_debug;
2222 kprintf("proc_pt_pv %p (wc %d) pd_pv %p va=%jx\n",
2223 proc_pt_pv,
2224 (proc_pt_pv ? proc_pt_pv->pv_m->wire_count : -1),
2225 proc_pd_pv,
2226 va);
2228 #endif
2231 * xpv is the page table page pv from the shared object
2232 * (for convenience), from above.
2234 * Calculate the pte value for the PT to load into the process PD.
2235 * If we have to change it we must properly dispose of the previous
2236 * entry.
2238 pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2239 npte = VM_PAGE_TO_PHYS(xpv->pv_m) |
2240 (pmap->pmap_bits[PG_U_IDX] |
2241 pmap->pmap_bits[PG_RW_IDX] |
2242 pmap->pmap_bits[PG_V_IDX] |
2243 pmap->pmap_bits[PG_A_IDX] |
2244 pmap->pmap_bits[PG_M_IDX]);
2247 * Dispose of previous page table page if it was local to the
2248 * process pmap. If the old pt is not empty we cannot dispose of it
2249 * until we clean it out. This case should not arise very often so
2250 * it is not optimized.
2252 if (proc_pt_pv) {
2253 pmap_inval_bulk_t bulk;
2255 if (proc_pt_pv->pv_m->wire_count != 1) {
2256 pv_put(proc_pd_pv);
2257 pv_put(proc_pt_pv);
2258 pv_put(pt_pv);
2259 pv_put(pte_pv);
2260 pmap_remove(pmap,
2261 va & ~(vm_offset_t)SEG_MASK,
2262 (va + SEG_SIZE) & ~(vm_offset_t)SEG_MASK);
2263 goto retry;
2267 * The release call will indirectly clean out *pt
2269 pmap_inval_bulk_init(&bulk, proc_pt_pv->pv_pmap);
2270 pmap_release_pv(proc_pt_pv, proc_pd_pv, &bulk);
2271 pmap_inval_bulk_flush(&bulk);
2272 proc_pt_pv = NULL;
2273 /* relookup */
2274 pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2278 * Handle remaining cases.
2280 if (*pt == 0) {
2281 *pt = npte;
2282 vm_page_wire_quick(xpv->pv_m);
2283 vm_page_wire_quick(proc_pd_pv->pv_m);
2284 atomic_add_long(&pmap->pm_stats.resident_count, 1);
2285 } else if (*pt != npte) {
2286 opte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, pt, npte);
2288 #if 0
2289 opte = pte_load_clear(pt);
2290 KKASSERT(opte && opte != npte);
2292 *pt = npte;
2293 #endif
2294 vm_page_wire_quick(xpv->pv_m); /* pgtable pg that is npte */
2297 * Clean up opte, bump the wire_count for the process
2298 * PD page representing the new entry if it was
2299 * previously empty.
2301 * If the entry was not previously empty and we have
2302 * a PT in the proc pmap then opte must match that
2303 * pt. The proc pt must be retired (this is done
2304 * later on in this procedure).
2306 * NOTE: replacing valid pte, wire_count on proc_pd_pv
2307 * stays the same.
2309 KKASSERT(opte & pmap->pmap_bits[PG_V_IDX]);
2310 m = PHYS_TO_VM_PAGE(opte & PG_FRAME);
2311 if (vm_page_unwire_quick(m)) {
2312 panic("pmap_allocpte_seg: "
2313 "bad wire count %p",
2319 * The existing process page table was replaced and must be destroyed
2320 * here.
2322 if (proc_pd_pv)
2323 pv_put(proc_pd_pv);
2324 if (pvpp)
2325 *pvpp = pt_pv;
2326 else
2327 pv_put(pt_pv);
2329 return (pte_pv);
2333 * Release any resources held by the given physical map.
2335 * Called when a pmap initialized by pmap_pinit is being released. Should
2336 * only be called if the map contains no valid mappings.
2338 * Caller must hold pmap->pm_token
2340 struct pmap_release_info {
2341 pmap_t pmap;
2342 int retry;
2345 static int pmap_release_callback(pv_entry_t pv, void *data);
2347 void
2348 pmap_release(struct pmap *pmap)
2350 struct pmap_release_info info;
2352 KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
2353 ("pmap still active! %016jx",
2354 (uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
2356 spin_lock(&pmap_spin);
2357 TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
2358 spin_unlock(&pmap_spin);
2361 * Pull pv's off the RB tree in order from low to high and release
2362 * each page.
2364 info.pmap = pmap;
2365 do {
2366 info.retry = 0;
2367 spin_lock(&pmap->pm_spin);
2368 RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2369 pmap_release_callback, &info);
2370 spin_unlock(&pmap->pm_spin);
2371 } while (info.retry);
2375 * One resident page (the pml4 page) should remain.
2376 * No wired pages should remain.
2378 KKASSERT(pmap->pm_stats.resident_count ==
2379 ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1));
2381 KKASSERT(pmap->pm_stats.wired_count == 0);
2384 static int
2385 pmap_release_callback(pv_entry_t pv, void *data)
2387 struct pmap_release_info *info = data;
2388 pmap_t pmap = info->pmap;
2389 int r;
2391 if (pv_hold_try(pv)) {
2392 spin_unlock(&pmap->pm_spin);
2393 } else {
2394 spin_unlock(&pmap->pm_spin);
2395 pv_lock(pv);
2397 if (pv->pv_pmap != pmap) {
2398 pv_put(pv);
2399 spin_lock(&pmap->pm_spin);
2400 info->retry = 1;
2401 return(-1);
2403 r = pmap_release_pv(pv, NULL, NULL);
2404 spin_lock(&pmap->pm_spin);
2405 return(r);
2409 * Called with held (i.e. also locked) pv. This function will dispose of
2410 * the lock along with the pv.
2412 * If the caller already holds the locked parent page table for pv it
2413 * must pass it as pvp, allowing us to avoid a deadlock, else it can
2414 * pass NULL for pvp.
2416 static int
2417 pmap_release_pv(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk)
2419 vm_page_t p;
2422 * The pmap is currently not spinlocked, pv is held+locked.
2423 * Remove the pv's page from its parent's page table. The
2424 * parent's page table page's wire_count will be decremented.
2426 * This will clean out the pte at any level of the page table.
2427 * If smp != 0 all cpus are affected.
2429 pmap_remove_pv_pte(pv, pvp, bulk);
2432 * Terminal pvs are unhooked from their vm_pages. Because
2433 * terminal pages aren't page table pages they aren't wired
2434 * by us, so we have to be sure not to unwire them either.
2436 if (pv->pv_pindex < pmap_pt_pindex(0)) {
2437 pmap_remove_pv_page(pv);
2438 goto skip;
2442 * We leave the top-level page table page cached, wired, and
2443 * mapped in the pmap until the dtor function (pmap_puninit())
2444 * gets called.
2446 * Since we are leaving the top-level pv intact we need
2447 * to break out of what would otherwise be an infinite loop.
2449 if (pv->pv_pindex == pmap_pml4_pindex()) {
2450 pv_put(pv);
2451 return(-1);
2455 * For page table pages (other than the top-level page),
2456 * remove and free the vm_page. The representitive mapping
2457 * removed above by pmap_remove_pv_pte() did not undo the
2458 * last wire_count so we have to do that as well.
2460 p = pmap_remove_pv_page(pv);
2461 vm_page_busy_wait(p, FALSE, "pmaprl");
2462 if (p->wire_count != 1) {
2463 kprintf("p->wire_count was %016lx %d\n",
2464 pv->pv_pindex, p->wire_count);
2466 KKASSERT(p->wire_count == 1);
2467 KKASSERT(p->flags & PG_UNMANAGED);
2469 vm_page_unwire(p, 0);
2470 KKASSERT(p->wire_count == 0);
2472 vm_page_free(p);
2473 skip:
2474 pv_free(pv);
2475 return 0;
2479 * This function will remove the pte associated with a pv from its parent.
2480 * Terminal pv's are supported. All cpus are affected if smp != 0.
2482 * The wire count will be dropped on the parent page table. The wire
2483 * count on the page being removed (pv->pv_m) from the parent page table
2484 * is NOT touched. Note that terminal pages will not have any additional
2485 * wire counts while page table pages will have at least one representing
2486 * the mapping, plus others representing sub-mappings.
2488 * NOTE: Cannot be called on kernel page table pages, only KVM terminal
2489 * pages and user page table and terminal pages.
2491 * The pv must be locked.
2493 * XXX must lock parent pv's if they exist to remove pte XXX
2495 static
2496 void
2497 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk)
2499 vm_pindex_t ptepindex = pv->pv_pindex;
2500 pmap_t pmap = pv->pv_pmap;
2501 vm_page_t p;
2502 int gotpvp = 0;
2504 KKASSERT(pmap);
2506 if (ptepindex == pmap_pml4_pindex()) {
2508 * We are the top level pml4 table, there is no parent.
2510 p = pmap->pm_pmlpv->pv_m;
2511 } else if (ptepindex >= pmap_pdp_pindex(0)) {
2513 * Remove a PDP page from the pml4e. This can only occur
2514 * with user page tables. We do not have to lock the
2515 * pml4 PV so just ignore pvp.
2517 vm_pindex_t pml4_pindex;
2518 vm_pindex_t pdp_index;
2519 pml4_entry_t *pdp;
2521 pdp_index = ptepindex - pmap_pdp_pindex(0);
2522 if (pvp == NULL) {
2523 pml4_pindex = pmap_pml4_pindex();
2524 pvp = pv_get(pv->pv_pmap, pml4_pindex);
2525 KKASSERT(pvp);
2526 gotpvp = 1;
2528 pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
2529 KKASSERT((*pdp & pmap->pmap_bits[PG_V_IDX]) != 0);
2530 p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2531 pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp, 0);
2532 } else if (ptepindex >= pmap_pd_pindex(0)) {
2534 * Remove a PD page from the pdp
2536 * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
2537 * of a simple pmap because it stops at
2538 * the PD page.
2540 vm_pindex_t pdp_pindex;
2541 vm_pindex_t pd_index;
2542 pdp_entry_t *pd;
2544 pd_index = ptepindex - pmap_pd_pindex(0);
2546 if (pvp == NULL) {
2547 pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
2548 (pd_index >> NPML4EPGSHIFT);
2549 pvp = pv_get(pv->pv_pmap, pdp_pindex);
2550 if (pvp)
2551 gotpvp = 1;
2553 if (pvp) {
2554 pd = pv_pte_lookup(pvp, pd_index &
2555 ((1ul << NPDPEPGSHIFT) - 1));
2556 KKASSERT((*pd & pmap->pmap_bits[PG_V_IDX]) != 0);
2557 p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2558 pmap_inval_bulk(bulk, (vm_offset_t)-1, pd, 0);
2559 } else {
2560 KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
2561 p = pv->pv_m; /* degenerate test later */
2563 } else if (ptepindex >= pmap_pt_pindex(0)) {
2565 * Remove a PT page from the pd
2567 vm_pindex_t pd_pindex;
2568 vm_pindex_t pt_index;
2569 pd_entry_t *pt;
2571 pt_index = ptepindex - pmap_pt_pindex(0);
2573 if (pvp == NULL) {
2574 pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
2575 (pt_index >> NPDPEPGSHIFT);
2576 pvp = pv_get(pv->pv_pmap, pd_pindex);
2577 KKASSERT(pvp);
2578 gotpvp = 1;
2580 pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
2581 KKASSERT((*pt & pmap->pmap_bits[PG_V_IDX]) != 0);
2582 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2583 pmap_inval_bulk(bulk, (vm_offset_t)-1, pt, 0);
2584 } else {
2586 * Remove a PTE from the PT page
2588 * NOTE: pv's must be locked bottom-up to avoid deadlocking.
