kernel - Tag vm_map_entry structure, slight optimization to zalloc, misc.
[dragonfly.git] / sys / platform / pc64 / x86_64 / machdep.c
blob6a2f8aca9f2fe26624174f580ca748edfd4bdfdb
1 /*-
2 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 2003 Peter Wemm.
5 * Copyright (c) 2008 The DragonFly Project.
6 * All rights reserved.
8 * This code is derived from software contributed to Berkeley by
9 * William Jolitz.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the University of
22 * California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
39 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
40 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_cpu.h"
46 #include "opt_ddb.h"
47 #include "opt_directio.h"
48 #include "opt_inet.h"
49 #include "opt_msgbuf.h"
50 #include "opt_swap.h"
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysproto.h>
55 #include <sys/signalvar.h>
56 #include <sys/kernel.h>
57 #include <sys/linker.h>
58 #include <sys/malloc.h>
59 #include <sys/proc.h>
60 #include <sys/priv.h>
61 #include <sys/buf.h>
62 #include <sys/reboot.h>
63 #include <sys/mbuf.h>
64 #include <sys/msgbuf.h>
65 #include <sys/sysent.h>
66 #include <sys/sysctl.h>
67 #include <sys/vmmeter.h>
68 #include <sys/bus.h>
69 #include <sys/usched.h>
70 #include <sys/reg.h>
71 #include <sys/sbuf.h>
72 #include <sys/ctype.h>
73 #include <sys/serialize.h>
74 #include <sys/systimer.h>
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <sys/lock.h>
79 #include <vm/vm_kern.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_page.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_pager.h>
84 #include <vm/vm_extern.h>
86 #include <sys/thread2.h>
87 #include <sys/mplock2.h>
88 #include <sys/mutex2.h>
90 #include <sys/user.h>
91 #include <sys/exec.h>
92 #include <sys/cons.h>
94 #include <sys/efi.h>
96 #include <ddb/ddb.h>
98 #include <machine/cpu.h>
99 #include <machine/clock.h>
100 #include <machine/specialreg.h>
101 #if 0 /* JG */
102 #include <machine/bootinfo.h>
103 #endif
104 #include <machine/md_var.h>
105 #include <machine/metadata.h>
106 #include <machine/pc/bios.h>
107 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
108 #include <machine/globaldata.h> /* CPU_prvspace */
109 #include <machine/smp.h>
110 #include <machine/cputypes.h>
111 #include <machine/intr_machdep.h>
112 #include <machine/framebuffer.h>
114 #ifdef OLD_BUS_ARCH
115 #include <bus/isa/isa_device.h>
116 #endif
117 #include <machine_base/isa/isa_intr.h>
118 #include <bus/isa/rtc.h>
119 #include <sys/random.h>
120 #include <sys/ptrace.h>
121 #include <machine/sigframe.h>
123 #include <sys/machintr.h>
124 #include <machine_base/icu/icu_abi.h>
125 #include <machine_base/icu/elcr_var.h>
126 #include <machine_base/apic/lapic.h>
127 #include <machine_base/apic/ioapic.h>
128 #include <machine_base/apic/ioapic_abi.h>
129 #include <machine/mptable.h>
131 #define PHYSMAP_ENTRIES 10
133 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
135 extern void printcpuinfo(void); /* XXX header file */
136 extern void identify_cpu(void);
137 #if 0 /* JG */
138 extern void finishidentcpu(void);
139 #endif
140 extern void panicifcpuunsupported(void);
142 static void cpu_startup(void *);
143 static void pic_finish(void *);
144 static void cpu_finish(void *);
146 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
147 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
148 #ifdef DIRECTIO
149 extern void ffs_rawread_setup(void);
150 #endif /* DIRECTIO */
151 static void init_locks(void);
153 extern void pcpu_timer_always(struct intrframe *);
155 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
156 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
157 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
159 #ifdef DDB
160 extern vm_offset_t ksym_start, ksym_end;
161 #endif
163 struct privatespace CPU_prvspace_bsp __aligned(4096);
164 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
166 vm_paddr_t efi_systbl_phys;
167 int _udatasel, _ucodesel, _ucode32sel;
168 u_long atdevbase;
169 int64_t tsc_offsets[MAXCPU];
170 cpumask_t smp_idleinvl_mask;
171 cpumask_t smp_idleinvl_reqs;
173 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
175 #if defined(SWTCH_OPTIM_STATS)
176 extern int swtch_optim_stats;
177 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
178 CTLFLAG_RD, &swtch_optim_stats, 0, "");
179 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
180 CTLFLAG_RD, &tlb_flush_count, 0, "");
181 #endif
182 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
183 CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
184 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
185 "monitor/mwait target state");
187 #define CPU_MWAIT_HAS_CX \
188 ((cpu_feature2 & CPUID2_MON) && \
189 (cpu_mwait_feature & CPUID_MWAIT_EXT))
191 #define CPU_MWAIT_CX_NAMELEN 16
193 #define CPU_MWAIT_C1 1
194 #define CPU_MWAIT_C2 2
195 #define CPU_MWAIT_C3 3
196 #define CPU_MWAIT_CX_MAX 8
198 #define CPU_MWAIT_HINT_AUTO -1 /* C1 and C2 */
199 #define CPU_MWAIT_HINT_AUTODEEP -2 /* C3+ */
201 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
202 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
204 struct cpu_mwait_cx {
205 int subcnt;
206 char name[4];
207 struct sysctl_ctx_list sysctl_ctx;
208 struct sysctl_oid *sysctl_tree;
210 static struct cpu_mwait_cx cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
211 static char cpu_mwait_cx_supported[256];
213 static int cpu_mwait_c1_hints_cnt;
214 static int cpu_mwait_hints_cnt;
215 static int *cpu_mwait_hints;
217 static int cpu_mwait_deep_hints_cnt;
218 static int *cpu_mwait_deep_hints;
220 #define CPU_IDLE_REPEAT_DEFAULT 750
222 static u_int cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
223 static u_long cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
224 static u_int cpu_mwait_repeat_shift = 1;
226 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB 0x1
227 #define CPU_MWAIT_C3_PREAMBLE_BM_STS 0x2
229 static int cpu_mwait_c3_preamble =
230 CPU_MWAIT_C3_PREAMBLE_BM_ARB |
231 CPU_MWAIT_C3_PREAMBLE_BM_STS;
233 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
234 cpu_mwait_cx_supported, 0, "MWAIT supported C states");
235 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
236 &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
238 static int cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
239 int *, boolean_t);
240 static int cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
241 static int cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
242 static int cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
244 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
245 NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
246 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
247 NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
248 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
249 &cpu_mwait_repeat_shift, 0, "");
251 long physmem = 0;
253 u_long ebda_addr = 0;
255 int imcr_present = 0;
257 int naps = 0; /* # of Applications processors */
259 u_int base_memory;
260 struct mtx dt_lock; /* lock for GDT and LDT */
262 static int
263 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
265 u_long pmem = ctob(physmem);
267 int error = sysctl_handle_long(oidp, &pmem, 0, req);
268 return (error);
271 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
272 0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
274 static int
275 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
277 int error = sysctl_handle_int(oidp, 0,
278 ctob(physmem - vmstats.v_wire_count), req);
279 return (error);
282 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
283 0, 0, sysctl_hw_usermem, "IU", "");
285 static int
286 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
288 int error = sysctl_handle_int(oidp, 0,
289 x86_64_btop(avail_end - avail_start), req);
290 return (error);
293 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
294 0, 0, sysctl_hw_availpages, "I", "");
296 vm_paddr_t Maxmem;
297 vm_paddr_t Realmem;
300 * The number of PHYSMAP entries must be one less than the number of
301 * PHYSSEG entries because the PHYSMAP entry that spans the largest
302 * physical address that is accessible by ISA DMA is split into two
303 * PHYSSEG entries.
305 #define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1))
307 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
308 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
310 /* must be 2 less so 0 0 can signal end of chunks */
311 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
312 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
314 static vm_offset_t buffer_sva, buffer_eva;
315 vm_offset_t clean_sva, clean_eva;
316 static vm_offset_t pager_sva, pager_eva;
317 static struct trapframe proc0_tf;
319 static void
320 cpu_startup(void *dummy)
322 caddr_t v;
323 vm_size_t size = 0;
324 vm_offset_t firstaddr;
327 * Good {morning,afternoon,evening,night}.
329 kprintf("%s", version);
330 startrtclock();
331 printcpuinfo();
332 panicifcpuunsupported();
333 kprintf("real memory = %ju (%ju MB)\n",
334 (intmax_t)Realmem,
335 (intmax_t)Realmem / 1024 / 1024);
337 * Display any holes after the first chunk of extended memory.
339 if (bootverbose) {
340 int indx;
342 kprintf("Physical memory chunk(s):\n");
343 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
344 vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
346 kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
347 (intmax_t)phys_avail[indx],
348 (intmax_t)phys_avail[indx + 1] - 1,
349 (intmax_t)size1,
350 (intmax_t)(size1 / PAGE_SIZE));
355 * Allocate space for system data structures.
356 * The first available kernel virtual address is in "v".
357 * As pages of kernel virtual memory are allocated, "v" is incremented.
358 * As pages of memory are allocated and cleared,
359 * "firstaddr" is incremented.
360 * An index into the kernel page table corresponding to the
361 * virtual memory address maintained in "v" is kept in "mapaddr".
365 * Make two passes. The first pass calculates how much memory is
366 * needed and allocates it. The second pass assigns virtual
367 * addresses to the various data structures.
369 firstaddr = 0;
370 again:
371 v = (caddr_t)firstaddr;
373 #define valloc(name, type, num) \
374 (name) = (type *)v; v = (caddr_t)((name)+(num))
375 #define valloclim(name, type, num, lim) \
376 (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
379 * The nominal buffer size (and minimum KVA allocation) is MAXBSIZE.
380 * For the first 64MB of ram nominally allocate sufficient buffers to
381 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
382 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing
383 * the buffer cache we limit the eventual kva reservation to
384 * maxbcache bytes.
386 * factor represents the 1/4 x ram conversion.
388 if (nbuf == 0) {
389 long factor = 4 * NBUFCALCSIZE / 1024;
390 long kbytes = physmem * (PAGE_SIZE / 1024);
392 nbuf = 50;
393 if (kbytes > 4096)
394 nbuf += min((kbytes - 4096) / factor, 65536 / factor);
395 if (kbytes > 65536)
396 nbuf += (kbytes - 65536) * 2 / (factor * 5);
397 if (maxbcache && nbuf > maxbcache / NBUFCALCSIZE)
398 nbuf = maxbcache / NBUFCALCSIZE;
402 * Do not allow the buffer_map to be more then 1/2 the size of the
403 * kernel_map.
405 if (nbuf > (virtual_end - virtual_start +
406 virtual2_end - virtual2_start) / (MAXBSIZE * 2)) {
407 nbuf = (virtual_end - virtual_start +
408 virtual2_end - virtual2_start) / (MAXBSIZE * 2);
409 kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
413 * Do not allow the buffer_map to use more than 50% of available
414 * physical-equivalent memory. Since the VM pages which back
415 * individual buffers are typically wired, having too many bufs
416 * can prevent the system from paging properly.
418 if (nbuf > physmem * PAGE_SIZE / (NBUFCALCSIZE * 2)) {
419 nbuf = physmem * PAGE_SIZE / (NBUFCALCSIZE * 2);
420 kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
424 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
425 * the valloc space which is just the virtual_end - virtual_start
426 * section. We use valloc() to allocate the buf header array.
