Fix a number of core kernel issues related to HAMMER operation.
[dragonfly.git] / sys / kern / vfs_cluster.c
blob126b1edf85991f0331d1d8b9a13284faa48b2535
1 /*-
2 * Copyright (c) 1993
3 * The Regents of the University of California. All rights reserved.
4 * Modifications/enhancements:
5 * Copyright (c) 1995 John S. Dyson. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
35 * @(#)vfs_cluster.c 8.7 (Berkeley) 2/13/94
36 * $FreeBSD: src/sys/kern/vfs_cluster.c,v 1.92.2.9 2001/11/18 07:10:59 dillon Exp $
37 * $DragonFly: src/sys/kern/vfs_cluster.c,v 1.36 2008/05/18 05:54:25 dillon Exp $
40 #include "opt_debug_cluster.h"
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/buf.h>
47 #include <sys/vnode.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <vm/vm.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_page.h>
55 #include <sys/sysctl.h>
56 #include <sys/buf2.h>
57 #include <vm/vm_page2.h>
59 #if defined(CLUSTERDEBUG)
60 #include <sys/sysctl.h>
61 static int rcluster= 0;
62 SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0, "");
63 #endif
65 static MALLOC_DEFINE(M_SEGMENT, "cluster_save", "cluster_save buffer");
67 static struct cluster_save *
68 cluster_collectbufs (struct vnode *vp, struct buf *last_bp,
69 int lblocksize);
70 static struct buf *
71 cluster_rbuild (struct vnode *vp, off_t filesize, off_t loffset,
72 off_t doffset, int size, int run,
73 struct buf *fbp, int doasync);
74 static void cluster_callback (struct bio *);
77 static int write_behind = 1;
78 SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0, "");
80 extern vm_page_t bogus_page;
82 extern int cluster_pbuf_freecnt;
85 * Maximum number of blocks for read-ahead.
87 #define MAXRA 32
90 * This replaces bread.
92 int
93 cluster_read(struct vnode *vp, off_t filesize, off_t loffset,
94 int size, int totread, int seqcount, struct buf **bpp)
96 struct buf *bp, *rbp, *reqbp;
97 off_t origoffset;
98 off_t doffset;
99 int error;
100 int i;
101 int maxra, racluster;
103 error = 0;
106 * Try to limit the amount of read-ahead by a few
107 * ad-hoc parameters. This needs work!!!
109 racluster = vmaxiosize(vp) / size;
110 maxra = 2 * racluster + (totread / size);
111 if (maxra > MAXRA)
112 maxra = MAXRA;
113 if (maxra > nbuf/8)
114 maxra = nbuf/8;
117 * get the requested block
119 *bpp = reqbp = bp = getblk(vp, loffset, size, 0, 0);
120 origoffset = loffset;
123 * if it is in the cache, then check to see if the reads have been
124 * sequential. If they have, then try some read-ahead, otherwise
125 * back-off on prospective read-aheads.
127 if (bp->b_flags & B_CACHE) {
128 if (!seqcount) {
129 return 0;
130 } else if ((bp->b_flags & B_RAM) == 0) {
131 return 0;
132 } else {
133 struct buf *tbp;
134 bp->b_flags &= ~B_RAM;
136 * We do the crit here so that there is no window
137 * between the findblk and the b_usecount increment
138 * below. We opt to keep the crit out of the loop
139 * for efficiency.
141 crit_enter();
142 for (i = 1; i < maxra; i++) {
143 if (!(tbp = findblk(vp, loffset + i * size))) {
144 break;
148 * Set another read-ahead mark so we know
149 * to check again.