2589 * pv is a pte_pv so we can safely lock pt_pv.
2591 * NOTE: FICTITIOUS pages may have multiple physical mappings
2592 * so PHYS_TO_VM_PAGE() will not necessarily work for
2593 * terminal ptes.
2595 vm_pindex_t pt_pindex;
2596 pt_entry_t *ptep;
2597 pt_entry_t pte;
2598 vm_offset_t va;
2600 pt_pindex = ptepindex >> NPTEPGSHIFT;
2601 va = (vm_offset_t)ptepindex << PAGE_SHIFT;
2603 if (ptepindex >= NUPTE_USER) {
2604 ptep = vtopte(ptepindex << PAGE_SHIFT);
2605 KKASSERT(pvp == NULL);
2606 } else {
2607 if (pvp == NULL) {
2608 pt_pindex = NUPTE_TOTAL +
2609 (ptepindex >> NPDPEPGSHIFT);
2610 pvp = pv_get(pv->pv_pmap, pt_pindex);
2611 KKASSERT(pvp);
2612 gotpvp = 1;
2614 ptep = pv_pte_lookup(pvp, ptepindex &
2615 ((1ul << NPDPEPGSHIFT) - 1));
2617 pte = pmap_inval_bulk(bulk, va, ptep, 0);
2618 if (bulk == NULL) /* XXX */
2619 cpu_invlpg((void *)va); /* XXX */
2622 * Now update the vm_page_t
2624 if ((pte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) !=
2625 (pmap->pmap_bits[PG_MANAGED_IDX]|pmap->pmap_bits[PG_V_IDX])) {
2626 kprintf("remove_pte badpte %016lx %016lx %d\n",
2627 pte, pv->pv_pindex,
2628 pv->pv_pindex < pmap_pt_pindex(0));
2630 /* PHYS_TO_VM_PAGE() will not work for FICTITIOUS pages */
2631 /*KKASSERT((pte & (PG_MANAGED|PG_V)) == (PG_MANAGED|PG_V));*/
2632 if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
2633 p = pv->pv_m;
2634 else
2635 p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
2636 /* p = pv->pv_m; */
2638 if (pte & pmap->pmap_bits[PG_M_IDX]) {
2639 if (pmap_track_modified(ptepindex))
2640 vm_page_dirty(p);
2642 if (pte & pmap->pmap_bits[PG_A_IDX]) {
2643 vm_page_flag_set(p, PG_REFERENCED);
2645 if (pte & pmap->pmap_bits[PG_W_IDX])
2646 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2647 if (pte & pmap->pmap_bits[PG_G_IDX])
2648 cpu_invlpg((void *)va);
2652 * Unwire the parent page table page. The wire_count cannot go below
2653 * 1 here because the parent page table page is itself still mapped.
2655 * XXX remove the assertions later.
2657 KKASSERT(pv->pv_m == p);
2658 if (pvp && vm_page_unwire_quick(pvp->pv_m))
2659 panic("pmap_remove_pv_pte: Insufficient wire_count");
2661 if (gotpvp)
2662 pv_put(pvp);
2666 * Remove the vm_page association to a pv. The pv must be locked.
2668 static
2669 vm_page_t
2670 pmap_remove_pv_page(pv_entry_t pv)
2672 vm_page_t m;
2674 m = pv->pv_m;
2675 KKASSERT(m);
2676 vm_page_spin_lock(m);
2677 pv->pv_m = NULL;
2678 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2679 pmap_page_stats_deleting(m);
2681 if (m->object)
2682 atomic_add_int(&m->object->agg_pv_list_count, -1);
2684 if (TAILQ_EMPTY(&m->md.pv_list))
2685 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2686 vm_page_spin_unlock(m);
2687 return(m);
2691 * Grow the number of kernel page table entries, if needed.
2693 * This routine is always called to validate any address space
2694 * beyond KERNBASE (for kldloads). kernel_vm_end only governs the address
2695 * space below KERNBASE.
2697 void
2698 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
2700 vm_paddr_t paddr;
2701 vm_offset_t ptppaddr;
2702 vm_page_t nkpg;
2703 pd_entry_t *pt, newpt;
2704 pdp_entry_t newpd;
2705 int update_kernel_vm_end;
2708 * bootstrap kernel_vm_end on first real VM use
2710 if (kernel_vm_end == 0) {
2711 kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
2712 nkpt = 0;
2713 while ((*pmap_pt(&kernel_pmap, kernel_vm_end) & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
2714 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
2715 ~(PAGE_SIZE * NPTEPG - 1);
2716 nkpt++;
2717 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
2718 kernel_vm_end = kernel_map.max_offset;
2719 break;
2725 * Fill in the gaps. kernel_vm_end is only adjusted for ranges
2726 * below KERNBASE. Ranges above KERNBASE are kldloaded and we
2727 * do not want to force-fill 128G worth of page tables.
2729 if (kstart < KERNBASE) {
2730 if (kstart > kernel_vm_end)
2731 kstart = kernel_vm_end;
2732 KKASSERT(kend <= KERNBASE);
2733 update_kernel_vm_end = 1;
2734 } else {
2735 update_kernel_vm_end = 0;
2738 kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
2739 kend = roundup2(kend, PAGE_SIZE * NPTEPG);
2741 if (kend - 1 >= kernel_map.max_offset)
2742 kend = kernel_map.max_offset;
2744 while (kstart < kend) {
2745 pt = pmap_pt(&kernel_pmap, kstart);
2746 if (pt == NULL) {
2747 /* We need a new PDP entry */
2748 nkpg = vm_page_alloc(NULL, nkpt,
2749 VM_ALLOC_NORMAL |
2750 VM_ALLOC_SYSTEM |
2751 VM_ALLOC_INTERRUPT);
2752 if (nkpg == NULL) {
2753 panic("pmap_growkernel: no memory to grow "
2754 "kernel");
2756 paddr = VM_PAGE_TO_PHYS(nkpg);
2757 pmap_zero_page(paddr);
2758 newpd = (pdp_entry_t)
2759 (paddr |
2760 kernel_pmap.pmap_bits[PG_V_IDX] |
2761 kernel_pmap.pmap_bits[PG_RW_IDX] |
2762 kernel_pmap.pmap_bits[PG_A_IDX] |
2763 kernel_pmap.pmap_bits[PG_M_IDX]);
2764 *pmap_pd(&kernel_pmap, kstart) = newpd;
2765 nkpt++;
2766 continue; /* try again */
2768 if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
2769 kstart = (kstart + PAGE_SIZE * NPTEPG) &
2770 ~(PAGE_SIZE * NPTEPG - 1);
2771 if (kstart - 1 >= kernel_map.max_offset) {
2772 kstart = kernel_map.max_offset;
2773 break;
2775 continue;
2779 * This index is bogus, but out of the way
2781 nkpg = vm_page_alloc(NULL, nkpt,
2782 VM_ALLOC_NORMAL |
2783 VM_ALLOC_SYSTEM |
2784 VM_ALLOC_INTERRUPT);
2785 if (nkpg == NULL)
2786 panic("pmap_growkernel: no memory to grow kernel");
2788 vm_page_wire(nkpg);
2789 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2790 pmap_zero_page(ptppaddr);
2791 newpt = (pd_entry_t) (ptppaddr |
2792 kernel_pmap.pmap_bits[PG_V_IDX] |
2793 kernel_pmap.pmap_bits[PG_RW_IDX] |
2794 kernel_pmap.pmap_bits[PG_A_IDX] |
2795 kernel_pmap.pmap_bits[PG_M_IDX]);
2796 *pmap_pt(&kernel_pmap, kstart) = newpt;
2797 nkpt++;
2799 kstart = (kstart + PAGE_SIZE * NPTEPG) &
2800 ~(PAGE_SIZE * NPTEPG - 1);
2802 if (kstart - 1 >= kernel_map.max_offset) {
2803 kstart = kernel_map.max_offset;
2804 break;
2809 * Only update kernel_vm_end for areas below KERNBASE.
2811 if (update_kernel_vm_end && kernel_vm_end < kstart)
2812 kernel_vm_end = kstart;
2816 * Add a reference to the specified pmap.
2818 void
2819 pmap_reference(pmap_t pmap)
2821 if (pmap != NULL) {
2822 lwkt_gettoken(&pmap->pm_token);
2823 ++pmap->pm_count;
2824 lwkt_reltoken(&pmap->pm_token);
2828 /***************************************************
2829 * page management routines.
2830 ***************************************************/
2833 * Hold a pv without locking it
2835 static void
2836 pv_hold(pv_entry_t pv)
2838 atomic_add_int(&pv->pv_hold, 1);
2842 * Hold a pv_entry, preventing its destruction. TRUE is returned if the pv
2843 * was successfully locked, FALSE if it wasn't. The caller must dispose of
2844 * the pv properly.
2846 * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
2847 * pv list via its page) must be held by the caller.
2849 static int
2850 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
2852 u_int count;
2855 * Critical path shortcut expects pv to already have one ref
2856 * (for the pv->pv_pmap).
2858 if (atomic_cmpset_int(&pv->pv_hold, 1, PV_HOLD_LOCKED | 2)) {
2859 #ifdef PMAP_DEBUG
2860 pv->pv_func = func;
2861 pv->pv_line = lineno;
2862 #endif
2863 return TRUE;
2866 for (;;) {
2867 count = pv->pv_hold;
2868 cpu_ccfence();
2869 if ((count & PV_HOLD_LOCKED) == 0) {
2870 if (atomic_cmpset_int(&pv->pv_hold, count,
2871 (count + 1) | PV_HOLD_LOCKED)) {
2872 #ifdef PMAP_DEBUG
2873 pv->pv_func = func;
2874 pv->pv_line = lineno;
2875 #endif
2876 return TRUE;
2878 } else {
2879 if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
2880 return FALSE;
2882 /* retry */
2887 * Drop a previously held pv_entry which could not be locked, allowing its
2888 * destruction.
2890 * Must not be called with a spinlock held as we might zfree() the pv if it
2891 * is no longer associated with a pmap and this was the last hold count.
2893 static void
2894 pv_drop(pv_entry_t pv)
2896 u_int count;
2898 for (;;) {
2899 count = pv->pv_hold;
2900 cpu_ccfence();
2901 KKASSERT((count & PV_HOLD_MASK) > 0);
2902 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
2903 (PV_HOLD_LOCKED | 1));
2904 if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
2905 if ((count & PV_HOLD_MASK) == 1) {
2906 #ifdef PMAP_DEBUG2
2907 if (pmap_enter_debug > 0) {
2908 --pmap_enter_debug;
2909 kprintf("pv_drop: free pv %p\n", pv);
2911 #endif
2912 KKASSERT(count == 1);
2913 KKASSERT(pv->pv_pmap == NULL);
2914 zfree(pvzone, pv);
2916 return;
2918 /* retry */
2923 * Find or allocate the requested PV entry, returning a locked, held pv.
2925 * If (*isnew) is non-zero, the returned pv will have two hold counts, one
2926 * for the caller and one representing the pmap and vm_page association.
2928 * If (*isnew) is zero, the returned pv will have only one hold count.
2930 * Since both associations can only be adjusted while the pv is locked,
2931 * together they represent just one additional hold.