428 if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
429 nbuf = (virtual_end - virtual_start) /
430 sizeof(struct buf) / 2;
431 kprintf("Warning: nbufs capped at %ld due to valloc "
432 "considerations\n", nbuf);
435 nswbuf_mem = lmax(lmin(nbuf / 32, 512), 8);
436 #ifdef NSWBUF_MIN
437 if (nswbuf_mem < NSWBUF_MIN)
438 nswbuf_mem = NSWBUF_MIN;
439 #endif
440 nswbuf_kva = lmax(lmin(nbuf / 4, 512), 16);
441 #ifdef NSWBUF_MIN
442 if (nswbuf_kva < NSWBUF_MIN)
443 nswbuf_kva = NSWBUF_MIN;
444 #endif
445 #ifdef DIRECTIO
446 ffs_rawread_setup();
447 #endif
449 valloc(swbuf_mem, struct buf, nswbuf_mem);
450 valloc(swbuf_kva, struct buf, nswbuf_kva);
451 valloc(buf, struct buf, nbuf);
454 * End of first pass, size has been calculated so allocate memory
456 if (firstaddr == 0) {
457 size = (vm_size_t)(v - firstaddr);
458 firstaddr = kmem_alloc(&kernel_map, round_page(size),
459 VM_SUBSYS_BUF);
460 if (firstaddr == 0)
461 panic("startup: no room for tables");
462 goto again;
466 * End of second pass, addresses have been assigned
468 * nbuf is an int, make sure we don't overflow the field.
470 * On 64-bit systems we always reserve maximal allocations for
471 * buffer cache buffers and there are no fragmentation issues,
472 * so the KVA segment does not have to be excessively oversized.
474 if ((vm_size_t)(v - firstaddr) != size)
475 panic("startup: table size inconsistency");
477 kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
478 ((vm_offset_t)(nbuf + 16) * MAXBSIZE) +
479 ((nswbuf_mem + nswbuf_kva) * MAXPHYS) + pager_map_size);
480 kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
481 ((vm_offset_t)(nbuf + 16) * MAXBSIZE));
482 buffer_map.system_map = 1;
483 kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
484 ((vm_offset_t)(nswbuf_mem + nswbuf_kva) * MAXPHYS) +
485 pager_map_size);
486 pager_map.system_map = 1;
487 kprintf("avail memory = %ju (%ju MB)\n",
488 (uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
489 (uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
490 1024 / 1024);
493 struct cpu_idle_stat {
494 int hint;
495 int reserved;
496 u_long halt;
497 u_long spin;
498 u_long repeat;
499 u_long repeat_last;
500 u_long repeat_delta;
501 u_long mwait_cx[CPU_MWAIT_CX_MAX];
502 } __cachealign;
504 #define CPU_IDLE_STAT_HALT -1
505 #define CPU_IDLE_STAT_SPIN -2
507 static struct cpu_idle_stat cpu_idle_stats[MAXCPU];
509 static int
510 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
512 int idx = arg2, cpu, error;
513 u_long val = 0;
515 if (idx == CPU_IDLE_STAT_HALT) {
516 for (cpu = 0; cpu < ncpus; ++cpu)
517 val += cpu_idle_stats[cpu].halt;
518 } else if (idx == CPU_IDLE_STAT_SPIN) {
519 for (cpu = 0; cpu < ncpus; ++cpu)
520 val += cpu_idle_stats[cpu].spin;
521 } else {
522 KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
523 ("invalid index %d", idx));
524 for (cpu = 0; cpu < ncpus; ++cpu)
525 val += cpu_idle_stats[cpu].mwait_cx[idx];
528 error = sysctl_handle_quad(oidp, &val, 0, req);
529 if (error || req->newptr == NULL)
530 return error;
532 if (idx == CPU_IDLE_STAT_HALT) {
533 for (cpu = 0; cpu < ncpus; ++cpu)
534 cpu_idle_stats[cpu].halt = 0;
535 cpu_idle_stats[0].halt = val;
536 } else if (idx == CPU_IDLE_STAT_SPIN) {
537 for (cpu = 0; cpu < ncpus; ++cpu)
538 cpu_idle_stats[cpu].spin = 0;
539 cpu_idle_stats[0].spin = val;
540 } else {
541 KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
542 ("invalid index %d", idx));
543 for (cpu = 0; cpu < ncpus; ++cpu)
544 cpu_idle_stats[cpu].mwait_cx[idx] = 0;
545 cpu_idle_stats[0].mwait_cx[idx] = val;
547 return 0;
550 static void
551 cpu_mwait_attach(void)
553 struct sbuf sb;
554 int hint_idx, i;
556 if (!CPU_MWAIT_HAS_CX)
557 return;
559 if (cpu_vendor_id == CPU_VENDOR_INTEL &&
560 (CPUID_TO_FAMILY(cpu_id) > 0xf ||
561 (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
562 CPUID_TO_MODEL(cpu_id) >= 0xf))) {
563 int bm_sts = 1;
566 * Pentium dual-core, Core 2 and beyond do not need any
567 * additional activities to enter deep C-state, i.e. C3(+).
569 cpu_mwait_cx_no_bmarb();
571 TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
572 if (!bm_sts)
573 cpu_mwait_cx_no_bmsts();
576 sbuf_new(&sb, cpu_mwait_cx_supported,
577 sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
579 for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
580 struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
581 int sub;
583 ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
585 sysctl_ctx_init(&cx->sysctl_ctx);
586 cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
587 SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
588 cx->name, CTLFLAG_RW, NULL, "Cx control/info");
589 if (cx->sysctl_tree == NULL)
590 continue;
592 cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
593 SYSCTL_ADD_INT(&cx->sysctl_ctx,
594 SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
595 "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
596 "sub-state count");
597 SYSCTL_ADD_PROC(&cx->sysctl_ctx,
598 SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
599 "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
600 i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
602 for (sub = 0; sub < cx->subcnt; ++sub)
603 sbuf_printf(&sb, "C%d/%d ", i, sub);
605 sbuf_trim(&sb);
606 sbuf_finish(&sb);
609 * Non-deep C-states
611 cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
612 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
613 cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
614 cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
615 M_DEVBUF, M_WAITOK);
617 hint_idx = 0;
618 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
619 int j, subcnt;
621 subcnt = cpu_mwait_cx_info[i].subcnt;
622 for (j = 0; j < subcnt; ++j) {
623 KASSERT(hint_idx < cpu_mwait_hints_cnt,
624 ("invalid mwait hint index %d", hint_idx));
625 cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
626 ++hint_idx;
629 KASSERT(hint_idx == cpu_mwait_hints_cnt,
630 ("mwait hint count %d != index %d",
631 cpu_mwait_hints_cnt, hint_idx));
633 if (bootverbose) {
634 kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
635 for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
636 int hint = cpu_mwait_hints[i];
638 kprintf(" C%d/%d hint 0x%04x\n",
639 MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
640 hint);
645 * Deep C-states
647 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
648 cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
649 cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
650 M_DEVBUF, M_WAITOK);
652 hint_idx = 0;
653 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
654 int j, subcnt;
656 subcnt = cpu_mwait_cx_info[i].subcnt;
657 for (j = 0; j < subcnt; ++j) {
658 KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
659 ("invalid mwait deep hint index %d", hint_idx));
660 cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
661 ++hint_idx;
664 KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
665 ("mwait deep hint count %d != index %d",
666 cpu_mwait_deep_hints_cnt, hint_idx));
668 if (bootverbose) {
669 kprintf("MWAIT deep hints:\n");
670 for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
671 int hint = cpu_mwait_deep_hints[i];
673 kprintf(" C%d/%d hint 0x%04x\n",
674 MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
675 hint);
678 cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
680 for (i = 0; i < ncpus; ++i) {
681 char name[16];
683 ksnprintf(name, sizeof(name), "idle%d", i);
684 SYSCTL_ADD_PROC(NULL,
685 SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
686 name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
687 0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
691 static void
692 cpu_finish(void *dummy __unused)
694 cpu_setregs();
695 cpu_mwait_attach();
698 static void
699 pic_finish(void *dummy __unused)
701 /* Log ELCR information */
702 elcr_dump();
704 /* Log MPTABLE information */
705 mptable_pci_int_dump();
707 /* Finalize PCI */
708 MachIntrABI.finalize();
712 * Send an interrupt to process.
714 * Stack is set up to allow sigcode stored
715 * at top to call routine, followed by kcall
716 * to sigreturn routine below. After sigreturn
717 * resets the signal mask, the stack, and the
718 * frame pointer, it returns to the user
719 * specified pc, psl.
721 void
722 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
724 struct lwp *lp = curthread->td_lwp;
725 struct proc *p = lp->lwp_proc;
726 struct trapframe *regs;
727 struct sigacts *psp = p->p_sigacts;
728 struct sigframe sf, *sfp;
729 int oonstack;
730 char *sp;
732 regs = lp->lwp_md.md_regs;
733 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
735 /* Save user context */
736 bzero(&sf, sizeof(struct sigframe));
737 sf.sf_uc.uc_sigmask = *mask;
738 sf.sf_uc.uc_stack = lp->lwp_sigstk;
739 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
740 KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
741 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
743 /* Make the size of the saved context visible to userland */
744 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
746 /* Allocate and validate space for the signal handler context. */
747 if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
748 SIGISMEMBER(psp->ps_sigonstack, sig)) {
749 sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
750 sizeof(struct sigframe));
751 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
752 } else {
753 /* We take red zone into account */
754 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
758 * XXX AVX needs 64-byte alignment but sigframe has other fields and
759 * the embedded ucontext is not at the front, so aligning this won't
760 * help us. Fortunately we bcopy in/out of the sigframe, so the
761 * kernel is ok.
763 * The problem though is if userland winds up trying to use the
764 * context directly.
766 sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
768 /* Translate the signal is appropriate */
769 if (p->p_sysent->sv_sigtbl) {
770 if (sig <= p->p_sysent->sv_sigsize)
771 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
775 * Build the argument list for the signal handler.
777 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
779 regs->tf_rdi = sig; /* argument 1 */
780 regs->tf_rdx = (register_t)&sfp->sf_uc; /* argument 3 */
782 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
784 * Signal handler installed with SA_SIGINFO.
786 * action(signo, siginfo, ucontext)
788 regs->tf_rsi = (register_t)&sfp->sf_si; /* argument 2 */
789 regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
790 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
792 /* fill siginfo structure */
793 sf.sf_si.si_signo = sig;
794 sf.sf_si.si_code = code;
795 sf.sf_si.si_addr = (void *)regs->tf_addr;
796 } else {
798 * Old FreeBSD-style arguments.
800 * handler (signo, code, [uc], addr)
802 regs->tf_rsi = (register_t)code; /* argument 2 */
803 regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
804 sf.sf_ahu.sf_handler = catcher;
808 * If we're a vm86 process, we want to save the segment registers.
809 * We also change eflags to be our emulated eflags, not the actual
810 * eflags.
812 #if 0 /* JG */
813 if (regs->tf_eflags & PSL_VM) {
814 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
815 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
817 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
818 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
819 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
820 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
822 if (vm86->vm86_has_vme == 0)
823 sf.sf_uc.uc_mcontext.mc_eflags =
824 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
825 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
828 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
829 * syscalls made by the signal handler. This just avoids
830 * wasting time for our lazy fixup of such faults. PSL_NT
831 * does nothing in vm86 mode, but vm86 programs can set it
832 * almost legitimately in probes for old cpu types.
834 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
836 #endif
839 * Save the FPU state and reinit the FP unit
841 npxpush(&sf.sf_uc.uc_mcontext);
844 * Copy the sigframe out to the user's stack.
846 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
848 * Something is wrong with the stack pointer.
849 * ...Kill the process.
851 sigexit(lp, SIGILL);
854 regs->tf_rsp = (register_t)sfp;
855 regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
858 * i386 abi specifies that the direction flag must be cleared
859 * on function entry
861 regs->tf_rflags &= ~(PSL_T|PSL_D);
864 * 64 bit mode has a code and stack selector but
865 * no data or extra selector. %fs and %gs are not
866 * stored in-context.
