kernel - Incidental MPLOCK removal
[dragonfly.git] / sys / kern / vfs_bio.c
bloba83d5fd79c921bfff2e00fb933ff4de8a098d0c1
1 /*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme. Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
23 * Author: John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
27 * see man buf(9) for more info. Note that man buf(9) doesn't reflect
28 * the actual buf/bio implementation in DragonFly.
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/devicestat.h>
36 #include <sys/eventhandler.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/proc.h>
43 #include <sys/reboot.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <sys/dsched.h>
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_pager.h>
58 #include <vm/swap_pager.h>
60 #include <sys/buf2.h>
61 #include <sys/thread2.h>
62 #include <sys/spinlock2.h>
63 #include <vm/vm_page2.h>
65 #include "opt_ddb.h"
66 #ifdef DDB
67 #include <ddb/ddb.h>
68 #endif
71 * Buffer queues.
73 enum bufq_type {
74 BQUEUE_NONE, /* not on any queue */
75 BQUEUE_LOCKED, /* locked buffers */
76 BQUEUE_CLEAN, /* non-B_DELWRI buffers */
77 BQUEUE_DIRTY, /* B_DELWRI buffers */
78 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */
79 BQUEUE_EMPTY, /* empty buffer headers */
81 BUFFER_QUEUES /* number of buffer queues */
84 typedef enum bufq_type bufq_type_t;
86 #define BD_WAKE_SIZE 16384
87 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1)
89 TAILQ_HEAD(bqueues, buf);
91 struct bufpcpu {
92 struct spinlock spin;
93 struct bqueues bufqueues[BUFFER_QUEUES];
94 } __cachealign;
96 struct bufpcpu bufpcpu[MAXCPU];
98 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
100 struct buf *buf; /* buffer header pool */
102 static void vfs_clean_pages(struct buf *bp);
103 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
104 #if 0
105 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
106 #endif
107 static void vfs_vmio_release(struct buf *bp);
108 static int flushbufqueues(struct buf *marker, bufq_type_t q);
109 static void repurposebuf(struct buf *bp, int size);
110 static vm_page_t bio_page_alloc(struct buf *bp, vm_object_t obj,
111 vm_pindex_t pg, int deficit);
113 static void bd_signal(long totalspace);
114 static void buf_daemon(void);
115 static void buf_daemon_hw(void);
118 * bogus page -- for I/O to/from partially complete buffers
119 * this is a temporary solution to the problem, but it is not
120 * really that bad. it would be better to split the buffer
121 * for input in the case of buffers partially already in memory,
122 * but the code is intricate enough already.
124 vm_page_t bogus_page;
127 * These are all static, but make the ones we export globals so we do
128 * not need to use compiler magic.
130 long bufspace; /* atomic ops */
131 long maxbufspace;
132 static long bufmallocspace; /* atomic ops */
133 long maxbufmallocspace, lobufspace, hibufspace;
134 static long lorunningspace;
135 static long hirunningspace;
136 static long dirtykvaspace; /* atomic */
137 long dirtybufspace; /* atomic (global for systat) */
138 static long dirtybufcount; /* atomic */
139 static long dirtybufspacehw; /* atomic */
140 static long dirtybufcounthw; /* atomic */
141 static long runningbufspace; /* atomic */
142 static long runningbufcount; /* atomic */
143 static long repurposedspace;
144 long lodirtybufspace;
145 long hidirtybufspace;
146 static int getnewbufcalls;
147 static int recoverbufcalls;
148 static int needsbuffer; /* atomic */
149 static int runningbufreq; /* atomic */
150 static int bd_request; /* atomic */
151 static int bd_request_hw; /* atomic */
152 static u_int bd_wake_ary[BD_WAKE_SIZE];
153 static u_int bd_wake_index;
154 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
155 static int debug_commit;
156 static int debug_bufbio;
157 static long bufcache_bw = 200 * 1024 * 1024;
158 static long bufcache_bw_accum;
159 static int bufcache_bw_ticks;
161 static struct thread *bufdaemon_td;
162 static struct thread *bufdaemonhw_td;
163 static u_int lowmempgallocs;
164 static u_int lowmempgfails;
165 static u_int flushperqueue = 1024;
166 static int repurpose_enable;
169 * Sysctls for operational control of the buffer cache.
171 SYSCTL_UINT(_vfs, OID_AUTO, flushperqueue, CTLFLAG_RW, &flushperqueue, 0,
172 "Number of buffers to flush from each per-cpu queue");
173 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
174 "Number of dirty buffers to flush before bufdaemon becomes inactive");
175 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
176 "High watermark used to trigger explicit flushing of dirty buffers");
177 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
178 "Minimum amount of buffer space required for active I/O");
179 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
180 "Maximum amount of buffer space to usable for active I/O");
181 SYSCTL_LONG(_vfs, OID_AUTO, bufcache_bw, CTLFLAG_RW, &bufcache_bw, 0,
182 "Buffer-cache -> VM page cache transfer bandwidth");
183 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
184 "Page allocations done during periods of very low free memory");
185 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
186 "Page allocations which failed during periods of very low free memory");
187 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
188 "Recycle pages to active or inactive queue transition pt 0-64");
189 SYSCTL_UINT(_vfs, OID_AUTO, repurpose_enable, CTLFLAG_RW, &repurpose_enable, 0,
190 "Enable buffer cache VM repurposing for high-I/O");
192 * Sysctls determining current state of the buffer cache.
194 SYSCTL_LONG(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
195 "Total number of buffers in buffer cache");
196 SYSCTL_LONG(_vfs, OID_AUTO, dirtykvaspace, CTLFLAG_RD, &dirtykvaspace, 0,
197 "KVA reserved by dirty buffers (all)");
198 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
199 "Pending bytes of dirty buffers (all)");
200 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
201 "Pending bytes of dirty buffers (heavy weight)");
202 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
203 "Pending number of dirty buffers");
204 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
205 "Pending number of dirty buffers (heavy weight)");
206 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
207 "I/O bytes currently in progress due to asynchronous writes");
208 SYSCTL_LONG(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
209 "I/O buffers currently in progress due to asynchronous writes");
210 SYSCTL_LONG(_vfs, OID_AUTO, repurposedspace, CTLFLAG_RD, &repurposedspace, 0,
211 "Buffer-cache memory repurposed in-place");
212 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
213 "Hard limit on maximum amount of memory usable for buffer space");
214 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
215 "Soft limit on maximum amount of memory usable for buffer space");
216 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
217 "Minimum amount of memory to reserve for system buffer space");
218 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
219 "Amount of memory available for buffers");
220 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
221 0, "Maximum amount of memory reserved for buffers using malloc");
222 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
223 "Amount of memory left for buffers using malloc-scheme");
224 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
225 "New buffer header acquisition requests");
226 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
227 "Recover VM space in an emergency");
228 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
229 SYSCTL_INT(_vfs, OID_AUTO, debug_bufbio, CTLFLAG_RW, &debug_bufbio, 0, "");
230 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
231 "sizeof(struct buf)");
233 char *buf_wmesg = BUF_WMESG;
235 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
236 #define VFS_BIO_NEED_UNUSED02 0x02
237 #define VFS_BIO_NEED_UNUSED04 0x04
238 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
241 * Called when buffer space is potentially available for recovery.
242 * getnewbuf() will block on this flag when it is unable to free
243 * sufficient buffer space. Buffer space becomes recoverable when
244 * bp's get placed back in the queues.
246 static __inline void
247 bufspacewakeup(void)
250 * If someone is waiting for BUF space, wake them up. Even
251 * though we haven't freed the kva space yet, the waiting
252 * process will be able to now.
254 for (;;) {
255 int flags = needsbuffer;
256 cpu_ccfence();
257 if ((flags & VFS_BIO_NEED_BUFSPACE) == 0)
258 break;
259 if (atomic_cmpset_int(&needsbuffer, flags,
260 flags & ~VFS_BIO_NEED_BUFSPACE)) {
261 wakeup(&needsbuffer);
262 break;
264 /* retry */
269 * runningbufwakeup:
271 * Accounting for I/O in progress.
274 static __inline void
275 runningbufwakeup(struct buf *bp)
277 long totalspace;
278 long flags;
280 if ((totalspace = bp->b_runningbufspace) != 0) {
281 atomic_add_long(&runningbufspace, -totalspace);
282 atomic_add_long(&runningbufcount, -1);
283 bp->b_runningbufspace = 0;
286 * see waitrunningbufspace() for limit test.
288 for (;;) {
289 flags = runningbufreq;
290 cpu_ccfence();
291 if (flags == 0)
292 break;
293 if (atomic_cmpset_int(&runningbufreq, flags, 0)) {
294 wakeup(&runningbufreq);
295 break;
297 /* retry */
299 bd_signal(totalspace);
304 * bufcountwakeup:
306 * Called when a buffer has been added to one of the free queues to
307 * account for the buffer and to wakeup anyone waiting for free buffers.
308 * This typically occurs when large amounts of metadata are being handled
309 * by the buffer cache ( else buffer space runs out first, usually ).
311 static __inline void
312 bufcountwakeup(void)
314 long flags;
316 for (;;) {
317 flags = needsbuffer;
318 if (flags == 0)
319 break;
320 if (atomic_cmpset_int(&needsbuffer, flags,
321 (flags & ~VFS_BIO_NEED_ANY))) {
322 wakeup(&needsbuffer);
323 break;
325 /* retry */
330 * waitrunningbufspace()
332 * If runningbufspace exceeds 4/6 hirunningspace we block until
333 * runningbufspace drops to 3/6 hirunningspace. We also block if another
334 * thread blocked here in order to be fair, even if runningbufspace
335 * is now lower than the limit.
337 * The caller may be using this function to block in a tight loop, we
338 * must block while runningbufspace is greater than at least
339 * hirunningspace * 3 / 6.
341 void
342 waitrunningbufspace(void)
344 long limit = hirunningspace * 4 / 6;
345 long flags;
347 while (runningbufspace > limit || runningbufreq) {
348 tsleep_interlock(&runningbufreq, 0);
349 flags = atomic_fetchadd_int(&runningbufreq, 1);
350 if (runningbufspace > limit || flags)
351 tsleep(&runningbufreq, PINTERLOCKED, "wdrn1", hz);
356 * buf_dirty_count_severe:
358 * Return true if we have too many dirty buffers.
361 buf_dirty_count_severe(void)
363 return (runningbufspace + dirtykvaspace >= hidirtybufspace ||
364 dirtybufcount >= nbuf / 2);
368 * Return true if the amount of running I/O is severe and BIOQ should
369 * start bursting.
372 buf_runningbufspace_severe(void)
374 return (runningbufspace >= hirunningspace * 4 / 6);
378 * vfs_buf_test_cache:
380 * Called when a buffer is extended. This function clears the B_CACHE
381 * bit if the newly extended portion of the buffer does not contain
382 * valid data.
384 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
385 * cache buffers. The VM pages remain dirty, as someone had mmap()'d
386 * them while a clean buffer was present.
388 static __inline__
389 void
390 vfs_buf_test_cache(struct buf *bp,
391 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
392 vm_page_t m)
394 if (bp->b_flags & B_CACHE) {
395 int base = (foff + off) & PAGE_MASK;
396 if (vm_page_is_valid(m, base, size) == 0)
397 bp->b_flags &= ~B_CACHE;
402 * bd_speedup()
404 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
405 * low water mark.
407 static __inline__
408 void
409 bd_speedup(void)
411 if (dirtykvaspace < lodirtybufspace && dirtybufcount < nbuf / 2)
412 return;
414 if (bd_request == 0 &&
415 (dirtykvaspace > lodirtybufspace / 2 ||
416 dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
417 if (atomic_fetchadd_int(&bd_request, 1) == 0)
418 wakeup(&bd_request);
420 if (bd_request_hw == 0 &&
421 (dirtykvaspace > lodirtybufspace / 2 ||
422 dirtybufcounthw >= nbuf / 2)) {
423 if (atomic_fetchadd_int(&bd_request_hw, 1) == 0)
424 wakeup(&bd_request_hw);
429 * bd_heatup()
431 * Get the buf_daemon heated up when the number of running and dirty
432 * buffers exceeds the mid-point.
434 * Return the total number of dirty bytes past the second mid point
435 * as a measure of how much excess dirty data there is in the system.
437 long
438 bd_heatup(void)
440 long mid1;
441 long mid2;
442 long totalspace;
444 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
446 totalspace = runningbufspace + dirtykvaspace;
447 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
448 bd_speedup();
449 mid2 = mid1 + (hidirtybufspace - mid1) / 2;
450 if (totalspace >= mid2)
451 return(totalspace - mid2);
453 return(0);
457 * bd_wait()
459 * Wait for the buffer cache to flush (totalspace) bytes worth of
460 * buffers, then return.
462 * Regardless this function blocks while the number of dirty buffers
463 * exceeds hidirtybufspace.