2933 static
2934 pv_entry_t
2935 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
2937 pv_entry_t pv;
2938 pv_entry_t pnew = NULL;
2940 spin_lock(&pmap->pm_spin);
2941 for (;;) {
2942 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
2943 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
2944 pindex);
2946 if (pv == NULL) {
2947 if (pnew == NULL) {
2948 spin_unlock(&pmap->pm_spin);
2949 pnew = zalloc(pvzone);
2950 spin_lock(&pmap->pm_spin);
2951 continue;
2953 pnew->pv_pmap = pmap;
2954 pnew->pv_pindex = pindex;
2955 pnew->pv_hold = PV_HOLD_LOCKED | 2;
2956 #ifdef PMAP_DEBUG
2957 pnew->pv_func = func;
2958 pnew->pv_line = lineno;
2959 #endif
2960 pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
2961 ++pmap->pm_generation;
2962 atomic_add_long(&pmap->pm_stats.resident_count, 1);
2963 spin_unlock(&pmap->pm_spin);
2964 *isnew = 1;
2965 return(pnew);
2967 if (pnew) {
2968 spin_unlock(&pmap->pm_spin);
2969 zfree(pvzone, pnew);
2970 pnew = NULL;
2971 spin_lock(&pmap->pm_spin);
2972 continue;
2974 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
2975 spin_unlock(&pmap->pm_spin);
2976 } else {
2977 spin_unlock(&pmap->pm_spin);
2978 _pv_lock(pv PMAP_DEBUG_COPY);
2980 if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
2981 *isnew = 0;
2982 return(pv);
2984 pv_put(pv);
2985 spin_lock(&pmap->pm_spin);
2990 * Find the requested PV entry, returning a locked+held pv or NULL
2992 static
2993 pv_entry_t
2994 _pv_get(pmap_t pmap, vm_pindex_t pindex PMAP_DEBUG_DECL)
2996 pv_entry_t pv;
2998 spin_lock(&pmap->pm_spin);
2999 for (;;) {
3001 * Shortcut cache
3003 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
3004 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
3005 pindex);
3007 if (pv == NULL) {
3008 spin_unlock(&pmap->pm_spin);
3009 return NULL;
3011 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
3012 spin_unlock(&pmap->pm_spin);
3013 } else {
3014 spin_unlock(&pmap->pm_spin);
3015 _pv_lock(pv PMAP_DEBUG_COPY);
3017 if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
3018 pv_cache(pv, pindex);
3019 return(pv);
3021 pv_put(pv);
3022 spin_lock(&pmap->pm_spin);
3027 * Lookup, hold, and attempt to lock (pmap,pindex).
3029 * If the entry does not exist NULL is returned and *errorp is set to 0
3031 * If the entry exists and could be successfully locked it is returned and
3032 * errorp is set to 0.
3034 * If the entry exists but could NOT be successfully locked it is returned
3035 * held and *errorp is set to 1.
3037 static
3038 pv_entry_t
3039 pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp)
3041 pv_entry_t pv;
3043 spin_lock_shared(&pmap->pm_spin);
3044 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
3045 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
3046 if (pv == NULL) {
3047 spin_unlock_shared(&pmap->pm_spin);
3048 *errorp = 0;
3049 return NULL;
3051 if (pv_hold_try(pv)) {
3052 pv_cache(pv, pindex);
3053 spin_unlock_shared(&pmap->pm_spin);
3054 *errorp = 0;
3055 KKASSERT(pv->pv_pmap == pmap && pv->pv_pindex == pindex);
3056 return(pv); /* lock succeeded */
3058 spin_unlock_shared(&pmap->pm_spin);
3059 *errorp = 1;
3060 return (pv); /* lock failed */
3064 * Find the requested PV entry, returning a held pv or NULL
3066 static
3067 pv_entry_t
3068 pv_find(pmap_t pmap, vm_pindex_t pindex)
3070 pv_entry_t pv;
3072 spin_lock_shared(&pmap->pm_spin);
3074 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
3075 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
3076 if (pv == NULL) {
3077 spin_unlock_shared(&pmap->pm_spin);
3078 return NULL;
3080 pv_hold(pv);
3081 pv_cache(pv, pindex);
3082 spin_unlock_shared(&pmap->pm_spin);
3083 return(pv);
3087 * Lock a held pv, keeping the hold count
3089 static
3090 void
3091 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
3093 u_int count;
3095 for (;;) {
3096 count = pv->pv_hold;
3097 cpu_ccfence();
3098 if ((count & PV_HOLD_LOCKED) == 0) {
3099 if (atomic_cmpset_int(&pv->pv_hold, count,
3100 count | PV_HOLD_LOCKED)) {
3101 #ifdef PMAP_DEBUG
3102 pv->pv_func = func;
3103 pv->pv_line = lineno;
3104 #endif
3105 return;
3107 continue;
3109 tsleep_interlock(pv, 0);
3110 if (atomic_cmpset_int(&pv->pv_hold, count,
3111 count | PV_HOLD_WAITING)) {
3112 #ifdef PMAP_DEBUG
3113 kprintf("pv waiting on %s:%d\n",
3114 pv->pv_func, pv->pv_line);
3115 #endif
3116 tsleep(pv, PINTERLOCKED, "pvwait", hz);
3118 /* retry */
3123 * Unlock a held and locked pv, keeping the hold count.
3125 static
3126 void
3127 pv_unlock(pv_entry_t pv)
3129 u_int count;
3131 for (;;) {
3132 count = pv->pv_hold;
3133 cpu_ccfence();
3134 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) >=
3135 (PV_HOLD_LOCKED | 1));
3136 if (atomic_cmpset_int(&pv->pv_hold, count,
3137 count &
3138 ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
3139 if (count & PV_HOLD_WAITING)
3140 wakeup(pv);
3141 break;
3147 * Unlock and drop a pv. If the pv is no longer associated with a pmap
3148 * and the hold count drops to zero we will free it.
3150 * Caller should not hold any spin locks. We are protected from hold races
3151 * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
3152 * lock held. A pv cannot be located otherwise.
3154 static
3155 void
3156 pv_put(pv_entry_t pv)
3158 #ifdef PMAP_DEBUG2
3159 if (pmap_enter_debug > 0) {
3160 --pmap_enter_debug;
3161 kprintf("pv_put pv=%p hold=%08x\n", pv, pv->pv_hold);
3163 #endif
3166 * Fast - shortcut most common condition
3168 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 1))
3169 return;
3172 * Slow
3174 pv_unlock(pv);
3175 pv_drop(pv);
3179 * Remove the pmap association from a pv, require that pv_m already be removed,
3180 * then unlock and drop the pv. Any pte operations must have already been
3181 * completed. This call may result in a last-drop which will physically free
3182 * the pv.
3184 * Removing the pmap association entails an additional drop.
3186 * pv must be exclusively locked on call and will be disposed of on return.
3188 static
3189 void
3190 pv_free(pv_entry_t pv)
3192 pmap_t pmap;
3194 KKASSERT(pv->pv_m == NULL);
3195 KKASSERT((pv->pv_hold & PV_HOLD_MASK) >= 2);
3196 if ((pmap = pv->pv_pmap) != NULL) {
3197 spin_lock(&pmap->pm_spin);
3198 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
3199 ++pmap->pm_generation;
3200 if (pmap->pm_pvhint == pv)
3201 pmap->pm_pvhint = NULL;
3202 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3203 pv->pv_pmap = NULL;
3204 pv->pv_pindex = 0;
3205 spin_unlock(&pmap->pm_spin);
3208 * Try to shortcut three atomic ops, otherwise fall through
3209 * and do it normally. Drop two refs and the lock all in
3210 * one go.
3212 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 0)) {
3213 #ifdef PMAP_DEBUG2
3214 if (pmap_enter_debug > 0) {
3215 --pmap_enter_debug;
3216 kprintf("pv_free: free pv %p\n", pv);
3218 #endif
3219 zfree(pvzone, pv);
3220 return;
3222 pv_drop(pv); /* ref for pv_pmap */
3224 pv_put(pv);
3228 * This routine is very drastic, but can save the system
3229 * in a pinch.
3231 void
3232 pmap_collect(void)
3234 int i;
3235 vm_page_t m;
3236 static int warningdone=0;
3238 if (pmap_pagedaemon_waken == 0)
3239 return;
3240 pmap_pagedaemon_waken = 0;
3241 if (warningdone < 5) {
3242 kprintf("pmap_collect: collecting pv entries -- "
3243 "suggest increasing PMAP_SHPGPERPROC\n");
3244 warningdone++;
3247 for (i = 0; i < vm_page_array_size; i++) {
3248 m = &vm_page_array[i];
3249 if (m->wire_count || m->hold_count)
3250 continue;
3251 if (vm_page_busy_try(m, TRUE) == 0) {
3252 if (m->wire_count == 0 && m->hold_count == 0) {
3253 pmap_remove_all(m);
3255 vm_page_wakeup(m);
3261 * Scan the pmap for active page table entries and issue a callback.
3262 * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
3263 * its parent page table.
3265 * pte_pv will be NULL if the page or page table is unmanaged.
3266 * pt_pv will point to the page table page containing the pte for the page.
3268 * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
3269 * we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
3270 * process pmap's PD and page to the callback function. This can be
3271 * confusing because the pt_pv is really a pd_pv, and the target page
3272 * table page is simply aliased by the pmap and not owned by it.
3274 * It is assumed that the start and end are properly rounded to the page size.
3276 * It is assumed that PD pages and above are managed and thus in the RB tree,
3277 * allowing us to use RB_SCAN from the PD pages down for ranged scans.
3279 struct pmap_scan_info {
3280 struct pmap *pmap;
3281 vm_offset_t sva;
3282 vm_offset_t eva;
3283 vm_pindex_t sva_pd_pindex;
3284 vm_pindex_t eva_pd_pindex;
3285 void (*func)(pmap_t, struct pmap_scan_info *,
3286 pv_entry_t, pv_entry_t, int, vm_offset_t,
3287 pt_entry_t *, void *);
3288 void *arg;
3289 pmap_inval_bulk_t bulk_core;
3290 pmap_inval_bulk_t *bulk;
3291 int count;
3294 static int pmap_scan_cmp(pv_entry_t pv, void *data);
3295 static int pmap_scan_callback(pv_entry_t pv, void *data);
3297 static void
3298 pmap_scan(struct pmap_scan_info *info, int smp_inval)
3300 struct pmap *pmap = info->pmap;
3301 pv_entry_t pd_pv; /* A page directory PV */
3302 pv_entry_t pt_pv; /* A page table PV */
3303 pv_entry_t pte_pv; /* A page table entry PV */
3304 pt_entry_t *ptep;
3305 pt_entry_t oldpte;
3306 struct pv_entry dummy_pv;
3307 int generation;
3309 if (pmap == NULL)
3310 return;
3311 if (smp_inval) {
3312 info->bulk = &info->bulk_core;
3313 pmap_inval_bulk_init(&info->bulk_core, pmap);
3314 } else {
3315 info->bulk = NULL;
3319 * Hold the token for stability; if the pmap is empty we have nothing
3320 * to do.
3322 lwkt_gettoken(&pmap->pm_token);
3323 #if 0
3324 if (pmap->pm_stats.resident_count == 0) {
3325 lwkt_reltoken(&pmap->pm_token);
3326 return;
3328 #endif
3330 info->count = 0;
3332 again:
3334 * Special handling for scanning one page, which is a very common
3335 * operation (it is?).
3337 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
3339 if (info->sva + PAGE_SIZE == info->eva) {
3340 generation = pmap->pm_generation;
3341 if (info->sva >= VM_MAX_USER_ADDRESS) {
3343 * Kernel mappings do not track wire counts on
3344 * page table pages and only maintain pd_pv and
3345 * pte_pv levels so pmap_scan() works.
3347 pt_pv = NULL;
3348 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva));
3349 ptep = vtopte(info->sva);
3350 } else {
3352 * User pages which are unmanaged will not have a
3353 * pte_pv. User page table pages which are unmanaged
3354 * (shared from elsewhere) will also not have a pt_pv.
3355 * The func() callback will pass both pte_pv and pt_pv
3356 * as NULL in that case.