151 if (((i % racluster) == (racluster - 1)) ||
152 (i == (maxra - 1)))
153 tbp->b_flags |= B_RAM;
155 crit_exit();
156 if (i >= maxra) {
157 return 0;
159 loffset += i * size;
161 reqbp = bp = NULL;
162 } else {
163 off_t firstread = bp->b_loffset;
164 int nblks;
166 KASSERT(firstread != NOOFFSET,
167 ("cluster_read: no buffer offset"));
168 if (firstread + totread > filesize)
169 totread = (int)(filesize - firstread);
170 nblks = totread / size;
171 if (nblks) {
172 int burstbytes;
174 if (nblks > racluster)
175 nblks = racluster;
177 error = VOP_BMAP(vp, loffset,
178 &doffset, &burstbytes, NULL);
179 if (error)
180 goto single_block_read;
181 if (doffset == NOOFFSET)
182 goto single_block_read;
183 if (burstbytes < size * 2)
184 goto single_block_read;
185 if (nblks > burstbytes / size)
186 nblks = burstbytes / size;
188 bp = cluster_rbuild(vp, filesize, loffset,
189 doffset, size, nblks, bp, 0);
190 loffset += bp->b_bufsize;
191 } else {
192 single_block_read:
194 * if it isn't in the cache, then get a chunk from
195 * disk if sequential, otherwise just get the block.
197 bp->b_flags |= B_RAM;
198 loffset += size;
203 * Handle the synchronous read. This only occurs if B_CACHE was
204 * not set. bp (and rbp) could be either a cluster bp or a normal
205 * bp depending on the what cluster_rbuild() decided to do. If
206 * it is a cluster bp, vfs_busy_pages() has already been called.
208 if (bp) {
209 #if defined(CLUSTERDEBUG)
210 if (rcluster)
211 kprintf("S(%lld,%d,%d) ",
212 bp->b_loffset, bp->b_bcount, seqcount);
213 #endif
214 bp->b_cmd = BUF_CMD_READ;
215 if ((bp->b_flags & B_CLUSTER) == 0)
216 vfs_busy_pages(vp, bp);
217 bp->b_flags &= ~(B_ERROR|B_INVAL);
218 if ((bp->b_flags & B_ASYNC) || bp->b_bio1.bio_done != NULL)
219 BUF_KERNPROC(bp);
220 vn_strategy(vp, &bp->b_bio1);
221 error = bp->b_error;
225 * If we have been doing sequential I/O, then do some read-ahead.
227 * Only mess with buffers which we can immediately lock. HAMMER
228 * will do device-readahead irrespective of what the blocks
229 * represent.
231 rbp = NULL;
232 if (!error &&
233 seqcount &&
234 loffset < origoffset + seqcount * size &&
235 loffset + size <= filesize
237 int nblksread;
238 int ntoread;
239 int burstbytes;
241 if ((rbp = findblk(vp, loffset)) != NULL) {
242 if (BUF_LOCK(rbp, LK_EXCLUSIVE | LK_NOWAIT)) {
243 goto no_read_ahead;
245 BUF_UNLOCK(rbp);
247 rbp = getblk(vp, loffset, size, 0, 0);
248 if ((rbp->b_flags & B_CACHE)) {
249 bqrelse(rbp);
250 goto no_read_ahead;
253 error = VOP_BMAP(vp, loffset,
254 &doffset, &burstbytes, NULL);
255 if (error || doffset == NOOFFSET) {
256 rbp->b_flags |= B_INVAL;
257 brelse(rbp);
258 rbp = NULL;
259 goto no_read_ahead;
261 ntoread = burstbytes / size;
262 nblksread = (totread + size - 1) / size;
263 if (seqcount < nblksread)
264 seqcount = nblksread;
265 if (seqcount < ntoread)
266 ntoread = seqcount;
268 rbp->b_flags |= B_RAM;
269 if (burstbytes) {
270 rbp = cluster_rbuild(vp, filesize, loffset,
271 doffset, size,
272 ntoread, rbp, 1);
273 } else {
274 rbp->b_bio2.bio_offset = doffset;
276 #if defined(CLUSTERDEBUG)
277 if (rcluster) {
278 if (bp)
279 kprintf("A+(%lld,%d,%lld,%d) ",
280 rbp->b_loffset, rbp->b_bcount,
281 rbp->b_loffset - origoffset,
282 seqcount);
283 else
284 kprintf("A(%lld,%d,%lld,%d) ",
285 rbp->b_loffset, rbp->b_bcount,
286 rbp->b_loffset - origoffset,
287 seqcount);
289 #endif
290 rbp->b_flags &= ~(B_ERROR|B_INVAL);
291 rbp->b_flags |= B_ASYNC;
292 rbp->b_cmd = BUF_CMD_READ;
294 if ((rbp->b_flags & B_CLUSTER) == 0)
295 vfs_busy_pages(vp, rbp);
296 BUF_KERNPROC(rbp); /* B_ASYNC */
297 vn_strategy(vp, &rbp->b_bio1);
299 no_read_ahead:
301 if (reqbp)
302 return (biowait(reqbp));
303 else
304 return (error);
308 * If blocks are contiguous on disk, use this to provide clustered
309 * read ahead. We will read as many blocks as possible sequentially
310 * and then parcel them up into logical blocks in the buffer hash table.