465 void
466 bd_wait(long totalspace)
468 u_int i;
469 u_int j;
470 u_int mi;
471 int count;
473 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
474 return;
476 while (totalspace > 0) {
477 bd_heatup();
480 * Order is important. Suppliers adjust bd_wake_index after
481 * updating runningbufspace/dirtykvaspace. We want to fetch
482 * bd_wake_index before accessing. Any error should thus
483 * be in our favor.
485 i = atomic_fetchadd_int(&bd_wake_index, 0);
486 if (totalspace > runningbufspace + dirtykvaspace)
487 totalspace = runningbufspace + dirtykvaspace;
488 count = totalspace / MAXBSIZE;
489 if (count >= BD_WAKE_SIZE / 2)
490 count = BD_WAKE_SIZE / 2;
491 i = i + count;
492 mi = i & BD_WAKE_MASK;
495 * This is not a strict interlock, so we play a bit loose
496 * with locking access to dirtybufspace*. We have to re-check
497 * bd_wake_index to ensure that it hasn't passed us.
499 tsleep_interlock(&bd_wake_ary[mi], 0);
500 atomic_add_int(&bd_wake_ary[mi], 1);
501 j = atomic_fetchadd_int(&bd_wake_index, 0);
502 if ((int)(i - j) >= 0)
503 tsleep(&bd_wake_ary[mi], PINTERLOCKED, "flstik", hz);
505 totalspace = runningbufspace + dirtykvaspace - hidirtybufspace;
510 * bd_signal()
512 * This function is called whenever runningbufspace or dirtykvaspace
513 * is reduced. Track threads waiting for run+dirty buffer I/O
514 * complete.
516 static void
517 bd_signal(long totalspace)
519 u_int i;
521 if (totalspace > 0) {
522 if (totalspace > MAXBSIZE * BD_WAKE_SIZE)
523 totalspace = MAXBSIZE * BD_WAKE_SIZE;
524 while (totalspace > 0) {
525 i = atomic_fetchadd_int(&bd_wake_index, 1);
526 i &= BD_WAKE_MASK;
527 if (atomic_readandclear_int(&bd_wake_ary[i]))
528 wakeup(&bd_wake_ary[i]);
529 totalspace -= MAXBSIZE;
535 * BIO tracking support routines.
537 * Release a ref on a bio_track. Wakeup requests are atomically released
538 * along with the last reference so bk_active will never wind up set to
539 * only 0x80000000.
541 static
542 void
543 bio_track_rel(struct bio_track *track)
545 int active;
546 int desired;
549 * Shortcut
551 active = track->bk_active;
552 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
553 return;
556 * Full-on. Note that the wait flag is only atomically released on
557 * the 1->0 count transition.
559 * We check for a negative count transition using bit 30 since bit 31
560 * has a different meaning.
562 for (;;) {
563 desired = (active & 0x7FFFFFFF) - 1;
564 if (desired)
565 desired |= active & 0x80000000;
566 if (atomic_cmpset_int(&track->bk_active, active, desired)) {
567 if (desired & 0x40000000)
568 panic("bio_track_rel: bad count: %p", track);
569 if (active & 0x80000000)
570 wakeup(track);
571 break;
573 active = track->bk_active;
578 * Wait for the tracking count to reach 0.
580 * Use atomic ops such that the wait flag is only set atomically when
581 * bk_active is non-zero.
584 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
586 int active;
587 int desired;
588 int error;
591 * Shortcut
593 if (track->bk_active == 0)
594 return(0);
597 * Full-on. Note that the wait flag may only be atomically set if
598 * the active count is non-zero.
600 * NOTE: We cannot optimize active == desired since a wakeup could
601 * clear active prior to our tsleep_interlock().
603 error = 0;
604 while ((active = track->bk_active) != 0) {
605 cpu_ccfence();
606 desired = active | 0x80000000;
607 tsleep_interlock(track, slp_flags);
608 if (atomic_cmpset_int(&track->bk_active, active, desired)) {
609 error = tsleep(track, slp_flags | PINTERLOCKED,
610 "trwait", slp_timo);
611 if (error)
612 break;
615 return (error);
619 * bufinit:
621 * Load time initialisation of the buffer cache, called from machine
622 * dependant initialization code.
624 static
625 void
626 bufinit(void *dummy __unused)
628 struct bufpcpu *pcpu;
629 struct buf *bp;
630 vm_offset_t bogus_offset;
631 int i;
632 int j;
633 long n;
635 /* next, make a null set of free lists */
636 for (i = 0; i < ncpus; ++i) {
637 pcpu = &bufpcpu[i];
638 spin_init(&pcpu->spin, "bufinit");
639 for (j = 0; j < BUFFER_QUEUES; j++)
640 TAILQ_INIT(&pcpu->bufqueues[j]);
644 * Finally, initialize each buffer header and stick on empty q.
645 * Each buffer gets its own KVA reservation.
647 i = 0;
648 pcpu = &bufpcpu[i];
650 for (n = 0; n < nbuf; n++) {
651 bp = &buf[n];
652 bzero(bp, sizeof *bp);
653 bp->b_flags = B_INVAL; /* we're just an empty header */
654 bp->b_cmd = BUF_CMD_DONE;
655 bp->b_qindex = BQUEUE_EMPTY;
656 bp->b_qcpu = i;
657 bp->b_kvabase = (void *)(vm_map_min(&buffer_map) +
658 MAXBSIZE * n);
659 bp->b_kvasize = MAXBSIZE;
660 initbufbio(bp);
661 xio_init(&bp->b_xio);
662 buf_dep_init(bp);
663 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
664 bp, b_freelist);
666 i = (i + 1) % ncpus;
667 pcpu = &bufpcpu[i];
671 * maxbufspace is the absolute maximum amount of buffer space we are
672 * allowed to reserve in KVM and in real terms. The absolute maximum
673 * is nominally used by buf_daemon. hibufspace is the nominal maximum
674 * used by most other processes. The differential is required to
675 * ensure that buf_daemon is able to run when other processes might
676 * be blocked waiting for buffer space.
678 * Calculate hysteresis (lobufspace, hibufspace). Don't make it
679 * too large or we might lockup a cpu for too long a period of
680 * time in our tight loop.
682 maxbufspace = nbuf * NBUFCALCSIZE;
683 hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
684 lobufspace = hibufspace * 7 / 8;
685 if (hibufspace - lobufspace > 64 * 1024 * 1024)
686 lobufspace = hibufspace - 64 * 1024 * 1024;
687 if (lobufspace > hibufspace - MAXBSIZE)
688 lobufspace = hibufspace - MAXBSIZE;
690 lorunningspace = 512 * 1024;
691 /* hirunningspace -- see below */
694 * Limit the amount of malloc memory since it is wired permanently
695 * into the kernel space. Even though this is accounted for in
696 * the buffer allocation, we don't want the malloced region to grow
697 * uncontrolled. The malloc scheme improves memory utilization
698 * significantly on average (small) directories.
700 maxbufmallocspace = hibufspace / 20;
703 * Reduce the chance of a deadlock occuring by limiting the number
704 * of delayed-write dirty buffers we allow to stack up.
706 * We don't want too much actually queued to the device at once
707 * (XXX this needs to be per-mount!), because the buffers will
708 * wind up locked for a very long period of time while the I/O
709 * drains.
711 hidirtybufspace = hibufspace / 2; /* dirty + running */
712 hirunningspace = hibufspace / 16; /* locked & queued to device */
713 if (hirunningspace < 1024 * 1024)
714 hirunningspace = 1024 * 1024;
716 dirtykvaspace = 0;
717 dirtybufspace = 0;
718 dirtybufspacehw = 0;
720 lodirtybufspace = hidirtybufspace / 2;
723 * Maximum number of async ops initiated per buf_daemon loop. This is
724 * somewhat of a hack at the moment, we really need to limit ourselves
725 * based on the number of bytes of I/O in-transit that were initiated
726 * from buf_daemon.
729 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE,
730 VM_SUBSYS_BOGUS);
731 vm_object_hold(&kernel_object);
732 bogus_page = vm_page_alloc(&kernel_object,
733 (bogus_offset >> PAGE_SHIFT),
734 VM_ALLOC_NORMAL);
735 vm_object_drop(&kernel_object);
736 vmstats.v_wire_count++;
740 SYSINIT(do_bufinit, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, bufinit, NULL);
743 * Initialize the embedded bio structures, typically used by
744 * deprecated code which tries to allocate its own struct bufs.
746 void
747 initbufbio(struct buf *bp)
749 bp->b_bio1.bio_buf = bp;
750 bp->b_bio1.bio_prev = NULL;
751 bp->b_bio1.bio_offset = NOOFFSET;
752 bp->b_bio1.bio_next = &bp->b_bio2;
753 bp->b_bio1.bio_done = NULL;
754 bp->b_bio1.bio_flags = 0;
756 bp->b_bio2.bio_buf = bp;
757 bp->b_bio2.bio_prev = &bp->b_bio1;
758 bp->b_bio2.bio_offset = NOOFFSET;
759 bp->b_bio2.bio_next = NULL;
760 bp->b_bio2.bio_done = NULL;
761 bp->b_bio2.bio_flags = 0;
763 BUF_LOCKINIT(bp);
767 * Reinitialize the embedded bio structures as well as any additional
768 * translation cache layers.
770 void
771 reinitbufbio(struct buf *bp)
773 struct bio *bio;
775 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
776 bio->bio_done = NULL;
777 bio->bio_offset = NOOFFSET;
782 * Undo the effects of an initbufbio().
784 void
785 uninitbufbio(struct buf *bp)
787 dsched_buf_exit(bp);
788 BUF_LOCKFREE(bp);
792 * Push another BIO layer onto an existing BIO and return it. The new
793 * BIO layer may already exist, holding cached translation data.
795 struct bio *
796 push_bio(struct bio *bio)
798 struct bio *nbio;
800 if ((nbio = bio->bio_next) == NULL) {
801 int index = bio - &bio->bio_buf->b_bio_array[0];
802 if (index >= NBUF_BIO - 1) {
803 panic("push_bio: too many layers %d for bp %p",
804 index, bio->bio_buf);
806 nbio = &bio->bio_buf->b_bio_array[index + 1];
807 bio->bio_next = nbio;
808 nbio->bio_prev = bio;
809 nbio->bio_buf = bio->bio_buf;
810 nbio->bio_offset = NOOFFSET;
811 nbio->bio_done = NULL;
812 nbio->bio_next = NULL;
814 KKASSERT(nbio->bio_done == NULL);
815 return(nbio);
819 * Pop a BIO translation layer, returning the previous layer. The
820 * must have been previously pushed.
822 struct bio *
823 pop_bio(struct bio *bio)
825 return(bio->bio_prev);
828 void
829 clearbiocache(struct bio *bio)
831 while (bio) {
832 bio->bio_offset = NOOFFSET;
833 bio = bio->bio_next;
838 * Remove the buffer from the appropriate free list.
839 * (caller must be locked)
841 static __inline void
842 _bremfree(struct buf *bp)
844 struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
846 if (bp->b_qindex != BQUEUE_NONE) {
847 KASSERT(BUF_REFCNTNB(bp) == 1,
848 ("bremfree: bp %p not locked",bp));
849 TAILQ_REMOVE(&pcpu->bufqueues[bp->b_qindex], bp, b_freelist);
850 bp->b_qindex = BQUEUE_NONE;
851 } else {
852 if (BUF_REFCNTNB(bp) <= 1)
853 panic("bremfree: removing a buffer not on a queue");
858 * bremfree() - must be called with a locked buffer
860 void
861 bremfree(struct buf *bp)
863 struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
865 spin_lock(&pcpu->spin);
866 _bremfree(bp);
867 spin_unlock(&pcpu->spin);
871 * bremfree_locked - must be called with pcpu->spin locked
873 static void
874 bremfree_locked(struct buf *bp)
876 _bremfree(bp);
880 * This version of bread issues any required I/O asyncnronously and
881 * makes a callback on completion.
883 * The callback must check whether BIO_DONE is set in the bio and issue
884 * the bpdone(bp, 0) if it isn't. The callback is responsible for clearing
885 * BIO_DONE and disposing of the I/O (bqrelse()ing it).
887 void
888 breadcb(struct vnode *vp, off_t loffset, int size,
889 void (*func)(struct bio *), void *arg)
891 struct buf *bp;
893 bp = getblk(vp, loffset, size, 0, 0);
895 /* if not found in cache, do some I/O */
896 if ((bp->b_flags & B_CACHE) == 0) {
897 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
898 bp->b_cmd = BUF_CMD_READ;
899 bp->b_bio1.bio_done = func;
900 bp->b_bio1.bio_caller_info1.ptr = arg;
901 vfs_busy_pages(vp, bp);
902 BUF_KERNPROC(bp);
903 vn_strategy(vp, &bp->b_bio1);
904 } else if (func) {
906 * Since we are issuing the callback synchronously it cannot
907 * race the BIO_DONE, so no need for atomic ops here.
909 /*bp->b_bio1.bio_done = func;*/
910 bp->b_bio1.bio_caller_info1.ptr = arg;
911 bp->b_bio1.bio_flags |= BIO_DONE;
912 func(&bp->b_bio1);
913 } else {
914 bqrelse(bp);
919 * breadnx() - Terminal function for bread() and breadn().