3358 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva));
3359 pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva));
3360 if (pt_pv == NULL) {
3361 KKASSERT(pte_pv == NULL);
3362 pd_pv = pv_get(pmap, pmap_pd_pindex(info->sva));
3363 if (pd_pv) {
3364 ptep = pv_pte_lookup(pd_pv,
3365 pmap_pt_index(info->sva));
3366 if (*ptep) {
3367 info->func(pmap, info,
3368 NULL, pd_pv, 1,
3369 info->sva, ptep,
3370 info->arg);
3372 pv_put(pd_pv);
3374 goto fast_skip;
3376 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
3380 * NOTE: *ptep can't be ripped out from under us if we hold
3381 * pte_pv locked, but bits can change. However, there is
3382 * a race where another thread may be inserting pte_pv
3383 * and setting *ptep just after our pte_pv lookup fails.
3385 * In this situation we can end up with a NULL pte_pv
3386 * but find that we have a managed *ptep. We explicitly
3387 * check for this race.
3389 oldpte = *ptep;
3390 cpu_ccfence();
3391 if (oldpte == 0) {
3393 * Unlike the pv_find() case below we actually
3394 * acquired a locked pv in this case so any
3395 * race should have been resolved. It is expected
3396 * to not exist.
3398 KKASSERT(pte_pv == NULL);
3399 } else if (pte_pv) {
3400 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3401 pmap->pmap_bits[PG_V_IDX])) ==
3402 (pmap->pmap_bits[PG_MANAGED_IDX] |
3403 pmap->pmap_bits[PG_V_IDX]),
3404 ("badA *ptep %016lx/%016lx sva %016lx pte_pv %p"
3405 "generation %d/%d",
3406 *ptep, oldpte, info->sva, pte_pv,
3407 generation, pmap->pm_generation));
3408 info->func(pmap, info, pte_pv, pt_pv, 0,
3409 info->sva, ptep, info->arg);
3410 } else {
3412 * Check for insertion race
3414 if ((oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
3415 pt_pv) {
3416 pte_pv = pv_find(pmap,
3417 pmap_pte_pindex(info->sva));
3418 if (pte_pv) {
3419 pv_drop(pte_pv);
3420 pv_put(pt_pv);
3421 kprintf("pmap_scan: RACE1 "
3422 "%016jx, %016lx\n",
3423 info->sva, oldpte);
3424 goto again;
3429 * Didn't race
3431 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3432 pmap->pmap_bits[PG_V_IDX])) ==
3433 pmap->pmap_bits[PG_V_IDX],
3434 ("badB *ptep %016lx/%016lx sva %016lx pte_pv NULL"
3435 "generation %d/%d",
3436 *ptep, oldpte, info->sva,
3437 generation, pmap->pm_generation));
3438 info->func(pmap, info, NULL, pt_pv, 0,
3439 info->sva, ptep, info->arg);
3441 if (pt_pv)
3442 pv_put(pt_pv);
3443 fast_skip:
3444 pmap_inval_bulk_flush(info->bulk);
3445 lwkt_reltoken(&pmap->pm_token);
3446 return;
3450 * Nominal scan case, RB_SCAN() for PD pages and iterate from
3451 * there.
3453 info->sva_pd_pindex = pmap_pd_pindex(info->sva);
3454 info->eva_pd_pindex = pmap_pd_pindex(info->eva + NBPDP - 1);
3456 if (info->sva >= VM_MAX_USER_ADDRESS) {
3458 * The kernel does not currently maintain any pv_entry's for
3459 * higher-level page tables.
3461 bzero(&dummy_pv, sizeof(dummy_pv));
3462 dummy_pv.pv_pindex = info->sva_pd_pindex;
3463 spin_lock(&pmap->pm_spin);
3464 while (dummy_pv.pv_pindex < info->eva_pd_pindex) {
3465 pmap_scan_callback(&dummy_pv, info);
3466 ++dummy_pv.pv_pindex;
3468 spin_unlock(&pmap->pm_spin);
3469 } else {
3471 * User page tables maintain local PML4, PDP, and PD
3472 * pv_entry's at the very least. PT pv's might be
3473 * unmanaged and thus not exist. PTE pv's might be
3474 * unmanaged and thus not exist.
3476 spin_lock(&pmap->pm_spin);
3477 pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot,
3478 pmap_scan_cmp, pmap_scan_callback, info);
3479 spin_unlock(&pmap->pm_spin);
3481 pmap_inval_bulk_flush(info->bulk);
3482 lwkt_reltoken(&pmap->pm_token);
3486 * WARNING! pmap->pm_spin held
3488 static int
3489 pmap_scan_cmp(pv_entry_t pv, void *data)
3491 struct pmap_scan_info *info = data;
3492 if (pv->pv_pindex < info->sva_pd_pindex)
3493 return(-1);
3494 if (pv->pv_pindex >= info->eva_pd_pindex)
3495 return(1);
3496 return(0);
3500 * WARNING! pmap->pm_spin held
3502 static int
3503 pmap_scan_callback(pv_entry_t pv, void *data)
3505 struct pmap_scan_info *info = data;
3506 struct pmap *pmap = info->pmap;
3507 pv_entry_t pd_pv; /* A page directory PV */
3508 pv_entry_t pt_pv; /* A page table PV */
3509 pv_entry_t pte_pv; /* A page table entry PV */
3510 pt_entry_t *ptep;
3511 pt_entry_t oldpte;
3512 vm_offset_t sva;
3513 vm_offset_t eva;
3514 vm_offset_t va_next;
3515 vm_pindex_t pd_pindex;
3516 int error;
3517 int generation;
3520 * Pull the PD pindex from the pv before releasing the spinlock.
3522 * WARNING: pv is faked for kernel pmap scans.
3524 pd_pindex = pv->pv_pindex;
3525 spin_unlock(&pmap->pm_spin);
3526 pv = NULL; /* invalid after spinlock unlocked */
3529 * Calculate the page range within the PD. SIMPLE pmaps are
3530 * direct-mapped for the entire 2^64 address space. Normal pmaps
3531 * reflect the user and kernel address space which requires
3532 * cannonicalization w/regards to converting pd_pindex's back
3533 * into addresses.
3535 sva = (pd_pindex - NUPTE_TOTAL - NUPT_TOTAL) << PDPSHIFT;
3536 if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
3537 (sva & PML4_SIGNMASK)) {
3538 sva |= PML4_SIGNMASK;
3540 eva = sva + NBPDP; /* can overflow */
3541 if (sva < info->sva)
3542 sva = info->sva;
3543 if (eva < info->sva || eva > info->eva)
3544 eva = info->eva;
3547 * NOTE: kernel mappings do not track page table pages, only
3548 * terminal pages.
3550 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
3551 * However, for the scan to be efficient we try to
3552 * cache items top-down.
3554 pd_pv = NULL;
3555 pt_pv = NULL;
3557 for (; sva < eva; sva = va_next) {
3558 if (sva >= VM_MAX_USER_ADDRESS) {
3559 if (pt_pv) {
3560 pv_put(pt_pv);
3561 pt_pv = NULL;
3563 goto kernel_skip;
3567 * PD cache (degenerate case if we skip). It is possible
3568 * for the PD to not exist due to races. This is ok.
3570 if (pd_pv == NULL) {
3571 pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3572 } else if (pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
3573 pv_put(pd_pv);
3574 pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3576 if (pd_pv == NULL) {
3577 va_next = (sva + NBPDP) & ~PDPMASK;
3578 if (va_next < sva)
3579 va_next = eva;
3580 continue;
3584 * PT cache
3586 if (pt_pv == NULL) {
3587 if (pd_pv) {
3588 pv_put(pd_pv);
3589 pd_pv = NULL;
3591 pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
3592 } else if (pt_pv->pv_pindex != pmap_pt_pindex(sva)) {
3593 if (pd_pv) {
3594 pv_put(pd_pv);
3595 pd_pv = NULL;
3597 pv_put(pt_pv);
3598 pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
3602 * If pt_pv is NULL we either have an shared page table
3603 * page and must issue a callback specific to that case,
3604 * or there is no page table page.
3606 * Either way we can skip the page table page.
3608 if (pt_pv == NULL) {
3610 * Possible unmanaged (shared from another pmap)
3611 * page table page.
3613 if (pd_pv == NULL)
3614 pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3615 KKASSERT(pd_pv != NULL);
3616 ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
3617 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
3618 info->func(pmap, info, NULL, pd_pv, 1,
3619 sva, ptep, info->arg);
3623 * Done, move to next page table page.
3625 va_next = (sva + NBPDR) & ~PDRMASK;
3626 if (va_next < sva)
3627 va_next = eva;
3628 continue;
3632 * From this point in the loop testing pt_pv for non-NULL
3633 * means we are in UVM, else if it is NULL we are in KVM.
3635 * Limit our scan to either the end of the va represented
3636 * by the current page table page, or to the end of the
3637 * range being removed.
3639 kernel_skip:
3640 va_next = (sva + NBPDR) & ~PDRMASK;
3641 if (va_next < sva)
3642 va_next = eva;
3643 if (va_next > eva)
3644 va_next = eva;
3647 * Scan the page table for pages. Some pages may not be
3648 * managed (might not have a pv_entry).
3650 * There is no page table management for kernel pages so
3651 * pt_pv will be NULL in that case, but otherwise pt_pv
3652 * is non-NULL, locked, and referenced.
3656 * At this point a non-NULL pt_pv means a UVA, and a NULL
3657 * pt_pv means a KVA.
3659 if (pt_pv)
3660 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
3661 else
3662 ptep = vtopte(sva);
3664 while (sva < va_next) {
3666 * Yield every 64 pages.
3668 if ((++info->count & 63) == 0)
3669 lwkt_user_yield();
3672 * Acquire the related pte_pv, if any. If *ptep == 0
3673 * the related pte_pv should not exist, but if *ptep
3674 * is not zero the pte_pv may or may not exist (e.g.
3675 * will not exist for an unmanaged page).
3677 * However a multitude of races are possible here.
3679 * In addition, the (pt_pv, pte_pv) lock order is
3680 * backwards, so we have to be careful in aquiring
3681 * a properly locked pte_pv.
3683 generation = pmap->pm_generation;
3684 if (pt_pv) {
3685 pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
3686 &error);
3687 if (error) {
3688 if (pd_pv) {
3689 pv_put(pd_pv);
3690 pd_pv = NULL;
3692 pv_put(pt_pv); /* must be non-NULL */
3693 pt_pv = NULL;
3694 pv_lock(pte_pv); /* safe to block now */
3695 pv_put(pte_pv);
3696 pte_pv = NULL;
3697 pt_pv = pv_get(pmap,
3698 pmap_pt_pindex(sva));
3700 * pt_pv reloaded, need new ptep
3702 KKASSERT(pt_pv != NULL);
3703 ptep = pv_pte_lookup(pt_pv,
3704 pmap_pte_index(sva));
3705 continue;
3707 } else {
3708 pte_pv = pv_get(pmap, pmap_pte_pindex(sva));
3712 * Ok, if *ptep == 0 we had better NOT have a pte_pv.
3714 oldpte = *ptep;
3715 if (oldpte == 0) {
3716 if (pte_pv) {
3717 kprintf("Unexpected non-NULL pte_pv "
3718 "%p pt_pv %p "
3719 "*ptep = %016lx/%016lx\n",
3720 pte_pv, pt_pv, *ptep, oldpte);
3721 panic("Unexpected non-NULL pte_pv");
3723 sva += PAGE_SIZE;
3724 ++ptep;
3725 continue;
3729 * Ready for the callback. The locked pte_pv (if any)
3730 * is consumed by the callback. pte_pv will exist if
3731 * the page is managed, and will not exist if it
3732 * isn't.