312 static struct buf *
313 cluster_rbuild(struct vnode *vp, off_t filesize, off_t loffset,
314 off_t doffset, int size, int run, struct buf *fbp, int doasync)
316 struct buf *bp, *tbp;
317 off_t boffset;
318 int i, j;
319 int maxiosize = vmaxiosize(vp);
322 * This is a filesystem sanity check. For regular files h
323 * cluster_write() currently uses f_iosize, make sure cluster_read()
324 * uses the same block size.
326 * NOTE: The vp can be a block device
328 if (vp->v_type == VREG) {
329 KASSERT(size == vp->v_mount->mnt_stat.f_iosize,
330 ("cluster_rbuild: size %d != filesize %ld\n",
331 size, vp->v_mount->mnt_stat.f_iosize));
335 * avoid a division
337 while (loffset + run * size > filesize) {
338 --run;
341 tbp = fbp;
342 tbp->b_bio2.bio_offset = doffset;
343 if((tbp->b_flags & B_MALLOC) ||
344 ((tbp->b_flags & B_VMIO) == 0) || (run <= 1)) {
345 return tbp;
348 bp = trypbuf(&cluster_pbuf_freecnt);
349 if (bp == NULL)
350 return tbp;
353 * We are synthesizing a buffer out of vm_page_t's, but
354 * if the block size is not page aligned then the starting
355 * address may not be either. Inherit the b_data offset
356 * from the original buffer.
358 bp->b_data = (char *)((vm_offset_t)bp->b_data |
359 ((vm_offset_t)tbp->b_data & PAGE_MASK));
360 bp->b_flags |= B_ASYNC | B_CLUSTER | B_VMIO;
361 bp->b_cmd = BUF_CMD_READ;
362 bp->b_bio1.bio_done = cluster_callback;
363 bp->b_bio1.bio_caller_info1.cluster_head = NULL;
364 bp->b_bio1.bio_caller_info2.cluster_tail = NULL;
365 bp->b_loffset = loffset;
366 bp->b_bio2.bio_offset = NOOFFSET;
367 KASSERT(bp->b_loffset != NOOFFSET,
368 ("cluster_rbuild: no buffer offset"));
370 bp->b_bcount = 0;
371 bp->b_bufsize = 0;
372 bp->b_xio.xio_npages = 0;
374 for (boffset = doffset, i = 0; i < run; ++i, boffset += size) {
375 if (i) {
376 if ((bp->b_xio.xio_npages * PAGE_SIZE) +
377 round_page(size) > maxiosize) {
378 break;
382 * Shortcut some checks and try to avoid buffers that
383 * would block in the lock. The same checks have to
384 * be made again after we officially get the buffer.
386 if ((tbp = findblk(vp, loffset + i * size)) != NULL) {
387 if (BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT))
388 break;
389 BUF_UNLOCK(tbp);
391 for (j = 0; j < tbp->b_xio.xio_npages; j++) {
392 if (tbp->b_xio.xio_pages[j]->valid)
393 break;
396 if (j != tbp->b_xio.xio_npages)
397 break;
399 if (tbp->b_bcount != size)
400 break;
403 tbp = getblk(vp, loffset + i * size, size, 0, 0);
406 * Stop scanning if the buffer is fuly valid
407 * (marked B_CACHE), or locked (may be doing a
408 * background write), or if the buffer is not
409 * VMIO backed. The clustering code can only deal
410 * with VMIO-backed buffers.