921 * This function will start asynchronous I/O on read-ahead blocks as well
922 * as satisfy the primary request.
924 * We must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE is
925 * set, the buffer is valid and we do not have to do anything.
928 breadnx(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
929 int *rabsize, int cnt, struct buf **bpp)
931 struct buf *bp, *rabp;
932 int i;
933 int rv = 0, readwait = 0;
935 if (*bpp)
936 bp = *bpp;
937 else
938 *bpp = bp = getblk(vp, loffset, size, 0, 0);
940 /* if not found in cache, do some I/O */
941 if ((bp->b_flags & B_CACHE) == 0) {
942 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
943 bp->b_cmd = BUF_CMD_READ;
944 bp->b_bio1.bio_done = biodone_sync;
945 bp->b_bio1.bio_flags |= BIO_SYNC;
946 vfs_busy_pages(vp, bp);
947 vn_strategy(vp, &bp->b_bio1);
948 ++readwait;
951 for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
952 if (inmem(vp, *raoffset))
953 continue;
954 rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
956 if ((rabp->b_flags & B_CACHE) == 0) {
957 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
958 rabp->b_cmd = BUF_CMD_READ;
959 vfs_busy_pages(vp, rabp);
960 BUF_KERNPROC(rabp);
961 vn_strategy(vp, &rabp->b_bio1);
962 } else {
963 brelse(rabp);
966 if (readwait)
967 rv = biowait(&bp->b_bio1, "biord");
968 return (rv);
972 * bwrite:
974 * Synchronous write, waits for completion.
976 * Write, release buffer on completion. (Done by iodone
977 * if async). Do not bother writing anything if the buffer
978 * is invalid.
980 * Note that we set B_CACHE here, indicating that buffer is
981 * fully valid and thus cacheable. This is true even of NFS
982 * now so we set it generally. This could be set either here
983 * or in biodone() since the I/O is synchronous. We put it
984 * here.
987 bwrite(struct buf *bp)
989 int error;
991 if (bp->b_flags & B_INVAL) {
992 brelse(bp);
993 return (0);
995 if (BUF_REFCNTNB(bp) == 0)
996 panic("bwrite: buffer is not busy???");
999 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1000 * call because it will remove the buffer from the vnode's
1001 * dirty buffer list prematurely and possibly cause filesystem
1002 * checks to race buffer flushes. This is now handled in
1003 * bpdone().
1005 * bundirty(bp); REMOVED
1008 bp->b_flags &= ~(B_ERROR | B_EINTR);
1009 bp->b_flags |= B_CACHE;
1010 bp->b_cmd = BUF_CMD_WRITE;
1011 bp->b_bio1.bio_done = biodone_sync;
1012 bp->b_bio1.bio_flags |= BIO_SYNC;
1013 vfs_busy_pages(bp->b_vp, bp);
1016 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1017 * valid for vnode-backed buffers.
1019 bsetrunningbufspace(bp, bp->b_bufsize);
1020 vn_strategy(bp->b_vp, &bp->b_bio1);
1021 error = biowait(&bp->b_bio1, "biows");
1022 brelse(bp);
1024 return (error);
1028 * bawrite:
1030 * Asynchronous write. Start output on a buffer, but do not wait for
1031 * it to complete. The buffer is released when the output completes.
1033 * bwrite() ( or the VOP routine anyway ) is responsible for handling
1034 * B_INVAL buffers. Not us.
1036 void
1037 bawrite(struct buf *bp)
1039 if (bp->b_flags & B_INVAL) {
1040 brelse(bp);
1041 return;
1043 if (BUF_REFCNTNB(bp) == 0)
1044 panic("bawrite: buffer is not busy???");
1047 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1048 * call because it will remove the buffer from the vnode's
1049 * dirty buffer list prematurely and possibly cause filesystem
1050 * checks to race buffer flushes. This is now handled in
1051 * bpdone().
1053 * bundirty(bp); REMOVED
1055 bp->b_flags &= ~(B_ERROR | B_EINTR);
1056 bp->b_flags |= B_CACHE;
1057 bp->b_cmd = BUF_CMD_WRITE;
1058 KKASSERT(bp->b_bio1.bio_done == NULL);
1059 vfs_busy_pages(bp->b_vp, bp);
1062 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1063 * valid for vnode-backed buffers.
1065 bsetrunningbufspace(bp, bp->b_bufsize);
1066 BUF_KERNPROC(bp);
1067 vn_strategy(bp->b_vp, &bp->b_bio1);
1071 * bdwrite:
1073 * Delayed write. (Buffer is marked dirty). Do not bother writing
1074 * anything if the buffer is marked invalid.
1076 * Note that since the buffer must be completely valid, we can safely
1077 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
1078 * biodone() in order to prevent getblk from writing the buffer
1079 * out synchronously.
1081 void
1082 bdwrite(struct buf *bp)
1084 if (BUF_REFCNTNB(bp) == 0)
1085 panic("bdwrite: buffer is not busy");
1087 if (bp->b_flags & B_INVAL) {
1088 brelse(bp);
1089 return;
1091 bdirty(bp);
1093 dsched_buf_enter(bp); /* might stack */
1096 * Set B_CACHE, indicating that the buffer is fully valid. This is
1097 * true even of NFS now.
1099 bp->b_flags |= B_CACHE;
1102 * This bmap keeps the system from needing to do the bmap later,
1103 * perhaps when the system is attempting to do a sync. Since it
1104 * is likely that the indirect block -- or whatever other datastructure
1105 * that the filesystem needs is still in memory now, it is a good
1106 * thing to do this. Note also, that if the pageout daemon is
1107 * requesting a sync -- there might not be enough memory to do
1108 * the bmap then... So, this is important to do.
1110 if (bp->b_bio2.bio_offset == NOOFFSET) {
1111 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1112 NULL, NULL, BUF_CMD_WRITE);
1116 * Because the underlying pages may still be mapped and
1117 * writable trying to set the dirty buffer (b_dirtyoff/end)
1118 * range here will be inaccurate.
1120 * However, we must still clean the pages to satisfy the
1121 * vnode_pager and pageout daemon, so they think the pages
1122 * have been "cleaned". What has really occured is that
1123 * they've been earmarked for later writing by the buffer
1124 * cache.
1126 * So we get the b_dirtyoff/end update but will not actually
1127 * depend on it (NFS that is) until the pages are busied for
1128 * writing later on.
1130 vfs_clean_pages(bp);
1131 bqrelse(bp);
1134 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1135 * due to the softdep code.
1140 * Fake write - return pages to VM system as dirty, leave the buffer clean.
1141 * This is used by tmpfs.
1143 * It is important for any VFS using this routine to NOT use it for
1144 * IO_SYNC or IO_ASYNC operations which occur when the system really
1145 * wants to flush VM pages to backing store.
1147 void
1148 buwrite(struct buf *bp)
1150 vm_page_t m;
1151 int i;
1154 * Only works for VMIO buffers. If the buffer is already
1155 * marked for delayed-write we can't avoid the bdwrite().
1157 if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1158 bdwrite(bp);
1159 return;
1163 * Mark as needing a commit.
1165 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1166 m = bp->b_xio.xio_pages[i];
1167 vm_page_need_commit(m);
1169 bqrelse(bp);
1173 * bdirty:
1175 * Turn buffer into delayed write request by marking it B_DELWRI.
1176 * B_RELBUF and B_NOCACHE must be cleared.
1178 * We reassign the buffer to itself to properly update it in the
1179 * dirty/clean lists.
1181 * Must be called from a critical section.
1182 * The buffer must be on BQUEUE_NONE.
1184 void
1185 bdirty(struct buf *bp)
1187 KASSERT(bp->b_qindex == BQUEUE_NONE,
1188 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1189 if (bp->b_flags & B_NOCACHE) {
1190 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1191 bp->b_flags &= ~B_NOCACHE;
1193 if (bp->b_flags & B_INVAL) {
1194 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1196 bp->b_flags &= ~B_RELBUF;
1198 if ((bp->b_flags & B_DELWRI) == 0) {
1199 lwkt_gettoken(&bp->b_vp->v_token);
1200 bp->b_flags |= B_DELWRI;
1201 reassignbuf(bp);
1202 lwkt_reltoken(&bp->b_vp->v_token);
1204 atomic_add_long(&dirtybufcount, 1);
1205 atomic_add_long(&dirtykvaspace, bp->b_kvasize);
1206 atomic_add_long(&dirtybufspace, bp->b_bufsize);
1207 if (bp->b_flags & B_HEAVY) {
1208 atomic_add_long(&dirtybufcounthw, 1);
1209 atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1211 bd_heatup();
1216 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1217 * needs to be flushed with a different buf_daemon thread to avoid
1218 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
1220 void
1221 bheavy(struct buf *bp)
1223 if ((bp->b_flags & B_HEAVY) == 0) {
1224 bp->b_flags |= B_HEAVY;
1225 if (bp->b_flags & B_DELWRI) {
1226 atomic_add_long(&dirtybufcounthw, 1);
1227 atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1233 * bundirty:
1235 * Clear B_DELWRI for buffer.
1237 * Must be called from a critical section.
1239 * The buffer is typically on BQUEUE_NONE but there is one case in
1240 * brelse() that calls this function after placing the buffer on
1241 * a different queue.
1243 void
1244 bundirty(struct buf *bp)
1246 if (bp->b_flags & B_DELWRI) {
1247 lwkt_gettoken(&bp->b_vp->v_token);
1248 bp->b_flags &= ~B_DELWRI;
1249 reassignbuf(bp);
1250 lwkt_reltoken(&bp->b_vp->v_token);
1252 atomic_add_long(&dirtybufcount, -1);
1253 atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1254 atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1255 if (bp->b_flags & B_HEAVY) {
1256 atomic_add_long(&dirtybufcounthw, -1);
1257 atomic_add_long(&dirtybufspacehw, -bp->b_bufsize);
1259 bd_signal(bp->b_bufsize);
1262 * Since it is now being written, we can clear its deferred write flag.
1264 bp->b_flags &= ~B_DEFERRED;
1268 * Set the b_runningbufspace field, used to track how much I/O is
1269 * in progress at any given moment.
1271 void
1272 bsetrunningbufspace(struct buf *bp, int bytes)
1274 bp->b_runningbufspace = bytes;
1275 if (bytes) {
1276 atomic_add_long(&runningbufspace, bytes);
1277 atomic_add_long(&runningbufcount, 1);
1282 * brelse:
1284 * Release a busy buffer and, if requested, free its resources. The
1285 * buffer will be stashed in the appropriate bufqueue[] allowing it
1286 * to be accessed later as a cache entity or reused for other purposes.
1288 void
1289 brelse(struct buf *bp)
1291 struct bufpcpu *pcpu;
1292 #ifdef INVARIANTS
1293 int saved_flags = bp->b_flags;
1294 #endif
1296 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1297 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1300 * If B_NOCACHE is set we are being asked to destroy the buffer and
1301 * its backing store. Clear B_DELWRI.
1303 * B_NOCACHE is set in two cases: (1) when the caller really wants
1304 * to destroy the buffer and backing store and (2) when the caller
1305 * wants to destroy the buffer and backing store after a write
1306 * completes.
1308 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1309 bundirty(bp);
1312 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1314 * A re-dirtied buffer is only subject to destruction
1315 * by B_INVAL. B_ERROR and B_NOCACHE are ignored.
1317 /* leave buffer intact */
1318 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1319 (bp->b_bufsize <= 0)) {
1321 * Either a failed read or we were asked to free or not
1322 * cache the buffer. This path is reached with B_DELWRI
1323 * set only if B_INVAL is already set. B_NOCACHE governs
1324 * backing store destruction.
1326 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1327 * buffer cannot be immediately freed.
1329 bp->b_flags |= B_INVAL;
1330 if (LIST_FIRST(&bp->b_dep) != NULL)
1331 buf_deallocate(bp);
1332 if (bp->b_flags & B_DELWRI) {
1333 atomic_add_long(&dirtybufcount, -1);
1334 atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1335 atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1336 if (bp->b_flags & B_HEAVY) {
1337 atomic_add_long(&dirtybufcounthw, -1);
1338 atomic_add_long(&dirtybufspacehw,
1339 -bp->b_bufsize);
1341 bd_signal(bp->b_bufsize);
1343 bp->b_flags &= ~(B_DELWRI | B_CACHE);
1347 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1348 * or if b_refs is non-zero.
1350 * If vfs_vmio_release() is called with either bit set, the
1351 * underlying pages may wind up getting freed causing a previous
1352 * write (bdwrite()) to get 'lost' because pages associated with
1353 * a B_DELWRI bp are marked clean. Pages associated with a
1354 * B_LOCKED buffer may be mapped by the filesystem.
1356 * If we want to release the buffer ourselves (rather then the
1357 * originator asking us to release it), give the originator a
1358 * chance to countermand the release by setting B_LOCKED.
1360 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1361 * if B_DELWRI is set.
1363 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1364 * on pages to return pages to the VM page queues.
