kernel - Tag vm_map_entry structure, slight optimization to zalloc, misc.
[dragonfly.git] / sys / kern / vfs_bio.c
bloba60ccbaa64684c932f4e47b710039e5efed7cdd0
1 /*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme. Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
23 * Author: John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
27 * see man buf(9) for more info. Note that man buf(9) doesn't reflect
28 * the actual buf/bio implementation in DragonFly.
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/devicestat.h>
36 #include <sys/eventhandler.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/proc.h>
43 #include <sys/reboot.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <sys/dsched.h>
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_pager.h>
58 #include <vm/swap_pager.h>
60 #include <sys/buf2.h>
61 #include <sys/thread2.h>
62 #include <sys/spinlock2.h>
63 #include <sys/mplock2.h>
64 #include <vm/vm_page2.h>
66 #include "opt_ddb.h"
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #endif
72 * Buffer queues.
74 enum bufq_type {
75 BQUEUE_NONE, /* not on any queue */
76 BQUEUE_LOCKED, /* locked buffers */
77 BQUEUE_CLEAN, /* non-B_DELWRI buffers */
78 BQUEUE_DIRTY, /* B_DELWRI buffers */
79 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */
80 BQUEUE_EMPTY, /* empty buffer headers */
82 BUFFER_QUEUES /* number of buffer queues */
85 typedef enum bufq_type bufq_type_t;
87 #define BD_WAKE_SIZE 16384
88 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1)
90 TAILQ_HEAD(bqueues, buf);
92 struct bufpcpu {
93 struct spinlock spin;
94 struct bqueues bufqueues[BUFFER_QUEUES];
95 } __cachealign;
97 struct bufpcpu bufpcpu[MAXCPU];
99 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
101 struct buf *buf; /* buffer header pool */
103 static void vfs_clean_pages(struct buf *bp);
104 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
105 #if 0
106 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
107 #endif
108 static void vfs_vmio_release(struct buf *bp);
109 static int flushbufqueues(struct buf *marker, bufq_type_t q);
110 static void repurposebuf(struct buf *bp, int size);
111 static vm_page_t bio_page_alloc(struct buf *bp, vm_object_t obj,
112 vm_pindex_t pg, int deficit);
114 static void bd_signal(long totalspace);
115 static void buf_daemon(void);
116 static void buf_daemon_hw(void);
119 * bogus page -- for I/O to/from partially complete buffers
120 * this is a temporary solution to the problem, but it is not
121 * really that bad. it would be better to split the buffer
122 * for input in the case of buffers partially already in memory,
123 * but the code is intricate enough already.
125 vm_page_t bogus_page;
128 * These are all static, but make the ones we export globals so we do
129 * not need to use compiler magic.
131 long bufspace; /* atomic ops */
132 long maxbufspace;
133 static long bufmallocspace; /* atomic ops */
134 long maxbufmallocspace, lobufspace, hibufspace;
135 static long lorunningspace;
136 static long hirunningspace;
137 static long dirtykvaspace; /* atomic */
138 long dirtybufspace; /* atomic (global for systat) */
139 static long dirtybufcount; /* atomic */
140 static long dirtybufspacehw; /* atomic */
141 static long dirtybufcounthw; /* atomic */
142 static long runningbufspace; /* atomic */
143 static long runningbufcount; /* atomic */
144 static long repurposedspace;
145 long lodirtybufspace;
146 long hidirtybufspace;
147 static int getnewbufcalls;
148 static int recoverbufcalls;
149 static int needsbuffer; /* atomic */
150 static int runningbufreq; /* atomic */
151 static int bd_request; /* atomic */
152 static int bd_request_hw; /* atomic */
153 static u_int bd_wake_ary[BD_WAKE_SIZE];
154 static u_int bd_wake_index;
155 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
156 static int debug_commit;
157 static int debug_bufbio;
158 static long bufcache_bw = 200 * 1024 * 1024;
159 static long bufcache_bw_accum;
160 static int bufcache_bw_ticks;
162 static struct thread *bufdaemon_td;
163 static struct thread *bufdaemonhw_td;
164 static u_int lowmempgallocs;
165 static u_int lowmempgfails;
166 static u_int flushperqueue = 1024;
167 static int repurpose_enable;
170 * Sysctls for operational control of the buffer cache.
172 SYSCTL_UINT(_vfs, OID_AUTO, flushperqueue, CTLFLAG_RW, &flushperqueue, 0,
173 "Number of buffers to flush from each per-cpu queue");
174 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
175 "Number of dirty buffers to flush before bufdaemon becomes inactive");
176 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
177 "High watermark used to trigger explicit flushing of dirty buffers");
178 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
179 "Minimum amount of buffer space required for active I/O");
180 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
181 "Maximum amount of buffer space to usable for active I/O");
182 SYSCTL_LONG(_vfs, OID_AUTO, bufcache_bw, CTLFLAG_RW, &bufcache_bw, 0,
183 "Buffer-cache -> VM page cache transfer bandwidth");
184 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
185 "Page allocations done during periods of very low free memory");
186 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
187 "Page allocations which failed during periods of very low free memory");
188 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
189 "Recycle pages to active or inactive queue transition pt 0-64");
190 SYSCTL_UINT(_vfs, OID_AUTO, repurpose_enable, CTLFLAG_RW, &repurpose_enable, 0,
191 "Enable buffer cache VM repurposing for high-I/O");
193 * Sysctls determining current state of the buffer cache.
195 SYSCTL_LONG(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
196 "Total number of buffers in buffer cache");
197 SYSCTL_LONG(_vfs, OID_AUTO, dirtykvaspace, CTLFLAG_RD, &dirtykvaspace, 0,
198 "KVA reserved by dirty buffers (all)");
199 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
200 "Pending bytes of dirty buffers (all)");
201 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
202 "Pending bytes of dirty buffers (heavy weight)");
203 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
204 "Pending number of dirty buffers");
205 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
206 "Pending number of dirty buffers (heavy weight)");
207 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
208 "I/O bytes currently in progress due to asynchronous writes");
209 SYSCTL_LONG(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
210 "I/O buffers currently in progress due to asynchronous writes");
211 SYSCTL_LONG(_vfs, OID_AUTO, repurposedspace, CTLFLAG_RD, &repurposedspace, 0,
212 "Buffer-cache memory repurposed in-place");
213 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
214 "Hard limit on maximum amount of memory usable for buffer space");
215 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
216 "Soft limit on maximum amount of memory usable for buffer space");
217 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
218 "Minimum amount of memory to reserve for system buffer space");
219 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
220 "Amount of memory available for buffers");
221 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
222 0, "Maximum amount of memory reserved for buffers using malloc");
223 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
224 "Amount of memory left for buffers using malloc-scheme");
225 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
226 "New buffer header acquisition requests");
227 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
228 "Recover VM space in an emergency");
229 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
230 SYSCTL_INT(_vfs, OID_AUTO, debug_bufbio, CTLFLAG_RW, &debug_bufbio, 0, "");
231 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
232 "sizeof(struct buf)");
234 char *buf_wmesg = BUF_WMESG;
236 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
237 #define VFS_BIO_NEED_UNUSED02 0x02
238 #define VFS_BIO_NEED_UNUSED04 0x04
239 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
242 * Called when buffer space is potentially available for recovery.
243 * getnewbuf() will block on this flag when it is unable to free
244 * sufficient buffer space. Buffer space becomes recoverable when
245 * bp's get placed back in the queues.
247 static __inline void
248 bufspacewakeup(void)
251 * If someone is waiting for BUF space, wake them up. Even
252 * though we haven't freed the kva space yet, the waiting
253 * process will be able to now.
255 for (;;) {
256 int flags = needsbuffer;
257 cpu_ccfence();
258 if ((flags & VFS_BIO_NEED_BUFSPACE) == 0)
259 break;
260 if (atomic_cmpset_int(&needsbuffer, flags,
261 flags & ~VFS_BIO_NEED_BUFSPACE)) {
262 wakeup(&needsbuffer);
263 break;
265 /* retry */
270 * runningbufwakeup:
272 * Accounting for I/O in progress.
275 static __inline void
276 runningbufwakeup(struct buf *bp)
278 long totalspace;
279 long flags;
281 if ((totalspace = bp->b_runningbufspace) != 0) {
282 atomic_add_long(&runningbufspace, -totalspace);
283 atomic_add_long(&runningbufcount, -1);
284 bp->b_runningbufspace = 0;
287 * see waitrunningbufspace() for limit test.
289 for (;;) {
290 flags = runningbufreq;
291 cpu_ccfence();
292 if (flags == 0)
293 break;
294 if (atomic_cmpset_int(&runningbufreq, flags, 0)) {
295 wakeup(&runningbufreq);
296 break;
298 /* retry */
300 bd_signal(totalspace);
305 * bufcountwakeup:
307 * Called when a buffer has been added to one of the free queues to
308 * account for the buffer and to wakeup anyone waiting for free buffers.
309 * This typically occurs when large amounts of metadata are being handled
310 * by the buffer cache ( else buffer space runs out first, usually ).
312 static __inline void
313 bufcountwakeup(void)
315 long flags;
317 for (;;) {
318 flags = needsbuffer;
319 if (flags == 0)
320 break;
321 if (atomic_cmpset_int(&needsbuffer, flags,
322 (flags & ~VFS_BIO_NEED_ANY))) {
323 wakeup(&needsbuffer);
324 break;
326 /* retry */
331 * waitrunningbufspace()
333 * If runningbufspace exceeds 4/6 hirunningspace we block until
334 * runningbufspace drops to 3/6 hirunningspace. We also block if another
335 * thread blocked here in order to be fair, even if runningbufspace
336 * is now lower than the limit.
338 * The caller may be using this function to block in a tight loop, we
339 * must block while runningbufspace is greater than at least
340 * hirunningspace * 3 / 6.
342 void
343 waitrunningbufspace(void)
345 long limit = hirunningspace * 4 / 6;
346 long flags;
348 while (runningbufspace > limit || runningbufreq) {
349 tsleep_interlock(&runningbufreq, 0);
350 flags = atomic_fetchadd_int(&runningbufreq, 1);
351 if (runningbufspace > limit || flags)
352 tsleep(&runningbufreq, PINTERLOCKED, "wdrn1", hz);
357 * buf_dirty_count_severe:
359 * Return true if we have too many dirty buffers.
362 buf_dirty_count_severe(void)
364 return (runningbufspace + dirtykvaspace >= hidirtybufspace ||
365 dirtybufcount >= nbuf / 2);
369 * Return true if the amount of running I/O is severe and BIOQ should
370 * start bursting.
373 buf_runningbufspace_severe(void)
375 return (runningbufspace >= hirunningspace * 4 / 6);
379 * vfs_buf_test_cache:
381 * Called when a buffer is extended. This function clears the B_CACHE
382 * bit if the newly extended portion of the buffer does not contain
383 * valid data.
385 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
386 * cache buffers. The VM pages remain dirty, as someone had mmap()'d
387 * them while a clean buffer was present.
389 static __inline__
390 void
391 vfs_buf_test_cache(struct buf *bp,
392 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
393 vm_page_t m)
395 if (bp->b_flags & B_CACHE) {
396 int base = (foff + off) & PAGE_MASK;
397 if (vm_page_is_valid(m, base, size) == 0)
398 bp->b_flags &= ~B_CACHE;
403 * bd_speedup()
405 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
406 * low water mark.
408 static __inline__
409 void
410 bd_speedup(void)
412 if (dirtykvaspace < lodirtybufspace && dirtybufcount < nbuf / 2)
413 return;
415 if (bd_request == 0 &&
416 (dirtykvaspace > lodirtybufspace / 2 ||
417 dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
418 if (atomic_fetchadd_int(&bd_request, 1) == 0)
419 wakeup(&bd_request);
421 if (bd_request_hw == 0 &&
422 (dirtykvaspace > lodirtybufspace / 2 ||
423 dirtybufcounthw >= nbuf / 2)) {
424 if (atomic_fetchadd_int(&bd_request_hw, 1) == 0)
425 wakeup(&bd_request_hw);
430 * bd_heatup()
432 * Get the buf_daemon heated up when the number of running and dirty
433 * buffers exceeds the mid-point.
435 * Return the total number of dirty bytes past the second mid point
436 * as a measure of how much excess dirty data there is in the system.
438 long
439 bd_heatup(void)
441 long mid1;
442 long mid2;
443 long totalspace;
445 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
447 totalspace = runningbufspace + dirtykvaspace;
448 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
449 bd_speedup();
450 mid2 = mid1 + (hidirtybufspace - mid1) / 2;
451 if (totalspace >= mid2)
452 return(totalspace - mid2);
454 return(0);
458 * bd_wait()
460 * Wait for the buffer cache to flush (totalspace) bytes worth of
461 * buffers, then return.
463 * Regardless this function blocks while the number of dirty buffers
464 * exceeds hidirtybufspace.
466 void
467 bd_wait(long totalspace)
469 u_int i;
470 u_int j;
471 u_int mi;
472 int count;
474 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
475 return;
477 while (totalspace > 0) {
478 bd_heatup();
481 * Order is important. Suppliers adjust bd_wake_index after
482 * updating runningbufspace/dirtykvaspace. We want to fetch
483 * bd_wake_index before accessing. Any error should thus
484 * be in our favor.
486 i = atomic_fetchadd_int(&bd_wake_index, 0);
487 if (totalspace > runningbufspace + dirtykvaspace)
488 totalspace = runningbufspace + dirtykvaspace;
489 count = totalspace / MAXBSIZE;
490 if (count >= BD_WAKE_SIZE / 2)
491 count = BD_WAKE_SIZE / 2;
492 i = i + count;
493 mi = i & BD_WAKE_MASK;
496 * This is not a strict interlock, so we play a bit loose
497 * with locking access to dirtybufspace*. We have to re-check
498 * bd_wake_index to ensure that it hasn't passed us.
500 tsleep_interlock(&bd_wake_ary[mi], 0);
501 atomic_add_int(&bd_wake_ary[mi], 1);
502 j = atomic_fetchadd_int(&bd_wake_index, 0);
503 if ((int)(i - j) >= 0)
504 tsleep(&bd_wake_ary[mi], PINTERLOCKED, "flstik", hz);
506 totalspace = runningbufspace + dirtykvaspace - hidirtybufspace;
511 * bd_signal()
513 * This function is called whenever runningbufspace or dirtykvaspace
514 * is reduced. Track threads waiting for run+dirty buffer I/O
515 * complete.
517 static void
518 bd_signal(long totalspace)
520 u_int i;
522 if (totalspace > 0) {
523 if (totalspace > MAXBSIZE * BD_WAKE_SIZE)
524 totalspace = MAXBSIZE * BD_WAKE_SIZE;
525 while (totalspace > 0) {
526 i = atomic_fetchadd_int(&bd_wake_index, 1);
527 i &= BD_WAKE_MASK;
528 if (atomic_readandclear_int(&bd_wake_ary[i]))
529 wakeup(&bd_wake_ary[i]);
530 totalspace -= MAXBSIZE;
536 * BIO tracking support routines.
538 * Release a ref on a bio_track. Wakeup requests are atomically released
539 * along with the last reference so bk_active will never wind up set to
540 * only 0x80000000.
542 static
543 void
544 bio_track_rel(struct bio_track *track)
546 int active;
547 int desired;
550 * Shortcut
552 active = track->bk_active;
553 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
554 return;
557 * Full-on. Note that the wait flag is only atomically released on
558 * the 1->0 count transition.
560 * We check for a negative count transition using bit 30 since bit 31
561 * has a different meaning.
563 for (;;) {
564 desired = (active & 0x7FFFFFFF) - 1;
565 if (desired)
566 desired |= active & 0x80000000;
567 if (atomic_cmpset_int(&track->bk_active, active, desired)) {
568 if (desired & 0x40000000)
569 panic("bio_track_rel: bad count: %p", track);
570 if (active & 0x80000000)
571 wakeup(track);
572 break;
574 active = track->bk_active;
579 * Wait for the tracking count to reach 0.
581 * Use atomic ops such that the wait flag is only set atomically when
582 * bk_active is non-zero.
585 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
587 int active;
588 int desired;
589 int error;
592 * Shortcut
594 if (track->bk_active == 0)
595 return(0);
598 * Full-on. Note that the wait flag may only be atomically set if
599 * the active count is non-zero.
601 * NOTE: We cannot optimize active == desired since a wakeup could
602 * clear active prior to our tsleep_interlock().
604 error = 0;
605 while ((active = track->bk_active) != 0) {
606 cpu_ccfence();
607 desired = active | 0x80000000;
608 tsleep_interlock(track, slp_flags);
609 if (atomic_cmpset_int(&track->bk_active, active, desired)) {
610 error = tsleep(track, slp_flags | PINTERLOCKED,
611 "trwait", slp_timo);
612 if (error)
613 break;
616 return (error);
620 * bufinit:
622 * Load time initialisation of the buffer cache, called from machine
623 * dependant initialization code.
625 static
626 void
627 bufinit(void *dummy __unused)
629 struct bufpcpu *pcpu;
630 struct buf *bp;
631 vm_offset_t bogus_offset;
632 int i;
633 int j;
634 long n;
636 /* next, make a null set of free lists */
637 for (i = 0; i < ncpus; ++i) {
638 pcpu = &bufpcpu[i];
639 spin_init(&pcpu->spin, "bufinit");
640 for (j = 0; j < BUFFER_QUEUES; j++)
641 TAILQ_INIT(&pcpu->bufqueues[j]);
645 * Finally, initialize each buffer header and stick on empty q.
646 * Each buffer gets its own KVA reservation.
648 i = 0;
649 pcpu = &bufpcpu[i];
651 for (n = 0; n < nbuf; n++) {
652 bp = &buf[n];
653 bzero(bp, sizeof *bp);
654 bp->b_flags = B_INVAL; /* we're just an empty header */
655 bp->b_cmd = BUF_CMD_DONE;
656 bp->b_qindex = BQUEUE_EMPTY;
657 bp->b_qcpu = i;
658 bp->b_kvabase = (void *)(vm_map_min(&buffer_map) +
659 MAXBSIZE * n);
660 bp->b_kvasize = MAXBSIZE;
661 initbufbio(bp);
662 xio_init(&bp->b_xio);
663 buf_dep_init(bp);
664 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
665 bp, b_freelist);
667 i = (i + 1) % ncpus;
668 pcpu = &bufpcpu[i];
672 * maxbufspace is the absolute maximum amount of buffer space we are
673 * allowed to reserve in KVM and in real terms. The absolute maximum
674 * is nominally used by buf_daemon. hibufspace is the nominal maximum
675 * used by most other processes. The differential is required to
676 * ensure that buf_daemon is able to run when other processes might
677 * be blocked waiting for buffer space.
679 * Calculate hysteresis (lobufspace, hibufspace). Don't make it
680 * too large or we might lockup a cpu for too long a period of
681 * time in our tight loop.