412 if ((tbp->b_flags & (B_CACHE|B_LOCKED)) ||
413 (tbp->b_flags & B_VMIO) == 0 ||
414 (LIST_FIRST(&tbp->b_dep) != NULL &&
415 buf_checkread(tbp))
417 bqrelse(tbp);
418 break;
422 * The buffer must be completely invalid in order to
423 * take part in the cluster. If it is partially valid
424 * then we stop.
426 for (j = 0;j < tbp->b_xio.xio_npages; j++) {
427 if (tbp->b_xio.xio_pages[j]->valid)
428 break;
430 if (j != tbp->b_xio.xio_npages) {
431 bqrelse(tbp);
432 break;
436 * Set a read-ahead mark as appropriate
438 if (i == 1 || i == (run - 1))
439 tbp->b_flags |= B_RAM;
442 * Set the block number if it isn't set, otherwise
443 * if it is make sure it matches the block number we
444 * expect.
446 if (tbp->b_bio2.bio_offset == NOOFFSET) {
447 tbp->b_bio2.bio_offset = boffset;
448 } else if (tbp->b_bio2.bio_offset != boffset) {
449 brelse(tbp);
450 break;
454 * The first buffer is setup async if doasync is specified.
455 * All other buffers in the cluster are setup async. This
456 * way the caller can decide how to deal with the requested
457 * buffer.
459 if (i || doasync)
460 tbp->b_flags |= B_ASYNC;
461 tbp->b_cmd = BUF_CMD_READ;
462 BUF_KERNPROC(tbp);
463 cluster_append(&bp->b_bio1, tbp);
464 for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
465 vm_page_t m;
466 m = tbp->b_xio.xio_pages[j];
467 vm_page_io_start(m);
468 vm_object_pip_add(m->object, 1);
469 if ((bp->b_xio.xio_npages == 0) ||
470 (bp->b_xio.xio_pages[bp->b_xio.xio_npages-1] != m)) {
471 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
472 bp->b_xio.xio_npages++;
474 if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
475 tbp->b_xio.xio_pages[j] = bogus_page;
478 * XXX shouldn't this be += size for both, like in
479 * cluster_wbuild()?
481 * Don't inherit tbp->b_bufsize as it may be larger due to
482 * a non-page-aligned size. Instead just aggregate using
483 * 'size'.
485 if (tbp->b_bcount != size)
486 kprintf("warning: tbp->b_bcount wrong %d vs %d\n", tbp->b_bcount, size);
487 if (tbp->b_bufsize != size)
488 kprintf("warning: tbp->b_bufsize wrong %d vs %d\n", tbp->b_bufsize, size);
489 bp->b_bcount += size;
490 bp->b_bufsize += size;
494 * Fully valid pages in the cluster are already good and do not need
495 * to be re-read from disk. Replace the page with bogus_page
497 for (j = 0; j < bp->b_xio.xio_npages; j++) {
498 if ((bp->b_xio.xio_pages[j]->valid & VM_PAGE_BITS_ALL) ==
499 VM_PAGE_BITS_ALL) {
500 bp->b_xio.xio_pages[j] = bogus_page;
503 if (bp->b_bufsize > bp->b_kvasize) {
504 panic("cluster_rbuild: b_bufsize(%d) > b_kvasize(%d)",
505 bp->b_bufsize, bp->b_kvasize);
508 pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
509 (vm_page_t *)bp->b_xio.xio_pages, bp->b_xio.xio_npages);
510 return (bp);
514 * Cleanup after a clustered read or write.
515 * This is complicated by the fact that any of the buffers might have
516 * extra memory (if there were no empty buffer headers at allocbuf time)
517 * that we will need to shift around.
519 * The returned bio is &bp->b_bio1
521 void
522 cluster_callback(struct bio *bio)
524 struct buf *bp = bio->bio_buf;
525 struct buf *tbp;
526 int error = 0;
529 * Must propogate errors to all the components. A short read (EOF)
530 * is a critical error.
532 if (bp->b_flags & B_ERROR) {
533 error = bp->b_error;
534 } else if (bp->b_bcount != bp->b_bufsize) {
535 panic("cluster_callback: unexpected EOF on cluster %p!", bio);
538 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
540 * Move memory from the large cluster buffer into the component
541 * buffers and mark IO as done on these. Since the memory map
542 * is the same, no actual copying is required.