1366 if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1367 bp->b_flags &= ~B_RELBUF;
1368 } else if (vm_page_count_min(0)) {
1369 if (LIST_FIRST(&bp->b_dep) != NULL)
1370 buf_deallocate(bp); /* can set B_LOCKED */
1371 if (bp->b_flags & (B_DELWRI | B_LOCKED))
1372 bp->b_flags &= ~B_RELBUF;
1373 else
1374 bp->b_flags |= B_RELBUF;
1378 * Make sure b_cmd is clear. It may have already been cleared by
1379 * biodone().
1381 * At this point destroying the buffer is governed by the B_INVAL
1382 * or B_RELBUF flags.
1384 bp->b_cmd = BUF_CMD_DONE;
1385 dsched_buf_exit(bp);
1388 * VMIO buffer rundown. Make sure the VM page array is restored
1389 * after an I/O may have replaces some of the pages with bogus pages
1390 * in order to not destroy dirty pages in a fill-in read.
1392 * Note that due to the code above, if a buffer is marked B_DELWRI
1393 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1394 * B_INVAL may still be set, however.
1396 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1397 * but not the backing store. B_NOCACHE will destroy the backing
1398 * store.
1400 * Note that dirty NFS buffers contain byte-granular write ranges
1401 * and should not be destroyed w/ B_INVAL even if the backing store
1402 * is left intact.
1404 if (bp->b_flags & B_VMIO) {
1406 * Rundown for VMIO buffers which are not dirty NFS buffers.
1408 int i, j, resid;
1409 vm_page_t m;
1410 off_t foff;
1411 vm_pindex_t poff;
1412 vm_object_t obj;
1413 struct vnode *vp;
1415 vp = bp->b_vp;
1418 * Get the base offset and length of the buffer. Note that
1419 * in the VMIO case if the buffer block size is not
1420 * page-aligned then b_data pointer may not be page-aligned.
1421 * But our b_xio.xio_pages array *IS* page aligned.
1423 * block sizes less then DEV_BSIZE (usually 512) are not
1424 * supported due to the page granularity bits (m->valid,
1425 * m->dirty, etc...).
1427 * See man buf(9) for more information
1430 resid = bp->b_bufsize;
1431 foff = bp->b_loffset;
1433 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1434 m = bp->b_xio.xio_pages[i];
1437 * If we hit a bogus page, fixup *all* of them
1438 * now. Note that we left these pages wired
1439 * when we removed them so they had better exist,
1440 * and they cannot be ripped out from under us so
1441 * no critical section protection is necessary.
1443 if (m == bogus_page) {
1444 obj = vp->v_object;
1445 poff = OFF_TO_IDX(bp->b_loffset);
1447 vm_object_hold(obj);
1448 for (j = i; j < bp->b_xio.xio_npages; j++) {
1449 vm_page_t mtmp;
1451 mtmp = bp->b_xio.xio_pages[j];
1452 if (mtmp == bogus_page) {
1453 if ((bp->b_flags & B_HASBOGUS) == 0)
1454 panic("brelse: bp %p corrupt bogus", bp);
1455 mtmp = vm_page_lookup(obj, poff + j);
1456 if (!mtmp)
1457 panic("brelse: bp %p page %d missing", bp, j);
1458 bp->b_xio.xio_pages[j] = mtmp;
1461 vm_object_drop(obj);
1463 if ((bp->b_flags & B_HASBOGUS) || (bp->b_flags & B_INVAL) == 0) {
1464 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1465 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1466 bp->b_flags &= ~B_HASBOGUS;
1468 m = bp->b_xio.xio_pages[i];
1472 * Invalidate the backing store if B_NOCACHE is set
1473 * (e.g. used with vinvalbuf()). If this is NFS
1474 * we impose a requirement that the block size be
1475 * a multiple of PAGE_SIZE and create a temporary
1476 * hack to basically invalidate the whole page. The
1477 * problem is that NFS uses really odd buffer sizes
1478 * especially when tracking piecemeal writes and
1479 * it also vinvalbuf()'s a lot, which would result
1480 * in only partial page validation and invalidation
1481 * here. If the file page is mmap()'d, however,
1482 * all the valid bits get set so after we invalidate
1483 * here we would end up with weird m->valid values
1484 * like 0xfc. nfs_getpages() can't handle this so
1485 * we clear all the valid bits for the NFS case
1486 * instead of just some of them.
1488 * The real bug is the VM system having to set m->valid
1489 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1490 * itself is an artifact of the whole 512-byte
1491 * granular mess that exists to support odd block
1492 * sizes and UFS meta-data block sizes (e.g. 6144).
1493 * A complete rewrite is required.
1495 * XXX
1497 if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1498 int poffset = foff & PAGE_MASK;
1499 int presid;
1501 presid = PAGE_SIZE - poffset;
1502 if (bp->b_vp->v_tag == VT_NFS &&
1503 bp->b_vp->v_type == VREG) {
1504 ; /* entire page */
1505 } else if (presid > resid) {
1506 presid = resid;
1508 KASSERT(presid >= 0, ("brelse: extra page"));
1509 vm_page_set_invalid(m, poffset, presid);
1512 * Also make sure any swap cache is removed
1513 * as it is now stale (HAMMER in particular
1514 * uses B_NOCACHE to deal with buffer
1515 * aliasing).
1517 swap_pager_unswapped(m);
1519 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1520 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1522 if (bp->b_flags & (B_INVAL | B_RELBUF))
1523 vfs_vmio_release(bp);
1524 } else {
1526 * Rundown for non-VMIO buffers.
1528 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1529 if (bp->b_bufsize)
1530 allocbuf(bp, 0);
1531 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1532 if (bp->b_vp)
1533 brelvp(bp);
1537 if (bp->b_qindex != BQUEUE_NONE)
1538 panic("brelse: free buffer onto another queue???");
1539 if (BUF_REFCNTNB(bp) > 1) {
1540 /* Temporary panic to verify exclusive locking */
1541 /* This panic goes away when we allow shared refs */
1542 panic("brelse: multiple refs");
1543 /* NOT REACHED */
1544 return;
1548 * Figure out the correct queue to place the cleaned up buffer on.
1549 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1550 * disassociated from their vnode.
1552 * Return the buffer to its original pcpu area
1554 pcpu = &bufpcpu[bp->b_qcpu];
1555 spin_lock(&pcpu->spin);
1557 if (bp->b_flags & B_LOCKED) {
1559 * Buffers that are locked are placed in the locked queue
1560 * immediately, regardless of their state.
1562 bp->b_qindex = BQUEUE_LOCKED;
1563 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1564 bp, b_freelist);
1565 } else if (bp->b_bufsize == 0) {
1567 * Buffers with no memory. Due to conditionals near the top
1568 * of brelse() such buffers should probably already be
1569 * marked B_INVAL and disassociated from their vnode.
1571 bp->b_flags |= B_INVAL;
1572 KASSERT(bp->b_vp == NULL,
1573 ("bp1 %p flags %08x/%08x vnode %p "
1574 "unexpectededly still associated!",
1575 bp, saved_flags, bp->b_flags, bp->b_vp));
1576 KKASSERT((bp->b_flags & B_HASHED) == 0);
1577 bp->b_qindex = BQUEUE_EMPTY;
1578 TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1579 bp, b_freelist);
1580 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1582 * Buffers with junk contents. Again these buffers had better
1583 * already be disassociated from their vnode.
1585 KASSERT(bp->b_vp == NULL,
1586 ("bp2 %p flags %08x/%08x vnode %p unexpectededly "
1587 "still associated!",
1588 bp, saved_flags, bp->b_flags, bp->b_vp));
1589 KKASSERT((bp->b_flags & B_HASHED) == 0);
1590 bp->b_flags |= B_INVAL;
1591 bp->b_qindex = BQUEUE_CLEAN;
1592 TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1593 bp, b_freelist);
1594 } else {
1596 * Remaining buffers. These buffers are still associated with
1597 * their vnode.
1599 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1600 case B_DELWRI:
1601 bp->b_qindex = BQUEUE_DIRTY;
1602 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1603 bp, b_freelist);
1604 break;
1605 case B_DELWRI | B_HEAVY:
1606 bp->b_qindex = BQUEUE_DIRTY_HW;
1607 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1608 bp, b_freelist);
1609 break;
1610 default:
1612 * NOTE: Buffers are always placed at the end of the
1613 * queue. If B_AGE is not set the buffer will cycle
1614 * through the queue twice.
1616 bp->b_qindex = BQUEUE_CLEAN;
1617 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1618 bp, b_freelist);
1619 break;
1622 spin_unlock(&pcpu->spin);
1625 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1626 * on the correct queue but we have not yet unlocked it.
1628 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1629 bundirty(bp);
1632 * The bp is on an appropriate queue unless locked. If it is not
1633 * locked or dirty we can wakeup threads waiting for buffer space.
1635 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1636 * if B_INVAL is set ).
1638 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1639 bufcountwakeup();
1642 * Something we can maybe free or reuse
1644 if (bp->b_bufsize || bp->b_kvasize)
1645 bufspacewakeup();
1648 * Clean up temporary flags and unlock the buffer.
1650 bp->b_flags &= ~(B_NOCACHE | B_RELBUF | B_DIRECT);
1651 BUF_UNLOCK(bp);
1655 * bqrelse:
1657 * Release a buffer back to the appropriate queue but do not try to free
1658 * it. The buffer is expected to be used again soon.
1660 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1661 * biodone() to requeue an async I/O on completion. It is also used when
1662 * known good buffers need to be requeued but we think we may need the data
1663 * again soon.
1665 * XXX we should be able to leave the B_RELBUF hint set on completion.
1667 void
1668 bqrelse(struct buf *bp)
1670 struct bufpcpu *pcpu;
1672 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1673 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1675 if (bp->b_qindex != BQUEUE_NONE)
1676 panic("bqrelse: free buffer onto another queue???");
1677 if (BUF_REFCNTNB(bp) > 1) {
1678 /* do not release to free list */
1679 panic("bqrelse: multiple refs");
1680 return;
1683 buf_act_advance(bp);
1685 pcpu = &bufpcpu[bp->b_qcpu];
1686 spin_lock(&pcpu->spin);
1688 if (bp->b_flags & B_LOCKED) {
1690 * Locked buffers are released to the locked queue. However,
1691 * if the buffer is dirty it will first go into the dirty
1692 * queue and later on after the I/O completes successfully it
1693 * will be released to the locked queue.
1695 bp->b_qindex = BQUEUE_LOCKED;
1696 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1697 bp, b_freelist);
1698 } else if (bp->b_flags & B_DELWRI) {
1699 bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1700 BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1701 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1702 bp, b_freelist);
1703 } else if (vm_page_count_min(0)) {
1705 * We are too low on memory, we have to try to free the
1706 * buffer (most importantly: the wired pages making up its
1707 * backing store) *now*.
1709 spin_unlock(&pcpu->spin);
1710 brelse(bp);
1711 return;
1712 } else {
1713 bp->b_qindex = BQUEUE_CLEAN;
1714 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1715 bp, b_freelist);
1717 spin_unlock(&pcpu->spin);
1720 * We have now placed the buffer on the proper queue, but have yet
1721 * to unlock it.
1723 if ((bp->b_flags & B_LOCKED) == 0 &&
1724 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1725 bufcountwakeup();
1729 * Something we can maybe free or reuse.
1731 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1732 bufspacewakeup();
1735 * Final cleanup and unlock. Clear bits that are only used while a
1736 * buffer is actively locked.
1738 bp->b_flags &= ~(B_NOCACHE | B_RELBUF);
1739 dsched_buf_exit(bp);
1740 BUF_UNLOCK(bp);
1744 * Hold a buffer, preventing it from being reused. This will prevent
1745 * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1746 * operations. If a B_INVAL operation occurs the buffer will remain held
1747 * but the underlying pages may get ripped out.
1749 * These functions are typically used in VOP_READ/VOP_WRITE functions
1750 * to hold a buffer during a copyin or copyout, preventing deadlocks
1751 * or recursive lock panics when read()/write() is used over mmap()'d
1752 * space.
1754 * NOTE: bqhold() requires that the buffer be locked at the time of the
1755 * hold. bqdrop() has no requirements other than the buffer having
1756 * previously been held.
1758 void
1759 bqhold(struct buf *bp)
1761 atomic_add_int(&bp->b_refs, 1);
1764 void
1765 bqdrop(struct buf *bp)
1767 KKASSERT(bp->b_refs > 0);
1768 atomic_add_int(&bp->b_refs, -1);
1772 * Return backing pages held by the buffer 'bp' back to the VM system.
1773 * This routine is called when the bp is invalidated, released, or
1774 * reused.
1776 * The KVA mapping (b_data) for the underlying pages is removed by
1777 * this function.
1779 * WARNING! This routine is integral to the low memory critical path
1780 * when a buffer is B_RELBUF'd. If the system has a severe page
1781 * deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1782 * queues so they can be reused in the current pageout daemon
1783 * pass.