683 maxbufspace = nbuf * NBUFCALCSIZE;
684 hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
685 lobufspace = hibufspace * 7 / 8;
686 if (hibufspace - lobufspace > 64 * 1024 * 1024)
687 lobufspace = hibufspace - 64 * 1024 * 1024;
688 if (lobufspace > hibufspace - MAXBSIZE)
689 lobufspace = hibufspace - MAXBSIZE;
691 lorunningspace = 512 * 1024;
692 /* hirunningspace -- see below */
695 * Limit the amount of malloc memory since it is wired permanently
696 * into the kernel space. Even though this is accounted for in
697 * the buffer allocation, we don't want the malloced region to grow
698 * uncontrolled. The malloc scheme improves memory utilization
699 * significantly on average (small) directories.
701 maxbufmallocspace = hibufspace / 20;
704 * Reduce the chance of a deadlock occuring by limiting the number
705 * of delayed-write dirty buffers we allow to stack up.
707 * We don't want too much actually queued to the device at once
708 * (XXX this needs to be per-mount!), because the buffers will
709 * wind up locked for a very long period of time while the I/O
710 * drains.
712 hidirtybufspace = hibufspace / 2; /* dirty + running */
713 hirunningspace = hibufspace / 16; /* locked & queued to device */
714 if (hirunningspace < 1024 * 1024)
715 hirunningspace = 1024 * 1024;
717 dirtykvaspace = 0;
718 dirtybufspace = 0;
719 dirtybufspacehw = 0;
721 lodirtybufspace = hidirtybufspace / 2;
724 * Maximum number of async ops initiated per buf_daemon loop. This is
725 * somewhat of a hack at the moment, we really need to limit ourselves
726 * based on the number of bytes of I/O in-transit that were initiated
727 * from buf_daemon.
730 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE,
731 VM_SUBSYS_BOGUS);
732 vm_object_hold(&kernel_object);
733 bogus_page = vm_page_alloc(&kernel_object,
734 (bogus_offset >> PAGE_SHIFT),
735 VM_ALLOC_NORMAL);
736 vm_object_drop(&kernel_object);
737 vmstats.v_wire_count++;
741 SYSINIT(do_bufinit, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, bufinit, NULL);
744 * Initialize the embedded bio structures, typically used by
745 * deprecated code which tries to allocate its own struct bufs.
747 void
748 initbufbio(struct buf *bp)
750 bp->b_bio1.bio_buf = bp;
751 bp->b_bio1.bio_prev = NULL;
752 bp->b_bio1.bio_offset = NOOFFSET;
753 bp->b_bio1.bio_next = &bp->b_bio2;
754 bp->b_bio1.bio_done = NULL;
755 bp->b_bio1.bio_flags = 0;
757 bp->b_bio2.bio_buf = bp;
758 bp->b_bio2.bio_prev = &bp->b_bio1;
759 bp->b_bio2.bio_offset = NOOFFSET;
760 bp->b_bio2.bio_next = NULL;
761 bp->b_bio2.bio_done = NULL;
762 bp->b_bio2.bio_flags = 0;
764 BUF_LOCKINIT(bp);
768 * Reinitialize the embedded bio structures as well as any additional
769 * translation cache layers.
771 void
772 reinitbufbio(struct buf *bp)
774 struct bio *bio;
776 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
777 bio->bio_done = NULL;
778 bio->bio_offset = NOOFFSET;
783 * Undo the effects of an initbufbio().
785 void
786 uninitbufbio(struct buf *bp)
788 dsched_buf_exit(bp);
789 BUF_LOCKFREE(bp);
793 * Push another BIO layer onto an existing BIO and return it. The new
794 * BIO layer may already exist, holding cached translation data.
796 struct bio *
797 push_bio(struct bio *bio)
799 struct bio *nbio;
801 if ((nbio = bio->bio_next) == NULL) {
802 int index = bio - &bio->bio_buf->b_bio_array[0];
803 if (index >= NBUF_BIO - 1) {
804 panic("push_bio: too many layers %d for bp %p",
805 index, bio->bio_buf);
807 nbio = &bio->bio_buf->b_bio_array[index + 1];
808 bio->bio_next = nbio;
809 nbio->bio_prev = bio;
810 nbio->bio_buf = bio->bio_buf;
811 nbio->bio_offset = NOOFFSET;
812 nbio->bio_done = NULL;
813 nbio->bio_next = NULL;
815 KKASSERT(nbio->bio_done == NULL);
816 return(nbio);
820 * Pop a BIO translation layer, returning the previous layer. The
821 * must have been previously pushed.
823 struct bio *
824 pop_bio(struct bio *bio)
826 return(bio->bio_prev);
829 void
830 clearbiocache(struct bio *bio)
832 while (bio) {
833 bio->bio_offset = NOOFFSET;
834 bio = bio->bio_next;
839 * Remove the buffer from the appropriate free list.
840 * (caller must be locked)
842 static __inline void
843 _bremfree(struct buf *bp)
845 struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
847 if (bp->b_qindex != BQUEUE_NONE) {
848 KASSERT(BUF_REFCNTNB(bp) == 1,
849 ("bremfree: bp %p not locked",bp));
850 TAILQ_REMOVE(&pcpu->bufqueues[bp->b_qindex], bp, b_freelist);
851 bp->b_qindex = BQUEUE_NONE;
852 } else {
853 if (BUF_REFCNTNB(bp) <= 1)
854 panic("bremfree: removing a buffer not on a queue");
859 * bremfree() - must be called with a locked buffer
861 void
862 bremfree(struct buf *bp)
864 struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
866 spin_lock(&pcpu->spin);
867 _bremfree(bp);
868 spin_unlock(&pcpu->spin);
872 * bremfree_locked - must be called with pcpu->spin locked
874 static void
875 bremfree_locked(struct buf *bp)
877 _bremfree(bp);
881 * This version of bread issues any required I/O asyncnronously and
882 * makes a callback on completion.
884 * The callback must check whether BIO_DONE is set in the bio and issue
885 * the bpdone(bp, 0) if it isn't. The callback is responsible for clearing
886 * BIO_DONE and disposing of the I/O (bqrelse()ing it).
888 void
889 breadcb(struct vnode *vp, off_t loffset, int size,
890 void (*func)(struct bio *), void *arg)
892 struct buf *bp;
894 bp = getblk(vp, loffset, size, 0, 0);
896 /* if not found in cache, do some I/O */
897 if ((bp->b_flags & B_CACHE) == 0) {
898 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
899 bp->b_cmd = BUF_CMD_READ;
900 bp->b_bio1.bio_done = func;
901 bp->b_bio1.bio_caller_info1.ptr = arg;
902 vfs_busy_pages(vp, bp);
903 BUF_KERNPROC(bp);
904 vn_strategy(vp, &bp->b_bio1);
905 } else if (func) {
907 * Since we are issuing the callback synchronously it cannot
908 * race the BIO_DONE, so no need for atomic ops here.
910 /*bp->b_bio1.bio_done = func;*/
911 bp->b_bio1.bio_caller_info1.ptr = arg;
912 bp->b_bio1.bio_flags |= BIO_DONE;
913 func(&bp->b_bio1);
914 } else {
915 bqrelse(bp);
920 * breadnx() - Terminal function for bread() and breadn().
922 * This function will start asynchronous I/O on read-ahead blocks as well
923 * as satisfy the primary request.
925 * We must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE is
926 * set, the buffer is valid and we do not have to do anything.
929 breadnx(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
930 int *rabsize, int cnt, struct buf **bpp)
932 struct buf *bp, *rabp;
933 int i;
934 int rv = 0, readwait = 0;
936 if (*bpp)
937 bp = *bpp;
938 else
939 *bpp = bp = getblk(vp, loffset, size, 0, 0);
941 /* if not found in cache, do some I/O */
942 if ((bp->b_flags & B_CACHE) == 0) {
943 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
944 bp->b_cmd = BUF_CMD_READ;
945 bp->b_bio1.bio_done = biodone_sync;
946 bp->b_bio1.bio_flags |= BIO_SYNC;
947 vfs_busy_pages(vp, bp);
948 vn_strategy(vp, &bp->b_bio1);
949 ++readwait;
952 for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
953 if (inmem(vp, *raoffset))
954 continue;
955 rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
957 if ((rabp->b_flags & B_CACHE) == 0) {
958 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
959 rabp->b_cmd = BUF_CMD_READ;
960 vfs_busy_pages(vp, rabp);
961 BUF_KERNPROC(rabp);
962 vn_strategy(vp, &rabp->b_bio1);
963 } else {
964 brelse(rabp);
967 if (readwait)
968 rv = biowait(&bp->b_bio1, "biord");
969 return (rv);
973 * bwrite:
975 * Synchronous write, waits for completion.
977 * Write, release buffer on completion. (Done by iodone
978 * if async). Do not bother writing anything if the buffer
979 * is invalid.
981 * Note that we set B_CACHE here, indicating that buffer is
982 * fully valid and thus cacheable. This is true even of NFS
983 * now so we set it generally. This could be set either here
984 * or in biodone() since the I/O is synchronous. We put it
985 * here.
988 bwrite(struct buf *bp)
990 int error;
992 if (bp->b_flags & B_INVAL) {
993 brelse(bp);
994 return (0);
996 if (BUF_REFCNTNB(bp) == 0)
997 panic("bwrite: buffer is not busy???");
1000 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1001 * call because it will remove the buffer from the vnode's
1002 * dirty buffer list prematurely and possibly cause filesystem
1003 * checks to race buffer flushes. This is now handled in
1004 * bpdone().
1006 * bundirty(bp); REMOVED
1009 bp->b_flags &= ~(B_ERROR | B_EINTR);
1010 bp->b_flags |= B_CACHE;
1011 bp->b_cmd = BUF_CMD_WRITE;
1012 bp->b_bio1.bio_done = biodone_sync;
1013 bp->b_bio1.bio_flags |= BIO_SYNC;
1014 vfs_busy_pages(bp->b_vp, bp);
1017 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1018 * valid for vnode-backed buffers.
1020 bsetrunningbufspace(bp, bp->b_bufsize);
1021 vn_strategy(bp->b_vp, &bp->b_bio1);
1022 error = biowait(&bp->b_bio1, "biows");
1023 brelse(bp);
1025 return (error);
1029 * bawrite:
1031 * Asynchronous write. Start output on a buffer, but do not wait for
1032 * it to complete. The buffer is released when the output completes.
1034 * bwrite() ( or the VOP routine anyway ) is responsible for handling
1035 * B_INVAL buffers. Not us.
1037 void
1038 bawrite(struct buf *bp)
1040 if (bp->b_flags & B_INVAL) {
1041 brelse(bp);
1042 return;
1044 if (BUF_REFCNTNB(bp) == 0)
1045 panic("bawrite: buffer is not busy???");
1048 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1049 * call because it will remove the buffer from the vnode's
1050 * dirty buffer list prematurely and possibly cause filesystem
1051 * checks to race buffer flushes. This is now handled in
1052 * bpdone().
1054 * bundirty(bp); REMOVED
1056 bp->b_flags &= ~(B_ERROR | B_EINTR);
1057 bp->b_flags |= B_CACHE;
1058 bp->b_cmd = BUF_CMD_WRITE;
1059 KKASSERT(bp->b_bio1.bio_done == NULL);
1060 vfs_busy_pages(bp->b_vp, bp);
1063 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1064 * valid for vnode-backed buffers.
1066 bsetrunningbufspace(bp, bp->b_bufsize);
1067 BUF_KERNPROC(bp);
1068 vn_strategy(bp->b_vp, &bp->b_bio1);
1072 * bowrite:
1074 * Ordered write. Start output on a buffer, and flag it so that the
1075 * device will write it in the order it was queued. The buffer is
1076 * released when the output completes. bwrite() ( or the VOP routine
1077 * anyway ) is responsible for handling B_INVAL buffers.
1080 bowrite(struct buf *bp)
1082 bp->b_flags |= B_ORDERED;
1083 bawrite(bp);
1084 return (0);
1088 * bdwrite:
1090 * Delayed write. (Buffer is marked dirty). Do not bother writing
1091 * anything if the buffer is marked invalid.
1093 * Note that since the buffer must be completely valid, we can safely
1094 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
1095 * biodone() in order to prevent getblk from writing the buffer
1096 * out synchronously.
1098 void
1099 bdwrite(struct buf *bp)
1101 if (BUF_REFCNTNB(bp) == 0)
1102 panic("bdwrite: buffer is not busy");
1104 if (bp->b_flags & B_INVAL) {
1105 brelse(bp);
1106 return;
1108 bdirty(bp);
1110 dsched_buf_enter(bp); /* might stack */
1113 * Set B_CACHE, indicating that the buffer is fully valid. This is
1114 * true even of NFS now.
1116 bp->b_flags |= B_CACHE;
1119 * This bmap keeps the system from needing to do the bmap later,
1120 * perhaps when the system is attempting to do a sync. Since it
1121 * is likely that the indirect block -- or whatever other datastructure
1122 * that the filesystem needs is still in memory now, it is a good
1123 * thing to do this. Note also, that if the pageout daemon is
1124 * requesting a sync -- there might not be enough memory to do
1125 * the bmap then... So, this is important to do.
1127 if (bp->b_bio2.bio_offset == NOOFFSET) {
1128 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1129 NULL, NULL, BUF_CMD_WRITE);
1133 * Because the underlying pages may still be mapped and
1134 * writable trying to set the dirty buffer (b_dirtyoff/end)
1135 * range here will be inaccurate.
1137 * However, we must still clean the pages to satisfy the
1138 * vnode_pager and pageout daemon, so they think the pages
1139 * have been "cleaned". What has really occured is that
1140 * they've been earmarked for later writing by the buffer
1141 * cache.
1143 * So we get the b_dirtyoff/end update but will not actually
1144 * depend on it (NFS that is) until the pages are busied for
1145 * writing later on.
1147 vfs_clean_pages(bp);
1148 bqrelse(bp);
1151 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1152 * due to the softdep code.
1157 * Fake write - return pages to VM system as dirty, leave the buffer clean.
1158 * This is used by tmpfs.
1160 * It is important for any VFS using this routine to NOT use it for
1161 * IO_SYNC or IO_ASYNC operations which occur when the system really
1162 * wants to flush VM pages to backing store.
1164 void
1165 buwrite(struct buf *bp)
1167 vm_page_t m;
1168 int i;
1171 * Only works for VMIO buffers. If the buffer is already
1172 * marked for delayed-write we can't avoid the bdwrite().
1174 if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1175 bdwrite(bp);
1176 return;
1180 * Mark as needing a commit.
1182 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1183 m = bp->b_xio.xio_pages[i];
1184 vm_page_need_commit(m);
1186 bqrelse(bp);
1190 * bdirty:
1192 * Turn buffer into delayed write request by marking it B_DELWRI.
1193 * B_RELBUF and B_NOCACHE must be cleared.
1195 * We reassign the buffer to itself to properly update it in the
1196 * dirty/clean lists.
1198 * Must be called from a critical section.
1199 * The buffer must be on BQUEUE_NONE.
1201 void
1202 bdirty(struct buf *bp)
1204 KASSERT(bp->b_qindex == BQUEUE_NONE,
1205 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1206 if (bp->b_flags & B_NOCACHE) {
1207 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1208 bp->b_flags &= ~B_NOCACHE;
1210 if (bp->b_flags & B_INVAL) {
1211 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1213 bp->b_flags &= ~B_RELBUF;
1215 if ((bp->b_flags & B_DELWRI) == 0) {
1216 lwkt_gettoken(&bp->b_vp->v_token);
1217 bp->b_flags |= B_DELWRI;
1218 reassignbuf(bp);
1219 lwkt_reltoken(&bp->b_vp->v_token);
1221 atomic_add_long(&dirtybufcount, 1);
1222 atomic_add_long(&dirtykvaspace, bp->b_kvasize);
1223 atomic_add_long(&dirtybufspace, bp->b_bufsize);
1224 if (bp->b_flags & B_HEAVY) {
1225 atomic_add_long(&dirtybufcounthw, 1);
1226 atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1228 bd_heatup();
1233 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1234 * needs to be flushed with a different buf_daemon thread to avoid
1235 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
1237 void
1238 bheavy(struct buf *bp)
1240 if ((bp->b_flags & B_HEAVY) == 0) {
1241 bp->b_flags |= B_HEAVY;
1242 if (bp->b_flags & B_DELWRI) {
1243 atomic_add_long(&dirtybufcounthw, 1);
1244 atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1250 * bundirty:
1252 * Clear B_DELWRI for buffer.
1254 * Must be called from a critical section.
1256 * The buffer is typically on BQUEUE_NONE but there is one case in
1257 * brelse() that calls this function after placing the buffer on
1258 * a different queue.
1260 void
1261 bundirty(struct buf *bp)
1263 if (bp->b_flags & B_DELWRI) {
1264 lwkt_gettoken(&bp->b_vp->v_token);
1265 bp->b_flags &= ~B_DELWRI;
1266 reassignbuf(bp);
1267 lwkt_reltoken(&bp->b_vp->v_token);
1269 atomic_add_long(&dirtybufcount, -1);
1270 atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1271 atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1272 if (bp->b_flags & B_HEAVY) {
1273 atomic_add_long(&dirtybufcounthw, -1);
1274 atomic_add_long(&dirtybufspacehw, -bp->b_bufsize);
1276 bd_signal(bp->b_bufsize);
1279 * Since it is now being written, we can clear its deferred write flag.
1281 bp->b_flags &= ~B_DEFERRED;
1285 * Set the b_runningbufspace field, used to track how much I/O is
1286 * in progress at any given moment.
1288 void
1289 bsetrunningbufspace(struct buf *bp, int bytes)
1291 bp->b_runningbufspace = bytes;
1292 if (bytes) {
1293 atomic_add_long(&runningbufspace, bytes);
1294 atomic_add_long(&runningbufcount, 1);
1299 * brelse:
1301 * Release a busy buffer and, if requested, free its resources. The
1302 * buffer will be stashed in the appropriate bufqueue[] allowing it
1303 * to be accessed later as a cache entity or reused for other purposes.
1305 void
1306 brelse(struct buf *bp)
1308 struct bufpcpu *pcpu;
1309 #ifdef INVARIANTS
1310 int saved_flags = bp->b_flags;
1311 #endif
1313 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1314 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1317 * If B_NOCACHE is set we are being asked to destroy the buffer and
1318 * its backing store. Clear B_DELWRI.
1320 * B_NOCACHE is set in two cases: (1) when the caller really wants
1321 * to destroy the buffer and backing store and (2) when the caller
1322 * wants to destroy the buffer and backing store after a write
1323 * completes.
1325 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1326 bundirty(bp);
1329 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1331 * A re-dirtied buffer is only subject to destruction
1332 * by B_INVAL. B_ERROR and B_NOCACHE are ignored.