544 while ((tbp = bio->bio_caller_info1.cluster_head) != NULL) {
545 bio->bio_caller_info1.cluster_head = tbp->b_cluster_next;
546 if (error) {
547 tbp->b_flags |= B_ERROR;
548 tbp->b_error = error;
549 } else {
550 tbp->b_dirtyoff = tbp->b_dirtyend = 0;
551 tbp->b_flags &= ~(B_ERROR|B_INVAL);
553 * XXX the bdwrite()/bqrelse() issued during
554 * cluster building clears B_RELBUF (see bqrelse()
555 * comment). If direct I/O was specified, we have
556 * to restore it here to allow the buffer and VM
557 * to be freed.
559 if (tbp->b_flags & B_DIRECT)
560 tbp->b_flags |= B_RELBUF;
562 biodone(&tbp->b_bio1);
564 relpbuf(bp, &cluster_pbuf_freecnt);
568 * cluster_wbuild_wb:
570 * Implement modified write build for cluster.
572 * write_behind = 0 write behind disabled
573 * write_behind = 1 write behind normal (default)
574 * write_behind = 2 write behind backed-off
577 static __inline int
578 cluster_wbuild_wb(struct vnode *vp, int size, off_t start_loffset, int len)
580 int r = 0;
582 switch(write_behind) {
583 case 2:
584 if (start_loffset < len)
585 break;
586 start_loffset -= len;
587 /* fall through */
588 case 1:
589 r = cluster_wbuild(vp, size, start_loffset, len);
590 /* fall through */
591 default:
592 /* fall through */
593 break;
595 return(r);
599 * Do clustered write for FFS.
601 * Three cases:
602 * 1. Write is not sequential (write asynchronously)
603 * Write is sequential:
604 * 2. beginning of cluster - begin cluster
605 * 3. middle of a cluster - add to cluster
606 * 4. end of a cluster - asynchronously write cluster
608 void
609 cluster_write(struct buf *bp, off_t filesize, int seqcount)
611 struct vnode *vp;
612 off_t loffset;
613 int maxclen, cursize;
614 int lblocksize;
615 int async;
617 vp = bp->b_vp;
618 if (vp->v_type == VREG) {
619 async = vp->v_mount->mnt_flag & MNT_ASYNC;
620 lblocksize = vp->v_mount->mnt_stat.f_iosize;
621 } else {
622 async = 0;
623 lblocksize = bp->b_bufsize;
625 loffset = bp->b_loffset;
626 KASSERT(bp->b_loffset != NOOFFSET,
627 ("cluster_write: no buffer offset"));
629 /* Initialize vnode to beginning of file. */
630 if (loffset == 0)
631 vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
633 if (vp->v_clen == 0 || loffset != vp->v_lastw + lblocksize ||
634 bp->b_bio2.bio_offset == NOOFFSET ||
635 (bp->b_bio2.bio_offset != vp->v_lasta + lblocksize)) {
636 maxclen = vmaxiosize(vp);
637 if (vp->v_clen != 0) {
639 * Next block is not sequential.
641 * If we are not writing at end of file, the process
642 * seeked to another point in the file since its last
643 * write, or we have reached our maximum cluster size,
644 * then push the previous cluster. Otherwise try
645 * reallocating to make it sequential.
647 * Change to algorithm: only push previous cluster if
648 * it was sequential from the point of view of the
649 * seqcount heuristic, otherwise leave the buffer
650 * intact so we can potentially optimize the I/O
651 * later on in the buf_daemon or update daemon
652 * flush.
654 cursize = vp->v_lastw - vp->v_cstart + lblocksize;
655 if (bp->b_loffset + lblocksize != filesize ||
656 loffset != vp->v_lastw + lblocksize || vp->v_clen <= cursize) {
657 if (!async && seqcount > 0) {
658 cluster_wbuild_wb(vp, lblocksize,
659 vp->v_cstart, cursize);
661 } else {
662 struct buf **bpp, **endbp;
663 struct cluster_save *buflist;
665 buflist = cluster_collectbufs(vp, bp,
666 lblocksize);
667 endbp = &buflist->bs_children
668 [buflist->bs_nchildren - 1];
669 if (VOP_REALLOCBLKS(vp, buflist)) {
671 * Failed, push the previous cluster
672 * if *really* writing sequentially
673 * in the logical file (seqcount > 1),
674 * otherwise delay it in the hopes that
675 * the low level disk driver can
676 * optimize the write ordering.