1785 static void
1786 vfs_vmio_release(struct buf *bp)
1788 int i;
1789 vm_page_t m;
1791 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1792 m = bp->b_xio.xio_pages[i];
1793 bp->b_xio.xio_pages[i] = NULL;
1796 * We need to own the page in order to safely unwire it.
1798 vm_page_busy_wait(m, FALSE, "vmiopg");
1801 * The VFS is telling us this is not a meta-data buffer
1802 * even if it is backed by a block device.
1804 if (bp->b_flags & B_NOTMETA)
1805 vm_page_flag_set(m, PG_NOTMETA);
1808 * This is a very important bit of code. We try to track
1809 * VM page use whether the pages are wired into the buffer
1810 * cache or not. While wired into the buffer cache the
1811 * bp tracks the act_count.
1813 * We can choose to place unwired pages on the inactive
1814 * queue (0) or active queue (1). If we place too many
1815 * on the active queue the queue will cycle the act_count
1816 * on pages we'd like to keep, just from single-use pages
1817 * (such as when doing a tar-up or file scan).
1819 if (bp->b_act_count < vm_cycle_point)
1820 vm_page_unwire(m, 0);
1821 else
1822 vm_page_unwire(m, 1);
1825 * If the wire_count has dropped to 0 we may need to take
1826 * further action before unbusying the page.
1828 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1830 if (m->wire_count == 0) {
1831 if (bp->b_flags & B_DIRECT) {
1833 * Attempt to free the page if B_DIRECT is
1834 * set, the caller does not desire the page
1835 * to be cached.
1837 vm_page_wakeup(m);
1838 vm_page_try_to_free(m);
1839 } else if ((bp->b_flags & B_NOTMETA) ||
1840 vm_page_count_min(0)) {
1842 * Attempt to move the page to PQ_CACHE
1843 * if B_NOTMETA is set. This flag is set
1844 * by HAMMER to remove one of the two pages
1845 * present when double buffering is enabled.
1847 * Attempt to move the page to PQ_CACHE
1848 * If we have a severe page deficit. This
1849 * will cause buffer cache operations related
1850 * to pageouts to recycle the related pages
1851 * in order to avoid a low memory deadlock.
1853 m->act_count = bp->b_act_count;
1854 vm_page_try_to_cache(m);
1855 } else {
1857 * Nominal case, leave the page on the
1858 * queue the original unwiring placed it on
1859 * (active or inactive).
1861 m->act_count = bp->b_act_count;
1862 vm_page_wakeup(m);
1864 } else {
1865 vm_page_wakeup(m);
1870 * Zero out the pmap pte's for the mapping, but don't bother
1871 * invalidating the TLB. The range will be properly invalidating
1872 * when new pages are entered into the mapping.
1874 * This in particular reduces tmpfs tear-down overhead and reduces
1875 * buffer cache re-use overhead (one invalidation sequence instead
1876 * of two per re-use).
1878 pmap_qremove_noinval(trunc_page((vm_offset_t) bp->b_data),
1879 bp->b_xio.xio_npages);
1880 if (bp->b_bufsize) {
1881 atomic_add_long(&bufspace, -bp->b_bufsize);
1882 bp->b_bufsize = 0;
1883 bufspacewakeup();
1885 bp->b_xio.xio_npages = 0;
1886 bp->b_flags &= ~B_VMIO;
1887 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1888 if (bp->b_vp)
1889 brelvp(bp);
1893 * Find and initialize a new buffer header, freeing up existing buffers
1894 * in the bufqueues as necessary. The new buffer is returned locked.
1896 * If repurpose is non-NULL getnewbuf() is allowed to re-purpose an existing
1897 * buffer. The buffer will be disassociated, its page and page mappings
1898 * left intact, and returned with *repurpose set to 1. Else *repurpose is set
1899 * to 0. If 1, the caller must repurpose the underlying VM pages.
1901 * If repurpose is NULL getnewbuf() is not allowed to re-purpose an
1902 * existing buffer. That is, it must completely initialize the returned
1903 * buffer.
1905 * Important: B_INVAL is not set. If the caller wishes to throw the
1906 * buffer away, the caller must set B_INVAL prior to calling brelse().
1908 * We block if:
1909 * We have insufficient buffer headers
1910 * We have insufficient buffer space
1912 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1913 * Instead we ask the buf daemon to do it for us. We attempt to
1914 * avoid piecemeal wakeups of the pageout daemon.
1916 struct buf *
1917 getnewbuf(int blkflags, int slptimeo, int size, int maxsize,
1918 struct vm_object **repurposep)
1920 struct bufpcpu *pcpu;
1921 struct buf *bp;
1922 struct buf *nbp;
1923 int nqindex;
1924 int nqcpu;
1925 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1926 int maxloops = 200000;
1927 int restart_reason = 0;
1928 struct buf *restart_bp = NULL;
1929 static char flushingbufs[MAXCPU];
1930 char *flushingp;
1933 * We can't afford to block since we might be holding a vnode lock,
1934 * which may prevent system daemons from running. We deal with
1935 * low-memory situations by proactively returning memory and running
1936 * async I/O rather then sync I/O.
1939 ++getnewbufcalls;
1940 nqcpu = mycpu->gd_cpuid;
1941 flushingp = &flushingbufs[nqcpu];
1942 restart:
1943 if (bufspace < lobufspace)
1944 *flushingp = 0;
1946 if (debug_bufbio && --maxloops == 0)
1947 panic("getnewbuf, excessive loops on cpu %d restart %d (%p)",
1948 mycpu->gd_cpuid, restart_reason, restart_bp);
1951 * Setup for scan. If we do not have enough free buffers,
1952 * we setup a degenerate case that immediately fails. Note
1953 * that if we are specially marked process, we are allowed to
1954 * dip into our reserves.
1956 * The scanning sequence is nominally: EMPTY->CLEAN
1958 pcpu = &bufpcpu[nqcpu];
1959 spin_lock(&pcpu->spin);
1962 * Determine if repurposing should be disallowed. Generally speaking
1963 * do not repurpose buffers if the buffer cache hasn't capped. Also
1964 * control repurposing based on buffer-cache -> main-memory bandwidth.
1965 * That is, we want to recycle buffers normally up until the buffer
1966 * cache bandwidth (new-buffer bw) exceeds bufcache_bw.
1968 * (This is heuristical, SMP collisions are ok)
1970 if (repurposep) {
1971 int delta = ticks - bufcache_bw_ticks;
1972 if (delta < 0 || delta >= hz) {
1973 atomic_swap_long(&bufcache_bw_accum, 0);
1974 atomic_swap_int(&bufcache_bw_ticks, ticks);
1976 atomic_add_long(&bufcache_bw_accum, size);
1977 if (bufspace < lobufspace) {
1978 repurposep = NULL;
1979 } else if (bufcache_bw_accum < bufcache_bw) {
1980 repurposep = NULL;
1985 * Prime the scan for this cpu. Locate the first buffer to
1986 * check. If we are flushing buffers we must skip the
1987 * EMPTY queue.
1989 nqindex = BQUEUE_EMPTY;
1990 nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTY]);
1991 if (nbp == NULL || *flushingp || repurposep) {
1992 nqindex = BQUEUE_CLEAN;
1993 nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN]);
1997 * Run scan, possibly freeing data and/or kva mappings on the fly,
1998 * depending.
2000 * WARNING! spin is held!
2002 while ((bp = nbp) != NULL) {
2003 int qindex = nqindex;
2005 nbp = TAILQ_NEXT(bp, b_freelist);
2008 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
2009 * cycles through the queue twice before being selected.
2011 if (qindex == BQUEUE_CLEAN &&
2012 (bp->b_flags & B_AGE) == 0 && nbp) {
2013 bp->b_flags |= B_AGE;
2014 TAILQ_REMOVE(&pcpu->bufqueues[qindex],
2015 bp, b_freelist);
2016 TAILQ_INSERT_TAIL(&pcpu->bufqueues[qindex],
2017 bp, b_freelist);
2018 continue;
2022 * Calculate next bp ( we can only use it if we do not block
2023 * or do other fancy things ).
2025 if (nbp == NULL) {
2026 switch(qindex) {
2027 case BQUEUE_EMPTY:
2028 nqindex = BQUEUE_CLEAN;
2029 if ((nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN])))
2030 break;
2031 /* fall through */
2032 case BQUEUE_CLEAN:
2034 * nbp is NULL.
2036 break;
2041 * Sanity Checks
2043 KASSERT(bp->b_qindex == qindex,
2044 ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2047 * Note: we no longer distinguish between VMIO and non-VMIO
2048 * buffers.
2050 KASSERT((bp->b_flags & B_DELWRI) == 0,
2051 ("delwri buffer %p found in queue %d", bp, qindex));
2054 * Do not try to reuse a buffer with a non-zero b_refs.
2055 * This is an unsynchronized test. A synchronized test
2056 * is also performed after we lock the buffer.
2058 if (bp->b_refs)
2059 continue;
2062 * Start freeing the bp. This is somewhat involved. nbp
2063 * remains valid only for BQUEUE_EMPTY bp's. Buffers
2064 * on the clean list must be disassociated from their
2065 * current vnode. Buffers on the empty lists have
2066 * already been disassociated.
2068 * b_refs is checked after locking along with queue changes.
2069 * We must check here to deal with zero->nonzero transitions
2070 * made by the owner of the buffer lock, which is used by
2071 * VFS's to hold the buffer while issuing an unlocked
2072 * uiomove()s. We cannot invalidate the buffer's pages
2073 * for this case. Once we successfully lock a buffer the
2074 * only 0->1 transitions of b_refs will occur via findblk().
2076 * We must also check for queue changes after successful
2077 * locking as the current lock holder may dispose of the
2078 * buffer and change its queue.
2080 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2081 spin_unlock(&pcpu->spin);
2082 tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2083 restart_reason = 1;
2084 restart_bp = bp;
2085 goto restart;
2087 if (bp->b_qindex != qindex || bp->b_refs) {
2088 spin_unlock(&pcpu->spin);
2089 BUF_UNLOCK(bp);
2090 restart_reason = 2;
2091 restart_bp = bp;
2092 goto restart;
2094 bremfree_locked(bp);
2095 spin_unlock(&pcpu->spin);
2098 * Dependancies must be handled before we disassociate the
2099 * vnode.
2101 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2102 * be immediately disassociated. HAMMER then becomes
2103 * responsible for releasing the buffer.
2105 * NOTE: spin is UNLOCKED now.
2107 if (LIST_FIRST(&bp->b_dep) != NULL) {
2108 buf_deallocate(bp);
2109 if (bp->b_flags & B_LOCKED) {
2110 bqrelse(bp);
2111 restart_reason = 3;
2112 restart_bp = bp;
2113 goto restart;
2115 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2119 * CLEAN buffers have content or associations that must be
2120 * cleaned out if not repurposing.
2122 if (qindex == BQUEUE_CLEAN) {
2123 if (bp->b_flags & B_VMIO) {
2124 if (repurpose_enable &&
2125 repurposep && bp->b_bufsize &&
2126 (bp->b_flags & (B_DELWRI | B_MALLOC)) == 0) {
2127 *repurposep = bp->b_vp->v_object;
2128 vm_object_hold(*repurposep);
2129 } else {
2130 vfs_vmio_release(bp);
2133 if (bp->b_vp)
2134 brelvp(bp);
2138 * NOTE: nbp is now entirely invalid. We can only restart
2139 * the scan from this point on.
2141 * Get the rest of the buffer freed up. b_kva* is still
2142 * valid after this operation.
2144 KASSERT(bp->b_vp == NULL,
2145 ("bp3 %p flags %08x vnode %p qindex %d "
2146 "unexpectededly still associated!",
2147 bp, bp->b_flags, bp->b_vp, qindex));
2148 KKASSERT((bp->b_flags & B_HASHED) == 0);
2150 if (repurposep == NULL || *repurposep == NULL) {
2151 if (bp->b_bufsize)
2152 allocbuf(bp, 0);
2155 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN | B_HASHED)) {
2156 kprintf("getnewbuf: caught bug vp queue "
2157 "%p/%08x qidx %d\n",
2158 bp, bp->b_flags, qindex);
2159 brelvp(bp);
2161 bp->b_flags = B_BNOCLIP;
2162 bp->b_cmd = BUF_CMD_DONE;
2163 bp->b_vp = NULL;
2164 bp->b_error = 0;
2165 bp->b_resid = 0;
2166 bp->b_bcount = 0;
2167 if (repurposep == NULL || *repurposep == NULL)
2168 bp->b_xio.xio_npages = 0;
2169 bp->b_dirtyoff = bp->b_dirtyend = 0;
2170 bp->b_act_count = ACT_INIT;
2171 reinitbufbio(bp);
2172 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2173 buf_dep_init(bp);
2174 if (blkflags & GETBLK_BHEAVY)
2175 bp->b_flags |= B_HEAVY;
2177 if (bufspace >= hibufspace)
2178 *flushingp = 1;
2179 if (bufspace < lobufspace)
2180 *flushingp = 0;
2181 if (*flushingp) {
2182 if (repurposep && *repurposep != NULL) {
2183 bp->b_flags |= B_VMIO;
2184 vfs_vmio_release(bp);
2185 if (bp->b_bufsize)
2186 allocbuf(bp, 0);
2187 vm_object_drop(*repurposep);
2188 *repurposep = NULL;
2190 bp->b_flags |= B_INVAL;
2191 brelse(bp);
2192 restart_reason = 5;
2193 restart_bp = bp;
2194 goto restart;
2198 * b_refs can transition to a non-zero value while we hold
2199 * the buffer locked due to a findblk(). Our brelvp() above
2200 * interlocked any future possible transitions due to
2201 * findblk()s.