1334 /* leave buffer intact */
1335 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1336 (bp->b_bufsize <= 0)) {
1338 * Either a failed read or we were asked to free or not
1339 * cache the buffer. This path is reached with B_DELWRI
1340 * set only if B_INVAL is already set. B_NOCACHE governs
1341 * backing store destruction.
1343 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1344 * buffer cannot be immediately freed.
1346 bp->b_flags |= B_INVAL;
1347 if (LIST_FIRST(&bp->b_dep) != NULL)
1348 buf_deallocate(bp);
1349 if (bp->b_flags & B_DELWRI) {
1350 atomic_add_long(&dirtybufcount, -1);
1351 atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1352 atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1353 if (bp->b_flags & B_HEAVY) {
1354 atomic_add_long(&dirtybufcounthw, -1);
1355 atomic_add_long(&dirtybufspacehw,
1356 -bp->b_bufsize);
1358 bd_signal(bp->b_bufsize);
1360 bp->b_flags &= ~(B_DELWRI | B_CACHE);
1364 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1365 * or if b_refs is non-zero.
1367 * If vfs_vmio_release() is called with either bit set, the
1368 * underlying pages may wind up getting freed causing a previous
1369 * write (bdwrite()) to get 'lost' because pages associated with
1370 * a B_DELWRI bp are marked clean. Pages associated with a
1371 * B_LOCKED buffer may be mapped by the filesystem.
1373 * If we want to release the buffer ourselves (rather then the
1374 * originator asking us to release it), give the originator a
1375 * chance to countermand the release by setting B_LOCKED.
1377 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1378 * if B_DELWRI is set.
1380 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1381 * on pages to return pages to the VM page queues.
1383 if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1384 bp->b_flags &= ~B_RELBUF;
1385 } else if (vm_page_count_min(0)) {
1386 if (LIST_FIRST(&bp->b_dep) != NULL)
1387 buf_deallocate(bp); /* can set B_LOCKED */
1388 if (bp->b_flags & (B_DELWRI | B_LOCKED))
1389 bp->b_flags &= ~B_RELBUF;
1390 else
1391 bp->b_flags |= B_RELBUF;
1395 * Make sure b_cmd is clear. It may have already been cleared by
1396 * biodone().
1398 * At this point destroying the buffer is governed by the B_INVAL
1399 * or B_RELBUF flags.
1401 bp->b_cmd = BUF_CMD_DONE;
1402 dsched_buf_exit(bp);
1405 * VMIO buffer rundown. Make sure the VM page array is restored
1406 * after an I/O may have replaces some of the pages with bogus pages
1407 * in order to not destroy dirty pages in a fill-in read.
1409 * Note that due to the code above, if a buffer is marked B_DELWRI
1410 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1411 * B_INVAL may still be set, however.
1413 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1414 * but not the backing store. B_NOCACHE will destroy the backing
1415 * store.
1417 * Note that dirty NFS buffers contain byte-granular write ranges
1418 * and should not be destroyed w/ B_INVAL even if the backing store
1419 * is left intact.
1421 if (bp->b_flags & B_VMIO) {
1423 * Rundown for VMIO buffers which are not dirty NFS buffers.
1425 int i, j, resid;
1426 vm_page_t m;
1427 off_t foff;
1428 vm_pindex_t poff;
1429 vm_object_t obj;
1430 struct vnode *vp;
1432 vp = bp->b_vp;
1435 * Get the base offset and length of the buffer. Note that
1436 * in the VMIO case if the buffer block size is not
1437 * page-aligned then b_data pointer may not be page-aligned.
1438 * But our b_xio.xio_pages array *IS* page aligned.
1440 * block sizes less then DEV_BSIZE (usually 512) are not
1441 * supported due to the page granularity bits (m->valid,
1442 * m->dirty, etc...).
1444 * See man buf(9) for more information
1447 resid = bp->b_bufsize;
1448 foff = bp->b_loffset;
1450 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1451 m = bp->b_xio.xio_pages[i];
1454 * If we hit a bogus page, fixup *all* of them
1455 * now. Note that we left these pages wired
1456 * when we removed them so they had better exist,
1457 * and they cannot be ripped out from under us so
1458 * no critical section protection is necessary.
1460 if (m == bogus_page) {
1461 obj = vp->v_object;
1462 poff = OFF_TO_IDX(bp->b_loffset);
1464 vm_object_hold(obj);
1465 for (j = i; j < bp->b_xio.xio_npages; j++) {
1466 vm_page_t mtmp;
1468 mtmp = bp->b_xio.xio_pages[j];
1469 if (mtmp == bogus_page) {
1470 if ((bp->b_flags & B_HASBOGUS) == 0)
1471 panic("brelse: bp %p corrupt bogus", bp);
1472 mtmp = vm_page_lookup(obj, poff + j);
1473 if (!mtmp)
1474 panic("brelse: bp %p page %d missing", bp, j);
1475 bp->b_xio.xio_pages[j] = mtmp;
1478 vm_object_drop(obj);
1480 if ((bp->b_flags & B_HASBOGUS) || (bp->b_flags & B_INVAL) == 0) {
1481 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1482 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1483 bp->b_flags &= ~B_HASBOGUS;
1485 m = bp->b_xio.xio_pages[i];
1489 * Invalidate the backing store if B_NOCACHE is set
1490 * (e.g. used with vinvalbuf()). If this is NFS
1491 * we impose a requirement that the block size be
1492 * a multiple of PAGE_SIZE and create a temporary
1493 * hack to basically invalidate the whole page. The
1494 * problem is that NFS uses really odd buffer sizes
1495 * especially when tracking piecemeal writes and
1496 * it also vinvalbuf()'s a lot, which would result
1497 * in only partial page validation and invalidation
1498 * here. If the file page is mmap()'d, however,
1499 * all the valid bits get set so after we invalidate
1500 * here we would end up with weird m->valid values
1501 * like 0xfc. nfs_getpages() can't handle this so
1502 * we clear all the valid bits for the NFS case
1503 * instead of just some of them.
1505 * The real bug is the VM system having to set m->valid
1506 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1507 * itself is an artifact of the whole 512-byte
1508 * granular mess that exists to support odd block
1509 * sizes and UFS meta-data block sizes (e.g. 6144).
1510 * A complete rewrite is required.
1512 * XXX
1514 if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1515 int poffset = foff & PAGE_MASK;
1516 int presid;
1518 presid = PAGE_SIZE - poffset;
1519 if (bp->b_vp->v_tag == VT_NFS &&
1520 bp->b_vp->v_type == VREG) {
1521 ; /* entire page */
1522 } else if (presid > resid) {
1523 presid = resid;
1525 KASSERT(presid >= 0, ("brelse: extra page"));
1526 vm_page_set_invalid(m, poffset, presid);
1529 * Also make sure any swap cache is removed
1530 * as it is now stale (HAMMER in particular
1531 * uses B_NOCACHE to deal with buffer
1532 * aliasing).
1534 swap_pager_unswapped(m);
1536 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1537 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1539 if (bp->b_flags & (B_INVAL | B_RELBUF))
1540 vfs_vmio_release(bp);
1541 } else {
1543 * Rundown for non-VMIO buffers.
1545 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1546 if (bp->b_bufsize)
1547 allocbuf(bp, 0);
1548 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1549 if (bp->b_vp)
1550 brelvp(bp);
1554 if (bp->b_qindex != BQUEUE_NONE)
1555 panic("brelse: free buffer onto another queue???");
1556 if (BUF_REFCNTNB(bp) > 1) {
1557 /* Temporary panic to verify exclusive locking */
1558 /* This panic goes away when we allow shared refs */
1559 panic("brelse: multiple refs");
1560 /* NOT REACHED */
1561 return;
1565 * Figure out the correct queue to place the cleaned up buffer on.
1566 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1567 * disassociated from their vnode.
1569 * Return the buffer to its original pcpu area
1571 pcpu = &bufpcpu[bp->b_qcpu];
1572 spin_lock(&pcpu->spin);
1574 if (bp->b_flags & B_LOCKED) {
1576 * Buffers that are locked are placed in the locked queue
1577 * immediately, regardless of their state.
1579 bp->b_qindex = BQUEUE_LOCKED;
1580 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1581 bp, b_freelist);
1582 } else if (bp->b_bufsize == 0) {
1584 * Buffers with no memory. Due to conditionals near the top
1585 * of brelse() such buffers should probably already be
1586 * marked B_INVAL and disassociated from their vnode.
1588 bp->b_flags |= B_INVAL;
1589 KASSERT(bp->b_vp == NULL,
1590 ("bp1 %p flags %08x/%08x vnode %p "
1591 "unexpectededly still associated!",
1592 bp, saved_flags, bp->b_flags, bp->b_vp));
1593 KKASSERT((bp->b_flags & B_HASHED) == 0);
1594 bp->b_qindex = BQUEUE_EMPTY;
1595 TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1596 bp, b_freelist);
1597 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1599 * Buffers with junk contents. Again these buffers had better
1600 * already be disassociated from their vnode.
1602 KASSERT(bp->b_vp == NULL,
1603 ("bp2 %p flags %08x/%08x vnode %p unexpectededly "
1604 "still associated!",
1605 bp, saved_flags, bp->b_flags, bp->b_vp));
1606 KKASSERT((bp->b_flags & B_HASHED) == 0);
1607 bp->b_flags |= B_INVAL;
1608 bp->b_qindex = BQUEUE_CLEAN;
1609 TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1610 bp, b_freelist);
1611 } else {
1613 * Remaining buffers. These buffers are still associated with
1614 * their vnode.
1616 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1617 case B_DELWRI:
1618 bp->b_qindex = BQUEUE_DIRTY;
1619 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1620 bp, b_freelist);
1621 break;
1622 case B_DELWRI | B_HEAVY:
1623 bp->b_qindex = BQUEUE_DIRTY_HW;
1624 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1625 bp, b_freelist);
1626 break;
1627 default:
1629 * NOTE: Buffers are always placed at the end of the
1630 * queue. If B_AGE is not set the buffer will cycle
1631 * through the queue twice.
1633 bp->b_qindex = BQUEUE_CLEAN;
1634 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1635 bp, b_freelist);
1636 break;
1639 spin_unlock(&pcpu->spin);
1642 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1643 * on the correct queue but we have not yet unlocked it.
1645 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1646 bundirty(bp);
1649 * The bp is on an appropriate queue unless locked. If it is not
1650 * locked or dirty we can wakeup threads waiting for buffer space.
1652 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1653 * if B_INVAL is set ).
1655 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1656 bufcountwakeup();
1659 * Something we can maybe free or reuse
1661 if (bp->b_bufsize || bp->b_kvasize)
1662 bufspacewakeup();
1665 * Clean up temporary flags and unlock the buffer.
1667 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1668 BUF_UNLOCK(bp);
1672 * bqrelse:
1674 * Release a buffer back to the appropriate queue but do not try to free
1675 * it. The buffer is expected to be used again soon.
1677 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1678 * biodone() to requeue an async I/O on completion. It is also used when
1679 * known good buffers need to be requeued but we think we may need the data
1680 * again soon.
1682 * XXX we should be able to leave the B_RELBUF hint set on completion.
1684 void
1685 bqrelse(struct buf *bp)
1687 struct bufpcpu *pcpu;
1689 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1690 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1692 if (bp->b_qindex != BQUEUE_NONE)
1693 panic("bqrelse: free buffer onto another queue???");
1694 if (BUF_REFCNTNB(bp) > 1) {
1695 /* do not release to free list */
1696 panic("bqrelse: multiple refs");
1697 return;
1700 buf_act_advance(bp);
1702 pcpu = &bufpcpu[bp->b_qcpu];
1703 spin_lock(&pcpu->spin);
1705 if (bp->b_flags & B_LOCKED) {
1707 * Locked buffers are released to the locked queue. However,
1708 * if the buffer is dirty it will first go into the dirty
1709 * queue and later on after the I/O completes successfully it
1710 * will be released to the locked queue.
1712 bp->b_qindex = BQUEUE_LOCKED;
1713 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1714 bp, b_freelist);
1715 } else if (bp->b_flags & B_DELWRI) {
1716 bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1717 BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1718 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1719 bp, b_freelist);
1720 } else if (vm_page_count_min(0)) {
1722 * We are too low on memory, we have to try to free the
1723 * buffer (most importantly: the wired pages making up its
1724 * backing store) *now*.
1726 spin_unlock(&pcpu->spin);
1727 brelse(bp);
1728 return;
1729 } else {
1730 bp->b_qindex = BQUEUE_CLEAN;
1731 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1732 bp, b_freelist);
1734 spin_unlock(&pcpu->spin);
1737 * We have now placed the buffer on the proper queue, but have yet
1738 * to unlock it.
1740 if ((bp->b_flags & B_LOCKED) == 0 &&
1741 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1742 bufcountwakeup();
1746 * Something we can maybe free or reuse.
1748 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1749 bufspacewakeup();
1752 * Final cleanup and unlock. Clear bits that are only used while a
1753 * buffer is actively locked.
1755 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1756 dsched_buf_exit(bp);
1757 BUF_UNLOCK(bp);
1761 * Hold a buffer, preventing it from being reused. This will prevent
1762 * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1763 * operations. If a B_INVAL operation occurs the buffer will remain held
1764 * but the underlying pages may get ripped out.
1766 * These functions are typically used in VOP_READ/VOP_WRITE functions
1767 * to hold a buffer during a copyin or copyout, preventing deadlocks
1768 * or recursive lock panics when read()/write() is used over mmap()'d
1769 * space.
1771 * NOTE: bqhold() requires that the buffer be locked at the time of the
1772 * hold. bqdrop() has no requirements other than the buffer having
1773 * previously been held.
1775 void
1776 bqhold(struct buf *bp)
1778 atomic_add_int(&bp->b_refs, 1);
1781 void
1782 bqdrop(struct buf *bp)
1784 KKASSERT(bp->b_refs > 0);
1785 atomic_add_int(&bp->b_refs, -1);
1789 * Return backing pages held by the buffer 'bp' back to the VM system.
1790 * This routine is called when the bp is invalidated, released, or
1791 * reused.
1793 * The KVA mapping (b_data) for the underlying pages is removed by
1794 * this function.
1796 * WARNING! This routine is integral to the low memory critical path
1797 * when a buffer is B_RELBUF'd. If the system has a severe page
1798 * deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1799 * queues so they can be reused in the current pageout daemon
1800 * pass.
1802 static void
1803 vfs_vmio_release(struct buf *bp)
1805 int i;
1806 vm_page_t m;
1808 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1809 m = bp->b_xio.xio_pages[i];
1810 bp->b_xio.xio_pages[i] = NULL;
1813 * We need to own the page in order to safely unwire it.
1815 vm_page_busy_wait(m, FALSE, "vmiopg");
1818 * The VFS is telling us this is not a meta-data buffer
1819 * even if it is backed by a block device.
1821 if (bp->b_flags & B_NOTMETA)
1822 vm_page_flag_set(m, PG_NOTMETA);
1825 * This is a very important bit of code. We try to track
1826 * VM page use whether the pages are wired into the buffer
1827 * cache or not. While wired into the buffer cache the
1828 * bp tracks the act_count.
1830 * We can choose to place unwired pages on the inactive
1831 * queue (0) or active queue (1). If we place too many
1832 * on the active queue the queue will cycle the act_count
1833 * on pages we'd like to keep, just from single-use pages
1834 * (such as when doing a tar-up or file scan).
1836 if (bp->b_act_count < vm_cycle_point)
1837 vm_page_unwire(m, 0);
1838 else
1839 vm_page_unwire(m, 1);
1842 * If the wire_count has dropped to 0 we may need to take
1843 * further action before unbusying the page.
1845 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1847 if (m->wire_count == 0) {
1848 if (bp->b_flags & B_DIRECT) {
1850 * Attempt to free the page if B_DIRECT is
1851 * set, the caller does not desire the page
1852 * to be cached.
1854 vm_page_wakeup(m);
1855 vm_page_try_to_free(m);
1856 } else if ((bp->b_flags & B_NOTMETA) ||
1857 vm_page_count_min(0)) {
1859 * Attempt to move the page to PQ_CACHE
1860 * if B_NOTMETA is set. This flag is set
1861 * by HAMMER to remove one of the two pages
1862 * present when double buffering is enabled.
1864 * Attempt to move the page to PQ_CACHE
1865 * If we have a severe page deficit. This
1866 * will cause buffer cache operations related
1867 * to pageouts to recycle the related pages
1868 * in order to avoid a low memory deadlock.
1870 m->act_count = bp->b_act_count;
1871 vm_page_wakeup(m);
1872 vm_page_try_to_cache(m);
1873 } else {
1875 * Nominal case, leave the page on the
1876 * queue the original unwiring placed it on
1877 * (active or inactive).
1879 m->act_count = bp->b_act_count;
1880 vm_page_wakeup(m);
1882 } else {
1883 vm_page_wakeup(m);
1888 * Zero out the pmap pte's for the mapping, but don't bother
1889 * invalidating the TLB. The range will be properly invalidating
1890 * when new pages are entered into the mapping.
1892 * This in particular reduces tmpfs tear-down overhead and reduces
1893 * buffer cache re-use overhead (one invalidation sequence instead
1894 * of two per re-use).
1896 pmap_qremove_noinval(trunc_page((vm_offset_t) bp->b_data),
1897 bp->b_xio.xio_npages);
1898 if (bp->b_bufsize) {
1899 atomic_add_long(&bufspace, -bp->b_bufsize);
1900 bp->b_bufsize = 0;
1901 bufspacewakeup();
1903 bp->b_xio.xio_npages = 0;
1904 bp->b_flags &= ~B_VMIO;
1905 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1906 if (bp->b_vp)
1907 brelvp(bp);
1911 * Find and initialize a new buffer header, freeing up existing buffers
1912 * in the bufqueues as necessary. The new buffer is returned locked.
1914 * If repurpose is non-NULL getnewbuf() is allowed to re-purpose an existing
1915 * buffer. The buffer will be disassociated, its page and page mappings
1916 * left intact, and returned with *repurpose set to 1. Else *repurpose is set
1917 * to 0. If 1, the caller must repurpose the underlying VM pages.
1919 * If repurpose is NULL getnewbuf() is not allowed to re-purpose an
1920 * existing buffer. That is, it must completely initialize the returned
1921 * buffer.
1923 * Important: B_INVAL is not set. If the caller wishes to throw the
1924 * buffer away, the caller must set B_INVAL prior to calling brelse().
1926 * We block if:
1927 * We have insufficient buffer headers
1928 * We have insufficient buffer space
1930 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1931 * Instead we ask the buf daemon to do it for us. We attempt to
1932 * avoid piecemeal wakeups of the pageout daemon.