868 regs->tf_cs = _ucodesel;
869 regs->tf_ss = _udatasel;
870 clear_quickret();
874 * Sanitize the trapframe for a virtual kernel passing control to a custom
875 * VM context. Remove any items that would otherwise create a privilage
876 * issue.
878 * XXX at the moment we allow userland to set the resume flag. Is this a
879 * bad idea?
882 cpu_sanitize_frame(struct trapframe *frame)
884 frame->tf_cs = _ucodesel;
885 frame->tf_ss = _udatasel;
886 /* XXX VM (8086) mode not supported? */
887 frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
888 frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
890 return(0);
894 * Sanitize the tls so loading the descriptor does not blow up
895 * on us. For x86_64 we don't have to do anything.
898 cpu_sanitize_tls(struct savetls *tls)
900 return(0);
904 * sigreturn(ucontext_t *sigcntxp)
906 * System call to cleanup state after a signal
907 * has been taken. Reset signal mask and
908 * stack state from context left by sendsig (above).
909 * Return to previous pc and psl as specified by
910 * context left by sendsig. Check carefully to
911 * make sure that the user has not modified the
912 * state to gain improper privileges.
914 * MPSAFE
916 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
917 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
920 sys_sigreturn(struct sigreturn_args *uap)
922 struct lwp *lp = curthread->td_lwp;
923 struct trapframe *regs;
924 ucontext_t uc;
925 ucontext_t *ucp;
926 register_t rflags;
927 int cs;
928 int error;
931 * We have to copy the information into kernel space so userland
932 * can't modify it while we are sniffing it.
934 regs = lp->lwp_md.md_regs;
935 error = copyin(uap->sigcntxp, &uc, sizeof(uc));
936 if (error)
937 return (error);
938 ucp = &uc;
939 rflags = ucp->uc_mcontext.mc_rflags;
941 /* VM (8086) mode not supported */
942 rflags &= ~PSL_VM_UNSUPP;
944 #if 0 /* JG */
945 if (eflags & PSL_VM) {
946 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
947 struct vm86_kernel *vm86;
950 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
951 * set up the vm86 area, and we can't enter vm86 mode.
953 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
954 return (EINVAL);
955 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
956 if (vm86->vm86_inited == 0)
957 return (EINVAL);
959 /* go back to user mode if both flags are set */
960 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
961 trapsignal(lp, SIGBUS, 0);
963 if (vm86->vm86_has_vme) {
964 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
965 (eflags & VME_USERCHANGE) | PSL_VM;
966 } else {
967 vm86->vm86_eflags = eflags; /* save VIF, VIP */
968 eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
969 (eflags & VM_USERCHANGE) | PSL_VM;
971 bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
972 tf->tf_eflags = eflags;
973 tf->tf_vm86_ds = tf->tf_ds;
974 tf->tf_vm86_es = tf->tf_es;
975 tf->tf_vm86_fs = tf->tf_fs;
976 tf->tf_vm86_gs = tf->tf_gs;
977 tf->tf_ds = _udatasel;
978 tf->tf_es = _udatasel;
979 tf->tf_fs = _udatasel;
980 tf->tf_gs = _udatasel;
981 } else
982 #endif
985 * Don't allow users to change privileged or reserved flags.
988 * XXX do allow users to change the privileged flag PSL_RF.
989 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
990 * should sometimes set it there too. tf_eflags is kept in
991 * the signal context during signal handling and there is no
992 * other place to remember it, so the PSL_RF bit may be
993 * corrupted by the signal handler without us knowing.
994 * Corruption of the PSL_RF bit at worst causes one more or
995 * one less debugger trap, so allowing it is fairly harmless.
997 if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
998 kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
999 return(EINVAL);
1003 * Don't allow users to load a valid privileged %cs. Let the
1004 * hardware check for invalid selectors, excess privilege in
1005 * other selectors, invalid %eip's and invalid %esp's.
1007 cs = ucp->uc_mcontext.mc_cs;
1008 if (!CS_SECURE(cs)) {
1009 kprintf("sigreturn: cs = 0x%x\n", cs);
1010 trapsignal(lp, SIGBUS, T_PROTFLT);
1011 return(EINVAL);
1013 bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1017 * Restore the FPU state from the frame
1019 crit_enter();
1020 npxpop(&ucp->uc_mcontext);
1022 if (ucp->uc_mcontext.mc_onstack & 1)
1023 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1024 else
1025 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1027 lp->lwp_sigmask = ucp->uc_sigmask;
1028 SIG_CANTMASK(lp->lwp_sigmask);
1029 clear_quickret();
1030 crit_exit();
1031 return(EJUSTRETURN);
1035 * Machine dependent boot() routine
1037 * I haven't seen anything to put here yet
1038 * Possibly some stuff might be grafted back here from boot()
1040 void
1041 cpu_boot(int howto)
1046 * Shutdown the CPU as much as possible
1048 void
1049 cpu_halt(void)
1051 for (;;)
1052 __asm__ __volatile("hlt");
1056 * cpu_idle() represents the idle LWKT. You cannot return from this function
1057 * (unless you want to blow things up!). Instead we look for runnable threads
1058 * and loop or halt as appropriate. Giant is not held on entry to the thread.
1060 * The main loop is entered with a critical section held, we must release
1061 * the critical section before doing anything else. lwkt_switch() will
1062 * check for pending interrupts due to entering and exiting its own
1063 * critical section.
1065 * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1066 * However, there are cases where the idlethread will be entered with
1067 * the possibility that no IPI will occur and in such cases
1068 * lwkt_switch() sets TDF_IDLE_NOHLT.
1070 * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1071 * must occur before it starts using ACPI halt.
1073 * NOTE: Value overridden in hammer_time().
1075 static int cpu_idle_hlt = 2;
1076 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1077 &cpu_idle_hlt, 0, "Idle loop HLT enable");
1078 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1079 &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1081 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1082 0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1083 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1084 0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1086 static void
1087 cpu_idle_default_hook(void)
1090 * We must guarentee that hlt is exactly the instruction
1091 * following the sti.
1093 __asm __volatile("sti; hlt");
1096 /* Other subsystems (e.g., ACPI) can hook this later. */
1097 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1099 static __inline int
1100 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1102 int hint, cx_idx;
1103 u_int idx;
1105 hint = stat->hint;
1106 if (hint >= 0)
1107 goto done;
1109 idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1110 cpu_mwait_repeat_shift;
1111 if (idx >= cpu_mwait_c1_hints_cnt) {
1112 /* Step up faster, once we walked through all C1 states */
1113 stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1115 if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1116 if (idx >= cpu_mwait_deep_hints_cnt)
1117 idx = cpu_mwait_deep_hints_cnt - 1;
1118 hint = cpu_mwait_deep_hints[idx];
1119 } else {
1120 if (idx >= cpu_mwait_hints_cnt)
1121 idx = cpu_mwait_hints_cnt - 1;
1122 hint = cpu_mwait_hints[idx];
1124 done:
1125 cx_idx = MWAIT_EAX_TO_CX(hint);
1126 if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1127 stat->mwait_cx[cx_idx]++;
1128 return hint;
1131 void
1132 cpu_idle(void)
1134 globaldata_t gd = mycpu;
1135 struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1136 struct thread *td __debugvar = gd->gd_curthread;
1137 int reqflags;
1138 int quick;
1140 stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1142 crit_exit();
1143 KKASSERT(td->td_critcount == 0);
1145 for (;;) {
1147 * See if there are any LWKTs ready to go.
1149 lwkt_switch();
1152 * When halting inside a cli we must check for reqflags
1153 * races, particularly [re]schedule requests. Running
1154 * splz() does the job.
1156 * cpu_idle_hlt:
1157 * 0 Never halt, just spin
1159 * 1 Always use HLT (or MONITOR/MWAIT if avail).
1161 * Better default for modern (Haswell+) Intel
1162 * cpus.
1164 * 2 Use HLT/MONITOR/MWAIT up to a point and then
1165 * use the ACPI halt (default). This is a hybrid
1166 * approach. See machdep.cpu_idle_repeat.
1168 * Better default for modern AMD cpus and older
1169 * Intel cpus.
1171 * 3 Always use the ACPI halt. This typically
1172 * eats the least amount of power but the cpu
1173 * will be slow waking up. Slows down e.g.
1174 * compiles and other pipe/event oriented stuff.
1176 * 4 Always use HLT.
1178 * NOTE: Interrupts are enabled and we are not in a critical
1179 * section.
1181 * NOTE: Preemptions do not reset gd_idle_repeat. Also we
1182 * don't bother capping gd_idle_repeat, it is ok if
1183 * it overflows.
1185 * Implement optimized invltlb operations when halted
1186 * in idle. By setting the bit in smp_idleinvl_mask
1187 * we inform other cpus that they can set _reqs to
1188 * request an invltlb. Current the code to do that
1189 * sets the bits in _reqs anyway, but then check _mask
1190 * to determine if they can assume the invltlb will execute.
1192 * A critical section is required to ensure that interrupts
1193 * do not fully run until after we've had a chance to execute
1194 * the request.
1196 if (gd->gd_idle_repeat == 0) {
1197 stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1198 if (stat->repeat > cpu_idle_repeat_max)
1199 stat->repeat = cpu_idle_repeat_max;
1200 stat->repeat_last = 0;
1201 stat->repeat_delta = 0;
1203 ++stat->repeat_last;
1205 ++gd->gd_idle_repeat;
1206 reqflags = gd->gd_reqflags;
1207 quick = (cpu_idle_hlt == 1) ||
1208 (cpu_idle_hlt < 3 &&
1209 gd->gd_idle_repeat < cpu_idle_repeat);
1211 if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1212 (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1213 splz(); /* XXX */
1214 crit_enter_gd(gd);
1215 ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1216 cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1217 cpu_mwait_cx_hint(stat), 0);
1218 stat->halt++;
1219 ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1220 if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1221 gd->gd_cpuid)) {
1222 cpu_invltlb();
1223 cpu_mfence();
1225 crit_exit_gd(gd);
1226 } else if (cpu_idle_hlt) {
1227 __asm __volatile("cli");
1228 splz();
1229 crit_enter_gd(gd);
1230 ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1231 if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1232 if (quick)
1233 cpu_idle_default_hook();
1234 else
1235 cpu_idle_hook();
1237 __asm __volatile("sti");
1238 stat->halt++;
1239 ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1240 if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1241 gd->gd_cpuid)) {
1242 cpu_invltlb();
1243 cpu_mfence();
1245 crit_exit_gd(gd);
1246 } else {
1247 splz();
1248 __asm __volatile("sti");
1249 stat->spin++;
1255 * Called in a loop indirectly via Xcpustop
1257 void
1258 cpu_smp_stopped(void)
1260 globaldata_t gd = mycpu;
1261 volatile __uint64_t *ptr;
1262 __uint64_t ovalue;
1264 ptr = CPUMASK_ADDR(started_cpus, gd->gd_cpuid);
1265 ovalue = *ptr;
1266 if ((ovalue & CPUMASK_SIMPLE(gd->gd_cpuid & 63)) == 0) {
1267 if (cpu_mi_feature & CPU_MI_MONITOR) {
1268 cpu_mmw_pause_long(__DEVOLATILE(void *, ptr), ovalue,
1269 cpu_mwait_hints[CPU_MWAIT_C1], 0);
1270 } else {
1271 cpu_halt(); /* depend on lapic timer */
1277 * This routine is called if a spinlock has been held through the
1278 * exponential backoff period and is seriously contested. On a real cpu
1279 * we let it spin.