2203 * If we find b_refs to be non-zero we can destroy the
2204 * buffer's contents but we cannot yet reuse the buffer.
2206 if (bp->b_refs) {
2207 if (repurposep && *repurposep != NULL) {
2208 bp->b_flags |= B_VMIO;
2209 vfs_vmio_release(bp);
2210 if (bp->b_bufsize)
2211 allocbuf(bp, 0);
2212 vm_object_drop(*repurposep);
2213 *repurposep = NULL;
2215 bp->b_flags |= B_INVAL;
2216 brelse(bp);
2217 restart_reason = 6;
2218 restart_bp = bp;
2220 goto restart;
2224 * We found our buffer!
2226 break;
2230 * If we exhausted our list, iterate other cpus. If that fails,
2231 * sleep as appropriate. We may have to wakeup various daemons
2232 * and write out some dirty buffers.
2234 * Generally we are sleeping due to insufficient buffer space.
2236 * NOTE: spin is held if bp is NULL, else it is not held.
2238 if (bp == NULL) {
2239 int flags;
2240 char *waitmsg;
2242 spin_unlock(&pcpu->spin);
2244 nqcpu = (nqcpu + 1) % ncpus;
2245 if (nqcpu != mycpu->gd_cpuid) {
2246 restart_reason = 7;
2247 restart_bp = bp;
2248 goto restart;
2251 if (bufspace >= hibufspace) {
2252 waitmsg = "bufspc";
2253 flags = VFS_BIO_NEED_BUFSPACE;
2254 } else {
2255 waitmsg = "newbuf";
2256 flags = VFS_BIO_NEED_ANY;
2259 bd_speedup(); /* heeeelp */
2260 atomic_set_int(&needsbuffer, flags);
2261 while (needsbuffer & flags) {
2262 int value;
2264 tsleep_interlock(&needsbuffer, 0);
2265 value = atomic_fetchadd_int(&needsbuffer, 0);
2266 if (value & flags) {
2267 if (tsleep(&needsbuffer, PINTERLOCKED|slpflags,
2268 waitmsg, slptimeo)) {
2269 return (NULL);
2273 } else {
2275 * We finally have a valid bp. Reset b_data.
2277 * (spin is not held)
2279 bp->b_data = bp->b_kvabase;
2281 return(bp);
2285 * buf_daemon:
2287 * Buffer flushing daemon. Buffers are normally flushed by the
2288 * update daemon but if it cannot keep up this process starts to
2289 * take the load in an attempt to prevent getnewbuf() from blocking.
2291 * Once a flush is initiated it does not stop until the number
2292 * of buffers falls below lodirtybuffers, but we will wake up anyone
2293 * waiting at the mid-point.
2295 static struct kproc_desc buf_kp = {
2296 "bufdaemon",
2297 buf_daemon,
2298 &bufdaemon_td
2300 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2301 kproc_start, &buf_kp);
2303 static struct kproc_desc bufhw_kp = {
2304 "bufdaemon_hw",
2305 buf_daemon_hw,
2306 &bufdaemonhw_td
2308 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2309 kproc_start, &bufhw_kp);
2311 static void
2312 buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long),
2313 int *bd_req)
2315 long limit;
2316 struct buf *marker;
2318 marker = kmalloc(sizeof(*marker), M_BIOBUF, M_WAITOK | M_ZERO);
2319 marker->b_flags |= B_MARKER;
2320 marker->b_qindex = BQUEUE_NONE;
2321 marker->b_qcpu = 0;
2324 * This process needs to be suspended prior to shutdown sync.
2326 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2327 td, SHUTDOWN_PRI_LAST);
2328 curthread->td_flags |= TDF_SYSTHREAD;
2331 * This process is allowed to take the buffer cache to the limit
2333 for (;;) {
2334 kproc_suspend_loop();
2337 * Do the flush as long as the number of dirty buffers
2338 * (including those running) exceeds lodirtybufspace.
2340 * When flushing limit running I/O to hirunningspace
2341 * Do the flush. Limit the amount of in-transit I/O we
2342 * allow to build up, otherwise we would completely saturate
2343 * the I/O system. Wakeup any waiting processes before we
2344 * normally would so they can run in parallel with our drain.
2346 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2347 * but because we split the operation into two threads we
2348 * have to cut it in half for each thread.
2350 waitrunningbufspace();
2351 limit = lodirtybufspace / 2;
2352 while (buf_limit_fn(limit)) {
2353 if (flushbufqueues(marker, queue) == 0)
2354 break;
2355 if (runningbufspace < hirunningspace)
2356 continue;
2357 waitrunningbufspace();
2361 * We reached our low water mark, reset the
2362 * request and sleep until we are needed again.
2363 * The sleep is just so the suspend code works.
2365 tsleep_interlock(bd_req, 0);
2366 if (atomic_swap_int(bd_req, 0) == 0)
2367 tsleep(bd_req, PINTERLOCKED, "psleep", hz);
2369 /* NOT REACHED */
2370 /*kfree(marker, M_BIOBUF);*/
2373 static int
2374 buf_daemon_limit(long limit)
2376 return (runningbufspace + dirtykvaspace > limit ||
2377 dirtybufcount - dirtybufcounthw >= nbuf / 2);
2380 static int
2381 buf_daemon_hw_limit(long limit)
2383 return (runningbufspace + dirtykvaspace > limit ||
2384 dirtybufcounthw >= nbuf / 2);
2387 static void
2388 buf_daemon(void)
2390 buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit,
2391 &bd_request);
2394 static void
2395 buf_daemon_hw(void)
2397 buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit,
2398 &bd_request_hw);
2402 * Flush up to (flushperqueue) buffers in the dirty queue. Each cpu has a
2403 * localized version of the queue. Each call made to this function iterates
2404 * to another cpu. It is desireable to flush several buffers from the same
2405 * cpu's queue at once, as these are likely going to be linear.
2407 * We must be careful to free up B_INVAL buffers instead of write them, which
2408 * NFS is particularly sensitive to.
2410 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate that we
2411 * really want to try to get the buffer out and reuse it due to the write
2412 * load on the machine.
2414 * We must lock the buffer in order to check its validity before we can mess
2415 * with its contents. spin isn't enough.
2417 static int
2418 flushbufqueues(struct buf *marker, bufq_type_t q)
2420 struct bufpcpu *pcpu;
2421 struct buf *bp;
2422 int r = 0;
2423 u_int loops = flushperqueue;
2424 int lcpu = marker->b_qcpu;
2426 KKASSERT(marker->b_qindex == BQUEUE_NONE);
2427 KKASSERT(marker->b_flags & B_MARKER);
2429 again:
2431 * Spinlock needed to perform operations on the queue and may be
2432 * held through a non-blocking BUF_LOCK(), but cannot be held when
2433 * BUF_UNLOCK()ing or through any other major operation.
2435 pcpu = &bufpcpu[marker->b_qcpu];
2436 spin_lock(&pcpu->spin);
2437 marker->b_qindex = q;
2438 TAILQ_INSERT_HEAD(&pcpu->bufqueues[q], marker, b_freelist);
2439 bp = marker;
2441 while ((bp = TAILQ_NEXT(bp, b_freelist)) != NULL) {
2443 * NOTE: spinlock is always held at the top of the loop
2445 if (bp->b_flags & B_MARKER)
2446 continue;
2447 if ((bp->b_flags & B_DELWRI) == 0) {
2448 kprintf("Unexpected clean buffer %p\n", bp);
2449 continue;
2451 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
2452 continue;
2453 KKASSERT(bp->b_qcpu == marker->b_qcpu && bp->b_qindex == q);
2456 * Once the buffer is locked we will have no choice but to
2457 * unlock the spinlock around a later BUF_UNLOCK and re-set
2458 * bp = marker when looping. Move the marker now to make
2459 * things easier.
2461 TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2462 TAILQ_INSERT_AFTER(&pcpu->bufqueues[q], bp, marker, b_freelist);
2465 * Must recheck B_DELWRI after successfully locking
2466 * the buffer.
2468 if ((bp->b_flags & B_DELWRI) == 0) {
2469 spin_unlock(&pcpu->spin);
2470 BUF_UNLOCK(bp);
2471 spin_lock(&pcpu->spin);
2472 bp = marker;
2473 continue;
2477 * Remove the buffer from its queue. We still own the
2478 * spinlock here.
2480 _bremfree(bp);
2483 * Disposing of an invalid buffer counts as a flush op
2485 if (bp->b_flags & B_INVAL) {
2486 spin_unlock(&pcpu->spin);
2487 brelse(bp);
2488 goto doloop;
2492 * Release the spinlock for the more complex ops we
2493 * are now going to do.
2495 spin_unlock(&pcpu->spin);
2496 lwkt_yield();
2499 * This is a bit messy
2501 if (LIST_FIRST(&bp->b_dep) != NULL &&
2502 (bp->b_flags & B_DEFERRED) == 0 &&
2503 buf_countdeps(bp, 0)) {
2504 spin_lock(&pcpu->spin);
2505 TAILQ_INSERT_TAIL(&pcpu->bufqueues[q], bp, b_freelist);
2506 bp->b_qindex = q;
2507 bp->b_flags |= B_DEFERRED;
2508 spin_unlock(&pcpu->spin);
2509 BUF_UNLOCK(bp);
2510 spin_lock(&pcpu->spin);
2511 bp = marker;
2512 continue;
2516 * spinlock not held here.
2518 * If the buffer has a dependancy, buf_checkwrite() must
2519 * also return 0 for us to be able to initate the write.
2521 * If the buffer is flagged B_ERROR it may be requeued
2522 * over and over again, we try to avoid a live lock.
2524 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2525 brelse(bp);
2526 } else if (bp->b_flags & B_ERROR) {
2527 tsleep(bp, 0, "bioer", 1);
2528 bp->b_flags &= ~B_AGE;
2529 cluster_awrite(bp);
2530 } else {
2531 bp->b_flags |= B_AGE;
2532 cluster_awrite(bp);
2534 /* bp invalid but needs to be NULL-tested if we break out */
2535 doloop:
2536 spin_lock(&pcpu->spin);
2537 ++r;
2538 if (--loops == 0)
2539 break;
2540 bp = marker;
2542 /* bp is invalid here but can be NULL-tested to advance */
2544 TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2545 marker->b_qindex = BQUEUE_NONE;
2546 spin_unlock(&pcpu->spin);
2549 * Advance the marker to be fair.
2551 marker->b_qcpu = (marker->b_qcpu + 1) % ncpus;
2552 if (bp == NULL) {
2553 if (marker->b_qcpu != lcpu)
2554 goto again;
2557 return (r);
2561 * inmem:
2563 * Returns true if no I/O is needed to access the associated VM object.
2564 * This is like findblk except it also hunts around in the VM system for
2565 * the data.
2567 * Note that we ignore vm_page_free() races from interrupts against our
2568 * lookup, since if the caller is not protected our return value will not
2569 * be any more valid then otherwise once we exit the critical section.
2572 inmem(struct vnode *vp, off_t loffset)
2574 vm_object_t obj;
2575 vm_offset_t toff, tinc, size;
2576 vm_page_t m;
2577 int res = 1;
2579 if (findblk(vp, loffset, FINDBLK_TEST))
2580 return 1;
2581 if (vp->v_mount == NULL)
2582 return 0;
2583 if ((obj = vp->v_object) == NULL)
2584 return 0;
2586 size = PAGE_SIZE;
2587 if (size > vp->v_mount->mnt_stat.f_iosize)
2588 size = vp->v_mount->mnt_stat.f_iosize;
2590 vm_object_hold(obj);
2591 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2592 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2593 if (m == NULL) {
2594 res = 0;
2595 break;
2597 tinc = size;
2598 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2599 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2600 if (vm_page_is_valid(m,
2601 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2602 res = 0;
2603 break;
2606 vm_object_drop(obj);
2607 return (res);
2611 * findblk:
2613 * Locate and return the specified buffer. Unless flagged otherwise,
2614 * a locked buffer will be returned if it exists or NULL if it does not.
2616 * findblk()'d buffers are still on the bufqueues and if you intend
2617 * to use your (locked NON-TEST) buffer you need to bremfree(bp)
2618 * and possibly do other stuff to it.
2620 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible
2621 * for locking the buffer and ensuring that it remains
2622 * the desired buffer after locking.
2624 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable
2625 * to acquire the lock we return NULL, even if the
2626 * buffer exists.
2628 * FINDBLK_REF - Returns the buffer ref'd, which prevents normal
2629 * reuse by getnewbuf() but does not prevent
2630 * disassociation (B_INVAL). Used to avoid deadlocks
2631 * against random (vp,loffset)s due to reassignment.