1934 struct buf *
1935 getnewbuf(int blkflags, int slptimeo, int size, int maxsize,
1936 struct vm_object **repurposep)
1938 struct bufpcpu *pcpu;
1939 struct buf *bp;
1940 struct buf *nbp;
1941 int nqindex;
1942 int nqcpu;
1943 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1944 int maxloops = 200000;
1945 int restart_reason = 0;
1946 struct buf *restart_bp = NULL;
1947 static char flushingbufs[MAXCPU];
1948 char *flushingp;
1951 * We can't afford to block since we might be holding a vnode lock,
1952 * which may prevent system daemons from running. We deal with
1953 * low-memory situations by proactively returning memory and running
1954 * async I/O rather then sync I/O.
1957 ++getnewbufcalls;
1958 nqcpu = mycpu->gd_cpuid;
1959 flushingp = &flushingbufs[nqcpu];
1960 restart:
1961 if (bufspace < lobufspace)
1962 *flushingp = 0;
1964 if (debug_bufbio && --maxloops == 0)
1965 panic("getnewbuf, excessive loops on cpu %d restart %d (%p)",
1966 mycpu->gd_cpuid, restart_reason, restart_bp);
1969 * Setup for scan. If we do not have enough free buffers,
1970 * we setup a degenerate case that immediately fails. Note
1971 * that if we are specially marked process, we are allowed to
1972 * dip into our reserves.
1974 * The scanning sequence is nominally: EMPTY->CLEAN
1976 pcpu = &bufpcpu[nqcpu];
1977 spin_lock(&pcpu->spin);
1980 * Determine if repurposing should be disallowed. Generally speaking
1981 * do not repurpose buffers if the buffer cache hasn't capped. Also
1982 * control repurposing based on buffer-cache -> main-memory bandwidth.
1983 * That is, we want to recycle buffers normally up until the buffer
1984 * cache bandwidth (new-buffer bw) exceeds bufcache_bw.
1986 * (This is heuristical, SMP collisions are ok)
1988 if (repurposep) {
1989 int delta = ticks - bufcache_bw_ticks;
1990 if (delta < 0 || delta >= hz) {
1991 atomic_swap_long(&bufcache_bw_accum, 0);
1992 atomic_swap_int(&bufcache_bw_ticks, ticks);
1994 atomic_add_long(&bufcache_bw_accum, size);
1995 if (bufspace < lobufspace) {
1996 repurposep = NULL;
1997 } else if (bufcache_bw_accum < bufcache_bw) {
1998 repurposep = NULL;
2003 * Prime the scan for this cpu. Locate the first buffer to
2004 * check. If we are flushing buffers we must skip the
2005 * EMPTY queue.
2007 nqindex = BQUEUE_EMPTY;
2008 nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTY]);
2009 if (nbp == NULL || *flushingp || repurposep) {
2010 nqindex = BQUEUE_CLEAN;
2011 nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN]);
2015 * Run scan, possibly freeing data and/or kva mappings on the fly,
2016 * depending.
2018 * WARNING! spin is held!
2020 while ((bp = nbp) != NULL) {
2021 int qindex = nqindex;
2023 nbp = TAILQ_NEXT(bp, b_freelist);
2026 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
2027 * cycles through the queue twice before being selected.
2029 if (qindex == BQUEUE_CLEAN &&
2030 (bp->b_flags & B_AGE) == 0 && nbp) {
2031 bp->b_flags |= B_AGE;
2032 TAILQ_REMOVE(&pcpu->bufqueues[qindex],
2033 bp, b_freelist);
2034 TAILQ_INSERT_TAIL(&pcpu->bufqueues[qindex],
2035 bp, b_freelist);
2036 continue;
2040 * Calculate next bp ( we can only use it if we do not block
2041 * or do other fancy things ).
2043 if (nbp == NULL) {
2044 switch(qindex) {
2045 case BQUEUE_EMPTY:
2046 nqindex = BQUEUE_CLEAN;
2047 if ((nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN])))
2048 break;
2049 /* fall through */
2050 case BQUEUE_CLEAN:
2052 * nbp is NULL.
2054 break;
2059 * Sanity Checks
2061 KASSERT(bp->b_qindex == qindex,
2062 ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2065 * Note: we no longer distinguish between VMIO and non-VMIO
2066 * buffers.
2068 KASSERT((bp->b_flags & B_DELWRI) == 0,
2069 ("delwri buffer %p found in queue %d", bp, qindex));
2072 * Do not try to reuse a buffer with a non-zero b_refs.
2073 * This is an unsynchronized test. A synchronized test
2074 * is also performed after we lock the buffer.
2076 if (bp->b_refs)
2077 continue;
2080 * Start freeing the bp. This is somewhat involved. nbp
2081 * remains valid only for BQUEUE_EMPTY bp's. Buffers
2082 * on the clean list must be disassociated from their
2083 * current vnode. Buffers on the empty lists have
2084 * already been disassociated.
2086 * b_refs is checked after locking along with queue changes.
2087 * We must check here to deal with zero->nonzero transitions
2088 * made by the owner of the buffer lock, which is used by
2089 * VFS's to hold the buffer while issuing an unlocked
2090 * uiomove()s. We cannot invalidate the buffer's pages
2091 * for this case. Once we successfully lock a buffer the
2092 * only 0->1 transitions of b_refs will occur via findblk().
2094 * We must also check for queue changes after successful
2095 * locking as the current lock holder may dispose of the
2096 * buffer and change its queue.
2098 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2099 spin_unlock(&pcpu->spin);
2100 tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2101 restart_reason = 1;
2102 restart_bp = bp;
2103 goto restart;
2105 if (bp->b_qindex != qindex || bp->b_refs) {
2106 spin_unlock(&pcpu->spin);
2107 BUF_UNLOCK(bp);
2108 restart_reason = 2;
2109 restart_bp = bp;
2110 goto restart;
2112 bremfree_locked(bp);
2113 spin_unlock(&pcpu->spin);
2116 * Dependancies must be handled before we disassociate the
2117 * vnode.
2119 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2120 * be immediately disassociated. HAMMER then becomes
2121 * responsible for releasing the buffer.
2123 * NOTE: spin is UNLOCKED now.
2125 if (LIST_FIRST(&bp->b_dep) != NULL) {
2126 buf_deallocate(bp);
2127 if (bp->b_flags & B_LOCKED) {
2128 bqrelse(bp);
2129 restart_reason = 3;
2130 restart_bp = bp;
2131 goto restart;
2133 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2137 * CLEAN buffers have content or associations that must be
2138 * cleaned out if not repurposing.
2140 if (qindex == BQUEUE_CLEAN) {
2141 if (bp->b_flags & B_VMIO) {
2142 if (repurpose_enable &&
2143 repurposep && bp->b_bufsize &&
2144 (bp->b_flags & (B_DELWRI | B_MALLOC)) == 0) {
2145 *repurposep = bp->b_vp->v_object;
2146 vm_object_hold(*repurposep);
2147 } else {
2148 vfs_vmio_release(bp);
2151 if (bp->b_vp)
2152 brelvp(bp);
2156 * NOTE: nbp is now entirely invalid. We can only restart
2157 * the scan from this point on.
2159 * Get the rest of the buffer freed up. b_kva* is still
2160 * valid after this operation.
2162 KASSERT(bp->b_vp == NULL,
2163 ("bp3 %p flags %08x vnode %p qindex %d "
2164 "unexpectededly still associated!",
2165 bp, bp->b_flags, bp->b_vp, qindex));
2166 KKASSERT((bp->b_flags & B_HASHED) == 0);
2168 if (repurposep == NULL || *repurposep == NULL) {
2169 if (bp->b_bufsize)
2170 allocbuf(bp, 0);
2173 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN | B_HASHED)) {
2174 kprintf("getnewbuf: caught bug vp queue "
2175 "%p/%08x qidx %d\n",
2176 bp, bp->b_flags, qindex);
2177 brelvp(bp);
2179 bp->b_flags = B_BNOCLIP;
2180 bp->b_cmd = BUF_CMD_DONE;
2181 bp->b_vp = NULL;
2182 bp->b_error = 0;
2183 bp->b_resid = 0;
2184 bp->b_bcount = 0;
2185 if (repurposep == NULL || *repurposep == NULL)
2186 bp->b_xio.xio_npages = 0;
2187 bp->b_dirtyoff = bp->b_dirtyend = 0;
2188 bp->b_act_count = ACT_INIT;
2189 reinitbufbio(bp);
2190 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2191 buf_dep_init(bp);
2192 if (blkflags & GETBLK_BHEAVY)
2193 bp->b_flags |= B_HEAVY;
2195 if (bufspace >= hibufspace)
2196 *flushingp = 1;
2197 if (bufspace < lobufspace)
2198 *flushingp = 0;
2199 if (*flushingp) {
2200 if (repurposep && *repurposep != NULL) {
2201 bp->b_flags |= B_VMIO;
2202 vfs_vmio_release(bp);
2203 if (bp->b_bufsize)
2204 allocbuf(bp, 0);
2205 vm_object_drop(*repurposep);
2206 *repurposep = NULL;
2208 bp->b_flags |= B_INVAL;
2209 brelse(bp);
2210 restart_reason = 5;
2211 restart_bp = bp;
2212 goto restart;
2216 * b_refs can transition to a non-zero value while we hold
2217 * the buffer locked due to a findblk(). Our brelvp() above
2218 * interlocked any future possible transitions due to
2219 * findblk()s.
2221 * If we find b_refs to be non-zero we can destroy the
2222 * buffer's contents but we cannot yet reuse the buffer.
2224 if (bp->b_refs) {
2225 if (repurposep && *repurposep != NULL) {
2226 bp->b_flags |= B_VMIO;
2227 vfs_vmio_release(bp);
2228 if (bp->b_bufsize)
2229 allocbuf(bp, 0);
2230 vm_object_drop(*repurposep);
2231 *repurposep = NULL;
2233 bp->b_flags |= B_INVAL;
2234 brelse(bp);
2235 restart_reason = 6;
2236 restart_bp = bp;
2238 goto restart;
2242 * We found our buffer!
2244 break;
2248 * If we exhausted our list, iterate other cpus. If that fails,
2249 * sleep as appropriate. We may have to wakeup various daemons
2250 * and write out some dirty buffers.
2252 * Generally we are sleeping due to insufficient buffer space.
2254 * NOTE: spin is held if bp is NULL, else it is not held.
2256 if (bp == NULL) {
2257 int flags;
2258 char *waitmsg;
2260 spin_unlock(&pcpu->spin);
2262 nqcpu = (nqcpu + 1) % ncpus;
2263 if (nqcpu != mycpu->gd_cpuid) {
2264 restart_reason = 7;
2265 restart_bp = bp;
2266 goto restart;
2269 if (bufspace >= hibufspace) {
2270 waitmsg = "bufspc";
2271 flags = VFS_BIO_NEED_BUFSPACE;
2272 } else {
2273 waitmsg = "newbuf";
2274 flags = VFS_BIO_NEED_ANY;
2277 bd_speedup(); /* heeeelp */
2278 atomic_set_int(&needsbuffer, flags);
2279 while (needsbuffer & flags) {
2280 int value;
2282 tsleep_interlock(&needsbuffer, 0);
2283 value = atomic_fetchadd_int(&needsbuffer, 0);
2284 if (value & flags) {
2285 if (tsleep(&needsbuffer, PINTERLOCKED|slpflags,
2286 waitmsg, slptimeo)) {
2287 return (NULL);
2291 } else {
2293 * We finally have a valid bp. Reset b_data.
2295 * (spin is not held)
2297 bp->b_data = bp->b_kvabase;
2299 return(bp);
2303 * buf_daemon:
2305 * Buffer flushing daemon. Buffers are normally flushed by the
2306 * update daemon but if it cannot keep up this process starts to
2307 * take the load in an attempt to prevent getnewbuf() from blocking.
2309 * Once a flush is initiated it does not stop until the number
2310 * of buffers falls below lodirtybuffers, but we will wake up anyone
2311 * waiting at the mid-point.
2313 static struct kproc_desc buf_kp = {
2314 "bufdaemon",
2315 buf_daemon,
2316 &bufdaemon_td
2318 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2319 kproc_start, &buf_kp);
2321 static struct kproc_desc bufhw_kp = {
2322 "bufdaemon_hw",
2323 buf_daemon_hw,
2324 &bufdaemonhw_td
2326 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2327 kproc_start, &bufhw_kp);
2329 static void
2330 buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long),
2331 int *bd_req)
2333 long limit;
2334 struct buf *marker;
2336 marker = kmalloc(sizeof(*marker), M_BIOBUF, M_WAITOK | M_ZERO);
2337 marker->b_flags |= B_MARKER;
2338 marker->b_qindex = BQUEUE_NONE;
2339 marker->b_qcpu = 0;
2342 * This process needs to be suspended prior to shutdown sync.
2344 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2345 td, SHUTDOWN_PRI_LAST);
2346 curthread->td_flags |= TDF_SYSTHREAD;
2349 * This process is allowed to take the buffer cache to the limit
2351 for (;;) {
2352 kproc_suspend_loop();
2355 * Do the flush as long as the number of dirty buffers
2356 * (including those running) exceeds lodirtybufspace.
2358 * When flushing limit running I/O to hirunningspace
2359 * Do the flush. Limit the amount of in-transit I/O we
2360 * allow to build up, otherwise we would completely saturate
2361 * the I/O system. Wakeup any waiting processes before we
2362 * normally would so they can run in parallel with our drain.
2364 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2365 * but because we split the operation into two threads we
2366 * have to cut it in half for each thread.
2368 waitrunningbufspace();
2369 limit = lodirtybufspace / 2;
2370 while (buf_limit_fn(limit)) {
2371 if (flushbufqueues(marker, queue) == 0)
2372 break;
2373 if (runningbufspace < hirunningspace)
2374 continue;
2375 waitrunningbufspace();
2379 * We reached our low water mark, reset the
2380 * request and sleep until we are needed again.
2381 * The sleep is just so the suspend code works.
2383 tsleep_interlock(bd_req, 0);
2384 if (atomic_swap_int(bd_req, 0) == 0)
2385 tsleep(bd_req, PINTERLOCKED, "psleep", hz);
2387 /* NOT REACHED */
2388 /*kfree(marker, M_BIOBUF);*/
2391 static int
2392 buf_daemon_limit(long limit)
2394 return (runningbufspace + dirtykvaspace > limit ||
2395 dirtybufcount - dirtybufcounthw >= nbuf / 2);
2398 static int
2399 buf_daemon_hw_limit(long limit)
2401 return (runningbufspace + dirtykvaspace > limit ||
2402 dirtybufcounthw >= nbuf / 2);
2405 static void
2406 buf_daemon(void)
2408 buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit,
2409 &bd_request);
2412 static void
2413 buf_daemon_hw(void)
2415 buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit,
2416 &bd_request_hw);
2420 * Flush up to (flushperqueue) buffers in the dirty queue. Each cpu has a
2421 * localized version of the queue. Each call made to this function iterates
2422 * to another cpu. It is desireable to flush several buffers from the same
2423 * cpu's queue at once, as these are likely going to be linear.
2425 * We must be careful to free up B_INVAL buffers instead of write them, which
2426 * NFS is particularly sensitive to.
2428 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate that we
2429 * really want to try to get the buffer out and reuse it due to the write
2430 * load on the machine.
2432 * We must lock the buffer in order to check its validity before we can mess
2433 * with its contents. spin isn't enough.
2435 static int
2436 flushbufqueues(struct buf *marker, bufq_type_t q)
2438 struct bufpcpu *pcpu;
2439 struct buf *bp;
2440 int r = 0;
2441 u_int loops = flushperqueue;
2442 int lcpu = marker->b_qcpu;
2444 KKASSERT(marker->b_qindex == BQUEUE_NONE);
2445 KKASSERT(marker->b_flags & B_MARKER);
2447 again:
2449 * Spinlock needed to perform operations on the queue and may be
2450 * held through a non-blocking BUF_LOCK(), but cannot be held when
2451 * BUF_UNLOCK()ing or through any other major operation.
2453 pcpu = &bufpcpu[marker->b_qcpu];
2454 spin_lock(&pcpu->spin);
2455 marker->b_qindex = q;
2456 TAILQ_INSERT_HEAD(&pcpu->bufqueues[q], marker, b_freelist);
2457 bp = marker;
2459 while ((bp = TAILQ_NEXT(bp, b_freelist)) != NULL) {
2461 * NOTE: spinlock is always held at the top of the loop
2463 if (bp->b_flags & B_MARKER)
2464 continue;
2465 if ((bp->b_flags & B_DELWRI) == 0) {
2466 kprintf("Unexpected clean buffer %p\n", bp);
2467 continue;
2469 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
2470 continue;
2471 KKASSERT(bp->b_qcpu == marker->b_qcpu && bp->b_qindex == q);
2474 * Once the buffer is locked we will have no choice but to
2475 * unlock the spinlock around a later BUF_UNLOCK and re-set
2476 * bp = marker when looping. Move the marker now to make
2477 * things easier.
2479 TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2480 TAILQ_INSERT_AFTER(&pcpu->bufqueues[q], bp, marker, b_freelist);
2483 * Must recheck B_DELWRI after successfully locking
2484 * the buffer.
2486 if ((bp->b_flags & B_DELWRI) == 0) {
2487 spin_unlock(&pcpu->spin);
2488 BUF_UNLOCK(bp);
2489 spin_lock(&pcpu->spin);
2490 bp = marker;
2491 continue;
2495 * Remove the buffer from its queue. We still own the
2496 * spinlock here.
2498 _bremfree(bp);
2501 * Disposing of an invalid buffer counts as a flush op
2503 if (bp->b_flags & B_INVAL) {
2504 spin_unlock(&pcpu->spin);
2505 brelse(bp);
2506 goto doloop;
2510 * Release the spinlock for the more complex ops we
2511 * are now going to do.
2513 spin_unlock(&pcpu->spin);
2514 lwkt_yield();
2517 * This is a bit messy
2519 if (LIST_FIRST(&bp->b_dep) != NULL &&
2520 (bp->b_flags & B_DEFERRED) == 0 &&
2521 buf_countdeps(bp, 0)) {
2522 spin_lock(&pcpu->spin);
2523 TAILQ_INSERT_TAIL(&pcpu->bufqueues[q], bp, b_freelist);
2524 bp->b_qindex = q;
2525 bp->b_flags |= B_DEFERRED;
2526 spin_unlock(&pcpu->spin);
2527 BUF_UNLOCK(bp);
2528 spin_lock(&pcpu->spin);
2529 bp = marker;
2530 continue;
2534 * spinlock not held here.
2536 * If the buffer has a dependancy, buf_checkwrite() must
2537 * also return 0 for us to be able to initate the write.
2539 * If the buffer is flagged B_ERROR it may be requeued
2540 * over and over again, we try to avoid a live lock.