1281 void
1282 cpu_spinlock_contested(void)
1284 cpu_pause();
1288 * Clear registers on exec
1290 void
1291 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1293 struct thread *td = curthread;
1294 struct lwp *lp = td->td_lwp;
1295 struct pcb *pcb = td->td_pcb;
1296 struct trapframe *regs = lp->lwp_md.md_regs;
1298 /* was i386_user_cleanup() in NetBSD */
1299 user_ldt_free(pcb);
1301 clear_quickret();
1302 bzero((char *)regs, sizeof(struct trapframe));
1303 regs->tf_rip = entry;
1304 regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1305 regs->tf_rdi = stack; /* argv */
1306 regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1307 regs->tf_ss = _udatasel;
1308 regs->tf_cs = _ucodesel;
1309 regs->tf_rbx = ps_strings;
1312 * Reset the hardware debug registers if they were in use.
1313 * They won't have any meaning for the newly exec'd process.
1315 if (pcb->pcb_flags & PCB_DBREGS) {
1316 pcb->pcb_dr0 = 0;
1317 pcb->pcb_dr1 = 0;
1318 pcb->pcb_dr2 = 0;
1319 pcb->pcb_dr3 = 0;
1320 pcb->pcb_dr6 = 0;
1321 pcb->pcb_dr7 = 0; /* JG set bit 10? */
1322 if (pcb == td->td_pcb) {
1324 * Clear the debug registers on the running
1325 * CPU, otherwise they will end up affecting
1326 * the next process we switch to.
1328 reset_dbregs();
1330 pcb->pcb_flags &= ~PCB_DBREGS;
1334 * Initialize the math emulator (if any) for the current process.
1335 * Actually, just clear the bit that says that the emulator has
1336 * been initialized. Initialization is delayed until the process
1337 * traps to the emulator (if it is done at all) mainly because
1338 * emulators don't provide an entry point for initialization.
1340 pcb->pcb_flags &= ~FP_SOFTFP;
1343 * NOTE: do not set CR0_TS here. npxinit() must do it after clearing
1344 * gd_npxthread. Otherwise a preemptive interrupt thread
1345 * may panic in npxdna().
1347 crit_enter();
1348 load_cr0(rcr0() | CR0_MP);
1351 * NOTE: The MSR values must be correct so we can return to
1352 * userland. gd_user_fs/gs must be correct so the switch
1353 * code knows what the current MSR values are.
1355 pcb->pcb_fsbase = 0; /* Values loaded from PCB on switch */
1356 pcb->pcb_gsbase = 0;
1357 mdcpu->gd_user_fs = 0; /* Cache of current MSR values */
1358 mdcpu->gd_user_gs = 0;
1359 wrmsr(MSR_FSBASE, 0); /* Set MSR values for return to userland */
1360 wrmsr(MSR_KGSBASE, 0);
1362 /* Initialize the npx (if any) for the current process. */
1363 npxinit();
1364 crit_exit();
1366 pcb->pcb_ds = _udatasel;
1367 pcb->pcb_es = _udatasel;
1368 pcb->pcb_fs = _udatasel;
1369 pcb->pcb_gs = _udatasel;
1372 void
1373 cpu_setregs(void)
1375 register_t cr0;
1377 cr0 = rcr0();
1378 cr0 |= CR0_NE; /* Done by npxinit() */
1379 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
1380 cr0 |= CR0_WP | CR0_AM;
1381 load_cr0(cr0);
1382 load_gs(_udatasel);
1385 static int
1386 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1388 int error;
1389 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1390 req);
1391 if (!error && req->newptr)
1392 resettodr();
1393 return (error);
1396 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1397 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1399 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1400 CTLFLAG_RW, &disable_rtc_set, 0, "");
1402 #if 0 /* JG */
1403 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1404 CTLFLAG_RD, &bootinfo, bootinfo, "");
1405 #endif
1407 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1408 CTLFLAG_RW, &wall_cmos_clock, 0, "");
1410 extern u_long bootdev; /* not a cdev_t - encoding is different */
1411 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1412 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1414 static int
1415 efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
1417 struct efi_map_header *efihdr;
1418 caddr_t kmdp;
1419 uint32_t efisize;
1421 kmdp = preload_search_by_type("elf kernel");
1422 if (kmdp == NULL)
1423 kmdp = preload_search_by_type("elf64 kernel");
1424 efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1425 MODINFO_METADATA | MODINFOMD_EFI_MAP);
1426 if (efihdr == NULL)
1427 return (0);
1428 efisize = *((uint32_t *)efihdr - 1);
1429 return (SYSCTL_OUT(req, efihdr, efisize));
1431 SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1432 efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
1435 * Initialize 386 and configure to run kernel
1439 * Initialize segments & interrupt table
1442 int _default_ldt;
1443 struct user_segment_descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */
1444 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1445 #if 0 /* JG */
1446 union descriptor ldt[NLDT]; /* local descriptor table */
1447 #endif
1449 /* table descriptors - used to load tables by cpu */
1450 struct region_descriptor r_gdt;
1451 struct region_descriptor r_idt_arr[MAXCPU];
1453 /* JG proc0paddr is a virtual address */
1454 void *proc0paddr;
1455 /* JG alignment? */
1456 char proc0paddr_buff[LWKT_THREAD_STACK];
1459 /* software prototypes -- in more palatable form */
1460 struct soft_segment_descriptor gdt_segs[] = {
1461 /* GNULL_SEL 0 Null Descriptor */
1462 { 0x0, /* segment base address */
1463 0x0, /* length */
1464 0, /* segment type */
1465 0, /* segment descriptor priority level */
1466 0, /* segment descriptor present */
1467 0, /* long */
1468 0, /* default 32 vs 16 bit size */
1469 0 /* limit granularity (byte/page units)*/ },
1470 /* GCODE_SEL 1 Code Descriptor for kernel */
1471 { 0x0, /* segment base address */
1472 0xfffff, /* length - all address space */
1473 SDT_MEMERA, /* segment type */
1474 SEL_KPL, /* segment descriptor priority level */
1475 1, /* segment descriptor present */
1476 1, /* long */
1477 0, /* default 32 vs 16 bit size */
1478 1 /* limit granularity (byte/page units)*/ },
1479 /* GDATA_SEL 2 Data Descriptor for kernel */
1480 { 0x0, /* segment base address */
1481 0xfffff, /* length - all address space */
1482 SDT_MEMRWA, /* segment type */
1483 SEL_KPL, /* segment descriptor priority level */
1484 1, /* segment descriptor present */
1485 1, /* long */
1486 0, /* default 32 vs 16 bit size */
1487 1 /* limit granularity (byte/page units)*/ },
1488 /* GUCODE32_SEL 3 32 bit Code Descriptor for user */
1489 { 0x0, /* segment base address */
1490 0xfffff, /* length - all address space */
1491 SDT_MEMERA, /* segment type */
1492 SEL_UPL, /* segment descriptor priority level */
1493 1, /* segment descriptor present */
1494 0, /* long */
1495 1, /* default 32 vs 16 bit size */
1496 1 /* limit granularity (byte/page units)*/ },
1497 /* GUDATA_SEL 4 32/64 bit Data Descriptor for user */
1498 { 0x0, /* segment base address */
1499 0xfffff, /* length - all address space */
1500 SDT_MEMRWA, /* segment type */
1501 SEL_UPL, /* segment descriptor priority level */
1502 1, /* segment descriptor present */
1503 0, /* long */
1504 1, /* default 32 vs 16 bit size */
1505 1 /* limit granularity (byte/page units)*/ },
1506 /* GUCODE_SEL 5 64 bit Code Descriptor for user */
1507 { 0x0, /* segment base address */
1508 0xfffff, /* length - all address space */
1509 SDT_MEMERA, /* segment type */
1510 SEL_UPL, /* segment descriptor priority level */
1511 1, /* segment descriptor present */
1512 1, /* long */
1513 0, /* default 32 vs 16 bit size */
1514 1 /* limit granularity (byte/page units)*/ },
1515 /* GPROC0_SEL 6 Proc 0 Tss Descriptor */
1517 0x0, /* segment base address */
1518 sizeof(struct x86_64tss)-1,/* length - all address space */
1519 SDT_SYSTSS, /* segment type */
1520 SEL_KPL, /* segment descriptor priority level */
1521 1, /* segment descriptor present */
1522 0, /* long */
1523 0, /* unused - default 32 vs 16 bit size */
1524 0 /* limit granularity (byte/page units)*/ },
1525 /* Actually, the TSS is a system descriptor which is double size */
1526 { 0x0, /* segment base address */
1527 0x0, /* length */
1528 0, /* segment type */
1529 0, /* segment descriptor priority level */
1530 0, /* segment descriptor present */
1531 0, /* long */
1532 0, /* default 32 vs 16 bit size */
1533 0 /* limit granularity (byte/page units)*/ },
1534 /* GUGS32_SEL 8 32 bit GS Descriptor for user */
1535 { 0x0, /* segment base address */
1536 0xfffff, /* length - all address space */
1537 SDT_MEMRWA, /* segment type */
1538 SEL_UPL, /* segment descriptor priority level */
1539 1, /* segment descriptor present */
1540 0, /* long */
1541 1, /* default 32 vs 16 bit size */
1542 1 /* limit granularity (byte/page units)*/ },
1545 void
1546 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1548 int cpu;
1550 for (cpu = 0; cpu < MAXCPU; ++cpu) {
1551 struct gate_descriptor *ip = &idt_arr[cpu][idx];
1553 ip->gd_looffset = (uintptr_t)func;
1554 ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1555 ip->gd_ist = ist;
1556 ip->gd_xx = 0;
1557 ip->gd_type = typ;
1558 ip->gd_dpl = dpl;
1559 ip->gd_p = 1;
1560 ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1564 void
1565 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1567 struct gate_descriptor *ip;
1569 KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1571 ip = &idt_arr[cpu][idx];
1572 ip->gd_looffset = (uintptr_t)func;
1573 ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1574 ip->gd_ist = ist;
1575 ip->gd_xx = 0;
1576 ip->gd_type = typ;
1577 ip->gd_dpl = dpl;
1578 ip->gd_p = 1;
1579 ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1582 #define IDTVEC(name) __CONCAT(X,name)
1584 extern inthand_t
1585 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1586 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1587 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1588 IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1589 IDTVEC(xmm), IDTVEC(dblfault),
1590 IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1592 void
1593 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1595 ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
1596 ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1597 ssd->ssd_type = sd->sd_type;
1598 ssd->ssd_dpl = sd->sd_dpl;
1599 ssd->ssd_p = sd->sd_p;
1600 ssd->ssd_def32 = sd->sd_def32;
1601 ssd->ssd_gran = sd->sd_gran;
1604 void
1605 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1608 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1609 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1610 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1611 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1612 sd->sd_type = ssd->ssd_type;
1613 sd->sd_dpl = ssd->ssd_dpl;
1614 sd->sd_p = ssd->ssd_p;
1615 sd->sd_long = ssd->ssd_long;
1616 sd->sd_def32 = ssd->ssd_def32;
1617 sd->sd_gran = ssd->ssd_gran;
1620 void
1621 ssdtosyssd(struct soft_segment_descriptor *ssd,
1622 struct system_segment_descriptor *sd)
1625 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1626 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1627 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1628 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1629 sd->sd_type = ssd->ssd_type;
1630 sd->sd_dpl = ssd->ssd_dpl;
1631 sd->sd_p = ssd->ssd_p;
1632 sd->sd_gran = ssd->ssd_gran;
1636 * Populate the (physmap) array with base/bound pairs describing the
1637 * available physical memory in the system, then test this memory and
1638 * build the phys_avail array describing the actually-available memory.
1640 * If we cannot accurately determine the physical memory map, then use
1641 * value from the 0xE801 call, and failing that, the RTC.
1643 * Total memory size may be set by the kernel environment variable
1644 * hw.physmem or the compile-time define MAXMEM.
1646 * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1647 * of PAGE_SIZE. This also greatly reduces the memory test time
1648 * which would otherwise be excessive on machines with > 8G of ram.
