Import OpenSSL 0.9.8h.
[dragonfly.git] / crypto / openssl-0.9 / crypto / sha / sha256.c
blob867f90cc97c3d274cca2f363443f56b2aae45f1f
1 /* crypto/sha/sha256.c */
2 /* ====================================================================
3 * Copyright (c) 2004 The OpenSSL Project. All rights reserved
4 * according to the OpenSSL license [found in ../../LICENSE].
5 * ====================================================================
6 */
7 #include <openssl/opensslconf.h>
8 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256)
10 #include <stdlib.h>
11 #include <string.h>
13 #include <openssl/crypto.h>
14 #include <openssl/sha.h>
15 #include <openssl/opensslv.h>
17 const char SHA256_version[]="SHA-256" OPENSSL_VERSION_PTEXT;
19 int SHA224_Init (SHA256_CTX *c)
21 c->h[0]=0xc1059ed8UL; c->h[1]=0x367cd507UL;
22 c->h[2]=0x3070dd17UL; c->h[3]=0xf70e5939UL;
23 c->h[4]=0xffc00b31UL; c->h[5]=0x68581511UL;
24 c->h[6]=0x64f98fa7UL; c->h[7]=0xbefa4fa4UL;
25 c->Nl=0; c->Nh=0;
26 c->num=0; c->md_len=SHA224_DIGEST_LENGTH;
27 return 1;
30 int SHA256_Init (SHA256_CTX *c)
32 c->h[0]=0x6a09e667UL; c->h[1]=0xbb67ae85UL;
33 c->h[2]=0x3c6ef372UL; c->h[3]=0xa54ff53aUL;
34 c->h[4]=0x510e527fUL; c->h[5]=0x9b05688cUL;
35 c->h[6]=0x1f83d9abUL; c->h[7]=0x5be0cd19UL;
36 c->Nl=0; c->Nh=0;
37 c->num=0; c->md_len=SHA256_DIGEST_LENGTH;
38 return 1;
41 unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
43 SHA256_CTX c;
44 static unsigned char m[SHA224_DIGEST_LENGTH];
46 if (md == NULL) md=m;
47 SHA224_Init(&c);
48 SHA256_Update(&c,d,n);
49 SHA256_Final(md,&c);
50 OPENSSL_cleanse(&c,sizeof(c));
51 return(md);
54 unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
56 SHA256_CTX c;
57 static unsigned char m[SHA256_DIGEST_LENGTH];
59 if (md == NULL) md=m;
60 SHA256_Init(&c);
61 SHA256_Update(&c,d,n);
62 SHA256_Final(md,&c);
63 OPENSSL_cleanse(&c,sizeof(c));
64 return(md);
67 int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
68 { return SHA256_Update (c,data,len); }
69 int SHA224_Final (unsigned char *md, SHA256_CTX *c)
70 { return SHA256_Final (md,c); }
72 #define DATA_ORDER_IS_BIG_ENDIAN
74 #define HASH_LONG SHA_LONG
75 #define HASH_CTX SHA256_CTX
76 #define HASH_CBLOCK SHA_CBLOCK
78 * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
79 * default: case below covers for it. It's not clear however if it's
80 * permitted to truncate to amount of bytes not divisible by 4. I bet not,
81 * but if it is, then default: case shall be extended. For reference.
82 * Idea behind separate cases for pre-defined lenghts is to let the
83 * compiler decide if it's appropriate to unroll small loops.
85 #define HASH_MAKE_STRING(c,s) do { \
86 unsigned long ll; \
87 unsigned int xn; \
88 switch ((c)->md_len) \
89 { case SHA224_DIGEST_LENGTH: \
90 for (xn=0;xn<SHA224_DIGEST_LENGTH/4;xn++) \
91 { ll=(c)->h[xn]; HOST_l2c(ll,(s)); } \
92 break; \
93 case SHA256_DIGEST_LENGTH: \
94 for (xn=0;xn<SHA256_DIGEST_LENGTH/4;xn++) \
95 { ll=(c)->h[xn]; HOST_l2c(ll,(s)); } \
96 break; \
97 default: \
98 if ((c)->md_len > SHA256_DIGEST_LENGTH) \
99 return 0; \
100 for (xn=0;xn<(c)->md_len/4;xn++) \
101 { ll=(c)->h[xn]; HOST_l2c(ll,(s)); } \
102 break; \
104 } while (0)
106 #define HASH_UPDATE SHA256_Update
107 #define HASH_TRANSFORM SHA256_Transform
108 #define HASH_FINAL SHA256_Final
109 #define HASH_BLOCK_DATA_ORDER sha256_block_data_order
110 #ifndef SHA256_ASM
111 static
112 #endif
113 void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
115 #include "md32_common.h"
117 #ifndef SHA256_ASM
118 static const SHA_LONG K256[64] = {
119 0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
120 0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
121 0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
122 0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
123 0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
124 0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
125 0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
126 0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
127 0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
128 0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
129 0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
130 0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
131 0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
132 0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
133 0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
134 0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
137 * FIPS specification refers to right rotations, while our ROTATE macro
138 * is left one. This is why you might notice that rotation coefficients
139 * differ from those observed in FIPS document by 32-N...