2542 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2543 brelse(bp);
2544 } else if (bp->b_flags & B_ERROR) {
2545 tsleep(bp, 0, "bioer", 1);
2546 bp->b_flags &= ~B_AGE;
2547 cluster_awrite(bp);
2548 } else {
2549 bp->b_flags |= B_AGE;
2550 cluster_awrite(bp);
2552 /* bp invalid but needs to be NULL-tested if we break out */
2553 doloop:
2554 spin_lock(&pcpu->spin);
2555 ++r;
2556 if (--loops == 0)
2557 break;
2558 bp = marker;
2560 /* bp is invalid here but can be NULL-tested to advance */
2562 TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2563 marker->b_qindex = BQUEUE_NONE;
2564 spin_unlock(&pcpu->spin);
2567 * Advance the marker to be fair.
2569 marker->b_qcpu = (marker->b_qcpu + 1) % ncpus;
2570 if (bp == NULL) {
2571 if (marker->b_qcpu != lcpu)
2572 goto again;
2575 return (r);
2579 * inmem:
2581 * Returns true if no I/O is needed to access the associated VM object.
2582 * This is like findblk except it also hunts around in the VM system for
2583 * the data.
2585 * Note that we ignore vm_page_free() races from interrupts against our
2586 * lookup, since if the caller is not protected our return value will not
2587 * be any more valid then otherwise once we exit the critical section.
2590 inmem(struct vnode *vp, off_t loffset)
2592 vm_object_t obj;
2593 vm_offset_t toff, tinc, size;
2594 vm_page_t m;
2595 int res = 1;
2597 if (findblk(vp, loffset, FINDBLK_TEST))
2598 return 1;
2599 if (vp->v_mount == NULL)
2600 return 0;
2601 if ((obj = vp->v_object) == NULL)
2602 return 0;
2604 size = PAGE_SIZE;
2605 if (size > vp->v_mount->mnt_stat.f_iosize)
2606 size = vp->v_mount->mnt_stat.f_iosize;
2608 vm_object_hold(obj);
2609 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2610 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2611 if (m == NULL) {
2612 res = 0;
2613 break;
2615 tinc = size;
2616 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2617 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2618 if (vm_page_is_valid(m,
2619 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2620 res = 0;
2621 break;
2624 vm_object_drop(obj);
2625 return (res);
2629 * findblk:
2631 * Locate and return the specified buffer. Unless flagged otherwise,
2632 * a locked buffer will be returned if it exists or NULL if it does not.
2634 * findblk()'d buffers are still on the bufqueues and if you intend
2635 * to use your (locked NON-TEST) buffer you need to bremfree(bp)
2636 * and possibly do other stuff to it.
2638 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible
2639 * for locking the buffer and ensuring that it remains
2640 * the desired buffer after locking.
2642 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable
2643 * to acquire the lock we return NULL, even if the
2644 * buffer exists.
2646 * FINDBLK_REF - Returns the buffer ref'd, which prevents normal
2647 * reuse by getnewbuf() but does not prevent
2648 * disassociation (B_INVAL). Used to avoid deadlocks
2649 * against random (vp,loffset)s due to reassignment.
2651 * (0) - Lock the buffer blocking.
2653 struct buf *
2654 findblk(struct vnode *vp, off_t loffset, int flags)
2656 struct buf *bp;
2657 int lkflags;
2659 lkflags = LK_EXCLUSIVE;
2660 if (flags & FINDBLK_NBLOCK)
2661 lkflags |= LK_NOWAIT;
2663 for (;;) {
2665 * Lookup. Ref the buf while holding v_token to prevent
2666 * reuse (but does not prevent diassociation).
2668 lwkt_gettoken_shared(&vp->v_token);
2669 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2670 if (bp == NULL) {
2671 lwkt_reltoken(&vp->v_token);
2672 return(NULL);
2674 bqhold(bp);
2675 lwkt_reltoken(&vp->v_token);
2678 * If testing only break and return bp, do not lock.
2680 if (flags & FINDBLK_TEST)
2681 break;
2684 * Lock the buffer, return an error if the lock fails.
2685 * (only FINDBLK_NBLOCK can cause the lock to fail).
2687 if (BUF_LOCK(bp, lkflags)) {
2688 atomic_subtract_int(&bp->b_refs, 1);
2689 /* bp = NULL; not needed */
2690 return(NULL);
2694 * Revalidate the locked buf before allowing it to be
2695 * returned.
2697 if (bp->b_vp == vp && bp->b_loffset == loffset)
2698 break;
2699 atomic_subtract_int(&bp->b_refs, 1);
2700 BUF_UNLOCK(bp);
2704 * Success
2706 if ((flags & FINDBLK_REF) == 0)
2707 atomic_subtract_int(&bp->b_refs, 1);
2708 return(bp);
2712 * getcacheblk:
2714 * Similar to getblk() except only returns the buffer if it is
2715 * B_CACHE and requires no other manipulation. Otherwise NULL
2716 * is returned. NULL is also returned if GETBLK_NOWAIT is set
2717 * and the getblk() would block.
2719 * If B_RAM is set the buffer might be just fine, but we return
2720 * NULL anyway because we want the code to fall through to the
2721 * cluster read to issue more read-aheads. Otherwise read-ahead breaks.
2723 * If blksize is 0 the buffer cache buffer must already be fully
2724 * cached.
2726 * If blksize is non-zero getblk() will be used, allowing a buffer
2727 * to be reinstantiated from its VM backing store. The buffer must
2728 * still be fully cached after reinstantiation to be returned.
2730 struct buf *
2731 getcacheblk(struct vnode *vp, off_t loffset, int blksize, int blkflags)
2733 struct buf *bp;
2734 int fndflags = (blkflags & GETBLK_NOWAIT) ? FINDBLK_NBLOCK : 0;
2736 if (blksize) {
2737 bp = getblk(vp, loffset, blksize, blkflags, 0);
2738 if (bp) {
2739 if ((bp->b_flags & (B_INVAL | B_CACHE)) == B_CACHE) {
2740 bp->b_flags &= ~B_AGE;
2741 if (bp->b_flags & B_RAM) {
2742 bqrelse(bp);
2743 bp = NULL;
2745 } else {
2746 brelse(bp);
2747 bp = NULL;
2750 } else {
2751 bp = findblk(vp, loffset, fndflags);
2752 if (bp) {
2753 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2754 B_CACHE) {
2755 bp->b_flags &= ~B_AGE;
2756 bremfree(bp);
2757 } else {
2758 BUF_UNLOCK(bp);
2759 bp = NULL;
2763 return (bp);
2767 * getblk:
2769 * Get a block given a specified block and offset into a file/device.
2770 * B_INVAL may or may not be set on return. The caller should clear
2771 * B_INVAL prior to initiating a READ.
2773 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2774 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2775 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2776 * without doing any of those things the system will likely believe
2777 * the buffer to be valid (especially if it is not B_VMIO), and the
2778 * next getblk() will return the buffer with B_CACHE set.
2780 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2781 * an existing buffer.
2783 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2784 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2785 * and then cleared based on the backing VM. If the previous buffer is
2786 * non-0-sized but invalid, B_CACHE will be cleared.
2788 * If getblk() must create a new buffer, the new buffer is returned with
2789 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2790 * case it is returned with B_INVAL clear and B_CACHE set based on the
2791 * backing VM.
2793 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2794 * B_CACHE bit is clear.
2796 * What this means, basically, is that the caller should use B_CACHE to
2797 * determine whether the buffer is fully valid or not and should clear
2798 * B_INVAL prior to issuing a read. If the caller intends to validate
2799 * the buffer by loading its data area with something, the caller needs
2800 * to clear B_INVAL. If the caller does this without issuing an I/O,
2801 * the caller should set B_CACHE ( as an optimization ), else the caller
2802 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2803 * a write attempt or if it was a successfull read. If the caller
2804 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2805 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2807 * getblk flags:
2809 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2810 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2812 struct buf *
2813 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2815 struct buf *bp;
2816 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2817 int error;
2818 int lkflags;
2820 if (size > MAXBSIZE)
2821 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2822 if (vp->v_object == NULL)
2823 panic("getblk: vnode %p has no object!", vp);
2825 loop:
2826 if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2828 * The buffer was found in the cache, but we need to lock it.
2829 * We must acquire a ref on the bp to prevent reuse, but
2830 * this will not prevent disassociation (brelvp()) so we
2831 * must recheck (vp,loffset) after acquiring the lock.
2833 * Without the ref the buffer could potentially be reused
2834 * before we acquire the lock and create a deadlock
2835 * situation between the thread trying to reuse the buffer
2836 * and us due to the fact that we would wind up blocking
2837 * on a random (vp,loffset).
2839 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2840 if (blkflags & GETBLK_NOWAIT) {
2841 bqdrop(bp);
2842 return(NULL);
2844 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2845 if (blkflags & GETBLK_PCATCH)
2846 lkflags |= LK_PCATCH;
2847 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2848 if (error) {
2849 bqdrop(bp);
2850 if (error == ENOLCK)
2851 goto loop;
2852 return (NULL);
2854 /* buffer may have changed on us */
2856 bqdrop(bp);
2859 * Once the buffer has been locked, make sure we didn't race
2860 * a buffer recyclement. Buffers that are no longer hashed
2861 * will have b_vp == NULL, so this takes care of that check
2862 * as well.
2864 if (bp->b_vp != vp || bp->b_loffset != loffset) {
2865 #if 0
2866 kprintf("Warning buffer %p (vp %p loffset %lld) "
2867 "was recycled\n",
2868 bp, vp, (long long)loffset);
2869 #endif
2870 BUF_UNLOCK(bp);
2871 goto loop;
2875 * If SZMATCH any pre-existing buffer must be of the requested
2876 * size or NULL is returned. The caller absolutely does not
2877 * want getblk() to bwrite() the buffer on a size mismatch.
2879 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2880 BUF_UNLOCK(bp);
2881 return(NULL);
2885 * All vnode-based buffers must be backed by a VM object.
2887 KKASSERT(bp->b_flags & B_VMIO);
2888 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2889 bp->b_flags &= ~B_AGE;
2892 * Make sure that B_INVAL buffers do not have a cached
2893 * block number translation.
2895 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2896 kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2897 " did not have cleared bio_offset cache\n",
2898 bp, vp, (long long)loffset);
2899 clearbiocache(&bp->b_bio2);
2903 * The buffer is locked. B_CACHE is cleared if the buffer is
2904 * invalid.
2906 if (bp->b_flags & B_INVAL)
2907 bp->b_flags &= ~B_CACHE;
2908 bremfree(bp);
2911 * Any size inconsistancy with a dirty buffer or a buffer
2912 * with a softupdates dependancy must be resolved. Resizing
2913 * the buffer in such circumstances can lead to problems.
2915 * Dirty or dependant buffers are written synchronously.
2916 * Other types of buffers are simply released and
2917 * reconstituted as they may be backed by valid, dirty VM
2918 * pages (but not marked B_DELWRI).
2920 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2921 * and may be left over from a prior truncation (and thus
2922 * no longer represent the actual EOF point), so we
2923 * definitely do not want to B_NOCACHE the backing store.
2925 if (size != bp->b_bcount) {
2926 if (bp->b_flags & B_DELWRI) {
2927 bp->b_flags |= B_RELBUF;
2928 bwrite(bp);
2929 } else if (LIST_FIRST(&bp->b_dep)) {
2930 bp->b_flags |= B_RELBUF;
2931 bwrite(bp);
2932 } else {
2933 bp->b_flags |= B_RELBUF;
2934 brelse(bp);
2936 goto loop;
2938 KKASSERT(size <= bp->b_kvasize);
2939 KASSERT(bp->b_loffset != NOOFFSET,
2940 ("getblk: no buffer offset"));
2943 * A buffer with B_DELWRI set and B_CACHE clear must
2944 * be committed before we can return the buffer in
2945 * order to prevent the caller from issuing a read
2946 * ( due to B_CACHE not being set ) and overwriting
2947 * it.
2949 * Most callers, including NFS and FFS, need this to
2950 * operate properly either because they assume they
2951 * can issue a read if B_CACHE is not set, or because
2952 * ( for example ) an uncached B_DELWRI might loop due
2953 * to softupdates re-dirtying the buffer. In the latter
2954 * case, B_CACHE is set after the first write completes,
2955 * preventing further loops.
2957 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2958 * above while extending the buffer, we cannot allow the
2959 * buffer to remain with B_CACHE set after the write
2960 * completes or it will represent a corrupt state. To
2961 * deal with this we set B_NOCACHE to scrap the buffer
2962 * after the write.
2964 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2965 * I'm not even sure this state is still possible
2966 * now that getblk() writes out any dirty buffers
2967 * on size changes.
2969 * We might be able to do something fancy, like setting
2970 * B_CACHE in bwrite() except if B_DELWRI is already set,
2971 * so the below call doesn't set B_CACHE, but that gets real
2972 * confusing. This is much easier.
2975 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2976 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2977 "and CACHE clear, b_flags %08x\n",
2978 bp, (uintmax_t)bp->b_loffset, bp->b_flags);
2979 bp->b_flags |= B_NOCACHE;
2980 bwrite(bp);
2981 goto loop;
2983 } else {
2985 * Buffer is not in-core, create new buffer. The buffer
2986 * returned by getnewbuf() is locked. Note that the returned
2987 * buffer is also considered valid (not marked B_INVAL).
2989 * Calculating the offset for the I/O requires figuring out
2990 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2991 * the mount's f_iosize otherwise. If the vnode does not
2992 * have an associated mount we assume that the passed size is
2993 * the block size.
2995 * Note that vn_isdisk() cannot be used here since it may
2996 * return a failure for numerous reasons. Note that the
2997 * buffer size may be larger then the block size (the caller
2998 * will use block numbers with the proper multiple). Beware
2999 * of using any v_* fields which are part of unions. In
3000 * particular, in DragonFly the mount point overloading
3001 * mechanism uses the namecache only and the underlying
3002 * directory vnode is not a special case.
3004 int bsize, maxsize;
3005 vm_object_t repurpose;
3007 if (vp->v_type == VBLK || vp->v_type == VCHR)
3008 bsize = DEV_BSIZE;
3009 else if (vp->v_mount)
3010 bsize = vp->v_mount->mnt_stat.f_iosize;
3011 else
3012 bsize = size;
3014 maxsize = size + (loffset & PAGE_MASK);
3015 maxsize = imax(maxsize, bsize);
3016 repurpose = NULL;
3019 * Allow repurposing. The returned buffer may contain VM
3020 * pages associated with its previous incarnation. These
3021 * pages must be repurposed for the new buffer (hopefully
3022 * without disturbing the KVM mapping).
3024 * WARNING! If repurpose != NULL on return, the buffer will
3025 * still contain some data from its prior
3026 * incarnation. We MUST properly dispose of this
3027 * data.
3029 bp = getnewbuf(blkflags, slptimeo, size, maxsize, &repurpose);
3030 if (bp == NULL) {
3031 if (slpflags || slptimeo)
3032 return NULL;
3033 goto loop;
3037 * Atomically insert the buffer into the hash, so that it can
3038 * be found by findblk().
3040 * If bgetvp() returns non-zero a collision occured, and the
3041 * bp will not be associated with the vnode.
3043 * Make sure the translation layer has been cleared.
3045 bp->b_loffset = loffset;
3046 bp->b_bio2.bio_offset = NOOFFSET;
3047 /* bp->b_bio2.bio_next = NULL; */
3049 if (bgetvp(vp, bp, size)) {
3050 if (repurpose) {
3051 bp->b_flags |= B_VMIO;
3052 repurposebuf(bp, 0);
3053 vm_object_drop(repurpose);
3055 bp->b_flags |= B_INVAL;
3056 brelse(bp);
3057 goto loop;
3061 * All vnode-based buffers must be backed by a VM object.
3063 KKASSERT(vp->v_object != NULL);
3064 bp->b_flags |= B_VMIO;
3065 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3068 * If we allowed repurposing of the buffer it will contain
3069 * free-but-held vm_page's, already kmapped, that can be
3070 * repurposed. The repurposebuf() code handles reassigning
3071 * those pages to the new (object, offsets) and dealing with
3072 * the case where the pages already exist.
3074 if (repurpose) {
3075 repurposebuf(bp, size);
3076 vm_object_drop(repurpose);
3077 } else {
3078 allocbuf(bp, size);
3081 return (bp);
3085 * regetblk(bp)
3087 * Reacquire a buffer that was previously released to the locked queue,
3088 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3089 * set B_LOCKED (which handles the acquisition race).
3091 * To this end, either B_LOCKED must be set or the dependancy list must be
3092 * non-empty.
3094 void
3095 regetblk(struct buf *bp)
3097 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3098 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3099 bremfree(bp);
3103 * geteblk:
3105 * Get an empty, disassociated buffer of given size. The buffer is
3106 * initially set to B_INVAL.
3108 * critical section protection is not required for the allocbuf()
3109 * call because races are impossible here.
3111 struct buf *
3112 geteblk(int size)
3114 struct buf *bp;
3116 while ((bp = getnewbuf(0, 0, size, MAXBSIZE, NULL)) == NULL)
3118 allocbuf(bp, size);
3119 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
3121 return (bp);
3125 * allocbuf:
3127 * This code constitutes the buffer memory from either anonymous system
3128 * memory (in the case of non-VMIO operations) or from an associated
3129 * VM object (in the case of VMIO operations). This code is able to
3130 * resize a buffer up or down.
3132 * Note that this code is tricky, and has many complications to resolve
3133 * deadlock or inconsistant data situations. Tread lightly!!!
3134 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3135 * the caller. Calling this code willy nilly can result in the loss of
3136 * data.
3138 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
3139 * B_CACHE for the non-VMIO case.
3141 * This routine does not need to be called from a critical section but you
3142 * must own the buffer.
3144 void
3145 allocbuf(struct buf *bp, int size)
3147 int newbsize, mbsize;
3148 int i;
3150 if (BUF_REFCNT(bp) == 0)
3151 panic("allocbuf: buffer not busy");
3153 if (bp->b_kvasize < size)
3154 panic("allocbuf: buffer too small");
3156 if ((bp->b_flags & B_VMIO) == 0) {
3157 caddr_t origbuf;
3158 int origbufsize;
3160 * Just get anonymous memory from the kernel. Don't
3161 * mess with B_CACHE.
3163 mbsize = roundup2(size, DEV_BSIZE);
3164 if (bp->b_flags & B_MALLOC)
3165 newbsize = mbsize;
3166 else
3167 newbsize = round_page(size);
3169 if (newbsize < bp->b_bufsize) {
3171 * Malloced buffers are not shrunk
3173 if (bp->b_flags & B_MALLOC) {
3174 if (newbsize) {
3175 bp->b_bcount = size;
3176 } else {
3177 kfree(bp->b_data, M_BIOBUF);
3178 if (bp->b_bufsize) {
3179 atomic_subtract_long(&bufmallocspace, bp->b_bufsize);
3180 bp->b_bufsize = 0;
3181 bufspacewakeup();
3183 bp->b_data = bp->b_kvabase;
3184 bp->b_bcount = 0;
3185 bp->b_flags &= ~B_MALLOC;
3187 return;
3189 vm_hold_free_pages(
3191 (vm_offset_t) bp->b_data + newbsize,
3192 (vm_offset_t) bp->b_data + bp->b_bufsize);
3193 } else if (newbsize > bp->b_bufsize) {
3195 * We only use malloced memory on the first allocation.