3734 if (pte_pv) {
3735 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) ==
3736 (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX]),
3737 ("badC *ptep %016lx/%016lx sva %016lx "
3738 "pte_pv %p pm_generation %d/%d",
3739 *ptep, oldpte, sva, pte_pv,
3740 generation, pmap->pm_generation));
3741 info->func(pmap, info, pte_pv, pt_pv, 0,
3742 sva, ptep, info->arg);
3743 } else {
3745 * Check for insertion race. Since there is no
3746 * pte_pv to guard us it is possible for us
3747 * to race another thread doing an insertion.
3748 * Our lookup misses the pte_pv but our *ptep
3749 * check sees the inserted pte.
3751 * XXX panic case seems to occur within a
3752 * vm_fork() of /bin/sh, which frankly
3753 * shouldn't happen since no other threads
3754 * should be inserting to our pmap in that
3755 * situation. Removing, possibly. Inserting,
3756 * shouldn't happen.
3758 if ((oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
3759 pt_pv) {
3760 pte_pv = pv_find(pmap,
3761 pmap_pte_pindex(sva));
3762 if (pte_pv) {
3763 pv_drop(pte_pv);
3764 kprintf("pmap_scan: RACE2 "
3765 "%016jx, %016lx\n",
3766 sva, oldpte);
3767 continue;
3772 * Didn't race
3774 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) ==
3775 pmap->pmap_bits[PG_V_IDX],
3776 ("badD *ptep %016lx/%016lx sva %016lx "
3777 "pte_pv NULL pm_generation %d/%d",
3778 *ptep, oldpte, sva,
3779 generation, pmap->pm_generation));
3780 info->func(pmap, info, NULL, pt_pv, 0,
3781 sva, ptep, info->arg);
3783 pte_pv = NULL;
3784 sva += PAGE_SIZE;
3785 ++ptep;
3788 if (pd_pv) {
3789 pv_put(pd_pv);
3790 pd_pv = NULL;
3792 if (pt_pv) {
3793 pv_put(pt_pv);
3794 pt_pv = NULL;
3796 if ((++info->count & 7) == 0)
3797 lwkt_user_yield();
3800 * Relock before returning.
3802 spin_lock(&pmap->pm_spin);
3803 return (0);
3806 void
3807 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
3809 struct pmap_scan_info info;
3811 info.pmap = pmap;
3812 info.sva = sva;
3813 info.eva = eva;
3814 info.func = pmap_remove_callback;
3815 info.arg = NULL;
3816 pmap_scan(&info, 1);
3819 static void
3820 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
3822 struct pmap_scan_info info;
3824 info.pmap = pmap;
3825 info.sva = sva;
3826 info.eva = eva;
3827 info.func = pmap_remove_callback;
3828 info.arg = NULL;
3829 pmap_scan(&info, 0);
3832 static void
3833 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
3834 pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
3835 vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
3837 pt_entry_t pte;
3839 if (pte_pv) {
3841 * This will also drop pt_pv's wire_count. Note that
3842 * terminal pages are not wired based on mmu presence.
3844 pmap_remove_pv_pte(pte_pv, pt_pv, info->bulk);
3845 pmap_remove_pv_page(pte_pv);
3846 pv_free(pte_pv);
3847 } else if (sharept == 0) {
3849 * Unmanaged page table (pt, pd, or pdp. Not pte).
3851 * pt_pv's wire_count is still bumped by unmanaged pages
3852 * so we must decrement it manually.
3854 * We have to unwire the target page table page.
3856 * It is unclear how we can invalidate a segment so we
3857 * invalidate -1 which invlidates the tlb.
3859 pte = pmap_inval_bulk(info->bulk, (vm_offset_t)-1, ptep, 0);
3860 if (pte & pmap->pmap_bits[PG_W_IDX])
3861 atomic_add_long(&pmap->pm_stats.wired_count, -1);
3862 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3863 if (vm_page_unwire_quick(pt_pv->pv_m))
3864 panic("pmap_remove: insufficient wirecount");
3865 } else {
3867 * Unmanaged page table (pt, pd, or pdp. Not pte) for
3868 * a shared page table.
3870 * pt_pv is actually the pd_pv for our pmap (not the shared
3871 * object pmap).
3873 * We have to unwire the target page table page and we
3874 * have to unwire our page directory page.
3876 * It is unclear how we can invalidate a segment so we
3877 * invalidate -1 which invlidates the tlb.
3879 pte = pmap_inval_bulk(info->bulk, (vm_offset_t)-1, ptep, 0);
3880 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3881 KKASSERT((pte & pmap->pmap_bits[PG_DEVICE_IDX]) == 0);
3882 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
3883 panic("pmap_remove: shared pgtable1 bad wirecount");
3884 if (vm_page_unwire_quick(pt_pv->pv_m))
3885 panic("pmap_remove: shared pgtable2 bad wirecount");
3890 * Removes this physical page from all physical maps in which it resides.
3891 * Reflects back modify bits to the pager.
3893 * This routine may not be called from an interrupt.
3895 static
3896 void
3897 pmap_remove_all(vm_page_t m)
3899 pv_entry_t pv;
3900 pmap_inval_bulk_t bulk;
3902 if (!pmap_initialized /* || (m->flags & PG_FICTITIOUS)*/)
3903 return;
3905 vm_page_spin_lock(m);
3906 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3907 KKASSERT(pv->pv_m == m);
3908 if (pv_hold_try(pv)) {
3909 vm_page_spin_unlock(m);
3910 } else {
3911 vm_page_spin_unlock(m);
3912 pv_lock(pv);
3914 if (pv->pv_m != m) {
3915 pv_put(pv);
3916 vm_page_spin_lock(m);
3917 continue;
3921 * Holding no spinlocks, pv is locked.
3923 pmap_inval_bulk_init(&bulk, pv->pv_pmap);
3924 pmap_remove_pv_pte(pv, NULL, &bulk);
3925 pmap_inval_bulk_flush(&bulk);
3926 pmap_remove_pv_page(pv);
3927 pv_free(pv);
3928 vm_page_spin_lock(m);
3930 KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
3931 vm_page_spin_unlock(m);
3935 * Set the physical protection on the specified range of this map
3936 * as requested. This function is typically only used for debug watchpoints
3937 * and COW pages.
3939 * This function may not be called from an interrupt if the map is
3940 * not the kernel_pmap.
3942 * NOTE! For shared page table pages we just unmap the page.
3944 void
3945 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3947 struct pmap_scan_info info;
3948 /* JG review for NX */
3950 if (pmap == NULL)
3951 return;
3952 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
3953 pmap_remove(pmap, sva, eva);
3954 return;
3956 if (prot & VM_PROT_WRITE)
3957 return;
3958 info.pmap = pmap;
3959 info.sva = sva;
3960 info.eva = eva;
3961 info.func = pmap_protect_callback;
3962 info.arg = &prot;
3963 pmap_scan(&info, 1);
3966 static
3967 void
3968 pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
3969 pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
3970 vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
3972 pt_entry_t pbits;
3973 pt_entry_t cbits;
3974 pt_entry_t pte;
3975 vm_page_t m;
3977 again:
3978 pbits = *ptep;
3979 cbits = pbits;
3980 if (pte_pv) {
3981 m = NULL;
3982 if (pbits & pmap->pmap_bits[PG_A_IDX]) {
3983 if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
3984 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3985 KKASSERT(m == pte_pv->pv_m);
3986 vm_page_flag_set(m, PG_REFERENCED);
3988 cbits &= ~pmap->pmap_bits[PG_A_IDX];
3990 if (pbits & pmap->pmap_bits[PG_M_IDX]) {
3991 if (pmap_track_modified(pte_pv->pv_pindex)) {
3992 if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
3993 if (m == NULL) {
3994 m = PHYS_TO_VM_PAGE(pbits &
3995 PG_FRAME);
3997 vm_page_dirty(m);
3999 cbits &= ~pmap->pmap_bits[PG_M_IDX];
4002 } else if (sharept) {
4004 * Unmanaged page table, pt_pv is actually the pd_pv
4005 * for our pmap (not the object's shared pmap).
4007 * When asked to protect something in a shared page table
4008 * page we just unmap the page table page. We have to
4009 * invalidate the tlb in this situation.
4011 * XXX Warning, shared page tables will not be used for
4012 * OBJT_DEVICE or OBJT_MGTDEVICE (PG_FICTITIOUS) mappings
4013 * so PHYS_TO_VM_PAGE() should be safe here.
4015 pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, 0);
4016 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4017 panic("pmap_protect: pgtable1 pg bad wirecount");
4018 if (vm_page_unwire_quick(pt_pv->pv_m))
4019 panic("pmap_protect: pgtable2 pg bad wirecount");
4020 ptep = NULL;
4022 /* else unmanaged page, adjust bits, no wire changes */
4024 if (ptep) {
4025 cbits &= ~pmap->pmap_bits[PG_RW_IDX];
4026 #ifdef PMAP_DEBUG2
4027 if (pmap_enter_debug > 0) {
4028 --pmap_enter_debug;
4029 kprintf("pmap_protect va=%lx ptep=%p pte_pv=%p "
4030 "pt_pv=%p cbits=%08lx\n",
4031 va, ptep, pte_pv,
4032 pt_pv, cbits
4035 #endif
4036 if (pbits != cbits) {
4037 if (!pmap_inval_smp_cmpset(pmap, (vm_offset_t)-1,
4038 ptep, pbits, cbits)) {
4039 goto again;
4043 if (pte_pv)
4044 pv_put(pte_pv);
4048 * Insert the vm_page (m) at the virtual address (va), replacing any prior
4049 * mapping at that address. Set protection and wiring as requested.
4051 * If entry is non-NULL we check to see if the SEG_SIZE optimization is
4052 * possible. If it is we enter the page into the appropriate shared pmap
4053 * hanging off the related VM object instead of the passed pmap, then we
4054 * share the page table page from the VM object's pmap into the current pmap.
4056 * NOTE: This routine MUST insert the page into the pmap now, it cannot
4057 * lazy-evaluate.
4059 void
4060 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4061 boolean_t wired, vm_map_entry_t entry)
4063 pv_entry_t pt_pv; /* page table */
4064 pv_entry_t pte_pv; /* page table entry */
4065 pt_entry_t *ptep;
4066 vm_paddr_t opa;
4067 pt_entry_t origpte, newpte;
4068 vm_paddr_t pa;
4070 if (pmap == NULL)
4071 return;
4072 va = trunc_page(va);
4073 #ifdef PMAP_DIAGNOSTIC
4074 if (va >= KvaEnd)
4075 panic("pmap_enter: toobig");
4076 if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
4077 panic("pmap_enter: invalid to pmap_enter page table "
4078 "pages (va: 0x%lx)", va);
4079 #endif
4080 if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
4081 kprintf("Warning: pmap_enter called on UVA with "
4082 "kernel_pmap\n");
4083 #ifdef DDB
4084 db_print_backtrace();
4085 #endif
4087 if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
4088 kprintf("Warning: pmap_enter called on KVA without"
4089 "kernel_pmap\n");
4090 #ifdef DDB
4091 db_print_backtrace();
4092 #endif
4096 * Get locked PV entries for our new page table entry (pte_pv)
4097 * and for its parent page table (pt_pv). We need the parent
4098 * so we can resolve the location of the ptep.
4100 * Only hardware MMU actions can modify the ptep out from
4101 * under us.
4103 * if (m) is fictitious or unmanaged we do not create a managing
4104 * pte_pv for it. Any pre-existing page's management state must
4105 * match (avoiding code complexity).
4107 * If the pmap is still being initialized we assume existing
4108 * page tables.
4110 * Kernel mapppings do not track page table pages (i.e. pt_pv).