2633 * (0) - Lock the buffer blocking.
2635 struct buf *
2636 findblk(struct vnode *vp, off_t loffset, int flags)
2638 struct buf *bp;
2639 int lkflags;
2641 lkflags = LK_EXCLUSIVE;
2642 if (flags & FINDBLK_NBLOCK)
2643 lkflags |= LK_NOWAIT;
2645 for (;;) {
2647 * Lookup. Ref the buf while holding v_token to prevent
2648 * reuse (but does not prevent diassociation).
2650 lwkt_gettoken_shared(&vp->v_token);
2651 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2652 if (bp == NULL) {
2653 lwkt_reltoken(&vp->v_token);
2654 return(NULL);
2656 bqhold(bp);
2657 lwkt_reltoken(&vp->v_token);
2660 * If testing only break and return bp, do not lock.
2662 if (flags & FINDBLK_TEST)
2663 break;
2666 * Lock the buffer, return an error if the lock fails.
2667 * (only FINDBLK_NBLOCK can cause the lock to fail).
2669 if (BUF_LOCK(bp, lkflags)) {
2670 atomic_subtract_int(&bp->b_refs, 1);
2671 /* bp = NULL; not needed */
2672 return(NULL);
2676 * Revalidate the locked buf before allowing it to be
2677 * returned.
2679 if (bp->b_vp == vp && bp->b_loffset == loffset)
2680 break;
2681 atomic_subtract_int(&bp->b_refs, 1);
2682 BUF_UNLOCK(bp);
2686 * Success
2688 if ((flags & FINDBLK_REF) == 0)
2689 atomic_subtract_int(&bp->b_refs, 1);
2690 return(bp);
2694 * getcacheblk:
2696 * Similar to getblk() except only returns the buffer if it is
2697 * B_CACHE and requires no other manipulation. Otherwise NULL
2698 * is returned. NULL is also returned if GETBLK_NOWAIT is set
2699 * and the getblk() would block.
2701 * If B_RAM is set the buffer might be just fine, but we return
2702 * NULL anyway because we want the code to fall through to the
2703 * cluster read to issue more read-aheads. Otherwise read-ahead breaks.
2705 * If blksize is 0 the buffer cache buffer must already be fully
2706 * cached.
2708 * If blksize is non-zero getblk() will be used, allowing a buffer
2709 * to be reinstantiated from its VM backing store. The buffer must
2710 * still be fully cached after reinstantiation to be returned.
2712 struct buf *
2713 getcacheblk(struct vnode *vp, off_t loffset, int blksize, int blkflags)
2715 struct buf *bp;
2716 int fndflags = (blkflags & GETBLK_NOWAIT) ? FINDBLK_NBLOCK : 0;
2718 if (blksize) {
2719 bp = getblk(vp, loffset, blksize, blkflags, 0);
2720 if (bp) {
2721 if ((bp->b_flags & (B_INVAL | B_CACHE)) == B_CACHE) {
2722 bp->b_flags &= ~B_AGE;
2723 if (bp->b_flags & B_RAM) {
2724 bqrelse(bp);
2725 bp = NULL;
2727 } else {
2728 brelse(bp);
2729 bp = NULL;
2732 } else {
2733 bp = findblk(vp, loffset, fndflags);
2734 if (bp) {
2735 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2736 B_CACHE) {
2737 bp->b_flags &= ~B_AGE;
2738 bremfree(bp);
2739 } else {
2740 BUF_UNLOCK(bp);
2741 bp = NULL;
2745 return (bp);
2749 * getblk:
2751 * Get a block given a specified block and offset into a file/device.
2752 * B_INVAL may or may not be set on return. The caller should clear
2753 * B_INVAL prior to initiating a READ.
2755 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2756 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2757 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2758 * without doing any of those things the system will likely believe
2759 * the buffer to be valid (especially if it is not B_VMIO), and the
2760 * next getblk() will return the buffer with B_CACHE set.
2762 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2763 * an existing buffer.
2765 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2766 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2767 * and then cleared based on the backing VM. If the previous buffer is
2768 * non-0-sized but invalid, B_CACHE will be cleared.
2770 * If getblk() must create a new buffer, the new buffer is returned with
2771 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2772 * case it is returned with B_INVAL clear and B_CACHE set based on the
2773 * backing VM.
2775 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2776 * B_CACHE bit is clear.
2778 * What this means, basically, is that the caller should use B_CACHE to
2779 * determine whether the buffer is fully valid or not and should clear
2780 * B_INVAL prior to issuing a read. If the caller intends to validate
2781 * the buffer by loading its data area with something, the caller needs
2782 * to clear B_INVAL. If the caller does this without issuing an I/O,
2783 * the caller should set B_CACHE ( as an optimization ), else the caller
2784 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2785 * a write attempt or if it was a successfull read. If the caller
2786 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2787 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2789 * getblk flags:
2791 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2792 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2794 struct buf *
2795 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2797 struct buf *bp;
2798 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2799 int error;
2800 int lkflags;
2802 if (size > MAXBSIZE)
2803 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2804 if (vp->v_object == NULL)
2805 panic("getblk: vnode %p has no object!", vp);
2807 loop:
2808 if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2810 * The buffer was found in the cache, but we need to lock it.
2811 * We must acquire a ref on the bp to prevent reuse, but
2812 * this will not prevent disassociation (brelvp()) so we
2813 * must recheck (vp,loffset) after acquiring the lock.
2815 * Without the ref the buffer could potentially be reused
2816 * before we acquire the lock and create a deadlock
2817 * situation between the thread trying to reuse the buffer
2818 * and us due to the fact that we would wind up blocking
2819 * on a random (vp,loffset).
2821 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2822 if (blkflags & GETBLK_NOWAIT) {
2823 bqdrop(bp);
2824 return(NULL);
2826 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2827 if (blkflags & GETBLK_PCATCH)
2828 lkflags |= LK_PCATCH;
2829 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2830 if (error) {
2831 bqdrop(bp);
2832 if (error == ENOLCK)
2833 goto loop;
2834 return (NULL);
2836 /* buffer may have changed on us */
2838 bqdrop(bp);
2841 * Once the buffer has been locked, make sure we didn't race
2842 * a buffer recyclement. Buffers that are no longer hashed
2843 * will have b_vp == NULL, so this takes care of that check
2844 * as well.
2846 if (bp->b_vp != vp || bp->b_loffset != loffset) {
2847 #if 0
2848 kprintf("Warning buffer %p (vp %p loffset %lld) "
2849 "was recycled\n",
2850 bp, vp, (long long)loffset);
2851 #endif
2852 BUF_UNLOCK(bp);
2853 goto loop;
2857 * If SZMATCH any pre-existing buffer must be of the requested
2858 * size or NULL is returned. The caller absolutely does not
2859 * want getblk() to bwrite() the buffer on a size mismatch.
2861 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2862 BUF_UNLOCK(bp);
2863 return(NULL);
2867 * All vnode-based buffers must be backed by a VM object.
2869 KKASSERT(bp->b_flags & B_VMIO);
2870 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2871 bp->b_flags &= ~B_AGE;
2874 * Make sure that B_INVAL buffers do not have a cached
2875 * block number translation.
2877 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2878 kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2879 " did not have cleared bio_offset cache\n",
2880 bp, vp, (long long)loffset);
2881 clearbiocache(&bp->b_bio2);
2885 * The buffer is locked. B_CACHE is cleared if the buffer is
2886 * invalid.
2888 if (bp->b_flags & B_INVAL)
2889 bp->b_flags &= ~B_CACHE;
2890 bremfree(bp);
2893 * Any size inconsistancy with a dirty buffer or a buffer
2894 * with a softupdates dependancy must be resolved. Resizing
2895 * the buffer in such circumstances can lead to problems.
2897 * Dirty or dependant buffers are written synchronously.
2898 * Other types of buffers are simply released and
2899 * reconstituted as they may be backed by valid, dirty VM
2900 * pages (but not marked B_DELWRI).
2902 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2903 * and may be left over from a prior truncation (and thus
2904 * no longer represent the actual EOF point), so we
2905 * definitely do not want to B_NOCACHE the backing store.
2907 if (size != bp->b_bcount) {
2908 if (bp->b_flags & B_DELWRI) {
2909 bp->b_flags |= B_RELBUF;
2910 bwrite(bp);
2911 } else if (LIST_FIRST(&bp->b_dep)) {
2912 bp->b_flags |= B_RELBUF;
2913 bwrite(bp);
2914 } else {
2915 bp->b_flags |= B_RELBUF;
2916 brelse(bp);
2918 goto loop;
2920 KKASSERT(size <= bp->b_kvasize);
2921 KASSERT(bp->b_loffset != NOOFFSET,
2922 ("getblk: no buffer offset"));
2925 * A buffer with B_DELWRI set and B_CACHE clear must
2926 * be committed before we can return the buffer in
2927 * order to prevent the caller from issuing a read
2928 * ( due to B_CACHE not being set ) and overwriting
2929 * it.
2931 * Most callers, including NFS and FFS, need this to
2932 * operate properly either because they assume they
2933 * can issue a read if B_CACHE is not set, or because
2934 * ( for example ) an uncached B_DELWRI might loop due
2935 * to softupdates re-dirtying the buffer. In the latter
2936 * case, B_CACHE is set after the first write completes,
2937 * preventing further loops.
2939 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2940 * above while extending the buffer, we cannot allow the
2941 * buffer to remain with B_CACHE set after the write
2942 * completes or it will represent a corrupt state. To
2943 * deal with this we set B_NOCACHE to scrap the buffer
2944 * after the write.
2946 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2947 * I'm not even sure this state is still possible
2948 * now that getblk() writes out any dirty buffers
2949 * on size changes.
2951 * We might be able to do something fancy, like setting
2952 * B_CACHE in bwrite() except if B_DELWRI is already set,
2953 * so the below call doesn't set B_CACHE, but that gets real
2954 * confusing. This is much easier.
2957 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2958 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2959 "and CACHE clear, b_flags %08x\n",
2960 bp, (uintmax_t)bp->b_loffset, bp->b_flags);
2961 bp->b_flags |= B_NOCACHE;
2962 bwrite(bp);
2963 goto loop;
2965 } else {
2967 * Buffer is not in-core, create new buffer. The buffer
2968 * returned by getnewbuf() is locked. Note that the returned
2969 * buffer is also considered valid (not marked B_INVAL).
2971 * Calculating the offset for the I/O requires figuring out
2972 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2973 * the mount's f_iosize otherwise. If the vnode does not
2974 * have an associated mount we assume that the passed size is
2975 * the block size.
2977 * Note that vn_isdisk() cannot be used here since it may
2978 * return a failure for numerous reasons. Note that the
2979 * buffer size may be larger then the block size (the caller
2980 * will use block numbers with the proper multiple). Beware
2981 * of using any v_* fields which are part of unions. In
2982 * particular, in DragonFly the mount point overloading
2983 * mechanism uses the namecache only and the underlying
2984 * directory vnode is not a special case.
2986 int bsize, maxsize;
2987 vm_object_t repurpose;
2989 if (vp->v_type == VBLK || vp->v_type == VCHR)
2990 bsize = DEV_BSIZE;
2991 else if (vp->v_mount)
2992 bsize = vp->v_mount->mnt_stat.f_iosize;
2993 else
2994 bsize = size;
2996 maxsize = size + (loffset & PAGE_MASK);
2997 maxsize = imax(maxsize, bsize);
2998 repurpose = NULL;
3001 * Allow repurposing. The returned buffer may contain VM
3002 * pages associated with its previous incarnation. These
3003 * pages must be repurposed for the new buffer (hopefully
3004 * without disturbing the KVM mapping).
3006 * WARNING! If repurpose != NULL on return, the buffer will
3007 * still contain some data from its prior
3008 * incarnation. We MUST properly dispose of this
3009 * data.
3011 bp = getnewbuf(blkflags, slptimeo, size, maxsize, &repurpose);
3012 if (bp == NULL) {
3013 if (slpflags || slptimeo)
3014 return NULL;
3015 goto loop;
3019 * Atomically insert the buffer into the hash, so that it can
3020 * be found by findblk().
3022 * If bgetvp() returns non-zero a collision occured, and the
3023 * bp will not be associated with the vnode.
3025 * Make sure the translation layer has been cleared.
3027 bp->b_loffset = loffset;
3028 bp->b_bio2.bio_offset = NOOFFSET;
3029 /* bp->b_bio2.bio_next = NULL; */
3031 if (bgetvp(vp, bp, size)) {
3032 if (repurpose) {
3033 bp->b_flags |= B_VMIO;
3034 repurposebuf(bp, 0);
3035 vm_object_drop(repurpose);
3037 bp->b_flags |= B_INVAL;
3038 brelse(bp);
3039 goto loop;
3043 * All vnode-based buffers must be backed by a VM object.