1650 * XXX first should be vm_paddr_t.
1653 #define PHYSMAP_ALIGN (vm_paddr_t)(128 * 1024)
1654 #define PHYSMAP_ALIGN_MASK (vm_paddr_t)(PHYSMAP_ALIGN - 1)
1655 vm_paddr_t physmap[PHYSMAP_SIZE];
1656 struct bios_smap *smapbase, *smap, *smapend;
1657 struct efi_map_header *efihdrbase;
1658 u_int32_t smapsize;
1659 #define PHYSMAP_HANDWAVE (vm_paddr_t)(2 * 1024 * 1024)
1660 #define PHYSMAP_HANDWAVE_MASK (PHYSMAP_HANDWAVE - 1)
1662 static void
1663 add_smap_entries(int *physmap_idx)
1665 int i;
1667 smapsize = *((u_int32_t *)smapbase - 1);
1668 smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1670 for (smap = smapbase; smap < smapend; smap++) {
1671 if (boothowto & RB_VERBOSE)
1672 kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1673 smap->type, smap->base, smap->length);
1675 if (smap->type != SMAP_TYPE_MEMORY)
1676 continue;
1678 if (smap->length == 0)
1679 continue;
1681 for (i = 0; i <= *physmap_idx; i += 2) {
1682 if (smap->base < physmap[i + 1]) {
1683 if (boothowto & RB_VERBOSE) {
1684 kprintf("Overlapping or non-monotonic "
1685 "memory region, ignoring "
1686 "second region\n");
1688 break;
1691 if (i <= *physmap_idx)
1692 continue;
1694 Realmem += smap->length;
1696 if (smap->base == physmap[*physmap_idx + 1]) {
1697 physmap[*physmap_idx + 1] += smap->length;
1698 continue;
1701 *physmap_idx += 2;
1702 if (*physmap_idx == PHYSMAP_SIZE) {
1703 kprintf("Too many segments in the physical "
1704 "address map, giving up\n");
1705 break;
1707 physmap[*physmap_idx] = smap->base;
1708 physmap[*physmap_idx + 1] = smap->base + smap->length;
1712 static void
1713 add_efi_map_entries(int *physmap_idx)
1715 struct efi_md *map, *p;
1716 const char *type;
1717 size_t efisz;
1718 int i, ndesc;
1720 static const char *types[] = {
1721 "Reserved",
1722 "LoaderCode",
1723 "LoaderData",
1724 "BootServicesCode",
1725 "BootServicesData",
1726 "RuntimeServicesCode",
1727 "RuntimeServicesData",
1728 "ConventionalMemory",
1729 "UnusableMemory",
1730 "ACPIReclaimMemory",
1731 "ACPIMemoryNVS",
1732 "MemoryMappedIO",
1733 "MemoryMappedIOPortSpace",
1734 "PalCode"
1738 * Memory map data provided by UEFI via the GetMemoryMap
1739 * Boot Services API.
1741 efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1742 map = (struct efi_md *)((uint8_t *)efihdrbase + efisz);
1744 if (efihdrbase->descriptor_size == 0)
1745 return;
1746 ndesc = efihdrbase->memory_size / efihdrbase->descriptor_size;
1748 if (boothowto & RB_VERBOSE)
1749 kprintf("%23s %12s %12s %8s %4s\n",
1750 "Type", "Physical", "Virtual", "#Pages", "Attr");
1752 for (i = 0, p = map; i < ndesc; i++,
1753 p = efi_next_descriptor(p, efihdrbase->descriptor_size)) {
1754 if (boothowto & RB_VERBOSE) {
1755 if (p->md_type <= EFI_MD_TYPE_PALCODE)
1756 type = types[p->md_type];
1757 else
1758 type = "<INVALID>";
1759 kprintf("%23s %012lx %12p %08lx ", type, p->md_phys,
1760 p->md_virt, p->md_pages);
1761 if (p->md_attr & EFI_MD_ATTR_UC)
1762 kprintf("UC ");
1763 if (p->md_attr & EFI_MD_ATTR_WC)
1764 kprintf("WC ");
1765 if (p->md_attr & EFI_MD_ATTR_WT)
1766 kprintf("WT ");
1767 if (p->md_attr & EFI_MD_ATTR_WB)
1768 kprintf("WB ");
1769 if (p->md_attr & EFI_MD_ATTR_UCE)
1770 kprintf("UCE ");
1771 if (p->md_attr & EFI_MD_ATTR_WP)
1772 kprintf("WP ");
1773 if (p->md_attr & EFI_MD_ATTR_RP)
1774 kprintf("RP ");
1775 if (p->md_attr & EFI_MD_ATTR_XP)
1776 kprintf("XP ");
1777 if (p->md_attr & EFI_MD_ATTR_RT)
1778 kprintf("RUNTIME");
1779 kprintf("\n");
1782 switch (p->md_type) {
1783 case EFI_MD_TYPE_CODE:
1784 case EFI_MD_TYPE_DATA:
1785 case EFI_MD_TYPE_BS_CODE:
1786 case EFI_MD_TYPE_BS_DATA:
1787 case EFI_MD_TYPE_FREE:
1789 * We're allowed to use any entry with these types.
1791 break;
1792 default:
1793 continue;
1796 Realmem += p->md_pages * PAGE_SIZE;
1798 if (p->md_phys == physmap[*physmap_idx + 1]) {
1799 physmap[*physmap_idx + 1] += p->md_pages * PAGE_SIZE;
1800 continue;
1803 *physmap_idx += 2;
1804 if (*physmap_idx == PHYSMAP_SIZE) {
1805 kprintf("Too many segments in the physical "
1806 "address map, giving up\n");
1807 break;
1809 physmap[*physmap_idx] = p->md_phys;
1810 physmap[*physmap_idx + 1] = p->md_phys + p->md_pages * PAGE_SIZE;
1814 struct fb_info efi_fb_info;
1815 static int have_efi_framebuffer = 0;
1817 static void
1818 efi_fb_init_vaddr(int direct_map)
1820 uint64_t sz;
1821 vm_offset_t addr, v;
1823 v = efi_fb_info.vaddr;
1824 sz = efi_fb_info.stride * efi_fb_info.height;
1826 if (direct_map) {
1827 addr = PHYS_TO_DMAP(efi_fb_info.paddr);
1828 if (addr >= DMAP_MIN_ADDRESS && addr + sz < DMAP_MAX_ADDRESS)
1829 efi_fb_info.vaddr = addr;
1830 } else {
1831 efi_fb_info.vaddr = (vm_offset_t)pmap_mapdev_attr(
1832 efi_fb_info.paddr, sz, PAT_WRITE_COMBINING);
1837 probe_efi_fb(int early)
1839 struct efi_fb *efifb;
1840 caddr_t kmdp;
1842 if (have_efi_framebuffer) {
1843 if (!early &&
1844 (efi_fb_info.vaddr == 0 ||
1845 efi_fb_info.vaddr == PHYS_TO_DMAP(efi_fb_info.paddr)))
1846 efi_fb_init_vaddr(0);
1847 return 0;
1850 kmdp = preload_search_by_type("elf kernel");
1851 if (kmdp == NULL)
1852 kmdp = preload_search_by_type("elf64 kernel");
1853 efifb = (struct efi_fb *)preload_search_info(kmdp,
1854 MODINFO_METADATA | MODINFOMD_EFI_FB);
1855 if (efifb == NULL)
1856 return 1;
1858 have_efi_framebuffer = 1;
1860 efi_fb_info.is_vga_boot_display = 1;
1861 efi_fb_info.width = efifb->fb_width;
1862 efi_fb_info.height = efifb->fb_height;
1863 efi_fb_info.stride = efifb->fb_stride * 4;
1864 efi_fb_info.depth = 32;
1865 efi_fb_info.paddr = efifb->fb_addr;
1866 if (early) {
1867 efi_fb_info.vaddr = 0;
1868 } else {
1869 efi_fb_init_vaddr(0);
1871 efi_fb_info.fbops.fb_set_par = NULL;
1872 efi_fb_info.fbops.fb_blank = NULL;
1873 efi_fb_info.fbops.fb_debug_enter = NULL;
1874 efi_fb_info.device = NULL;
1876 return 0;
1879 static void
1880 efifb_startup(void *arg)
1882 probe_efi_fb(0);
1885 SYSINIT(efi_fb_info, SI_BOOT1_POST, SI_ORDER_FIRST, efifb_startup, NULL);
1887 static void
1888 getmemsize(caddr_t kmdp, u_int64_t first)
1890 int off, physmap_idx, pa_indx, da_indx;
1891 int i, j;
1892 vm_paddr_t pa;
1893 vm_paddr_t msgbuf_size;
1894 u_long physmem_tunable;
1895 pt_entry_t *pte;
1896 quad_t dcons_addr, dcons_size;
1898 bzero(physmap, sizeof(physmap));
1899 physmap_idx = 0;
1902 * get memory map from INT 15:E820, kindly supplied by the loader.
1904 * subr_module.c says:
1905 * "Consumer may safely assume that size value precedes data."
1906 * ie: an int32_t immediately precedes smap.
1908 efihdrbase = (struct efi_map_header *)preload_search_info(kmdp,
1909 MODINFO_METADATA | MODINFOMD_EFI_MAP);
1910 smapbase = (struct bios_smap *)preload_search_info(kmdp,
1911 MODINFO_METADATA | MODINFOMD_SMAP);
1912 if (smapbase == NULL && efihdrbase == NULL)
1913 panic("No BIOS smap or EFI map info from loader!");
1915 if (efihdrbase == NULL)
1916 add_smap_entries(&physmap_idx);
1917 else
1918 add_efi_map_entries(&physmap_idx);
1920 base_memory = physmap[1] / 1024;
1921 /* make hole for AP bootstrap code */
1922 physmap[1] = mp_bootaddress(base_memory);
1924 /* Save EBDA address, if any */
1925 ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1926 ebda_addr <<= 4;
1929 * Maxmem isn't the "maximum memory", it's one larger than the
1930 * highest page of the physical address space. It should be
1931 * called something like "Maxphyspage". We may adjust this
1932 * based on ``hw.physmem'' and the results of the memory test.
1934 Maxmem = atop(physmap[physmap_idx + 1]);
1936 #ifdef MAXMEM
1937 Maxmem = MAXMEM / 4;
1938 #endif
1940 if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1941 Maxmem = atop(physmem_tunable);
1944 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1945 * in the system.
1947 if (Maxmem > atop(physmap[physmap_idx + 1]))
1948 Maxmem = atop(physmap[physmap_idx + 1]);
1951 * Blowing out the DMAP will blow up the system.
1953 if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1954 kprintf("Limiting Maxmem due to DMAP size\n");
1955 Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1958 if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1959 (boothowto & RB_VERBOSE)) {
1960 kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1964 * Call pmap initialization to make new kernel address space
1966 * Mask off page 0.
1968 pmap_bootstrap(&first);
1969 physmap[0] = PAGE_SIZE;
1972 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1973 * exceeding Maxmem.
1975 for (i = j = 0; i <= physmap_idx; i += 2) {
1976 if (physmap[i+1] > ptoa(Maxmem))
1977 physmap[i+1] = ptoa(Maxmem);
1978 physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1979 ~PHYSMAP_ALIGN_MASK;
1980 physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1982 physmap[j] = physmap[i];
1983 physmap[j+1] = physmap[i+1];
1985 if (physmap[i] < physmap[i+1])
1986 j += 2;
1988 physmap_idx = j - 2;
1991 * Align anything else used in the validation loop.
1993 first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1996 * Size up each available chunk of physical memory.