4112 if (pmap_initialized == FALSE) {
4113 pte_pv = NULL;
4114 pt_pv = NULL;
4115 ptep = vtopte(va);
4116 origpte = *ptep;
4117 } else if (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) { /* XXX */
4118 pte_pv = NULL;
4119 if (va >= VM_MAX_USER_ADDRESS) {
4120 pt_pv = NULL;
4121 ptep = vtopte(va);
4122 } else {
4123 pt_pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va),
4124 NULL, entry, va);
4125 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4127 origpte = *ptep;
4128 cpu_ccfence();
4129 KASSERT(origpte == 0 ||
4130 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0,
4131 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4132 } else {
4133 if (va >= VM_MAX_USER_ADDRESS) {
4135 * Kernel map, pv_entry-tracked.
4137 pt_pv = NULL;
4138 pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va), NULL);
4139 ptep = vtopte(va);
4140 } else {
4142 * User map
4144 pte_pv = pmap_allocpte_seg(pmap, pmap_pte_pindex(va),
4145 &pt_pv, entry, va);
4146 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4148 origpte = *ptep;
4149 cpu_ccfence();
4150 KASSERT(origpte == 0 ||
4151 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]),
4152 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4155 pa = VM_PAGE_TO_PHYS(m);
4156 opa = origpte & PG_FRAME;
4158 newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) |
4159 pmap->pmap_bits[PG_V_IDX] | pmap->pmap_bits[PG_A_IDX]);
4160 if (wired)
4161 newpte |= pmap->pmap_bits[PG_W_IDX];
4162 if (va < VM_MAX_USER_ADDRESS)
4163 newpte |= pmap->pmap_bits[PG_U_IDX];
4164 if (pte_pv)
4165 newpte |= pmap->pmap_bits[PG_MANAGED_IDX];
4166 // if (pmap == &kernel_pmap)
4167 // newpte |= pgeflag;
4168 newpte |= pmap->pmap_cache_bits[m->pat_mode];
4169 if (m->flags & PG_FICTITIOUS)
4170 newpte |= pmap->pmap_bits[PG_DEVICE_IDX];
4173 * It is possible for multiple faults to occur in threaded
4174 * environments, the existing pte might be correct.
4176 if (((origpte ^ newpte) & ~(pt_entry_t)(pmap->pmap_bits[PG_M_IDX] |
4177 pmap->pmap_bits[PG_A_IDX])) == 0)
4178 goto done;
4181 * Ok, either the address changed or the protection or wiring
4182 * changed.
4184 * Clear the current entry, interlocking the removal. For managed
4185 * pte's this will also flush the modified state to the vm_page.
4186 * Atomic ops are mandatory in order to ensure that PG_M events are
4187 * not lost during any transition.
4189 * WARNING: The caller has busied the new page but not the original
4190 * vm_page which we are trying to replace. Because we hold
4191 * the pte_pv lock, but have not busied the page, PG bits
4192 * can be cleared out from under us.
4194 if (opa) {
4195 if (pte_pv) {
4197 * pmap_remove_pv_pte() unwires pt_pv and assumes
4198 * we will free pte_pv, but since we are reusing
4199 * pte_pv we want to retain the wire count.
4201 * pt_pv won't exist for a kernel page (managed or
4202 * otherwise).
4204 if (pt_pv)
4205 vm_page_wire_quick(pt_pv->pv_m);
4206 if (prot & VM_PROT_NOSYNC) {
4207 pmap_remove_pv_pte(pte_pv, pt_pv, NULL);
4208 } else {
4209 pmap_inval_bulk_t bulk;
4211 pmap_inval_bulk_init(&bulk, pmap);
4212 pmap_remove_pv_pte(pte_pv, pt_pv, &bulk);
4213 pmap_inval_bulk_flush(&bulk);
4215 if (pte_pv->pv_m)
4216 pmap_remove_pv_page(pte_pv);
4217 } else if (prot & VM_PROT_NOSYNC) {
4219 * Unmanaged page, NOSYNC (no mmu sync) requested.
4221 * Leave wire count on PT page intact.
4223 (void)pte_load_clear(ptep);
4224 cpu_invlpg((void *)va);
4225 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4226 } else {
4228 * Unmanaged page, normal enter.
4230 * Leave wire count on PT page intact.
4232 pmap_inval_smp(pmap, va, 1, ptep, 0);
4233 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4235 KKASSERT(*ptep == 0);
4238 #ifdef PMAP_DEBUG2
4239 if (pmap_enter_debug > 0) {
4240 --pmap_enter_debug;
4241 kprintf("pmap_enter: va=%lx m=%p origpte=%lx newpte=%lx ptep=%p"
4242 " pte_pv=%p pt_pv=%p opa=%lx prot=%02x\n",
4243 va, m,
4244 origpte, newpte, ptep,
4245 pte_pv, pt_pv, opa, prot);
4247 #endif
4249 if (pte_pv) {
4251 * Enter on the PV list if part of our managed memory.
4252 * Wiring of the PT page is already handled.
4254 KKASSERT(pte_pv->pv_m == NULL);
4255 vm_page_spin_lock(m);
4256 pte_pv->pv_m = m;
4257 pmap_page_stats_adding(m);
4258 TAILQ_INSERT_TAIL(&m->md.pv_list, pte_pv, pv_list);
4259 vm_page_flag_set(m, PG_MAPPED);
4260 vm_page_spin_unlock(m);
4261 } else if (pt_pv && opa == 0) {
4263 * We have to adjust the wire count on the PT page ourselves
4264 * for unmanaged entries. If opa was non-zero we retained
4265 * the existing wire count from the removal.
4267 vm_page_wire_quick(pt_pv->pv_m);
4271 * Kernel VMAs (pt_pv == NULL) require pmap invalidation interlocks.
4273 * User VMAs do not because those will be zero->non-zero, so no
4274 * stale entries to worry about at this point.
4276 * For KVM there appear to still be issues. Theoretically we
4277 * should be able to scrap the interlocks entirely but we
4278 * get crashes.
4280 if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL) {
4281 pmap_inval_smp(pmap, va, 1, ptep, newpte);
4282 } else {
4283 *(volatile pt_entry_t *)ptep = newpte;
4284 if (pt_pv == NULL)
4285 cpu_invlpg((void *)va);
4288 if (wired) {
4289 if (pte_pv) {
4290 atomic_add_long(&pte_pv->pv_pmap->pm_stats.wired_count,
4292 } else {
4293 atomic_add_long(&pmap->pm_stats.wired_count, 1);
4296 if (newpte & pmap->pmap_bits[PG_RW_IDX])
4297 vm_page_flag_set(m, PG_WRITEABLE);
4300 * Unmanaged pages need manual resident_count tracking.
4302 if (pte_pv == NULL && pt_pv)
4303 atomic_add_long(&pt_pv->pv_pmap->pm_stats.resident_count, 1);
4306 * Cleanup
4308 done:
4309 KKASSERT((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0 ||
4310 (m->flags & PG_MAPPED));
4313 * Cleanup the pv entry, allowing other accessors.
4315 if (pte_pv)
4316 pv_put(pte_pv);
4317 if (pt_pv)
4318 pv_put(pt_pv);
4322 * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
4323 * This code also assumes that the pmap has no pre-existing entry for this
4324 * VA.
4326 * This code currently may only be used on user pmaps, not kernel_pmap.
4328 void
4329 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
4331 pmap_enter(pmap, va, m, VM_PROT_READ, FALSE, NULL);
4335 * Make a temporary mapping for a physical address. This is only intended
4336 * to be used for panic dumps.
4338 * The caller is responsible for calling smp_invltlb().
4340 void *
4341 pmap_kenter_temporary(vm_paddr_t pa, long i)
4343 pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
4344 return ((void *)crashdumpmap);
4347 #define MAX_INIT_PT (96)
4350 * This routine preloads the ptes for a given object into the specified pmap.
4351 * This eliminates the blast of soft faults on process startup and
4352 * immediately after an mmap.
4354 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
4356 void
4357 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
4358 vm_object_t object, vm_pindex_t pindex,
4359 vm_size_t size, int limit)
4361 struct rb_vm_page_scan_info info;
4362 struct lwp *lp;
4363 vm_size_t psize;
4366 * We can't preinit if read access isn't set or there is no pmap
4367 * or object.
4369 if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
4370 return;
4373 * We can't preinit if the pmap is not the current pmap
4375 lp = curthread->td_lwp;
4376 if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
4377 return;
4380 * Misc additional checks
4382 psize = x86_64_btop(size);
4384 if ((object->type != OBJT_VNODE) ||
4385 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
4386 (object->resident_page_count > MAX_INIT_PT))) {
4387 return;
4390 if (pindex + psize > object->size) {
4391 if (object->size < pindex)
4392 return;
4393 psize = object->size - pindex;
4396 if (psize == 0)
4397 return;
4400 * If everything is segment-aligned do not pre-init here. Instead
4401 * allow the normal vm_fault path to pass a segment hint to
4402 * pmap_enter() which will then use an object-referenced shared
4403 * page table page.
4405 if ((addr & SEG_MASK) == 0 &&
4406 (ctob(psize) & SEG_MASK) == 0 &&
4407 (ctob(pindex) & SEG_MASK) == 0) {
4408 return;
4412 * Use a red-black scan to traverse the requested range and load
4413 * any valid pages found into the pmap.
4415 * We cannot safely scan the object's memq without holding the
4416 * object token.
4418 info.start_pindex = pindex;
4419 info.end_pindex = pindex + psize - 1;
4420 info.limit = limit;
4421 info.mpte = NULL;
4422 info.addr = addr;
4423 info.pmap = pmap;
4425 vm_object_hold_shared(object);
4426 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
4427 pmap_object_init_pt_callback, &info);
4428 vm_object_drop(object);
4431 static
4433 pmap_object_init_pt_callback(vm_page_t p, void *data)
4435 struct rb_vm_page_scan_info *info = data;
4436 vm_pindex_t rel_index;
4439 * don't allow an madvise to blow away our really
4440 * free pages allocating pv entries.
4442 if ((info->limit & MAP_PREFAULT_MADVISE) &&
4443 vmstats.v_free_count < vmstats.v_free_reserved) {
4444 return(-1);
4448 * Ignore list markers and ignore pages we cannot instantly
4449 * busy (while holding the object token).
4451 if (p->flags & PG_MARKER)
4452 return 0;
4453 if (vm_page_busy_try(p, TRUE))
4454 return 0;
4455 if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
4456 (p->flags & PG_FICTITIOUS) == 0) {
4457 if ((p->queue - p->pc) == PQ_CACHE)
4458 vm_page_deactivate(p);
4459 rel_index = p->pindex - info->start_pindex;
4460 pmap_enter_quick(info->pmap,
4461 info->addr + x86_64_ptob(rel_index), p);
4463 vm_page_wakeup(p);
4464 lwkt_yield();
4465 return(0);
4469 * Return TRUE if the pmap is in shape to trivially pre-fault the specified
4470 * address.
4472 * Returns FALSE if it would be non-trivial or if a pte is already loaded
4473 * into the slot.
4475 * XXX This is safe only because page table pages are not freed.
4478 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
4480 pt_entry_t *pte;
4482 /*spin_lock(&pmap->pm_spin);*/
4483 if ((pte = pmap_pte(pmap, addr)) != NULL) {
4484 if (*pte & pmap->pmap_bits[PG_V_IDX]) {
4485 /*spin_unlock(&pmap->pm_spin);*/
4486 return FALSE;
4489 /*spin_unlock(&pmap->pm_spin);*/
4490 return TRUE;
4494 * Change the wiring attribute for a pmap/va pair. The mapping must already
4495 * exist in the pmap. The mapping may or may not be managed.