141 #define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
142 #define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
143 #define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
144 #define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
146 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
147 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
149 #ifdef OPENSSL_SMALL_FOOTPRINT
151 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
153 unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
154 SHA_LONG X[16],l;
155 int i;
156 const unsigned char *data=in;
158 while (num--) {
160 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
161 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
163 for (i=0;i<16;i++)
165 HOST_c2l(data,l); T1 = X[i] = l;
166 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
167 T2 = Sigma0(a) + Maj(a,b,c);
168 h = g; g = f; f = e; e = d + T1;
169 d = c; c = b; b = a; a = T1 + T2;
172 for (;i<64;i++)
174 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
175 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);
177 T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
178 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
179 T2 = Sigma0(a) + Maj(a,b,c);
180 h = g; g = f; f = e; e = d + T1;
181 d = c; c = b; b = a; a = T1 + T2;
184 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
185 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
190 #else
192 #define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
193 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \
194 h = Sigma0(a) + Maj(a,b,c); \
195 d += T1; h += T1; } while (0)
197 #define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \
198 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \
199 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \
200 T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \
201 ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0)
203 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
205 unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
206 SHA_LONG X[16];
207 int i;
208 const unsigned char *data=in;
209 const union { long one; char little; } is_endian = {1};
211 while (num--) {
213 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
214 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
216 if (!is_endian.little && sizeof(SHA_LONG)==4 && ((size_t)in%4)==0)
218 const SHA_LONG *W=(const SHA_LONG *)data;
220 T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h);
221 T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g);
222 T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f);
223 T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e);
224 T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d);
225 T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c);
226 T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b);
227 T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a);
228 T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h);
229 T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g);
230 T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f);
231 T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e);
232 T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d);
233 T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c);
234 T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b);
235 T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a);
237 data += SHA256_CBLOCK;
239 else
241 SHA_LONG l;
243 HOST_c2l(data,l); T1 = X[0] = l; ROUND_00_15(0,a,b,c,d,e,f,g,h);
244 HOST_c2l(data,l); T1 = X[1] = l; ROUND_00_15(1,h,a,b,c,d,e,f,g);
245 HOST_c2l(data,l); T1 = X[2] = l; ROUND_00_15(2,g,h,a,b,c,d,e,f);
246 HOST_c2l(data,l); T1 = X[3] = l; ROUND_00_15(3,f,g,h,a,b,c,d,e);
247 HOST_c2l(data,l); T1 = X[4] = l; ROUND_00_15(4,e,f,g,h,a,b,c,d);
248 HOST_c2l(data,l); T1 = X[5] = l; ROUND_00_15(5,d,e,f,g,h,a,b,c);
249 HOST_c2l(data,l); T1 = X[6] = l; ROUND_00_15(6,c,d,e,f,g,h,a,b);
250 HOST_c2l(data,l); T1 = X[7] = l; ROUND_00_15(7,b,c,d,e,f,g,h,a);
251 HOST_c2l(data,l); T1 = X[8] = l; ROUND_00_15(8,a,b,c,d,e,f,g,h);
252 HOST_c2l(data,l); T1 = X[9] = l; ROUND_00_15(9,h,a,b,c,d,e,f,g);
253 HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
254 HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
255 HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
256 HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
257 HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
258 HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
261 for (i=16;i<64;i+=8)
263 ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
264 ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
265 ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
266 ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
267 ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
268 ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
269 ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
270 ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
273 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
274 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
279 #endif
280 #endif /* SHA256_ASM */
282 #endif /* OPENSSL_NO_SHA256 */