1998 pa_indx = 0;
1999 da_indx = 1;
2000 phys_avail[pa_indx++] = physmap[0];
2001 phys_avail[pa_indx] = physmap[0];
2002 dump_avail[da_indx] = physmap[0];
2003 pte = CMAP1;
2006 * Get dcons buffer address
2008 if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
2009 kgetenv_quad("dcons.size", &dcons_size) == 0)
2010 dcons_addr = 0;
2013 * Validate the physical memory. The physical memory segments
2014 * have already been aligned to PHYSMAP_ALIGN which is a multiple
2015 * of PAGE_SIZE.
2017 for (i = 0; i <= physmap_idx; i += 2) {
2018 vm_paddr_t end;
2019 vm_paddr_t incr = PHYSMAP_ALIGN;
2021 end = physmap[i + 1];
2023 for (pa = physmap[i]; pa < end; pa += incr) {
2024 int page_bad, full;
2025 volatile uint64_t *ptr = (uint64_t *)CADDR1;
2026 uint64_t tmp;
2028 incr = PHYSMAP_ALIGN;
2029 full = FALSE;
2032 * block out kernel memory as not available.
2034 if (pa >= 0x200000 && pa < first)
2035 goto do_dump_avail;
2038 * block out dcons buffer
2040 if (dcons_addr > 0
2041 && pa >= trunc_page(dcons_addr)
2042 && pa < dcons_addr + dcons_size) {
2043 goto do_dump_avail;
2046 page_bad = FALSE;
2049 * Always test the first and last block supplied in
2050 * the map entry, but it just takes too long to run
2051 * the test these days and we already have to skip
2052 * pages. Handwave it on PHYSMAP_HANDWAVE boundaries.
2054 if (pa != physmap[i]) {
2055 vm_paddr_t bytes = end - pa;
2056 if ((pa & PHYSMAP_HANDWAVE_MASK) == 0 &&
2057 bytes >= PHYSMAP_HANDWAVE + PHYSMAP_ALIGN) {
2058 incr = PHYSMAP_HANDWAVE;
2059 goto handwaved;
2064 * map page into kernel: valid, read/write,non-cacheable
2066 *pte = pa |
2067 kernel_pmap.pmap_bits[PG_V_IDX] |
2068 kernel_pmap.pmap_bits[PG_RW_IDX] |
2069 kernel_pmap.pmap_bits[PG_N_IDX];
2070 cpu_invlpg(__DEVOLATILE(void *, ptr));
2071 cpu_mfence();
2073 tmp = *ptr;
2075 * Test for alternating 1's and 0's
2077 *ptr = 0xaaaaaaaaaaaaaaaaLLU;
2078 cpu_mfence();
2079 if (*ptr != 0xaaaaaaaaaaaaaaaaLLU)
2080 page_bad = TRUE;
2082 * Test for alternating 0's and 1's
2084 *ptr = 0x5555555555555555LLU;
2085 cpu_mfence();
2086 if (*ptr != 0x5555555555555555LLU)
2087 page_bad = TRUE;
2089 * Test for all 1's
2091 *ptr = 0xffffffffffffffffLLU;
2092 cpu_mfence();
2093 if (*ptr != 0xffffffffffffffffLLU)
2094 page_bad = TRUE;
2096 * Test for all 0's
2098 *ptr = 0x0;
2099 cpu_mfence();
2100 if (*ptr != 0x0)
2101 page_bad = TRUE;
2103 * Restore original value.
2105 *ptr = tmp;
2106 handwaved:
2109 * Adjust array of valid/good pages.
2111 if (page_bad == TRUE)
2112 continue;
2115 * If this good page is a continuation of the
2116 * previous set of good pages, then just increase
2117 * the end pointer. Otherwise start a new chunk.
2118 * Note that "end" points one higher than end,
2119 * making the range >= start and < end.
2120 * If we're also doing a speculative memory
2121 * test and we at or past the end, bump up Maxmem
2122 * so that we keep going. The first bad page
2123 * will terminate the loop.
2125 if (phys_avail[pa_indx] == pa) {
2126 phys_avail[pa_indx] += incr;
2127 } else {
2128 pa_indx++;
2129 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2130 kprintf(
2131 "Too many holes in the physical address space, giving up\n");
2132 pa_indx--;
2133 full = TRUE;
2134 goto do_dump_avail;
2136 phys_avail[pa_indx++] = pa;
2137 phys_avail[pa_indx] = pa + incr;
2139 physmem += incr / PAGE_SIZE;
2140 do_dump_avail:
2141 if (dump_avail[da_indx] == pa) {
2142 dump_avail[da_indx] += incr;
2143 } else {
2144 da_indx++;
2145 if (da_indx == DUMP_AVAIL_ARRAY_END) {
2146 da_indx--;
2147 goto do_next;
2149 dump_avail[da_indx++] = pa;
2150 dump_avail[da_indx] = pa + incr;
2152 do_next:
2153 if (full)
2154 break;
2157 *pte = 0;
2158 cpu_invltlb();
2159 cpu_mfence();
2162 * The last chunk must contain at least one page plus the message
2163 * buffer to avoid complicating other code (message buffer address
2164 * calculation, etc.).
2166 msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2168 while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
2169 msgbuf_size >= phys_avail[pa_indx]) {
2170 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2171 phys_avail[pa_indx--] = 0;
2172 phys_avail[pa_indx--] = 0;
2175 Maxmem = atop(phys_avail[pa_indx]);
2177 /* Trim off space for the message buffer. */
2178 phys_avail[pa_indx] -= msgbuf_size;
2180 avail_end = phys_avail[pa_indx];
2182 /* Map the message buffer. */
2183 for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
2184 pmap_kenter((vm_offset_t)msgbufp + off,
2185 phys_avail[pa_indx] + off);
2187 /* Try to get EFI framebuffer working as early as possible */
2188 if (have_efi_framebuffer)
2189 efi_fb_init_vaddr(1);
2192 struct machintr_abi MachIntrABI;
2195 * IDT VECTORS:
2196 * 0 Divide by zero
2197 * 1 Debug
2198 * 2 NMI
2199 * 3 BreakPoint
2200 * 4 OverFlow
2201 * 5 Bound-Range
2202 * 6 Invalid OpCode
2203 * 7 Device Not Available (x87)
2204 * 8 Double-Fault
2205 * 9 Coprocessor Segment overrun (unsupported, reserved)
2206 * 10 Invalid-TSS
2207 * 11 Segment not present
2208 * 12 Stack
2209 * 13 General Protection
2210 * 14 Page Fault
2211 * 15 Reserved
2212 * 16 x87 FP Exception pending
2213 * 17 Alignment Check
2214 * 18 Machine Check
2215 * 19 SIMD floating point
2216 * 20-31 reserved
2217 * 32-255 INTn/external sources
2219 u_int64_t
2220 hammer_time(u_int64_t modulep, u_int64_t physfree)
2222 caddr_t kmdp;
2223 int gsel_tss, x, cpu;
2224 #if 0 /* JG */
2225 int metadata_missing, off;
2226 #endif
2227 struct mdglobaldata *gd;
2228 u_int64_t msr;
2231 * Prevent lowering of the ipl if we call tsleep() early.
2233 gd = &CPU_prvspace[0]->mdglobaldata;
2234 bzero(gd, sizeof(*gd));
2237 * Note: on both UP and SMP curthread must be set non-NULL
2238 * early in the boot sequence because the system assumes
2239 * that 'curthread' is never NULL.
2242 gd->mi.gd_curthread = &thread0;
2243 thread0.td_gd = &gd->mi;
2245 atdevbase = ISA_HOLE_START + PTOV_OFFSET;
2247 #if 0 /* JG */
2248 metadata_missing = 0;
2249 if (bootinfo.bi_modulep) {
2250 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2251 preload_bootstrap_relocate(KERNBASE);
2252 } else {
2253 metadata_missing = 1;
2255 if (bootinfo.bi_envp)
2256 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2257 #endif
2259 preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
2260 preload_bootstrap_relocate(PTOV_OFFSET);
2261 kmdp = preload_search_by_type("elf kernel");
2262 if (kmdp == NULL)
2263 kmdp = preload_search_by_type("elf64 kernel");
2264 boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
2265 kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
2266 #ifdef DDB
2267 ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
2268 ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
2269 #endif
2270 efi_systbl_phys = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t);
2272 if (boothowto & RB_VERBOSE)
2273 bootverbose++;
2276 * Default MachIntrABI to ICU
2278 MachIntrABI = MachIntrABI_ICU;
2281 * start with one cpu. Note: with one cpu, ncpus2_shift, ncpus2_mask,
2282 * and ncpus_fit_mask remain 0.
2284 ncpus = 1;
2285 ncpus2 = 1;
2286 ncpus_fit = 1;
2287 /* Init basic tunables, hz etc */
2288 init_param1();
2291 * make gdt memory segments
2293 gdt_segs[GPROC0_SEL].ssd_base =
2294 (uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
2296 gd->mi.gd_prvspace = CPU_prvspace[0];
2298 for (x = 0; x < NGDT; x++) {
2299 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2300 ssdtosd(&gdt_segs[x], &gdt[x]);
2302 ssdtosyssd(&gdt_segs[GPROC0_SEL],
2303 (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2305 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2306 r_gdt.rd_base = (long) gdt;
2307 lgdt(&r_gdt);
2309 wrmsr(MSR_FSBASE, 0); /* User value */
2310 wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2311 wrmsr(MSR_KGSBASE, 0); /* User value while in the kernel */
2313 mi_gdinit(&gd->mi, 0);
2314 cpu_gdinit(gd, 0);
2315 proc0paddr = proc0paddr_buff;
2316 mi_proc0init(&gd->mi, proc0paddr);
2317 safepri = TDPRI_MAX;
2319 /* spinlocks and the BGL */
2320 init_locks();
2322 /* exceptions */
2323 for (x = 0; x < NIDT; x++)
2324 setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2325 setidt_global(IDT_DE, &IDTVEC(div), SDT_SYSIGT, SEL_KPL, 0);
2326 setidt_global(IDT_DB, &IDTVEC(dbg), SDT_SYSIGT, SEL_KPL, 0);
2327 setidt_global(IDT_NMI, &IDTVEC(nmi), SDT_SYSIGT, SEL_KPL, 1);
2328 setidt_global(IDT_BP, &IDTVEC(bpt), SDT_SYSIGT, SEL_UPL, 0);
2329 setidt_global(IDT_OF, &IDTVEC(ofl), SDT_SYSIGT, SEL_KPL, 0);
2330 setidt_global(IDT_BR, &IDTVEC(bnd), SDT_SYSIGT, SEL_KPL, 0);
2331 setidt_global(IDT_UD, &IDTVEC(ill), SDT_SYSIGT, SEL_KPL, 0);
2332 setidt_global(IDT_NM, &IDTVEC(dna), SDT_SYSIGT, SEL_KPL, 0);
2333 setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2334 setidt_global(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYSIGT, SEL_KPL, 0);
2335 setidt_global(IDT_TS, &IDTVEC(tss), SDT_SYSIGT, SEL_KPL, 0);
2336 setidt_global(IDT_NP, &IDTVEC(missing), SDT_SYSIGT, SEL_KPL, 0);
2337 setidt_global(IDT_SS, &IDTVEC(stk), SDT_SYSIGT, SEL_KPL, 0);
2338 setidt_global(IDT_GP, &IDTVEC(prot), SDT_SYSIGT, SEL_KPL, 0);
2339 setidt_global(IDT_PF, &IDTVEC(page), SDT_SYSIGT, SEL_KPL, 0);
2340 setidt_global(IDT_MF, &IDTVEC(fpu), SDT_SYSIGT, SEL_KPL, 0);
2341 setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2342 setidt_global(IDT_MC, &IDTVEC(mchk), SDT_SYSIGT, SEL_KPL, 0);
2343 setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2345 for (cpu = 0; cpu < MAXCPU; ++cpu) {
2346 r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2347 r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2350 lidt(&r_idt_arr[0]);
2353 * Initialize the console before we print anything out.