678 for (bpp = buflist->bs_children;
679 bpp < endbp; bpp++)
680 brelse(*bpp);
681 kfree(buflist, M_SEGMENT);
682 if (seqcount > 1) {
683 cluster_wbuild_wb(vp,
684 lblocksize, vp->v_cstart,
685 cursize);
687 } else {
689 * Succeeded, keep building cluster.
691 for (bpp = buflist->bs_children;
692 bpp <= endbp; bpp++)
693 bdwrite(*bpp);
694 kfree(buflist, M_SEGMENT);
695 vp->v_lastw = loffset;
696 vp->v_lasta = bp->b_bio2.bio_offset;
697 return;
702 * Consider beginning a cluster. If at end of file, make
703 * cluster as large as possible, otherwise find size of
704 * existing cluster.
706 if ((vp->v_type == VREG) &&
707 bp->b_loffset + lblocksize != filesize &&
708 (bp->b_bio2.bio_offset == NOOFFSET) &&
709 (VOP_BMAP(vp, loffset, &bp->b_bio2.bio_offset, &maxclen, NULL) ||
710 bp->b_bio2.bio_offset == NOOFFSET)) {
711 bawrite(bp);
712 vp->v_clen = 0;
713 vp->v_lasta = bp->b_bio2.bio_offset;
714 vp->v_cstart = loffset + lblocksize;
715 vp->v_lastw = loffset;
716 return;
718 if (maxclen > lblocksize)
719 vp->v_clen = maxclen - lblocksize;
720 else
721 vp->v_clen = 0;
722 if (!async && vp->v_clen == 0) { /* I/O not contiguous */
723 vp->v_cstart = loffset + lblocksize;
724 bawrite(bp);
725 } else { /* Wait for rest of cluster */
726 vp->v_cstart = loffset;
727 bdwrite(bp);
729 } else if (loffset == vp->v_cstart + vp->v_clen) {
731 * At end of cluster, write it out if seqcount tells us we
732 * are operating sequentially, otherwise let the buf or
733 * update daemon handle it.
735 bdwrite(bp);
736 if (seqcount > 1)
737 cluster_wbuild_wb(vp, lblocksize, vp->v_cstart,
738 vp->v_clen + lblocksize);
739 vp->v_clen = 0;
740 vp->v_cstart = loffset + lblocksize;
741 } else if (vm_page_count_severe()) {
743 * We are low on memory, get it going NOW
745 bawrite(bp);
746 } else {
748 * In the middle of a cluster, so just delay the I/O for now.
750 bdwrite(bp);
752 vp->v_lastw = loffset;
753 vp->v_lasta = bp->b_bio2.bio_offset;
758 * This is an awful lot like cluster_rbuild...wish they could be combined.
759 * The last lbn argument is the current block on which I/O is being
760 * performed. Check to see that it doesn't fall in the middle of
761 * the current block (if last_bp == NULL).
764 cluster_wbuild(struct vnode *vp, int size, off_t start_loffset, int bytes)
766 struct buf *bp, *tbp;
767 int i, j;
768 int totalwritten = 0;
769 int maxiosize = vmaxiosize(vp);
771 while (bytes > 0) {
772 crit_enter();
774 * If the buffer is not delayed-write (i.e. dirty), or it
775 * is delayed-write but either locked or inval, it cannot
776 * partake in the clustered write.
778 if (((tbp = findblk(vp, start_loffset)) == NULL) ||
779 ((tbp->b_flags & (B_LOCKED | B_INVAL | B_DELWRI)) != B_DELWRI) ||
780 (LIST_FIRST(&tbp->b_dep) != NULL && buf_checkwrite(tbp)) ||
781 BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) {
782 start_loffset += size;
783 bytes -= size;
784 crit_exit();
785 continue;
787 bremfree(tbp);
788 KKASSERT(tbp->b_cmd == BUF_CMD_DONE);
789 crit_exit();
792 * Extra memory in the buffer, punt on this buffer.