3196 * and revert to page-allocated memory when the buffer
3197 * grows.
3199 if ((bufmallocspace < maxbufmallocspace) &&
3200 (bp->b_bufsize == 0) &&
3201 (mbsize <= PAGE_SIZE/2)) {
3203 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3204 bp->b_bufsize = mbsize;
3205 bp->b_bcount = size;
3206 bp->b_flags |= B_MALLOC;
3207 atomic_add_long(&bufmallocspace, mbsize);
3208 return;
3210 origbuf = NULL;
3211 origbufsize = 0;
3213 * If the buffer is growing on its other-than-first
3214 * allocation, then we revert to the page-allocation
3215 * scheme.
3217 if (bp->b_flags & B_MALLOC) {
3218 origbuf = bp->b_data;
3219 origbufsize = bp->b_bufsize;
3220 bp->b_data = bp->b_kvabase;
3221 if (bp->b_bufsize) {
3222 atomic_subtract_long(&bufmallocspace,
3223 bp->b_bufsize);
3224 bp->b_bufsize = 0;
3225 bufspacewakeup();
3227 bp->b_flags &= ~B_MALLOC;
3228 newbsize = round_page(newbsize);
3230 vm_hold_load_pages(
3232 (vm_offset_t) bp->b_data + bp->b_bufsize,
3233 (vm_offset_t) bp->b_data + newbsize);
3234 if (origbuf) {
3235 bcopy(origbuf, bp->b_data, origbufsize);
3236 kfree(origbuf, M_BIOBUF);
3239 } else {
3240 vm_page_t m;
3241 int desiredpages;
3243 newbsize = roundup2(size, DEV_BSIZE);
3244 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3245 newbsize + PAGE_MASK) >> PAGE_SHIFT;
3246 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3248 if (bp->b_flags & B_MALLOC)
3249 panic("allocbuf: VMIO buffer can't be malloced");
3251 * Set B_CACHE initially if buffer is 0 length or will become
3252 * 0-length.
3254 if (size == 0 || bp->b_bufsize == 0)
3255 bp->b_flags |= B_CACHE;
3257 if (newbsize < bp->b_bufsize) {
3259 * DEV_BSIZE aligned new buffer size is less then the
3260 * DEV_BSIZE aligned existing buffer size. Figure out
3261 * if we have to remove any pages.
3263 if (desiredpages < bp->b_xio.xio_npages) {
3264 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3266 * the page is not freed here -- it
3267 * is the responsibility of
3268 * vnode_pager_setsize
3270 m = bp->b_xio.xio_pages[i];
3271 KASSERT(m != bogus_page,
3272 ("allocbuf: bogus page found"));
3273 vm_page_busy_wait(m, TRUE, "biodep");
3274 bp->b_xio.xio_pages[i] = NULL;
3275 vm_page_unwire(m, 0);
3276 vm_page_wakeup(m);
3278 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3279 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3280 bp->b_xio.xio_npages = desiredpages;
3282 } else if (size > bp->b_bcount) {
3284 * We are growing the buffer, possibly in a
3285 * byte-granular fashion.
3287 struct vnode *vp;
3288 vm_object_t obj;
3289 vm_offset_t toff;
3290 vm_offset_t tinc;
3293 * Step 1, bring in the VM pages from the object,
3294 * allocating them if necessary. We must clear
3295 * B_CACHE if these pages are not valid for the
3296 * range covered by the buffer.
3298 vp = bp->b_vp;
3299 obj = vp->v_object;
3301 vm_object_hold(obj);
3302 while (bp->b_xio.xio_npages < desiredpages) {
3303 vm_page_t m;
3304 vm_pindex_t pi;
3305 int error;
3307 pi = OFF_TO_IDX(bp->b_loffset) +
3308 bp->b_xio.xio_npages;
3311 * Blocking on m->busy might lead to a
3312 * deadlock:
3314 * vm_fault->getpages->cluster_read->allocbuf
3316 m = vm_page_lookup_busy_try(obj, pi, FALSE,
3317 &error);
3318 if (error) {
3319 vm_page_sleep_busy(m, FALSE, "pgtblk");
3320 continue;
3322 if (m == NULL) {
3324 * note: must allocate system pages
3325 * since blocking here could intefere
3326 * with paging I/O, no matter which
3327 * process we are.
3329 m = bio_page_alloc(bp, obj, pi, desiredpages - bp->b_xio.xio_npages);
3330 if (m) {
3331 vm_page_wire(m);
3332 vm_page_wakeup(m);
3333 bp->b_flags &= ~B_CACHE;
3334 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3335 ++bp->b_xio.xio_npages;
3337 continue;
3341 * We found a page and were able to busy it.
3343 vm_page_wire(m);
3344 vm_page_wakeup(m);
3345 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3346 ++bp->b_xio.xio_npages;
3347 if (bp->b_act_count < m->act_count)
3348 bp->b_act_count = m->act_count;
3350 vm_object_drop(obj);
3353 * Step 2. We've loaded the pages into the buffer,
3354 * we have to figure out if we can still have B_CACHE
3355 * set. Note that B_CACHE is set according to the
3356 * byte-granular range ( bcount and size ), not the
3357 * aligned range ( newbsize ).
3359 * The VM test is against m->valid, which is DEV_BSIZE
3360 * aligned. Needless to say, the validity of the data
3361 * needs to also be DEV_BSIZE aligned. Note that this
3362 * fails with NFS if the server or some other client
3363 * extends the file's EOF. If our buffer is resized,
3364 * B_CACHE may remain set! XXX
3367 toff = bp->b_bcount;
3368 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3370 while ((bp->b_flags & B_CACHE) && toff < size) {
3371 vm_pindex_t pi;
3373 if (tinc > (size - toff))
3374 tinc = size - toff;
3376 pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3377 PAGE_SHIFT;
3379 vfs_buf_test_cache(
3380 bp,
3381 bp->b_loffset,
3382 toff,
3383 tinc,
3384 bp->b_xio.xio_pages[pi]
3386 toff += tinc;
3387 tinc = PAGE_SIZE;
3391 * Step 3, fixup the KVM pmap. Remember that
3392 * bp->b_data is relative to bp->b_loffset, but
3393 * bp->b_loffset may be offset into the first page.
3395 bp->b_data = (caddr_t)
3396 trunc_page((vm_offset_t)bp->b_data);
3397 pmap_qenter((vm_offset_t)bp->b_data,
3398 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3399 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3400 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3402 atomic_add_long(&bufspace, newbsize - bp->b_bufsize);
3405 /* adjust space use on already-dirty buffer */
3406 if (bp->b_flags & B_DELWRI) {
3407 /* dirtykvaspace unchanged */
3408 atomic_add_long(&dirtybufspace, newbsize - bp->b_bufsize);
3409 if (bp->b_flags & B_HEAVY) {
3410 atomic_add_long(&dirtybufspacehw,
3411 newbsize - bp->b_bufsize);
3414 bp->b_bufsize = newbsize; /* actual buffer allocation */
3415 bp->b_bcount = size; /* requested buffer size */
3416 bufspacewakeup();
3420 * repurposebuf() (VMIO only)
3422 * This performs a function similar to allocbuf() but the passed-in buffer
3423 * may contain some detrius from its previous incarnation in the form of
3424 * the page array. We try to repurpose the underlying pages.
3426 * This code is nominally called to recycle buffer cache buffers AND (if
3427 * they are clean) to also recycle their underlying pages. We currently
3428 * can only recycle unmapped, clean pages. The code is called when buffer
3429 * cache 'newbuf' bandwidth exceeds (bufrate_cache) bytes per second.
3431 static
3432 void
3433 repurposebuf(struct buf *bp, int size)
3435 int newbsize;
3436 int desiredpages;
3437 vm_offset_t toff;
3438 vm_offset_t tinc;
3439 vm_object_t obj;
3440 vm_page_t m;
3441 int i;
3442 int must_reenter = 0;
3443 long deaccumulate = 0;
3446 KKASSERT((bp->b_flags & (B_VMIO | B_DELWRI | B_MALLOC)) == B_VMIO);
3447 if (BUF_REFCNT(bp) == 0)
3448 panic("repurposebuf: buffer not busy");
3450 if (bp->b_kvasize < size)
3451 panic("repurposebuf: buffer too small");
3453 newbsize = roundup2(size, DEV_BSIZE);
3454 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3455 newbsize + PAGE_MASK) >> PAGE_SHIFT;
3456 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3459 * Buffer starts out 0-length with B_CACHE set. We will clear
3460 * As we check the backing store we will clear B_CACHE if necessary.
3462 atomic_add_long(&bufspace, newbsize - bp->b_bufsize);
3463 bp->b_bufsize = 0;
3464 bp->b_bcount = 0;
3465 bp->b_flags |= B_CACHE;
3467 if (desiredpages) {
3468 obj = bp->b_vp->v_object;
3469 vm_object_hold(obj);
3470 } else {
3471 obj = NULL;
3475 * Step 1, bring in the VM pages from the object, repurposing or
3476 * allocating them if necessary. We must clear B_CACHE if these
3477 * pages are not valid for the range covered by the buffer.
3479 * We are growing the buffer, possibly in a byte-granular fashion.
3481 for (i = 0; i < desiredpages; ++i) {
3482 vm_pindex_t pi;
3483 int error;
3484 int iswired;
3486 pi = OFF_TO_IDX(bp->b_loffset) + i;
3489 * Blocking on m->busy might lead to a
3490 * deadlock:
3492 * vm_fault->getpages->cluster_read->allocbuf
3494 m = (i < bp->b_xio.xio_npages) ? bp->b_xio.xio_pages[i] : NULL;
3495 bp->b_xio.xio_pages[i] = NULL;
3496 KASSERT(m != bogus_page, ("repurposebuf: bogus page found"));
3497 m = vm_page_repurpose(obj, pi, FALSE, &error, m,
3498 &must_reenter, &iswired);
3500 if (error) {
3501 vm_page_sleep_busy(m, FALSE, "pgtblk");
3502 --i; /* retry */
3503 continue;
3505 if (m == NULL) {
3507 * note: must allocate system pages
3508 * since blocking here could intefere
3509 * with paging I/O, no matter which
3510 * process we are.
3512 must_reenter = 1;
3513 m = bio_page_alloc(bp, obj, pi, desiredpages - i);
3514 if (m) {
3515 vm_page_wire(m);
3516 vm_page_wakeup(m);
3517 bp->b_flags &= ~B_CACHE;
3518 bp->b_xio.xio_pages[i] = m;
3519 if (m->valid)
3520 deaccumulate += PAGE_SIZE;
3521 } else {
3522 --i; /* retry */
3524 continue;
3526 if (m->valid)
3527 deaccumulate += PAGE_SIZE;
3530 * We found a page and were able to busy it.
3532 if (!iswired)
3533 vm_page_wire(m);
3534 vm_page_wakeup(m);
3535 bp->b_xio.xio_pages[i] = m;
3536 if (bp->b_act_count < m->act_count)
3537 bp->b_act_count = m->act_count;
3539 if (desiredpages)
3540 vm_object_drop(obj);
3543 * Even though its a new buffer, any pages already in the VM
3544 * page cache should not count towards I/O bandwidth.
3546 if (deaccumulate)
3547 atomic_add_long(&bufcache_bw_accum, -deaccumulate);
3550 * Clean-up any loose pages.
3552 while (i < bp->b_xio.xio_npages) {
3553 m = bp->b_xio.xio_pages[i];
3554 KASSERT(m != bogus_page, ("repurposebuf: bogus page found"));
3555 vm_page_busy_wait(m, TRUE, "biodep");
3556 bp->b_xio.xio_pages[i] = NULL;
3557 vm_page_unwire(m, 0);
3558 vm_page_wakeup(m);
3559 ++i;
3561 if (desiredpages < bp->b_xio.xio_npages) {
3562 pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3563 (desiredpages << PAGE_SHIFT),
3564 (bp->b_xio.xio_npages - desiredpages));
3566 bp->b_xio.xio_npages = desiredpages;
3569 * Step 2. We've loaded the pages into the buffer,
3570 * we have to figure out if we can still have B_CACHE
3571 * set. Note that B_CACHE is set according to the
3572 * byte-granular range ( bcount and size ), not the
3573 * aligned range ( newbsize ).
3575 * The VM test is against m->valid, which is DEV_BSIZE
3576 * aligned. Needless to say, the validity of the data
3577 * needs to also be DEV_BSIZE aligned. Note that this
3578 * fails with NFS if the server or some other client
3579 * extends the file's EOF. If our buffer is resized,
3580 * B_CACHE may remain set! XXX
3582 toff = bp->b_bcount;
3583 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3585 while ((bp->b_flags & B_CACHE) && toff < size) {
3586 vm_pindex_t pi;
3588 if (tinc > (size - toff))
3589 tinc = size - toff;
3591 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3593 vfs_buf_test_cache(bp, bp->b_loffset, toff,
3594 tinc, bp->b_xio.xio_pages[pi]);
3595 toff += tinc;
3596 tinc = PAGE_SIZE;
3600 * Step 3, fixup the KVM pmap. Remember that
3601 * bp->b_data is relative to bp->b_loffset, but
3602 * bp->b_loffset may be offset into the first page.
3604 bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
3605 if (must_reenter) {
3606 pmap_qenter((vm_offset_t)bp->b_data,
3607 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3608 } else {
3609 atomic_add_long(&repurposedspace, newbsize);
3611 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3612 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3614 if (newbsize < bp->b_bufsize)
3615 bufspacewakeup();
3616 bp->b_bufsize = newbsize; /* actual buffer allocation */
3617 bp->b_bcount = size; /* requested buffer size */
3621 * biowait:
3623 * Wait for buffer I/O completion, returning error status. B_EINTR
3624 * is converted into an EINTR error but not cleared (since a chain
3625 * of biowait() calls may occur).
3627 * On return bpdone() will have been called but the buffer will remain
3628 * locked and will not have been brelse()'d.
3630 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is
3631 * likely still in progress on return.
3633 * NOTE! This operation is on a BIO, not a BUF.
3635 * NOTE! BIO_DONE is cleared by vn_strategy()
3637 static __inline int
3638 _biowait(struct bio *bio, const char *wmesg, int to)
3640 struct buf *bp = bio->bio_buf;
3641 u_int32_t flags;
3642 u_int32_t nflags;
3643 int error;
3645 KKASSERT(bio == &bp->b_bio1);
3646 for (;;) {
3647 flags = bio->bio_flags;
3648 if (flags & BIO_DONE)
3649 break;
3650 nflags = flags | BIO_WANT;
3651 tsleep_interlock(bio, 0);
3652 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3653 if (wmesg)
3654 error = tsleep(bio, PINTERLOCKED, wmesg, to);
3655 else if (bp->b_cmd == BUF_CMD_READ)
3656 error = tsleep(bio, PINTERLOCKED, "biord", to);
3657 else
3658 error = tsleep(bio, PINTERLOCKED, "biowr", to);
3659 if (error) {
3660 kprintf("tsleep error biowait %d\n", error);
3661 return (error);
3667 * Finish up.
3669 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3670 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3671 if (bp->b_flags & B_EINTR)
3672 return (EINTR);
3673 if (bp->b_flags & B_ERROR)
3674 return (bp->b_error ? bp->b_error : EIO);
3675 return (0);
3679 biowait(struct bio *bio, const char *wmesg)
3681 return(_biowait(bio, wmesg, 0));
3685 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3687 return(_biowait(bio, wmesg, to));
3691 * This associates a tracking count with an I/O. vn_strategy() and
3692 * dev_dstrategy() do this automatically but there are a few cases
3693 * where a vnode or device layer is bypassed when a block translation
3694 * is cached. In such cases bio_start_transaction() may be called on
3695 * the bypassed layers so the system gets an I/O in progress indication
3696 * for those higher layers.
3698 void
3699 bio_start_transaction(struct bio *bio, struct bio_track *track)
3701 bio->bio_track = track;
3702 bio_track_ref(track);
3703 dsched_buf_enter(bio->bio_buf); /* might stack */
3707 * Initiate I/O on a vnode.
3709 * SWAPCACHE OPERATION:
3711 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately
3712 * devfs also uses b_vp for fake buffers so we also have to check
3713 * that B_PAGING is 0. In this case the passed 'vp' is probably the
3714 * underlying block device. The swap assignments are related to the
3715 * buffer cache buffer's b_vp, not the passed vp.
3717 * The passed vp == bp->b_vp only in the case where the strategy call
3718 * is made on the vp itself for its own buffers (a regular file or
3719 * block device vp). The filesystem usually then re-calls vn_strategy()
3720 * after translating the request to an underlying device.
3722 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3723 * underlying buffer cache buffers.
3725 * We can only deal with page-aligned buffers at the moment, because
3726 * we can't tell what the real dirty state for pages straddling a buffer
3727 * are.
3729 * In order to call swap_pager_strategy() we must provide the VM object
3730 * and base offset for the underlying buffer cache pages so it can find
3731 * the swap blocks.
3733 void
3734 vn_strategy(struct vnode *vp, struct bio *bio)
3736 struct bio_track *track;
3737 struct buf *bp = bio->bio_buf;
3739 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3742 * Set when an I/O is issued on the bp. Cleared by consumers
3743 * (aka HAMMER), allowing the consumer to determine if I/O had
3744 * actually occurred.
3746 bp->b_flags |= B_IOISSUED;
3749 * Handle the swap cache intercept.
3751 if (vn_cache_strategy(vp, bio))
3752 return;
3755 * Otherwise do the operation through the filesystem
3757 if (bp->b_cmd == BUF_CMD_READ)
3758 track = &vp->v_track_read;
3759 else
3760 track = &vp->v_track_write;
3761 KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3762 bio->bio_track = track;
3763 bio_track_ref(track);
3764 dsched_buf_enter(bp); /* might stack */
3765 vop_strategy(*vp->v_ops, vp, bio);
3768 static void vn_cache_strategy_callback(struct bio *bio);
3771 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3773 struct buf *bp = bio->bio_buf;
3774 struct bio *nbio;
3775 vm_object_t object;
3776 vm_page_t m;
3777 int i;
3780 * Stop using swapcache if paniced, dumping, or dumped
3782 if (panicstr || dumping)
3783 return(0);
3786 * Is this buffer cache buffer suitable for reading from
3787 * the swap cache?