2355 cninit();
2357 #if 0 /* JG */
2358 if (metadata_missing)
2359 kprintf("WARNING: loader(8) metadata is missing!\n");
2360 #endif
2362 #if NISA >0
2363 elcr_probe();
2364 isa_defaultirq();
2365 #endif
2366 rand_initialize();
2369 * Initialize IRQ mapping
2371 * NOTE:
2372 * SHOULD be after elcr_probe()
2374 MachIntrABI_ICU.initmap();
2375 MachIntrABI_IOAPIC.initmap();
2377 #ifdef DDB
2378 kdb_init();
2379 if (boothowto & RB_KDB)
2380 Debugger("Boot flags requested debugger");
2381 #endif
2383 #if 0 /* JG */
2384 finishidentcpu(); /* Final stage of CPU initialization */
2385 setidt(6, &IDTVEC(ill), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2386 setidt(13, &IDTVEC(prot), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2387 #endif
2388 identify_cpu(); /* Final stage of CPU initialization */
2389 initializecpu(0); /* Initialize CPU registers */
2392 * On modern intel cpus, haswell or later, cpu_idle_hlt=1 is better
2393 * because the cpu does significant power management in MWAIT
2394 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2396 * On modern amd cpus cpu_idle_hlt=3 is better, because the cpu does
2397 * significant power management in HLT or ACPI (but cpu_idle_hlt=1
2398 * would try to use MWAIT).
2400 * On older amd or intel cpus, cpu_idle_hlt=2 is better because ACPI
2401 * is needed to reduce power consumption, but wakeup times are often
2402 * longer.
2404 if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2405 CPUID_TO_MODEL(cpu_id) >= 0x3C) { /* Haswell or later */
2406 cpu_idle_hlt = 1;
2408 if (cpu_vendor_id == CPU_VENDOR_AMD &&
2409 CPUID_TO_FAMILY(cpu_id) >= 0x14) { /* Bobcat or later */
2410 cpu_idle_hlt = 3;
2413 TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2414 TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2415 TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2416 TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2419 * Some of the virtual machines do not work w/ I/O APIC
2420 * enabled. If the user does not explicitly enable or
2421 * disable the I/O APIC (ioapic_enable < 0), then we
2422 * disable I/O APIC on all virtual machines.
2424 * NOTE:
2425 * This must be done after identify_cpu(), which sets
2426 * 'cpu_feature2'
2428 if (ioapic_enable < 0) {
2429 if (cpu_feature2 & CPUID2_VMM)
2430 ioapic_enable = 0;
2431 else
2432 ioapic_enable = 1;
2435 /* make an initial tss so cpu can get interrupt stack on syscall! */
2436 gd->gd_common_tss.tss_rsp0 =
2437 (register_t)(thread0.td_kstack +
2438 KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2439 /* Ensure the stack is aligned to 16 bytes */
2440 gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2442 /* double fault stack */
2443 gd->gd_common_tss.tss_ist1 =
2444 (long)&gd->mi.gd_prvspace->idlestack[
2445 sizeof(gd->mi.gd_prvspace->idlestack)];
2447 /* Set the IO permission bitmap (empty due to tss seg limit) */
2448 gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2450 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2451 gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2452 gd->gd_common_tssd = *gd->gd_tss_gdt;
2453 ltr(gsel_tss);
2455 /* Set up the fast syscall stuff */
2456 msr = rdmsr(MSR_EFER) | EFER_SCE;
2457 wrmsr(MSR_EFER, msr);
2458 wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2459 wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2460 msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2461 ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2462 wrmsr(MSR_STAR, msr);
2463 wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2465 getmemsize(kmdp, physfree);
2466 init_param2(physmem);
2468 /* now running on new page tables, configured,and u/iom is accessible */
2470 /* Map the message buffer. */
2471 #if 0 /* JG */
2472 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2473 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2474 #endif
2476 msgbufinit(msgbufp, MSGBUF_SIZE);
2479 /* transfer to user mode */
2481 _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2482 _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2483 _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2485 load_ds(_udatasel);
2486 load_es(_udatasel);
2487 load_fs(_udatasel);
2489 /* setup proc 0's pcb */
2490 thread0.td_pcb->pcb_flags = 0;
2491 thread0.td_pcb->pcb_cr3 = KPML4phys;
2492 thread0.td_pcb->pcb_ext = NULL;
2493 lwp0.lwp_md.md_regs = &proc0_tf; /* XXX needed? */
2495 /* Location of kernel stack for locore */
2496 return ((u_int64_t)thread0.td_pcb);
2500 * Initialize machine-dependant portions of the global data structure.
2501 * Note that the global data area and cpu0's idlestack in the private
2502 * data space were allocated in locore.
2504 * Note: the idlethread's cpl is 0
2506 * WARNING! Called from early boot, 'mycpu' may not work yet.
2508 void
2509 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2511 if (cpu)
2512 gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2514 lwkt_init_thread(&gd->mi.gd_idlethread,
2515 gd->mi.gd_prvspace->idlestack,
2516 sizeof(gd->mi.gd_prvspace->idlestack),
2517 0, &gd->mi);
2518 lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2519 gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2520 gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2521 *(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2525 * We only have to check for DMAP bounds, the globaldata space is
2526 * actually part of the kernel_map so we don't have to waste time
2527 * checking CPU_prvspace[*].
2530 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2532 #if 0
2533 if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2534 eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2535 return (TRUE);
2537 #endif
2538 if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2539 return (TRUE);
2540 return (FALSE);
2543 struct globaldata *
2544 globaldata_find(int cpu)
2546 KKASSERT(cpu >= 0 && cpu < ncpus);
2547 return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2551 * This path should be safe from the SYSRET issue because only stopped threads
2552 * can have their %rip adjusted this way (and all heavy weight thread switches
2553 * clear QUICKREF and thus do not use SYSRET). However, the code path is
2554 * convoluted so add a safety by forcing %rip to be cannonical.
2557 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2559 if (addr & 0x0000800000000000LLU)
2560 lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2561 else
2562 lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2563 return (0);
2567 ptrace_single_step(struct lwp *lp)
2569 lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2570 return (0);
2574 fill_regs(struct lwp *lp, struct reg *regs)
2576 struct trapframe *tp;
2578 if ((tp = lp->lwp_md.md_regs) == NULL)
2579 return EINVAL;
2580 bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2581 return (0);
2585 set_regs(struct lwp *lp, struct reg *regs)
2587 struct trapframe *tp;
2589 tp = lp->lwp_md.md_regs;
2590 if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2591 !CS_SECURE(regs->r_cs))
2592 return (EINVAL);
2593 bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2594 clear_quickret();
2595 return (0);
2598 static void
2599 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2601 struct env87 *penv_87 = &sv_87->sv_env;
2602 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2603 int i;
2605 /* FPU control/status */
2606 penv_87->en_cw = penv_xmm->en_cw;
2607 penv_87->en_sw = penv_xmm->en_sw;
2608 penv_87->en_tw = penv_xmm->en_tw;
2609 penv_87->en_fip = penv_xmm->en_fip;
2610 penv_87->en_fcs = penv_xmm->en_fcs;
2611 penv_87->en_opcode = penv_xmm->en_opcode;
2612 penv_87->en_foo = penv_xmm->en_foo;
2613 penv_87->en_fos = penv_xmm->en_fos;
2615 /* FPU registers */
2616 for (i = 0; i < 8; ++i)
2617 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2620 static void
2621 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2623 struct env87 *penv_87 = &sv_87->sv_env;
2624 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2625 int i;
2627 /* FPU control/status */
2628 penv_xmm->en_cw = penv_87->en_cw;
2629 penv_xmm->en_sw = penv_87->en_sw;
2630 penv_xmm->en_tw = penv_87->en_tw;
2631 penv_xmm->en_fip = penv_87->en_fip;
2632 penv_xmm->en_fcs = penv_87->en_fcs;
2633 penv_xmm->en_opcode = penv_87->en_opcode;
2634 penv_xmm->en_foo = penv_87->en_foo;
2635 penv_xmm->en_fos = penv_87->en_fos;
2637 /* FPU registers */
2638 for (i = 0; i < 8; ++i)
2639 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2643 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2645 if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2646 return EINVAL;
2647 if (cpu_fxsr) {
2648 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2649 (struct save87 *)fpregs);
2650 return (0);
2652 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2653 return (0);
2657 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2659 if (cpu_fxsr) {
2660 set_fpregs_xmm((struct save87 *)fpregs,
2661 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2662 return (0);
2664 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2665 return (0);
2669 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2671 struct pcb *pcb;
2673 if (lp == NULL) {
2674 dbregs->dr[0] = rdr0();
2675 dbregs->dr[1] = rdr1();
2676 dbregs->dr[2] = rdr2();
2677 dbregs->dr[3] = rdr3();
2678 dbregs->dr[4] = rdr4();
2679 dbregs->dr[5] = rdr5();
2680 dbregs->dr[6] = rdr6();
2681 dbregs->dr[7] = rdr7();
2682 return (0);
2684 if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2685 return EINVAL;
2686 dbregs->dr[0] = pcb->pcb_dr0;
2687 dbregs->dr[1] = pcb->pcb_dr1;
2688 dbregs->dr[2] = pcb->pcb_dr2;
2689 dbregs->dr[3] = pcb->pcb_dr3;
2690 dbregs->dr[4] = 0;
2691 dbregs->dr[5] = 0;
2692 dbregs->dr[6] = pcb->pcb_dr6;
2693 dbregs->dr[7] = pcb->pcb_dr7;
2694 return (0);
2698 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2700 if (lp == NULL) {
2701 load_dr0(dbregs->dr[0]);
2702 load_dr1(dbregs->dr[1]);
2703 load_dr2(dbregs->dr[2]);
2704 load_dr3(dbregs->dr[3]);
2705 load_dr4(dbregs->dr[4]);
2706 load_dr5(dbregs->dr[5]);
2707 load_dr6(dbregs->dr[6]);
2708 load_dr7(dbregs->dr[7]);
2709 } else {
2710 struct pcb *pcb;
2711 struct ucred *ucred;
2712 int i;
2713 uint64_t mask1, mask2;
2716 * Don't let an illegal value for dr7 get set. Specifically,
2717 * check for undefined settings. Setting these bit patterns
2718 * result in undefined behaviour and can lead to an unexpected
2719 * TRCTRAP.
2721 /* JG this loop looks unreadable */
2722 /* Check 4 2-bit fields for invalid patterns.
2723 * These fields are R/Wi, for i = 0..3
2725 /* Is 10 in LENi allowed when running in compatibility mode? */
2726 /* Pattern 10 in R/Wi might be used to indicate
2727 * breakpoint on I/O. Further analysis should be
2728 * carried to decide if it is safe and useful to
2729 * provide access to that capability
2731 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2732 i++, mask1 <<= 4, mask2 <<= 4)
2733 if ((dbregs->dr[7] & mask1) == mask2)
2734 return (EINVAL);
2736 pcb = lp->lwp_thread->td_pcb;
2737 ucred = lp->lwp_proc->p_ucred;
2740 * Don't let a process set a breakpoint that is not within the
2741 * process's address space. If a process could do this, it
2742 * could halt the system by setting a breakpoint in the kernel
2743 * (if ddb was enabled). Thus, we need to check to make sure
2744 * that no breakpoints are being enabled for addresses outside
2745 * process's address space, unless, perhaps, we were called by
2746 * uid 0.
2748 * XXX - what about when the watched area of the user's
2749 * address space is written into from within the kernel
2750 * ... wouldn't that still cause a breakpoint to be generated
2751 * from within kernel mode?