793 * XXX we could handle this in most cases, but we would
794 * have to push the extra memory down to after our max
795 * possible cluster size and then potentially pull it back
796 * up if the cluster was terminated prematurely--too much
797 * hassle.
799 if (((tbp->b_flags & (B_CLUSTEROK|B_MALLOC)) != B_CLUSTEROK) ||
800 (tbp->b_bcount != tbp->b_bufsize) ||
801 (tbp->b_bcount != size) ||
802 (bytes == size) ||
803 ((bp = getpbuf(&cluster_pbuf_freecnt)) == NULL)) {
804 totalwritten += tbp->b_bufsize;
805 bawrite(tbp);
806 start_loffset += size;
807 bytes -= size;
808 continue;
812 * Set up the pbuf. Track our append point with b_bcount
813 * and b_bufsize. b_bufsize is not used by the device but
814 * our caller uses it to loop clusters and we use it to
815 * detect a premature EOF on the block device.
817 bp->b_bcount = 0;
818 bp->b_bufsize = 0;
819 bp->b_xio.xio_npages = 0;
820 bp->b_loffset = tbp->b_loffset;
821 bp->b_bio2.bio_offset = tbp->b_bio2.bio_offset;
824 * We are synthesizing a buffer out of vm_page_t's, but
825 * if the block size is not page aligned then the starting
826 * address may not be either. Inherit the b_data offset
827 * from the original buffer.
829 bp->b_data = (char *)((vm_offset_t)bp->b_data |
830 ((vm_offset_t)tbp->b_data & PAGE_MASK));
831 bp->b_flags &= ~B_ERROR;
832 bp->b_flags |= B_CLUSTER | B_BNOCLIP |
833 (tbp->b_flags & (B_VMIO | B_NEEDCOMMIT));
834 bp->b_bio1.bio_done = cluster_callback;
835 bp->b_bio1.bio_caller_info1.cluster_head = NULL;
836 bp->b_bio1.bio_caller_info2.cluster_tail = NULL;
838 * From this location in the file, scan forward to see
839 * if there are buffers with adjacent data that need to
840 * be written as well.
842 for (i = 0; i < bytes; (i += size), (start_loffset += size)) {
843 if (i != 0) { /* If not the first buffer */
844 crit_enter();
846 * If the adjacent data is not even in core it
847 * can't need to be written.
849 if ((tbp = findblk(vp, start_loffset)) == NULL) {
850 crit_exit();
851 break;
855 * If it IS in core, but has different
856 * characteristics, or is locked (which
857 * means it could be undergoing a background
858 * I/O or be in a weird state), then don't
859 * cluster with it.
861 if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
862 B_INVAL | B_DELWRI | B_NEEDCOMMIT))
863 != (B_DELWRI | B_CLUSTEROK |
864 (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
865 (tbp->b_flags & B_LOCKED) ||
866 (LIST_FIRST(&tbp->b_dep) != NULL && buf_checkwrite(tbp)) ||
867 BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) {
868 crit_exit();
869 break;
873 * Check that the combined cluster
874 * would make sense with regard to pages
875 * and would not be too large
877 if ((tbp->b_bcount != size) ||
878 ((bp->b_bio2.bio_offset + i) !=
879 tbp->b_bio2.bio_offset) ||
880 ((tbp->b_xio.xio_npages + bp->b_xio.xio_npages) >
881 (maxiosize / PAGE_SIZE))) {
882 BUF_UNLOCK(tbp);
883 crit_exit();
884 break;
887 * Ok, it's passed all the tests,
888 * so remove it from the free list
889 * and mark it busy. We will use it.
891 bremfree(tbp);
892 KKASSERT(tbp->b_cmd == BUF_CMD_DONE);
893 crit_exit();
894 } /* end of code for non-first buffers only */
897 * If the IO is via the VM then we do some
898 * special VM hackery (yuck). Since the buffer's
899 * block size may not be page-aligned it is possible
900 * for a page to be shared between two buffers. We
901 * have to get rid of the duplication when building
902 * the cluster.