3789 if (vm_swapcache_read_enable == 0 ||
3790 bp->b_cmd != BUF_CMD_READ ||
3791 ((bp->b_flags & B_CLUSTER) == 0 &&
3792 (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3793 ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3794 (bp->b_bcount & PAGE_MASK) != 0) {
3795 return(0);
3799 * Figure out the original VM object (it will match the underlying
3800 * VM pages). Note that swap cached data uses page indices relative
3801 * to that object, not relative to bio->bio_offset.
3803 if (bp->b_flags & B_CLUSTER)
3804 object = vp->v_object;
3805 else
3806 object = bp->b_vp->v_object;
3809 * In order to be able to use the swap cache all underlying VM
3810 * pages must be marked as such, and we can't have any bogus pages.
3812 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3813 m = bp->b_xio.xio_pages[i];
3814 if ((m->flags & PG_SWAPPED) == 0)
3815 break;
3816 if (m == bogus_page)
3817 break;
3821 * If we are good then issue the I/O using swap_pager_strategy().
3823 * We can only do this if the buffer actually supports object-backed
3824 * I/O. If it doesn't npages will be 0.
3826 if (i && i == bp->b_xio.xio_npages) {
3827 m = bp->b_xio.xio_pages[0];
3828 nbio = push_bio(bio);
3829 nbio->bio_done = vn_cache_strategy_callback;
3830 nbio->bio_offset = ptoa(m->pindex);
3831 KKASSERT(m->object == object);
3832 swap_pager_strategy(object, nbio);
3833 return(1);
3835 return(0);
3839 * This is a bit of a hack but since the vn_cache_strategy() function can
3840 * override a VFS's strategy function we must make sure that the bio, which
3841 * is probably bio2, doesn't leak an unexpected offset value back to the
3842 * filesystem. The filesystem (e.g. UFS) might otherwise assume that the
3843 * bio went through its own file strategy function and the the bio2 offset
3844 * is a cached disk offset when, in fact, it isn't.
3846 static void
3847 vn_cache_strategy_callback(struct bio *bio)
3849 bio->bio_offset = NOOFFSET;
3850 biodone(pop_bio(bio));
3854 * bpdone:
3856 * Finish I/O on a buffer after all BIOs have been processed.
3857 * Called when the bio chain is exhausted or by biowait. If called
3858 * by biowait, elseit is typically 0.
3860 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3861 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3862 * assuming B_INVAL is clear.
3864 * For the VMIO case, we set B_CACHE if the op was a read and no
3865 * read error occured, or if the op was a write. B_CACHE is never
3866 * set if the buffer is invalid or otherwise uncacheable.
3868 * bpdone does not mess with B_INVAL, allowing the I/O routine or the
3869 * initiator to leave B_INVAL set to brelse the buffer out of existance
3870 * in the biodone routine.
3872 * bpdone is responsible for calling bundirty() on the buffer after a
3873 * successful write. We previously did this prior to initiating the
3874 * write under the assumption that the buffer might be dirtied again
3875 * while the write was in progress, however doing it before-hand creates
3876 * a race condition prior to the call to vn_strategy() where the
3877 * filesystem may not be aware that a dirty buffer is present.
3878 * It should not be possible for the buffer or its underlying pages to
3879 * be redirtied prior to bpdone()'s unbusying of the underlying VM
3880 * pages.
3882 void
3883 bpdone(struct buf *bp, int elseit)
3885 buf_cmd_t cmd;
3887 KASSERT(BUF_REFCNTNB(bp) > 0,
3888 ("bpdone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3889 KASSERT(bp->b_cmd != BUF_CMD_DONE,
3890 ("bpdone: bp %p already done!", bp));
3893 * No more BIOs are left. All completion functions have been dealt
3894 * with, now we clean up the buffer.
3896 cmd = bp->b_cmd;
3897 bp->b_cmd = BUF_CMD_DONE;
3900 * Only reads and writes are processed past this point.
3902 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3903 if (cmd == BUF_CMD_FREEBLKS)
3904 bp->b_flags |= B_NOCACHE;
3905 if (elseit)
3906 brelse(bp);
3907 return;
3911 * A failed write must re-dirty the buffer unless B_INVAL
3912 * was set.
3914 * A successful write must clear the dirty flag. This is done after
3915 * the write to ensure that the buffer remains on the vnode's dirty
3916 * list for filesystem interlocks / checks until the write is actually
3917 * complete. HAMMER2 is sensitive to this issue.
3919 * Only applicable to normal buffers (with VPs). vinum buffers may
3920 * not have a vp.
3922 * Must be done prior to calling buf_complete() as the callback might
3923 * re-dirty the buffer.
3925 if (cmd == BUF_CMD_WRITE) {
3926 if ((bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3927 bp->b_flags &= ~B_NOCACHE;
3928 if (bp->b_vp)
3929 bdirty(bp);
3930 } else {
3931 if (bp->b_vp)
3932 bundirty(bp);
3937 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3938 * a lot worse. XXX - move this above the clearing of b_cmd
3940 if (LIST_FIRST(&bp->b_dep) != NULL)
3941 buf_complete(bp);
3943 if (bp->b_flags & B_VMIO) {
3944 int i;
3945 vm_ooffset_t foff;
3946 vm_page_t m;
3947 vm_object_t obj;
3948 int iosize;
3949 struct vnode *vp = bp->b_vp;
3951 obj = vp->v_object;
3953 #if defined(VFS_BIO_DEBUG)
3954 if (vp->v_auxrefs == 0)
3955 panic("bpdone: zero vnode hold count");
3956 if ((vp->v_flag & VOBJBUF) == 0)
3957 panic("bpdone: vnode is not setup for merged cache");
3958 #endif
3960 foff = bp->b_loffset;
3961 KASSERT(foff != NOOFFSET, ("bpdone: no buffer offset"));
3962 KASSERT(obj != NULL, ("bpdone: missing VM object"));
3964 #if defined(VFS_BIO_DEBUG)
3965 if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3966 kprintf("bpdone: paging in progress(%d) < "
3967 "bp->b_xio.xio_npages(%d)\n",
3968 obj->paging_in_progress,
3969 bp->b_xio.xio_npages);
3971 #endif
3974 * Set B_CACHE if the op was a normal read and no error
3975 * occured. B_CACHE is set for writes in the b*write()
3976 * routines.
3978 iosize = bp->b_bcount - bp->b_resid;
3979 if (cmd == BUF_CMD_READ &&
3980 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3981 bp->b_flags |= B_CACHE;
3984 vm_object_hold(obj);
3985 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3986 int resid;
3987 int isbogus;
3989 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3990 if (resid > iosize)
3991 resid = iosize;
3994 * cleanup bogus pages, restoring the originals. Since
3995 * the originals should still be wired, we don't have
3996 * to worry about interrupt/freeing races destroying
3997 * the VM object association.
3999 m = bp->b_xio.xio_pages[i];
4000 if (m == bogus_page) {
4001 if ((bp->b_flags & B_HASBOGUS) == 0)
4002 panic("bpdone: bp %p corrupt bogus", bp);
4003 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
4004 if (m == NULL)
4005 panic("bpdone: page disappeared");
4006 bp->b_xio.xio_pages[i] = m;
4007 isbogus = 1;
4008 } else {
4009 isbogus = 0;
4011 #if defined(VFS_BIO_DEBUG)
4012 if (OFF_TO_IDX(foff) != m->pindex) {
4013 kprintf("bpdone: foff(%lu)/m->pindex(%ld) "
4014 "mismatch\n",
4015 (unsigned long)foff, (long)m->pindex);
4017 #endif
4020 * In the write case, the valid and clean bits are
4021 * already changed correctly (see bdwrite()), so we
4022 * only need to do this here in the read case.
4024 vm_page_busy_wait(m, FALSE, "bpdpgw");
4025 if (cmd == BUF_CMD_READ && isbogus == 0 && resid > 0)
4026 vfs_clean_one_page(bp, i, m);
4029 * when debugging new filesystems or buffer I/O
4030 * methods, this is the most common error that pops
4031 * up. if you see this, you have not set the page
4032 * busy flag correctly!!!
4034 if (m->busy == 0) {
4035 kprintf("bpdone: page busy < 0, "
4036 "pindex: %d, foff: 0x(%x,%x), "
4037 "resid: %d, index: %d\n",
4038 (int) m->pindex, (int)(foff >> 32),
4039 (int) foff & 0xffffffff, resid, i);
4040 if (!vn_isdisk(vp, NULL))
4041 kprintf(" iosize: %ld, loffset: %lld, "
4042 "flags: 0x%08x, npages: %d\n",
4043 bp->b_vp->v_mount->mnt_stat.f_iosize,
4044 (long long)bp->b_loffset,
4045 bp->b_flags, bp->b_xio.xio_npages);
4046 else
4047 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
4048 (long long)bp->b_loffset,
4049 bp->b_flags, bp->b_xio.xio_npages);
4050 kprintf(" valid: 0x%x, dirty: 0x%x, "
4051 "wired: %d\n",
4052 m->valid, m->dirty,
4053 m->wire_count);
4054 panic("bpdone: page busy < 0");
4056 vm_page_io_finish(m);
4057 vm_page_wakeup(m);
4058 vm_object_pip_wakeup(obj);
4059 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4060 iosize -= resid;
4062 if (bp->b_flags & B_HASBOGUS) {
4063 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4064 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4065 bp->b_flags &= ~B_HASBOGUS;
4067 vm_object_drop(obj);
4071 * Finish up by releasing the buffer. There are no more synchronous
4072 * or asynchronous completions, those were handled by bio_done
4073 * callbacks.
4075 if (elseit) {
4076 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
4077 brelse(bp);
4078 else
4079 bqrelse(bp);
4084 * Normal biodone.
4086 void
4087 biodone(struct bio *bio)
4089 struct buf *bp = bio->bio_buf;
4091 runningbufwakeup(bp);
4094 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
4096 while (bio) {
4097 biodone_t *done_func;
4098 struct bio_track *track;
4101 * BIO tracking. Most but not all BIOs are tracked.
4103 if ((track = bio->bio_track) != NULL) {
4104 bio_track_rel(track);
4105 bio->bio_track = NULL;
4109 * A bio_done function terminates the loop. The function
4110 * will be responsible for any further chaining and/or
4111 * buffer management.
4113 * WARNING! The done function can deallocate the buffer!
4115 if ((done_func = bio->bio_done) != NULL) {
4116 bio->bio_done = NULL;
4117 done_func(bio);
4118 return;
4120 bio = bio->bio_prev;
4124 * If we've run out of bio's do normal [a]synchronous completion.
4126 bpdone(bp, 1);
4130 * Synchronous biodone - this terminates a synchronous BIO.
4132 * bpdone() is called with elseit=FALSE, leaving the buffer completed
4133 * but still locked. The caller must brelse() the buffer after waiting
4134 * for completion.
4136 void
4137 biodone_sync(struct bio *bio)
4139 struct buf *bp = bio->bio_buf;
4140 int flags;
4141 int nflags;
4143 KKASSERT(bio == &bp->b_bio1);
4144 bpdone(bp, 0);
4146 for (;;) {
4147 flags = bio->bio_flags;
4148 nflags = (flags | BIO_DONE) & ~BIO_WANT;
4150 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
4151 if (flags & BIO_WANT)
4152 wakeup(bio);
4153 break;
4159 * vfs_unbusy_pages:
4161 * This routine is called in lieu of iodone in the case of
4162 * incomplete I/O. This keeps the busy status for pages
4163 * consistant.
4165 void
4166 vfs_unbusy_pages(struct buf *bp)
4168 int i;
4170 runningbufwakeup(bp);
4172 if (bp->b_flags & B_VMIO) {
4173 struct vnode *vp = bp->b_vp;
4174 vm_object_t obj;
4176 obj = vp->v_object;
4177 vm_object_hold(obj);
4179 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4180 vm_page_t m = bp->b_xio.xio_pages[i];
4183 * When restoring bogus changes the original pages
4184 * should still be wired, so we are in no danger of
4185 * losing the object association and do not need
4186 * critical section protection particularly.
4188 if (m == bogus_page) {
4189 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
4190 if (!m) {
4191 panic("vfs_unbusy_pages: page missing");
4193 bp->b_xio.xio_pages[i] = m;
4195 vm_page_busy_wait(m, FALSE, "bpdpgw");
4196 vm_page_io_finish(m);
4197 vm_page_wakeup(m);
4198 vm_object_pip_wakeup(obj);
4200 if (bp->b_flags & B_HASBOGUS) {
4201 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4202 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4203 bp->b_flags &= ~B_HASBOGUS;
4205 vm_object_drop(obj);
4210 * vfs_busy_pages:
4212 * This routine is called before a device strategy routine.
4213 * It is used to tell the VM system that paging I/O is in
4214 * progress, and treat the pages associated with the buffer
4215 * almost as being PG_BUSY. Also the object 'paging_in_progress'
4216 * flag is handled to make sure that the object doesn't become
4217 * inconsistant.
4219 * Since I/O has not been initiated yet, certain buffer flags
4220 * such as B_ERROR or B_INVAL may be in an inconsistant state
4221 * and should be ignored.
4223 void
4224 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4226 int i, bogus;
4227 struct lwp *lp = curthread->td_lwp;
4230 * The buffer's I/O command must already be set. If reading,
4231 * B_CACHE must be 0 (double check against callers only doing
4232 * I/O when B_CACHE is 0).
4234 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4235 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4237 if (bp->b_flags & B_VMIO) {
4238 vm_object_t obj;
4240 obj = vp->v_object;
4241 KASSERT(bp->b_loffset != NOOFFSET,
4242 ("vfs_busy_pages: no buffer offset"));
4245 * Busy all the pages. We have to busy them all at once
4246 * to avoid deadlocks.
4248 retry:
4249 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4250 vm_page_t m = bp->b_xio.xio_pages[i];
4252 if (vm_page_busy_try(m, FALSE)) {
4253 vm_page_sleep_busy(m, FALSE, "vbpage");
4254 while (--i >= 0)
4255 vm_page_wakeup(bp->b_xio.xio_pages[i]);
4256 goto retry;
4261 * Setup for I/O, soft-busy the page right now because
4262 * the next loop may block.
4264 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4265 vm_page_t m = bp->b_xio.xio_pages[i];
4267 if ((bp->b_flags & B_CLUSTER) == 0) {
4268 vm_object_pip_add(obj, 1);
4269 vm_page_io_start(m);
4274 * Adjust protections for I/O and do bogus-page mapping.
4275 * Assume that vm_page_protect() can block (it can block
4276 * if VM_PROT_NONE, don't take any chances regardless).
4278 * In particular note that for writes we must incorporate
4279 * page dirtyness from the VM system into the buffer's
4280 * dirty range.
4282 * For reads we theoretically must incorporate page dirtyness
4283 * from the VM system to determine if the page needs bogus
4284 * replacement, but we shortcut the test by simply checking
4285 * that all m->valid bits are set, indicating that the page
4286 * is fully valid and does not need to be re-read. For any
4287 * VM system dirtyness the page will also be fully valid
4288 * since it was mapped at one point.
4290 bogus = 0;
4291 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4292 vm_page_t m = bp->b_xio.xio_pages[i];
4294 if (bp->b_cmd == BUF_CMD_WRITE) {
4296 * When readying a vnode-backed buffer for
4297 * a write we must zero-fill any invalid
4298 * portions of the backing VM pages, mark
4299 * it valid and clear related dirty bits.
4301 * vfs_clean_one_page() incorporates any
4302 * VM dirtyness and updates the b_dirtyoff
4303 * range (after we've made the page RO).
4305 * It is also expected that the pmap modified
4306 * bit has already been cleared by the
4307 * vm_page_protect(). We may not be able
4308 * to clear all dirty bits for a page if it
4309 * was also memory mapped (NFS).
4311 * Finally be sure to unassign any swap-cache
4312 * backing store as it is now stale.
4314 vm_page_protect(m, VM_PROT_READ);
4315 vfs_clean_one_page(bp, i, m);
4316 swap_pager_unswapped(m);
4317 } else if (m->valid == VM_PAGE_BITS_ALL) {
4319 * When readying a vnode-backed buffer for
4320 * read we must replace any dirty pages with
4321 * a bogus page so dirty data is not destroyed
4322 * when filling gaps.
4324 * To avoid testing whether the page is
4325 * dirty we instead test that the page was
4326 * at some point mapped (m->valid fully
4327 * valid) with the understanding that
4328 * this also covers the dirty case.
4330 bp->b_xio.xio_pages[i] = bogus_page;
4331 bp->b_flags |= B_HASBOGUS;
4332 bogus++;
4333 } else if (m->valid & m->dirty) {
4335 * This case should not occur as partial
4336 * dirtyment can only happen if the buffer
4337 * is B_CACHE, and this code is not entered
4338 * if the buffer is B_CACHE.
4340 kprintf("Warning: vfs_busy_pages - page not "
4341 "fully valid! loff=%jx bpf=%08x "
4342 "idx=%d val=%02x dir=%02x\n",
4343 (uintmax_t)bp->b_loffset, bp->b_flags,
4344 i, m->valid, m->dirty);
4345 vm_page_protect(m, VM_PROT_NONE);
4346 } else {
4348 * The page is not valid and can be made
4349 * part of the read.
4351 vm_page_protect(m, VM_PROT_NONE);
4353 vm_page_wakeup(m);
4355 if (bogus) {
4356 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4357 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4362 * This is the easiest place to put the process accounting for the I/O
4363 * for now.
4365 if (lp != NULL) {
4366 if (bp->b_cmd == BUF_CMD_READ)
4367 lp->lwp_ru.ru_inblock++;
4368 else
4369 lp->lwp_ru.ru_oublock++;
4374 * Tell the VM system that the pages associated with this buffer
4375 * are clean. This is used for delayed writes where the data is
4376 * going to go to disk eventually without additional VM intevention.
4378 * NOTE: While we only really need to clean through to b_bcount, we
4379 * just go ahead and clean through to b_bufsize.
4381 static void
4382 vfs_clean_pages(struct buf *bp)
4384 vm_page_t m;
4385 int i;
4387 if ((bp->b_flags & B_VMIO) == 0)
4388 return;
4390 KASSERT(bp->b_loffset != NOOFFSET,
4391 ("vfs_clean_pages: no buffer offset"));
4393 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4394 m = bp->b_xio.xio_pages[i];
4395 vfs_clean_one_page(bp, i, m);
4400 * vfs_clean_one_page:
4402 * Set the valid bits and clear the dirty bits in a page within a
4403 * buffer. The range is restricted to the buffer's size and the
4404 * buffer's logical offset might index into the first page.
4406 * The caller has busied or soft-busied the page and it is not mapped,
4407 * test and incorporate the dirty bits into b_dirtyoff/end before
4408 * clearing them. Note that we need to clear the pmap modified bits
4409 * after determining the the page was dirty, vm_page_set_validclean()
4410 * does not do it for us.
4412 * This routine is typically called after a read completes (dirty should
4413 * be zero in that case as we are not called on bogus-replace pages),
4414 * or before a write is initiated.