2754 if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2755 if (dbregs->dr[7] & 0x3) {
2756 /* dr0 is enabled */
2757 if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2758 return (EINVAL);
2761 if (dbregs->dr[7] & (0x3<<2)) {
2762 /* dr1 is enabled */
2763 if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2764 return (EINVAL);
2767 if (dbregs->dr[7] & (0x3<<4)) {
2768 /* dr2 is enabled */
2769 if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2770 return (EINVAL);
2773 if (dbregs->dr[7] & (0x3<<6)) {
2774 /* dr3 is enabled */
2775 if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2776 return (EINVAL);
2780 pcb->pcb_dr0 = dbregs->dr[0];
2781 pcb->pcb_dr1 = dbregs->dr[1];
2782 pcb->pcb_dr2 = dbregs->dr[2];
2783 pcb->pcb_dr3 = dbregs->dr[3];
2784 pcb->pcb_dr6 = dbregs->dr[6];
2785 pcb->pcb_dr7 = dbregs->dr[7];
2787 pcb->pcb_flags |= PCB_DBREGS;
2790 return (0);
2794 * Return > 0 if a hardware breakpoint has been hit, and the
2795 * breakpoint was in user space. Return 0, otherwise.
2798 user_dbreg_trap(void)
2800 u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2801 u_int64_t bp; /* breakpoint bits extracted from dr6 */
2802 int nbp; /* number of breakpoints that triggered */
2803 caddr_t addr[4]; /* breakpoint addresses */
2804 int i;
2806 dr7 = rdr7();
2807 if ((dr7 & 0xff) == 0) {
2809 * all GE and LE bits in the dr7 register are zero,
2810 * thus the trap couldn't have been caused by the
2811 * hardware debug registers
2813 return 0;
2816 nbp = 0;
2817 dr6 = rdr6();
2818 bp = dr6 & 0xf;
2820 if (bp == 0) {
2822 * None of the breakpoint bits are set meaning this
2823 * trap was not caused by any of the debug registers
2825 return 0;
2829 * at least one of the breakpoints were hit, check to see
2830 * which ones and if any of them are user space addresses
2833 if (bp & 0x01) {
2834 addr[nbp++] = (caddr_t)rdr0();
2836 if (bp & 0x02) {
2837 addr[nbp++] = (caddr_t)rdr1();
2839 if (bp & 0x04) {
2840 addr[nbp++] = (caddr_t)rdr2();
2842 if (bp & 0x08) {
2843 addr[nbp++] = (caddr_t)rdr3();
2846 for (i=0; i<nbp; i++) {
2847 if (addr[i] <
2848 (caddr_t)VM_MAX_USER_ADDRESS) {
2850 * addr[i] is in user space
2852 return nbp;
2857 * None of the breakpoints are in user space.
2859 return 0;
2863 #ifndef DDB
2864 void
2865 Debugger(const char *msg)
2867 kprintf("Debugger(\"%s\") called.\n", msg);
2869 #endif /* no DDB */
2871 #ifdef DDB
2874 * Provide inb() and outb() as functions. They are normally only
2875 * available as macros calling inlined functions, thus cannot be
2876 * called inside DDB.
2878 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2881 #undef inb
2882 #undef outb
2884 /* silence compiler warnings */
2885 u_char inb(u_int);
2886 void outb(u_int, u_char);
2888 u_char
2889 inb(u_int port)
2891 u_char data;
2893 * We use %%dx and not %1 here because i/o is done at %dx and not at
2894 * %edx, while gcc generates inferior code (movw instead of movl)
2895 * if we tell it to load (u_short) port.
2897 __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2898 return (data);
2901 void
2902 outb(u_int port, u_char data)
2904 u_char al;
2906 * Use an unnecessary assignment to help gcc's register allocator.
2907 * This make a large difference for gcc-1.40 and a tiny difference
2908 * for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
2909 * best results. gcc-2.6.0 can't handle this.
2911 al = data;
2912 __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2915 #endif /* DDB */
2920 * initialize all the SMP locks
2923 /* critical region when masking or unmasking interupts */
2924 struct spinlock_deprecated imen_spinlock;
2926 /* lock region used by kernel profiling */
2927 struct spinlock_deprecated mcount_spinlock;
2929 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2930 struct spinlock_deprecated com_spinlock;
2932 /* lock regions around the clock hardware */
2933 struct spinlock_deprecated clock_spinlock;
2935 static void
2936 init_locks(void)
2939 * Get the initial mplock with a count of 1 for the BSP.
2940 * This uses a LOGICAL cpu ID, ie BSP == 0.
2942 cpu_get_initial_mplock();
2943 /* DEPRECATED */
2944 spin_init_deprecated(&mcount_spinlock);
2945 spin_init_deprecated(&imen_spinlock);
2946 spin_init_deprecated(&com_spinlock);
2947 spin_init_deprecated(&clock_spinlock);
2949 /* our token pool needs to work early */
2950 lwkt_token_pool_init();
2953 boolean_t
2954 cpu_mwait_hint_valid(uint32_t hint)
2956 int cx_idx, sub;
2958 cx_idx = MWAIT_EAX_TO_CX(hint);
2959 if (cx_idx >= CPU_MWAIT_CX_MAX)
2960 return FALSE;
2962 sub = MWAIT_EAX_TO_CX_SUB(hint);
2963 if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2964 return FALSE;
2966 return TRUE;
2969 void
2970 cpu_mwait_cx_no_bmsts(void)
2972 atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
2975 void
2976 cpu_mwait_cx_no_bmarb(void)
2978 atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
2981 static int
2982 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
2984 int old_cx_idx, sub = 0;
2986 if (hint >= 0) {
2987 old_cx_idx = MWAIT_EAX_TO_CX(hint);
2988 sub = MWAIT_EAX_TO_CX_SUB(hint);
2989 } else if (hint == CPU_MWAIT_HINT_AUTO) {
2990 old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
2991 } else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
2992 old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
2993 } else {
2994 old_cx_idx = CPU_MWAIT_CX_MAX;
2997 if (!CPU_MWAIT_HAS_CX)
2998 strlcpy(name, "NONE", namelen);
2999 else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
3000 strlcpy(name, "AUTO", namelen);
3001 else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
3002 strlcpy(name, "AUTODEEP", namelen);
3003 else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
3004 sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
3005 strlcpy(name, "INVALID", namelen);
3006 else
3007 ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
3009 return old_cx_idx;
3012 static int
3013 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
3015 int cx_idx, sub, hint;
3016 char *ptr, *start;
3018 if (allow_auto && strcmp(name, "AUTO") == 0) {
3019 hint = CPU_MWAIT_HINT_AUTO;
3020 cx_idx = CPU_MWAIT_C2;
3021 goto done;
3023 if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
3024 hint = CPU_MWAIT_HINT_AUTODEEP;
3025 cx_idx = CPU_MWAIT_C3;
3026 goto done;
3029 if (strlen(name) < 4 || toupper(name[0]) != 'C')
3030 return -1;
3031 start = &name[1];
3032 ptr = NULL;
3034 cx_idx = strtol(start, &ptr, 10);
3035 if (ptr == start || *ptr != '/')
3036 return -1;
3037 if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
3038 return -1;
3040 start = ptr + 1;
3041 ptr = NULL;
3043 sub = strtol(start, &ptr, 10);
3044 if (*ptr != '\0')
3045 return -1;
3046 if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3047 return -1;
3049 hint = MWAIT_EAX_HINT(cx_idx, sub);
3050 done:
3051 *hint0 = hint;
3052 return cx_idx;
3055 static int
3056 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
3058 if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
3059 return EOPNOTSUPP;
3060 if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
3061 int error;
3063 error = cputimer_intr_powersave_addreq();
3064 if (error)
3065 return error;
3066 } else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
3067 cputimer_intr_powersave_remreq();
3069 return 0;
3072 static int
3073 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
3074 boolean_t allow_auto)
3076 int error, cx_idx, old_cx_idx, hint;
3077 char name[CPU_MWAIT_CX_NAMELEN];
3079 hint = *hint0;
3080 old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
3081 allow_auto);
3083 error = sysctl_handle_string(oidp, name, sizeof(name), req);
3084 if (error != 0 || req->newptr == NULL)
3085 return error;
3087 if (!CPU_MWAIT_HAS_CX)
3088 return EOPNOTSUPP;
3090 cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
3091 if (cx_idx < 0)
3092 return EINVAL;
3094 error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3095 if (error)
3096 return error;
3098 *hint0 = hint;
3099 return 0;
3102 static int
3103 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
3105 int error, cx_idx, old_cx_idx, hint;
3106 char name[CPU_MWAIT_CX_NAMELEN];
3108 KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
3110 hint = stat->hint;
3111 old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3113 strlcpy(name, cx_name, sizeof(name));
3114 cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3115 if (cx_idx < 0)
3116 return EINVAL;
3118 error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3119 if (error)
3120 return error;
3122 stat->hint = hint;
3123 return 0;
3126 static int
3127 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
3129 int hint = cpu_mwait_halt_global;
3130 int error, cx_idx, cpu;
3131 char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
3133 cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3135 error = sysctl_handle_string(oidp, name, sizeof(name), req);
3136 if (error != 0 || req->newptr == NULL)
3137 return error;
3139 if (!CPU_MWAIT_HAS_CX)
3140 return EOPNOTSUPP;
3142 /* Save name for later per-cpu CX configuration */
3143 strlcpy(cx_name, name, sizeof(cx_name));
3145 cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3146 if (cx_idx < 0)
3147 return EINVAL;
3149 /* Change per-cpu CX configuration */
3150 for (cpu = 0; cpu < ncpus; ++cpu) {
3151 error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
3152 if (error)
3153 return error;
3156 cpu_mwait_halt_global = hint;
3157 return 0;
3160 static int
3161 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
3163 struct cpu_idle_stat *stat = arg1;
3164 int error;
3166 error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3167 &stat->hint, TRUE);
3168 return error;
3171 static int
3172 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
3174 int error;
3176 error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3177 &cpu_mwait_spin, FALSE);
3178 return error;
3182 * This manual debugging code is called unconditionally from Xtimer
3183 * (the per-cpu timer interrupt) whether the current thread is in a
3184 * critical section or not) and can be useful in tracking down lockups.
3186 * NOTE: MANUAL DEBUG CODE
3188 #if 0
3189 static int saveticks[SMP_MAXCPU];
3190 static int savecounts[SMP_MAXCPU];
3191 #endif
3193 void
3194 pcpu_timer_always(struct intrframe *frame)
3196 #if 0
3197 globaldata_t gd = mycpu;
3198 int cpu = gd->gd_cpuid;
3199 char buf[64];
3200 short *gptr;
3201 int i;
3203 if (cpu <= 20) {
3204 gptr = (short *)0xFFFFFFFF800b8000 + 80 * cpu;
3205 *gptr = ((*gptr + 1) & 0x00FF) | 0x0700;
3206 ++gptr;
3208 ksnprintf(buf, sizeof(buf), " %p %16s %d %16s ",
3209 (void *)frame->if_rip, gd->gd_curthread->td_comm, ticks,
3210 gd->gd_infomsg);
3211 for (i = 0; buf[i]; ++i) {
3212 gptr[i] = 0x0700 | (unsigned char)buf[i];
3215 #if 0
3216 if (saveticks[gd->gd_cpuid] != ticks) {
3217 saveticks[gd->gd_cpuid] = ticks;
3218 savecounts[gd->gd_cpuid] = 0;
3220 ++savecounts[gd->gd_cpuid];
3221 if (savecounts[gd->gd_cpuid] > 2000 && panicstr == NULL) {
3222 panic("cpud %d panicing on ticks failure",
3223 gd->gd_cpuid);
3225 for (i = 0; i < ncpus; ++i) {
3226 int delta;
3227 if (saveticks[i] && panicstr == NULL) {
3228 delta = saveticks[i] - ticks;
3229 if (delta < -10 || delta > 10) {
3230 panic("cpu %d panicing on cpu %d watchdog",
3231 gd->gd_cpuid, i);
3235 #endif
3236 #endif