4497 void
4498 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired,
4499 vm_map_entry_t entry)
4501 pt_entry_t *ptep;
4502 pv_entry_t pv;
4504 if (pmap == NULL)
4505 return;
4506 lwkt_gettoken(&pmap->pm_token);
4507 pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va), NULL, entry, va);
4508 ptep = pv_pte_lookup(pv, pmap_pte_index(va));
4510 if (wired && !pmap_pte_w(pmap, ptep))
4511 atomic_add_long(&pv->pv_pmap->pm_stats.wired_count, 1);
4512 else if (!wired && pmap_pte_w(pmap, ptep))
4513 atomic_add_long(&pv->pv_pmap->pm_stats.wired_count, -1);
4516 * Wiring is not a hardware characteristic so there is no need to
4517 * invalidate TLB. However, in an SMP environment we must use
4518 * a locked bus cycle to update the pte (if we are not using
4519 * the pmap_inval_*() API that is)... it's ok to do this for simple
4520 * wiring changes.
4522 if (wired)
4523 atomic_set_long(ptep, pmap->pmap_bits[PG_W_IDX]);
4524 else
4525 atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
4526 pv_put(pv);
4527 lwkt_reltoken(&pmap->pm_token);
4533 * Copy the range specified by src_addr/len from the source map to
4534 * the range dst_addr/len in the destination map.
4536 * This routine is only advisory and need not do anything.
4538 void
4539 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
4540 vm_size_t len, vm_offset_t src_addr)
4545 * pmap_zero_page:
4547 * Zero the specified physical page.
4549 * This function may be called from an interrupt and no locking is
4550 * required.
4552 void
4553 pmap_zero_page(vm_paddr_t phys)
4555 vm_offset_t va = PHYS_TO_DMAP(phys);
4557 pagezero((void *)va);
4561 * pmap_zero_page:
4563 * Zero part of a physical page by mapping it into memory and clearing
4564 * its contents with bzero.
4566 * off and size may not cover an area beyond a single hardware page.
4568 void
4569 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
4571 vm_offset_t virt = PHYS_TO_DMAP(phys);
4573 bzero((char *)virt + off, size);
4577 * pmap_copy_page:
4579 * Copy the physical page from the source PA to the target PA.
4580 * This function may be called from an interrupt. No locking
4581 * is required.
4583 void
4584 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
4586 vm_offset_t src_virt, dst_virt;
4588 src_virt = PHYS_TO_DMAP(src);
4589 dst_virt = PHYS_TO_DMAP(dst);
4590 bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
4594 * pmap_copy_page_frag:
4596 * Copy the physical page from the source PA to the target PA.
4597 * This function may be called from an interrupt. No locking
4598 * is required.
4600 void
4601 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
4603 vm_offset_t src_virt, dst_virt;
4605 src_virt = PHYS_TO_DMAP(src);
4606 dst_virt = PHYS_TO_DMAP(dst);
4608 bcopy((char *)src_virt + (src & PAGE_MASK),
4609 (char *)dst_virt + (dst & PAGE_MASK),
4610 bytes);
4614 * Returns true if the pmap's pv is one of the first 16 pvs linked to from
4615 * this page. This count may be changed upwards or downwards in the future;
4616 * it is only necessary that true be returned for a small subset of pmaps
4617 * for proper page aging.
4619 boolean_t
4620 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4622 pv_entry_t pv;
4623 int loops = 0;
4625 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4626 return FALSE;
4628 vm_page_spin_lock(m);
4629 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4630 if (pv->pv_pmap == pmap) {
4631 vm_page_spin_unlock(m);
4632 return TRUE;
4634 loops++;
4635 if (loops >= 16)
4636 break;
4638 vm_page_spin_unlock(m);
4639 return (FALSE);
4643 * Remove all pages from specified address space this aids process exit
4644 * speeds. Also, this code may be special cased for the current process
4645 * only.
4647 void
4648 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4650 pmap_remove_noinval(pmap, sva, eva);
4651 cpu_invltlb();
4655 * pmap_testbit tests bits in pte's note that the testbit/clearbit
4656 * routines are inline, and a lot of things compile-time evaluate.
4658 static
4659 boolean_t
4660 pmap_testbit(vm_page_t m, int bit)
4662 pv_entry_t pv;
4663 pt_entry_t *pte;
4664 pmap_t pmap;
4666 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4667 return FALSE;
4669 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
4670 return FALSE;
4671 vm_page_spin_lock(m);
4672 if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
4673 vm_page_spin_unlock(m);
4674 return FALSE;
4677 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4679 #if defined(PMAP_DIAGNOSTIC)
4680 if (pv->pv_pmap == NULL) {
4681 kprintf("Null pmap (tb) at pindex: %"PRIu64"\n",
4682 pv->pv_pindex);
4683 continue;
4685 #endif
4686 pmap = pv->pv_pmap;
4689 * If the bit being tested is the modified bit, then
4690 * mark clean_map and ptes as never
4691 * modified.
4693 * WARNING! Because we do not lock the pv, *pte can be in a
4694 * state of flux. Despite this the value of *pte
4695 * will still be related to the vm_page in some way
4696 * because the pv cannot be destroyed as long as we
4697 * hold the vm_page spin lock.
4699 if (bit == PG_A_IDX || bit == PG_M_IDX) {
4700 //& (pmap->pmap_bits[PG_A_IDX] | pmap->pmap_bits[PG_M_IDX])) {
4701 if (!pmap_track_modified(pv->pv_pindex))
4702 continue;
4705 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
4706 if (*pte & pmap->pmap_bits[bit]) {
4707 vm_page_spin_unlock(m);
4708 return TRUE;
4711 vm_page_spin_unlock(m);
4712 return (FALSE);
4716 * This routine is used to modify bits in ptes. Only one bit should be
4717 * specified. PG_RW requires special handling.
4719 * Caller must NOT hold any spin locks
4721 static __inline
4722 void
4723 pmap_clearbit(vm_page_t m, int bit_index)
4725 pv_entry_t pv;
4726 pt_entry_t *pte;
4727 pt_entry_t pbits;
4728 pmap_t pmap;
4730 if (bit_index == PG_RW_IDX)
4731 vm_page_flag_clear(m, PG_WRITEABLE);
4732 if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
4733 return;
4737 * PG_M or PG_A case
4739 * Loop over all current mappings setting/clearing as appropos If
4740 * setting RO do we need to clear the VAC?
4742 * NOTE: When clearing PG_M we could also (not implemented) drop
4743 * through to the PG_RW code and clear PG_RW too, forcing
4744 * a fault on write to redetect PG_M for virtual kernels, but
4745 * it isn't necessary since virtual kernels invalidate the
4746 * pte when they clear the VPTE_M bit in their virtual page
4747 * tables.
4749 * NOTE: Does not re-dirty the page when clearing only PG_M.
4751 * NOTE: Because we do not lock the pv, *pte can be in a state of
4752 * flux. Despite this the value of *pte is still somewhat
4753 * related while we hold the vm_page spin lock.
4755 * *pte can be zero due to this race. Since we are clearing
4756 * bits we basically do no harm when this race ccurs.
4758 if (bit_index != PG_RW_IDX) {
4759 vm_page_spin_lock(m);
4760 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4761 #if defined(PMAP_DIAGNOSTIC)
4762 if (pv->pv_pmap == NULL) {
4763 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
4764 pv->pv_pindex);
4765 continue;
4767 #endif
4768 pmap = pv->pv_pmap;
4769 pte = pmap_pte_quick(pv->pv_pmap,
4770 pv->pv_pindex << PAGE_SHIFT);
4771 pbits = *pte;
4772 if (pbits & pmap->pmap_bits[bit_index])
4773 atomic_clear_long(pte, pmap->pmap_bits[bit_index]);
4775 vm_page_spin_unlock(m);
4776 return;
4780 * Clear PG_RW. Also clears PG_M and marks the page dirty if PG_M
4781 * was set.
4783 restart:
4784 vm_page_spin_lock(m);
4785 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4787 * don't write protect pager mappings
4789 if (!pmap_track_modified(pv->pv_pindex))
4790 continue;
4792 #if defined(PMAP_DIAGNOSTIC)
4793 if (pv->pv_pmap == NULL) {
4794 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
4795 pv->pv_pindex);
4796 continue;
4798 #endif
4799 pmap = pv->pv_pmap;
4801 * Skip pages which do not have PG_RW set.
4803 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
4804 if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0)
4805 continue;
4808 * Lock the PV
4810 if (pv_hold_try(pv)) {
4811 vm_page_spin_unlock(m);
4812 } else {
4813 vm_page_spin_unlock(m);
4814 pv_lock(pv); /* held, now do a blocking lock */
4816 if (pv->pv_pmap != pmap || pv->pv_m != m) {
4817 pv_put(pv); /* and release */
4818 goto restart; /* anything could have happened */
4820 KKASSERT(pv->pv_pmap == pmap);
4821 for (;;) {
4822 pt_entry_t nbits;
4824 pbits = *pte;
4825 cpu_ccfence();
4826 nbits = pbits & ~(pmap->pmap_bits[PG_RW_IDX] |
4827 pmap->pmap_bits[PG_M_IDX]);
4828 if (pmap_inval_smp_cmpset(pmap,
4829 ((vm_offset_t)pv->pv_pindex << PAGE_SHIFT),
4830 pte, pbits, nbits)) {
4831 break;
4833 cpu_pause();
4835 vm_page_spin_lock(m);
4838 * If PG_M was found to be set while we were clearing PG_RW
4839 * we also clear PG_M (done above) and mark the page dirty.
4840 * Callers expect this behavior.
4842 if (pbits & pmap->pmap_bits[PG_M_IDX])
4843 vm_page_dirty(m);
4844 pv_put(pv);
4846 vm_page_spin_unlock(m);
4850 * Lower the permission for all mappings to a given page.
4852 * Page must be busied by caller. Because page is busied by caller this
4853 * should not be able to race a pmap_enter().
4855 void
4856 pmap_page_protect(vm_page_t m, vm_prot_t prot)
4858 /* JG NX support? */
4859 if ((prot & VM_PROT_WRITE) == 0) {
4860 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
4862 * NOTE: pmap_clearbit(.. PG_RW) also clears
4863 * the PG_WRITEABLE flag in (m).
4865 pmap_clearbit(m, PG_RW_IDX);
4866 } else {
4867 pmap_remove_all(m);
4872 vm_paddr_t
4873 pmap_phys_address(vm_pindex_t ppn)
4875 return (x86_64_ptob(ppn));
4879 * Return a count of reference bits for a page, clearing those bits.
4880 * It is not necessary for every reference bit to be cleared, but it
4881 * is necessary that 0 only be returned when there are truly no
4882 * reference bits set.
4884 * XXX: The exact number of bits to check and clear is a matter that
4885 * should be tested and standardized at some point in the future for
4886 * optimal aging of shared pages.
4888 * This routine may not block.
4891 pmap_ts_referenced(vm_page_t m)
4893 pv_entry_t pv;
4894 pt_entry_t *pte;
4895 pmap_t pmap;
4896 int rtval = 0;
4898 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4899 return (rtval);
4901 vm_page_spin_lock(m);
4902 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4903 if (!pmap_track_modified(pv->pv_pindex))
4904 continue;
4905 pmap = pv->pv_pmap;
4906 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
4907 if (pte && (*pte & pmap->pmap_bits[PG_A_IDX])) {
4908 atomic_clear_long(pte, pmap->pmap_bits[PG_A_IDX]);
4909 rtval++;
4910 if (rtval > 4)
4911 break;
4914 vm_page_spin_unlock(m);
4915 return (rtval);
4919 * pmap_is_modified:
4921 * Return whether or not the specified physical page was modified
4922 * in any physical maps.