4416 static void
4417 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4419 int bcount;
4420 int xoff;
4421 int soff;
4422 int eoff;
4425 * Calculate offset range within the page but relative to buffer's
4426 * loffset. loffset might be offset into the first page.
4428 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
4429 bcount = bp->b_bcount + xoff; /* offset adjusted */
4431 if (pageno == 0) {
4432 soff = xoff;
4433 eoff = PAGE_SIZE;
4434 } else {
4435 soff = (pageno << PAGE_SHIFT);
4436 eoff = soff + PAGE_SIZE;
4438 if (eoff > bcount)
4439 eoff = bcount;
4440 if (soff >= eoff)
4441 return;
4444 * Test dirty bits and adjust b_dirtyoff/end.
4446 * If dirty pages are incorporated into the bp any prior
4447 * B_NEEDCOMMIT state (NFS) must be cleared because the
4448 * caller has not taken into account the new dirty data.
4450 * If the page was memory mapped the dirty bits might go beyond the
4451 * end of the buffer, but we can't really make the assumption that
4452 * a file EOF straddles the buffer (even though this is the case for
4453 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing
4454 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4455 * This also saves some console spam.
4457 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4458 * NFS can handle huge commits but not huge writes.
4460 vm_page_test_dirty(m);
4461 if (m->dirty) {
4462 if ((bp->b_flags & B_NEEDCOMMIT) &&
4463 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4464 if (debug_commit)
4465 kprintf("Warning: vfs_clean_one_page: bp %p "
4466 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4467 " cmd %d vd %02x/%02x x/s/e %d %d %d "
4468 "doff/end %d %d\n",
4469 bp, (uintmax_t)bp->b_loffset, bp->b_bcount,
4470 bp->b_flags, bp->b_cmd,
4471 m->valid, m->dirty, xoff, soff, eoff,
4472 bp->b_dirtyoff, bp->b_dirtyend);
4473 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4474 if (debug_commit)
4475 print_backtrace(-1);
4478 * Only clear the pmap modified bits if ALL the dirty bits
4479 * are set, otherwise the system might mis-clear portions
4480 * of a page.
4482 if (m->dirty == VM_PAGE_BITS_ALL &&
4483 (bp->b_flags & B_NEEDCOMMIT) == 0) {
4484 pmap_clear_modify(m);
4486 if (bp->b_dirtyoff > soff - xoff)
4487 bp->b_dirtyoff = soff - xoff;
4488 if (bp->b_dirtyend < eoff - xoff)
4489 bp->b_dirtyend = eoff - xoff;
4493 * Set related valid bits, clear related dirty bits.
4494 * Does not mess with the pmap modified bit.
4496 * WARNING! We cannot just clear all of m->dirty here as the
4497 * buffer cache buffers may use a DEV_BSIZE'd aligned
4498 * block size, or have an odd size (e.g. NFS at file EOF).
4499 * The putpages code can clear m->dirty to 0.
4501 * If a VOP_WRITE generates a buffer cache buffer which
4502 * covers the same space as mapped writable pages the
4503 * buffer flush might not be able to clear all the dirty
4504 * bits and still require a putpages from the VM system
4505 * to finish it off.
4507 * WARNING! vm_page_set_validclean() currently assumes vm_token
4508 * is held. The page might not be busied (bdwrite() case).
4509 * XXX remove this comment once we've validated that this
4510 * is no longer an issue.
4512 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4515 #if 0
4517 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4518 * The page data is assumed to be valid (there is no zeroing here).
4520 static void
4521 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4523 int bcount;
4524 int xoff;
4525 int soff;
4526 int eoff;
4529 * Calculate offset range within the page but relative to buffer's
4530 * loffset. loffset might be offset into the first page.
4532 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
4533 bcount = bp->b_bcount + xoff; /* offset adjusted */
4535 if (pageno == 0) {
4536 soff = xoff;
4537 eoff = PAGE_SIZE;
4538 } else {
4539 soff = (pageno << PAGE_SHIFT);
4540 eoff = soff + PAGE_SIZE;
4542 if (eoff > bcount)
4543 eoff = bcount;
4544 if (soff >= eoff)
4545 return;
4546 vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4548 #endif
4551 * vfs_bio_clrbuf:
4553 * Clear a buffer. This routine essentially fakes an I/O, so we need
4554 * to clear B_ERROR and B_INVAL.
4556 * Note that while we only theoretically need to clear through b_bcount,
4557 * we go ahead and clear through b_bufsize.
4560 void
4561 vfs_bio_clrbuf(struct buf *bp)
4563 int i, mask = 0;
4564 caddr_t sa, ea;
4565 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4566 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4567 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4568 (bp->b_loffset & PAGE_MASK) == 0) {
4569 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4570 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4571 bp->b_resid = 0;
4572 return;
4574 if ((bp->b_xio.xio_pages[0]->valid & mask) == 0) {
4575 bzero(bp->b_data, bp->b_bufsize);
4576 bp->b_xio.xio_pages[0]->valid |= mask;
4577 bp->b_resid = 0;
4578 return;
4581 sa = bp->b_data;
4582 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4583 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4584 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4585 ea = (caddr_t)(vm_offset_t)ulmin(
4586 (u_long)(vm_offset_t)ea,
4587 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4588 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4589 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4590 continue;
4591 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4592 bzero(sa, ea - sa);
4593 } else {
4594 for (; sa < ea; sa += DEV_BSIZE, j++) {
4595 if ((bp->b_xio.xio_pages[i]->valid &
4596 (1<<j)) == 0) {
4597 bzero(sa, DEV_BSIZE);
4601 bp->b_xio.xio_pages[i]->valid |= mask;
4603 bp->b_resid = 0;
4604 } else {
4605 clrbuf(bp);
4610 * vm_hold_load_pages:
4612 * Load pages into the buffer's address space. The pages are
4613 * allocated from the kernel object in order to reduce interference
4614 * with the any VM paging I/O activity. The range of loaded
4615 * pages will be wired.
4617 * If a page cannot be allocated, the 'pagedaemon' is woken up to
4618 * retrieve the full range (to - from) of pages.
4620 void
4621 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4623 vm_offset_t pg;
4624 vm_page_t p;
4625 int index;
4627 to = round_page(to);
4628 from = round_page(from);
4629 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4631 pg = from;
4632 while (pg < to) {
4634 * Note: must allocate system pages since blocking here
4635 * could intefere with paging I/O, no matter which
4636 * process we are.
4638 vm_object_hold(&kernel_object);
4639 p = bio_page_alloc(bp, &kernel_object, pg >> PAGE_SHIFT,
4640 (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4641 vm_object_drop(&kernel_object);
4642 if (p) {
4643 vm_page_wire(p);
4644 p->valid = VM_PAGE_BITS_ALL;
4645 pmap_kenter_noinval(pg, VM_PAGE_TO_PHYS(p));
4646 bp->b_xio.xio_pages[index] = p;
4647 vm_page_wakeup(p);
4649 pg += PAGE_SIZE;
4650 ++index;
4653 pmap_invalidate_range(&kernel_pmap, from, to);
4654 bp->b_xio.xio_npages = index;
4658 * Allocate a page for a buffer cache buffer.
4660 * If NULL is returned the caller is expected to retry (typically check if
4661 * the page already exists on retry before trying to allocate one).
4663 * NOTE! Low-memory handling is dealt with in b[q]relse(), not here. This
4664 * function will use the system reserve with the hope that the page
4665 * allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4666 * is done with the buffer.
4668 * NOTE! However, TMPFS is a special case because flushing a dirty buffer
4669 * to TMPFS doesn't clean the page. For TMPFS, only the pagedaemon
4670 * is capable of retiring pages (to swap). For TMPFS we don't dig
4671 * into the system reserve because doing so could stall out pretty
4672 * much every process running on the system.
4674 static
4675 vm_page_t
4676 bio_page_alloc(struct buf *bp, vm_object_t obj, vm_pindex_t pg, int deficit)
4678 int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK;
4679 vm_page_t p;
4681 ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4684 * Try a normal allocation first.
4686 p = vm_page_alloc(obj, pg, vmflags);
4687 if (p)
4688 return(p);
4689 if (vm_page_lookup(obj, pg))
4690 return(NULL);
4691 vm_pageout_deficit += deficit;
4694 * Try again, digging into the system reserve.
4696 * Trying to recover pages from the buffer cache here can deadlock
4697 * against other threads trying to busy underlying pages so we
4698 * depend on the code in brelse() and bqrelse() to free/cache the
4699 * underlying buffer cache pages when memory is low.
4701 if (curthread->td_flags & TDF_SYSTHREAD)
4702 vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT;
4703 else if (bp->b_vp && bp->b_vp->v_tag == VT_TMPFS)
4704 vmflags |= 0;
4705 else
4706 vmflags |= VM_ALLOC_SYSTEM;
4708 /*recoverbufpages();*/
4709 p = vm_page_alloc(obj, pg, vmflags);
4710 if (p)
4711 return(p);
4712 if (vm_page_lookup(obj, pg))
4713 return(NULL);
4716 * Wait for memory to free up and try again
4718 if (vm_page_count_severe())
4719 ++lowmempgallocs;
4720 vm_wait(hz / 20 + 1);
4722 p = vm_page_alloc(obj, pg, vmflags);
4723 if (p)
4724 return(p);
4725 if (vm_page_lookup(obj, pg))
4726 return(NULL);
4729 * Ok, now we are really in trouble.
4732 static struct krate biokrate = { .freq = 1 };
4733 krateprintf(&biokrate,
4734 "Warning: bio_page_alloc: memory exhausted "
4735 "during buffer cache page allocation from %s\n",
4736 curthread->td_comm);
4738 if (curthread->td_flags & TDF_SYSTHREAD)
4739 vm_wait(hz / 20 + 1);
4740 else
4741 vm_wait(hz / 2 + 1);
4742 return (NULL);
4746 * vm_hold_free_pages:
4748 * Return pages associated with the buffer back to the VM system.
4750 * The range of pages underlying the buffer's address space will
4751 * be unmapped and un-wired.
4753 void
4754 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4756 vm_offset_t pg;
4757 vm_page_t p;
4758 int index, newnpages;
4760 from = round_page(from);
4761 to = round_page(to);
4762 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4763 newnpages = index;
4765 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4766 p = bp->b_xio.xio_pages[index];
4767 if (p && (index < bp->b_xio.xio_npages)) {
4768 if (p->busy) {
4769 kprintf("vm_hold_free_pages: doffset: %lld, "
4770 "loffset: %lld\n",
4771 (long long)bp->b_bio2.bio_offset,
4772 (long long)bp->b_loffset);
4774 bp->b_xio.xio_pages[index] = NULL;
4775 pmap_kremove_noinval(pg);
4776 vm_page_busy_wait(p, FALSE, "vmhldpg");
4777 vm_page_unwire(p, 0);
4778 vm_page_free(p);
4781 pmap_invalidate_range(&kernel_pmap, from, to);
4782 bp->b_xio.xio_npages = newnpages;
4786 * vmapbuf:
4788 * Map a user buffer into KVM via a pbuf. On return the buffer's
4789 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4790 * initialized.
4793 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4795 caddr_t addr;
4796 vm_offset_t va;
4797 vm_page_t m;
4798 int vmprot;
4799 int error;
4800 int pidx;
4801 int i;
4804 * bp had better have a command and it better be a pbuf.
4806 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4807 KKASSERT(bp->b_flags & B_PAGING);
4808 KKASSERT(bp->b_kvabase);
4810 if (bytes < 0)
4811 return (-1);
4814 * Map the user data into KVM. Mappings have to be page-aligned.
4816 addr = (caddr_t)trunc_page((vm_offset_t)udata);
4817 pidx = 0;
4819 vmprot = VM_PROT_READ;
4820 if (bp->b_cmd == BUF_CMD_READ)
4821 vmprot |= VM_PROT_WRITE;
4823 while (addr < udata + bytes) {
4825 * Do the vm_fault if needed; do the copy-on-write thing
4826 * when reading stuff off device into memory.
4828 * vm_fault_page*() returns a held VM page.
4830 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4831 va = trunc_page(va);
4833 m = vm_fault_page_quick(va, vmprot, &error);
4834 if (m == NULL) {
4835 for (i = 0; i < pidx; ++i) {
4836 vm_page_unhold(bp->b_xio.xio_pages[i]);
4837 bp->b_xio.xio_pages[i] = NULL;
4839 return(-1);
4841 bp->b_xio.xio_pages[pidx] = m;
4842 addr += PAGE_SIZE;
4843 ++pidx;
4847 * Map the page array and set the buffer fields to point to
4848 * the mapped data buffer.
4850 if (pidx > btoc(MAXPHYS))
4851 panic("vmapbuf: mapped more than MAXPHYS");
4852 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4854 bp->b_xio.xio_npages = pidx;
4855 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4856 bp->b_bcount = bytes;
4857 bp->b_bufsize = bytes;
4859 return(0);
4863 * vunmapbuf:
4865 * Free the io map PTEs associated with this IO operation.
4866 * We also invalidate the TLB entries and restore the original b_addr.
4868 void
4869 vunmapbuf(struct buf *bp)
4871 int pidx;
4872 int npages;
4874 KKASSERT(bp->b_flags & B_PAGING);
4876 npages = bp->b_xio.xio_npages;
4877 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4878 for (pidx = 0; pidx < npages; ++pidx) {
4879 vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4880 bp->b_xio.xio_pages[pidx] = NULL;
4882 bp->b_xio.xio_npages = 0;
4883 bp->b_data = bp->b_kvabase;
4887 * Scan all buffers in the system and issue the callback.
4890 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4892 int count = 0;
4893 int error;
4894 long n;
4896 for (n = 0; n < nbuf; ++n) {
4897 if ((error = callback(&buf[n], info)) < 0) {
4898 count = error;
4899 break;
4901 count += error;
4903 return (count);
4907 * nestiobuf_iodone: biodone callback for nested buffers and propagate
4908 * completion to the master buffer.
4910 static void
4911 nestiobuf_iodone(struct bio *bio)
4913 struct bio *mbio;
4914 struct buf *mbp, *bp;
4915 struct devstat *stats;
4916 int error;
4917 int donebytes;
4919 bp = bio->bio_buf;
4920 mbio = bio->bio_caller_info1.ptr;
4921 stats = bio->bio_caller_info2.ptr;
4922 mbp = mbio->bio_buf;
4924 KKASSERT(bp->b_bcount <= bp->b_bufsize);
4925 KKASSERT(mbp != bp);
4927 error = bp->b_error;
4928 if (bp->b_error == 0 &&
4929 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4931 * Not all got transfered, raise an error. We have no way to
4932 * propagate these conditions to mbp.
4934 error = EIO;
4937 donebytes = bp->b_bufsize;
4939 relpbuf(bp, NULL);
4941 nestiobuf_done(mbio, donebytes, error, stats);
4944 void
4945 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4947 struct buf *mbp;
4949 mbp = mbio->bio_buf;
4951 KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4954 * If an error occured, propagate it to the master buffer.
4956 * Several biodone()s may wind up running concurrently so
4957 * use an atomic op to adjust b_flags.
4959 if (error) {
4960 mbp->b_error = error;
4961 atomic_set_int(&mbp->b_flags, B_ERROR);
4965 * Decrement the operations in progress counter and terminate the
4966 * I/O if this was the last bit.
4968 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4969 mbp->b_resid = 0;
4970 if (stats)
4971 devstat_end_transaction_buf(stats, mbp);
4972 biodone(mbio);
4977 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent
4978 * the mbio from being biodone()'d while we are still adding sub-bios to
4979 * it.
4981 void
4982 nestiobuf_init(struct bio *bio)
4984 bio->bio_driver_info = (void *)1;
4988 * The BIOs added to the nestedio have already been started, remove the
4989 * count that placeheld our mbio and biodone() it if the count would
4990 * transition to 0.
4992 void
4993 nestiobuf_start(struct bio *mbio)
4995 struct buf *mbp = mbio->bio_buf;
4998 * Decrement the operations in progress counter and terminate the
4999 * I/O if this was the last bit.
5001 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
5002 if (mbp->b_flags & B_ERROR)
5003 mbp->b_resid = mbp->b_bcount;
5004 else
5005 mbp->b_resid = 0;
5006 biodone(mbio);
5011 * Set an intermediate error prior to calling nestiobuf_start()
5013 void
5014 nestiobuf_error(struct bio *mbio, int error)
5016 struct buf *mbp = mbio->bio_buf;
5018 if (error) {
5019 mbp->b_error = error;
5020 atomic_set_int(&mbp->b_flags, B_ERROR);
5025 * nestiobuf_add: setup a "nested" buffer.
5027 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
5028 * => 'bp' should be a buffer allocated by getiobuf.
5029 * => 'offset' is a byte offset in the master buffer.
5030 * => 'size' is a size in bytes of this nested buffer.
5032 void
5033 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
5035 struct buf *mbp = mbio->bio_buf;
5036 struct vnode *vp = mbp->b_vp;
5038 KKASSERT(mbp->b_bcount >= offset + size);
5040 atomic_add_int((int *)&mbio->bio_driver_info, 1);
5042 /* kernel needs to own the lock for it to be released in biodone */
5043 BUF_KERNPROC(bp);
5044 bp->b_vp = vp;
5045 bp->b_cmd = mbp->b_cmd;
5046 bp->b_bio1.bio_done = nestiobuf_iodone;
5047 bp->b_data = (char *)mbp->b_data + offset;
5048 bp->b_resid = bp->b_bcount = size;
5049 bp->b_bufsize = bp->b_bcount;
5051 bp->b_bio1.bio_track = NULL;
5052 bp->b_bio1.bio_caller_info1.ptr = mbio;
5053 bp->b_bio1.bio_caller_info2.ptr = stats;
5056 #ifdef DDB
5058 DB_SHOW_COMMAND(buffer, db_show_buffer)
5060 /* get args */
5061 struct buf *bp = (struct buf *)addr;
5063 if (!have_addr) {
5064 db_printf("usage: show buffer <addr>\n");
5065 return;
5068 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
5069 db_printf("b_cmd = %d\n", bp->b_cmd);
5070 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
5071 "b_resid = %d\n, b_data = %p, "
5072 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
5073 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5074 bp->b_data,
5075 (long long)bp->b_bio2.bio_offset,
5076 (long long)(bp->b_bio2.bio_next ?
5077 bp->b_bio2.bio_next->bio_offset : (off_t)-1));
5078 if (bp->b_xio.xio_npages) {
5079 int i;
5080 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
5081 bp->b_xio.xio_npages);
5082 for (i = 0; i < bp->b_xio.xio_npages; i++) {
5083 vm_page_t m;
5084 m = bp->b_xio.xio_pages[i];
5085 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
5086 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
5087 if ((i + 1) < bp->b_xio.xio_npages)
5088 db_printf(",");
5090 db_printf("\n");
5093 #endif /* DDB */