904 if (tbp->b_flags & B_VMIO) {
905 vm_page_t m;
907 if (i != 0) { /* if not first buffer */
908 for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
909 m = tbp->b_xio.xio_pages[j];
910 if (m->flags & PG_BUSY) {
911 bqrelse(tbp);
912 goto finishcluster;
917 for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
918 m = tbp->b_xio.xio_pages[j];
919 vm_page_io_start(m);
920 vm_object_pip_add(m->object, 1);
921 if ((bp->b_xio.xio_npages == 0) ||
922 (bp->b_xio.xio_pages[bp->b_xio.xio_npages - 1] != m)) {
923 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
924 bp->b_xio.xio_npages++;
928 bp->b_bcount += size;
929 bp->b_bufsize += size;
931 crit_enter();
932 bundirty(tbp);
933 tbp->b_flags &= ~B_ERROR;
934 tbp->b_flags |= B_ASYNC;
935 tbp->b_cmd = BUF_CMD_WRITE;
936 crit_exit();
937 BUF_KERNPROC(tbp);
938 cluster_append(&bp->b_bio1, tbp);
941 * check for latent dependencies to be handled
943 if (LIST_FIRST(&tbp->b_dep) != NULL)
944 buf_start(tbp);
946 finishcluster:
947 pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
948 (vm_page_t *) bp->b_xio.xio_pages, bp->b_xio.xio_npages);
949 if (bp->b_bufsize > bp->b_kvasize) {
950 panic(
951 "cluster_wbuild: b_bufsize(%d) > b_kvasize(%d)\n",
952 bp->b_bufsize, bp->b_kvasize);
954 totalwritten += bp->b_bufsize;
955 bp->b_dirtyoff = 0;
956 bp->b_dirtyend = bp->b_bufsize;
957 bp->b_flags |= B_ASYNC;
958 bp->b_cmd = BUF_CMD_WRITE;
959 vfs_busy_pages(vp, bp);
960 bp->b_runningbufspace = bp->b_bufsize;
961 if (bp->b_runningbufspace) {
962 runningbufspace += bp->b_runningbufspace;
963 ++runningbufcount;
965 BUF_KERNPROC(bp); /* B_ASYNC */
966 vn_strategy(vp, &bp->b_bio1);
968 bytes -= i;
970 return totalwritten;
974 * Collect together all the buffers in a cluster.
975 * Plus add one additional buffer.
977 static struct cluster_save *
978 cluster_collectbufs(struct vnode *vp, struct buf *last_bp, int lblocksize)
980 struct cluster_save *buflist;
981 struct buf *bp;
982 off_t loffset;
983 int i, len;
985 len = (int)(vp->v_lastw - vp->v_cstart + lblocksize) / lblocksize;
986 buflist = kmalloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
987 M_SEGMENT, M_WAITOK);
988 buflist->bs_nchildren = 0;
989 buflist->bs_children = (struct buf **) (buflist + 1);
990 for (loffset = vp->v_cstart, i = 0; i < len; (loffset += lblocksize), i++) {
991 (void) bread(vp, loffset, last_bp->b_bcount, &bp);
992 buflist->bs_children[i] = bp;
993 if (bp->b_bio2.bio_offset == NOOFFSET) {
994 VOP_BMAP(bp->b_vp, bp->b_loffset,
995 &bp->b_bio2.bio_offset, NULL, NULL);
998 buflist->bs_children[i] = bp = last_bp;
999 if (bp->b_bio2.bio_offset == NOOFFSET) {
1000 VOP_BMAP(bp->b_vp, bp->b_loffset,
1001 &bp->b_bio2.bio_offset, NULL, NULL);
1003 buflist->bs_nchildren = i + 1;
1004 return (buflist);
1007 void
1008 cluster_append(struct bio *bio, struct buf *tbp)
1010 tbp->b_cluster_next = NULL;
1011 if (bio->bio_caller_info1.cluster_head == NULL) {
1012 bio->bio_caller_info1.cluster_head = tbp;
1013 bio->bio_caller_info2.cluster_tail = tbp;
1014 } else {
1015 bio->bio_caller_info2.cluster_tail->b_cluster_next = tbp;
1016 bio->bio_caller_info2.cluster_tail = tbp;