4924 boolean_t
4925 pmap_is_modified(vm_page_t m)
4927 boolean_t res;
4929 res = pmap_testbit(m, PG_M_IDX);
4930 return (res);
4934 * Clear the modify bits on the specified physical page.
4936 void
4937 pmap_clear_modify(vm_page_t m)
4939 pmap_clearbit(m, PG_M_IDX);
4943 * pmap_clear_reference:
4945 * Clear the reference bit on the specified physical page.
4947 void
4948 pmap_clear_reference(vm_page_t m)
4950 pmap_clearbit(m, PG_A_IDX);
4954 * Miscellaneous support routines follow
4957 static
4958 void
4959 i386_protection_init(void)
4961 int *kp, prot;
4963 /* JG NX support may go here; No VM_PROT_EXECUTE ==> set NX bit */
4964 kp = protection_codes;
4965 for (prot = 0; prot < PROTECTION_CODES_SIZE; prot++) {
4966 switch (prot) {
4967 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
4969 * Read access is also 0. There isn't any execute bit,
4970 * so just make it readable.
4972 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
4973 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
4974 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
4975 *kp++ = 0;
4976 break;
4977 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
4978 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
4979 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
4980 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
4981 *kp++ = pmap_bits_default[PG_RW_IDX];
4982 break;
4988 * Map a set of physical memory pages into the kernel virtual
4989 * address space. Return a pointer to where it is mapped. This
4990 * routine is intended to be used for mapping device memory,
4991 * NOT real memory.
4993 * NOTE: We can't use pgeflag unless we invalidate the pages one at
4994 * a time.
4996 * NOTE: The PAT attributes {WRITE_BACK, WRITE_THROUGH, UNCACHED, UNCACHEABLE}
4997 * work whether the cpu supports PAT or not. The remaining PAT
4998 * attributes {WRITE_PROTECTED, WRITE_COMBINING} only work if the cpu
4999 * supports PAT.
5001 void *
5002 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5004 return(pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5007 void *
5008 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
5010 return(pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5013 void *
5014 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5016 return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5020 * Map a set of physical memory pages into the kernel virtual
5021 * address space. Return a pointer to where it is mapped. This
5022 * routine is intended to be used for mapping device memory,
5023 * NOT real memory.
5025 void *
5026 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5028 vm_offset_t va, tmpva, offset;
5029 pt_entry_t *pte;
5030 vm_size_t tmpsize;
5032 offset = pa & PAGE_MASK;
5033 size = roundup(offset + size, PAGE_SIZE);
5035 va = kmem_alloc_nofault(&kernel_map, size, VM_SUBSYS_MAPDEV, PAGE_SIZE);
5036 if (va == 0)
5037 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
5039 pa = pa & ~PAGE_MASK;
5040 for (tmpva = va, tmpsize = size; tmpsize > 0;) {
5041 pte = vtopte(tmpva);
5042 *pte = pa |
5043 kernel_pmap.pmap_bits[PG_RW_IDX] |
5044 kernel_pmap.pmap_bits[PG_V_IDX] | /* pgeflag | */
5045 kernel_pmap.pmap_cache_bits[mode];
5046 tmpsize -= PAGE_SIZE;
5047 tmpva += PAGE_SIZE;
5048 pa += PAGE_SIZE;
5050 pmap_invalidate_range(&kernel_pmap, va, va + size);
5051 pmap_invalidate_cache_range(va, va + size);
5053 return ((void *)(va + offset));
5056 void
5057 pmap_unmapdev(vm_offset_t va, vm_size_t size)
5059 vm_offset_t base, offset;
5061 base = va & ~PAGE_MASK;
5062 offset = va & PAGE_MASK;
5063 size = roundup(offset + size, PAGE_SIZE);
5064 pmap_qremove(va, size >> PAGE_SHIFT);
5065 kmem_free(&kernel_map, base, size);
5069 * Sets the memory attribute for the specified page.
5071 void
5072 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5075 m->pat_mode = ma;
5078 * If "m" is a normal page, update its direct mapping. This update
5079 * can be relied upon to perform any cache operations that are
5080 * required for data coherence.
5082 if ((m->flags & PG_FICTITIOUS) == 0)
5083 pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), 1, m->pat_mode);
5087 * Change the PAT attribute on an existing kernel memory map. Caller
5088 * must ensure that the virtual memory in question is not accessed
5089 * during the adjustment.
5091 void
5092 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
5094 pt_entry_t *pte;
5095 vm_offset_t base;
5096 int changed = 0;
5098 if (va == 0)
5099 panic("pmap_change_attr: va is NULL");
5100 base = trunc_page(va);
5102 while (count) {
5103 pte = vtopte(va);
5104 *pte = (*pte & ~(pt_entry_t)(kernel_pmap.pmap_cache_mask)) |
5105 kernel_pmap.pmap_cache_bits[mode];
5106 --count;
5107 va += PAGE_SIZE;
5110 changed = 1; /* XXX: not optimal */
5113 * Flush CPU caches if required to make sure any data isn't cached that
5114 * shouldn't be, etc.
5116 if (changed) {
5117 pmap_invalidate_range(&kernel_pmap, base, va);
5118 pmap_invalidate_cache_range(base, va);
5123 * perform the pmap work for mincore
5126 pmap_mincore(pmap_t pmap, vm_offset_t addr)
5128 pt_entry_t *ptep, pte;
5129 vm_page_t m;
5130 int val = 0;
5132 lwkt_gettoken(&pmap->pm_token);
5133 ptep = pmap_pte(pmap, addr);
5135 if (ptep && (pte = *ptep) != 0) {
5136 vm_offset_t pa;
5138 val = MINCORE_INCORE;
5139 if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0)
5140 goto done;
5142 pa = pte & PG_FRAME;
5144 if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
5145 m = NULL;
5146 else
5147 m = PHYS_TO_VM_PAGE(pa);
5150 * Modified by us
5152 if (pte & pmap->pmap_bits[PG_M_IDX])
5153 val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
5155 * Modified by someone
5157 else if (m && (m->dirty || pmap_is_modified(m)))
5158 val |= MINCORE_MODIFIED_OTHER;
5160 * Referenced by us
5162 if (pte & pmap->pmap_bits[PG_A_IDX])
5163 val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
5166 * Referenced by someone
5168 else if (m && ((m->flags & PG_REFERENCED) ||
5169 pmap_ts_referenced(m))) {
5170 val |= MINCORE_REFERENCED_OTHER;
5171 vm_page_flag_set(m, PG_REFERENCED);
5174 done:
5175 lwkt_reltoken(&pmap->pm_token);
5177 return val;
5181 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
5182 * vmspace will be ref'd and the old one will be deref'd.
5184 * The vmspace for all lwps associated with the process will be adjusted
5185 * and cr3 will be reloaded if any lwp is the current lwp.
5187 * The process must hold the vmspace->vm_map.token for oldvm and newvm
5189 void
5190 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
5192 struct vmspace *oldvm;
5193 struct lwp *lp;
5195 oldvm = p->p_vmspace;
5196 if (oldvm != newvm) {
5197 if (adjrefs)
5198 vmspace_ref(newvm);
5199 p->p_vmspace = newvm;
5200 KKASSERT(p->p_nthreads == 1);
5201 lp = RB_ROOT(&p->p_lwp_tree);
5202 pmap_setlwpvm(lp, newvm);
5203 if (adjrefs)
5204 vmspace_rel(oldvm);
5209 * Set the vmspace for a LWP. The vmspace is almost universally set the
5210 * same as the process vmspace, but virtual kernels need to swap out contexts
5211 * on a per-lwp basis.
5213 * Caller does not necessarily hold any vmspace tokens. Caller must control
5214 * the lwp (typically be in the context of the lwp). We use a critical
5215 * section to protect against statclock and hardclock (statistics collection).
5217 void
5218 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
5220 struct vmspace *oldvm;
5221 struct pmap *pmap;
5223 oldvm = lp->lwp_vmspace;
5225 if (oldvm != newvm) {
5226 crit_enter();
5227 lp->lwp_vmspace = newvm;
5228 if (curthread->td_lwp == lp) {
5229 pmap = vmspace_pmap(newvm);
5230 ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
5231 if (pmap->pm_active_lock & CPULOCK_EXCL)
5232 pmap_interlock_wait(newvm);
5233 #if defined(SWTCH_OPTIM_STATS)
5234 tlb_flush_count++;
5235 #endif
5236 if (pmap->pmap_bits[TYPE_IDX] == REGULAR_PMAP) {
5237 curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
5238 } else if (pmap->pmap_bits[TYPE_IDX] == EPT_PMAP) {
5239 curthread->td_pcb->pcb_cr3 = KPML4phys;
5240 } else {
5241 panic("pmap_setlwpvm: unknown pmap type\n");
5243 load_cr3(curthread->td_pcb->pcb_cr3);
5244 pmap = vmspace_pmap(oldvm);
5245 ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
5246 mycpu->gd_cpuid);
5248 crit_exit();
5253 * Called when switching to a locked pmap, used to interlock against pmaps
5254 * undergoing modifications to prevent us from activating the MMU for the
5255 * target pmap until all such modifications have completed. We have to do
5256 * this because the thread making the modifications has already set up its
5257 * SMP synchronization mask.
5259 * This function cannot sleep!
5261 * No requirements.
5263 void
5264 pmap_interlock_wait(struct vmspace *vm)
5266 struct pmap *pmap = &vm->vm_pmap;
5268 if (pmap->pm_active_lock & CPULOCK_EXCL) {
5269 crit_enter();
5270 KKASSERT(curthread->td_critcount >= 2);
5271 DEBUG_PUSH_INFO("pmap_interlock_wait");
5272 while (pmap->pm_active_lock & CPULOCK_EXCL) {
5273 cpu_ccfence();
5274 lwkt_process_ipiq();
5276 DEBUG_POP_INFO();
5277 crit_exit();
5281 vm_offset_t
5282 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
5285 if ((obj == NULL) || (size < NBPDR) ||
5286 ((obj->type != OBJT_DEVICE) && (obj->type != OBJT_MGTDEVICE))) {
5287 return addr;
5290 addr = roundup2(addr, NBPDR);
5291 return addr;
5295 * Used by kmalloc/kfree, page already exists at va
5297 vm_page_t
5298 pmap_kvtom(vm_offset_t va)
5300 pt_entry_t *ptep = vtopte(va);
5302 KKASSERT((*ptep & kernel_pmap.pmap_bits[PG_DEVICE_IDX]) == 0);
5303 return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
5307 * Initialize machine-specific shared page directory support. This
5308 * is executed when a VM object is created.
5310 void
5311 pmap_object_init(vm_object_t object)
5313 object->md.pmap_rw = NULL;
5314 object->md.pmap_ro = NULL;
5318 * Clean up machine-specific shared page directory support. This
5319 * is executed when a VM object is destroyed.
5321 void
5322 pmap_object_free(vm_object_t object)
5324 pmap_t pmap;
5326 if ((pmap = object->md.pmap_rw) != NULL) {
5327 object->md.pmap_rw = NULL;
5328 pmap_remove_noinval(pmap,
5329 VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
5330 CPUMASK_ASSZERO(pmap->pm_active);
5331 pmap_release(pmap);
5332 pmap_puninit(pmap);
5333 kfree(pmap, M_OBJPMAP);
5335 if ((pmap = object->md.pmap_ro) != NULL) {
5336 object->md.pmap_ro = NULL;
5337 pmap_remove_noinval(pmap,
5338 VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
5339 CPUMASK_ASSZERO(pmap->pm_active);
5340 pmap_release(pmap);
5341 pmap_puninit(pmap);
5342 kfree(pmap, M_OBJPMAP);