3045 KKASSERT(vp->v_object != NULL);
3046 bp->b_flags |= B_VMIO;
3047 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3050 * If we allowed repurposing of the buffer it will contain
3051 * free-but-held vm_page's, already kmapped, that can be
3052 * repurposed. The repurposebuf() code handles reassigning
3053 * those pages to the new (object, offsets) and dealing with
3054 * the case where the pages already exist.
3056 if (repurpose) {
3057 repurposebuf(bp, size);
3058 vm_object_drop(repurpose);
3059 } else {
3060 allocbuf(bp, size);
3063 return (bp);
3067 * regetblk(bp)
3069 * Reacquire a buffer that was previously released to the locked queue,
3070 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3071 * set B_LOCKED (which handles the acquisition race).
3073 * To this end, either B_LOCKED must be set or the dependancy list must be
3074 * non-empty.
3076 void
3077 regetblk(struct buf *bp)
3079 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3080 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3081 bremfree(bp);
3085 * geteblk:
3087 * Get an empty, disassociated buffer of given size. The buffer is
3088 * initially set to B_INVAL.
3090 * critical section protection is not required for the allocbuf()
3091 * call because races are impossible here.
3093 struct buf *
3094 geteblk(int size)
3096 struct buf *bp;
3098 while ((bp = getnewbuf(0, 0, size, MAXBSIZE, NULL)) == NULL)
3100 allocbuf(bp, size);
3101 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
3103 return (bp);
3107 * allocbuf:
3109 * This code constitutes the buffer memory from either anonymous system
3110 * memory (in the case of non-VMIO operations) or from an associated
3111 * VM object (in the case of VMIO operations). This code is able to
3112 * resize a buffer up or down.
3114 * Note that this code is tricky, and has many complications to resolve
3115 * deadlock or inconsistant data situations. Tread lightly!!!
3116 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3117 * the caller. Calling this code willy nilly can result in the loss of
3118 * data.
3120 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
3121 * B_CACHE for the non-VMIO case.
3123 * This routine does not need to be called from a critical section but you
3124 * must own the buffer.
3126 void
3127 allocbuf(struct buf *bp, int size)
3129 int newbsize, mbsize;
3130 int i;
3132 if (BUF_REFCNT(bp) == 0)
3133 panic("allocbuf: buffer not busy");
3135 if (bp->b_kvasize < size)
3136 panic("allocbuf: buffer too small");
3138 if ((bp->b_flags & B_VMIO) == 0) {
3139 caddr_t origbuf;
3140 int origbufsize;
3142 * Just get anonymous memory from the kernel. Don't
3143 * mess with B_CACHE.
3145 mbsize = roundup2(size, DEV_BSIZE);
3146 if (bp->b_flags & B_MALLOC)
3147 newbsize = mbsize;
3148 else
3149 newbsize = round_page(size);
3151 if (newbsize < bp->b_bufsize) {
3153 * Malloced buffers are not shrunk
3155 if (bp->b_flags & B_MALLOC) {
3156 if (newbsize) {
3157 bp->b_bcount = size;
3158 } else {
3159 kfree(bp->b_data, M_BIOBUF);
3160 if (bp->b_bufsize) {
3161 atomic_subtract_long(&bufmallocspace, bp->b_bufsize);
3162 bp->b_bufsize = 0;
3163 bufspacewakeup();
3165 bp->b_data = bp->b_kvabase;
3166 bp->b_bcount = 0;
3167 bp->b_flags &= ~B_MALLOC;
3169 return;
3171 vm_hold_free_pages(
3173 (vm_offset_t) bp->b_data + newbsize,
3174 (vm_offset_t) bp->b_data + bp->b_bufsize);
3175 } else if (newbsize > bp->b_bufsize) {
3177 * We only use malloced memory on the first allocation.
3178 * and revert to page-allocated memory when the buffer
3179 * grows.
3181 if ((bufmallocspace < maxbufmallocspace) &&
3182 (bp->b_bufsize == 0) &&
3183 (mbsize <= PAGE_SIZE/2)) {
3185 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3186 bp->b_bufsize = mbsize;
3187 bp->b_bcount = size;
3188 bp->b_flags |= B_MALLOC;
3189 atomic_add_long(&bufmallocspace, mbsize);
3190 return;
3192 origbuf = NULL;
3193 origbufsize = 0;
3195 * If the buffer is growing on its other-than-first
3196 * allocation, then we revert to the page-allocation
3197 * scheme.
3199 if (bp->b_flags & B_MALLOC) {
3200 origbuf = bp->b_data;
3201 origbufsize = bp->b_bufsize;
3202 bp->b_data = bp->b_kvabase;
3203 if (bp->b_bufsize) {
3204 atomic_subtract_long(&bufmallocspace,
3205 bp->b_bufsize);
3206 bp->b_bufsize = 0;
3207 bufspacewakeup();
3209 bp->b_flags &= ~B_MALLOC;
3210 newbsize = round_page(newbsize);
3212 vm_hold_load_pages(
3214 (vm_offset_t) bp->b_data + bp->b_bufsize,
3215 (vm_offset_t) bp->b_data + newbsize);
3216 if (origbuf) {
3217 bcopy(origbuf, bp->b_data, origbufsize);
3218 kfree(origbuf, M_BIOBUF);
3221 } else {
3222 vm_page_t m;
3223 int desiredpages;
3225 newbsize = roundup2(size, DEV_BSIZE);
3226 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3227 newbsize + PAGE_MASK) >> PAGE_SHIFT;
3228 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3230 if (bp->b_flags & B_MALLOC)
3231 panic("allocbuf: VMIO buffer can't be malloced");
3233 * Set B_CACHE initially if buffer is 0 length or will become
3234 * 0-length.
3236 if (size == 0 || bp->b_bufsize == 0)
3237 bp->b_flags |= B_CACHE;
3239 if (newbsize < bp->b_bufsize) {
3241 * DEV_BSIZE aligned new buffer size is less then the
3242 * DEV_BSIZE aligned existing buffer size. Figure out
3243 * if we have to remove any pages.
3245 if (desiredpages < bp->b_xio.xio_npages) {
3246 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3248 * the page is not freed here -- it
3249 * is the responsibility of
3250 * vnode_pager_setsize
3252 m = bp->b_xio.xio_pages[i];
3253 KASSERT(m != bogus_page,
3254 ("allocbuf: bogus page found"));
3255 vm_page_busy_wait(m, TRUE, "biodep");
3256 bp->b_xio.xio_pages[i] = NULL;
3257 vm_page_unwire(m, 0);
3258 vm_page_wakeup(m);
3260 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3261 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3262 bp->b_xio.xio_npages = desiredpages;
3264 } else if (size > bp->b_bcount) {
3266 * We are growing the buffer, possibly in a
3267 * byte-granular fashion.
3269 struct vnode *vp;
3270 vm_object_t obj;
3271 vm_offset_t toff;
3272 vm_offset_t tinc;
3275 * Step 1, bring in the VM pages from the object,
3276 * allocating them if necessary. We must clear
3277 * B_CACHE if these pages are not valid for the
3278 * range covered by the buffer.
3280 vp = bp->b_vp;
3281 obj = vp->v_object;
3283 vm_object_hold(obj);
3284 while (bp->b_xio.xio_npages < desiredpages) {
3285 vm_page_t m;
3286 vm_pindex_t pi;
3287 int error;
3289 pi = OFF_TO_IDX(bp->b_loffset) +
3290 bp->b_xio.xio_npages;
3293 * Blocking on m->busy might lead to a
3294 * deadlock:
3296 * vm_fault->getpages->cluster_read->allocbuf
3298 m = vm_page_lookup_busy_try(obj, pi, FALSE,
3299 &error);
3300 if (error) {
3301 vm_page_sleep_busy(m, FALSE, "pgtblk");
3302 continue;
3304 if (m == NULL) {
3306 * note: must allocate system pages
3307 * since blocking here could intefere
3308 * with paging I/O, no matter which
3309 * process we are.
3311 m = bio_page_alloc(bp, obj, pi, desiredpages - bp->b_xio.xio_npages);
3312 if (m) {
3313 vm_page_wire(m);
3314 vm_page_wakeup(m);
3315 bp->b_flags &= ~B_CACHE;
3316 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3317 ++bp->b_xio.xio_npages;
3319 continue;
3323 * We found a page and were able to busy it.
3325 vm_page_wire(m);
3326 vm_page_wakeup(m);
3327 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3328 ++bp->b_xio.xio_npages;
3329 if (bp->b_act_count < m->act_count)
3330 bp->b_act_count = m->act_count;
3332 vm_object_drop(obj);
3335 * Step 2. We've loaded the pages into the buffer,
3336 * we have to figure out if we can still have B_CACHE
3337 * set. Note that B_CACHE is set according to the
3338 * byte-granular range ( bcount and size ), not the
3339 * aligned range ( newbsize ).
3341 * The VM test is against m->valid, which is DEV_BSIZE
3342 * aligned. Needless to say, the validity of the data
3343 * needs to also be DEV_BSIZE aligned. Note that this
3344 * fails with NFS if the server or some other client
3345 * extends the file's EOF. If our buffer is resized,
3346 * B_CACHE may remain set! XXX
3349 toff = bp->b_bcount;
3350 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3352 while ((bp->b_flags & B_CACHE) && toff < size) {
3353 vm_pindex_t pi;
3355 if (tinc > (size - toff))
3356 tinc = size - toff;
3358 pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3359 PAGE_SHIFT;
3361 vfs_buf_test_cache(
3362 bp,
3363 bp->b_loffset,
3364 toff,
3365 tinc,
3366 bp->b_xio.xio_pages[pi]
3368 toff += tinc;
3369 tinc = PAGE_SIZE;
3373 * Step 3, fixup the KVM pmap. Remember that
3374 * bp->b_data is relative to bp->b_loffset, but
3375 * bp->b_loffset may be offset into the first page.
3377 bp->b_data = (caddr_t)
3378 trunc_page((vm_offset_t)bp->b_data);
3379 pmap_qenter((vm_offset_t)bp->b_data,
3380 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3381 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3382 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3384 atomic_add_long(&bufspace, newbsize - bp->b_bufsize);
3387 /* adjust space use on already-dirty buffer */
3388 if (bp->b_flags & B_DELWRI) {
3389 /* dirtykvaspace unchanged */
3390 atomic_add_long(&dirtybufspace, newbsize - bp->b_bufsize);
3391 if (bp->b_flags & B_HEAVY) {
3392 atomic_add_long(&dirtybufspacehw,
3393 newbsize - bp->b_bufsize);
3396 bp->b_bufsize = newbsize; /* actual buffer allocation */
3397 bp->b_bcount = size; /* requested buffer size */
3398 bufspacewakeup();
3402 * repurposebuf() (VMIO only)
3404 * This performs a function similar to allocbuf() but the passed-in buffer
3405 * may contain some detrius from its previous incarnation in the form of
3406 * the page array. We try to repurpose the underlying pages.
3408 * This code is nominally called to recycle buffer cache buffers AND (if
3409 * they are clean) to also recycle their underlying pages. We currently
3410 * can only recycle unmapped, clean pages. The code is called when buffer
3411 * cache 'newbuf' bandwidth exceeds (bufrate_cache) bytes per second.
3413 static
3414 void
3415 repurposebuf(struct buf *bp, int size)
3417 int newbsize;
3418 int desiredpages;
3419 vm_offset_t toff;
3420 vm_offset_t tinc;
3421 vm_object_t obj;
3422 vm_page_t m;
3423 int i;
3424 int must_reenter = 0;
3425 long deaccumulate = 0;
3428 KKASSERT((bp->b_flags & (B_VMIO | B_DELWRI | B_MALLOC)) == B_VMIO);
3429 if (BUF_REFCNT(bp) == 0)
3430 panic("repurposebuf: buffer not busy");
3432 if (bp->b_kvasize < size)
3433 panic("repurposebuf: buffer too small");
3435 newbsize = roundup2(size, DEV_BSIZE);
3436 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3437 newbsize + PAGE_MASK) >> PAGE_SHIFT;
3438 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3441 * Buffer starts out 0-length with B_CACHE set. We will clear
3442 * As we check the backing store we will clear B_CACHE if necessary.
3444 atomic_add_long(&bufspace, newbsize - bp->b_bufsize);
3445 bp->b_bufsize = 0;
3446 bp->b_bcount = 0;
3447 bp->b_flags |= B_CACHE;
3449 if (desiredpages) {
3450 obj = bp->b_vp->v_object;
3451 vm_object_hold(obj);
3452 } else {
3453 obj = NULL;
3457 * Step 1, bring in the VM pages from the object, repurposing or
3458 * allocating them if necessary. We must clear B_CACHE if these
3459 * pages are not valid for the range covered by the buffer.
3461 * We are growing the buffer, possibly in a byte-granular fashion.
3463 for (i = 0; i < desiredpages; ++i) {
3464 vm_pindex_t pi;
3465 int error;
3466 int iswired;
3468 pi = OFF_TO_IDX(bp->b_loffset) + i;
3471 * Blocking on m->busy might lead to a
3472 * deadlock:
3474 * vm_fault->getpages->cluster_read->allocbuf
3476 m = (i < bp->b_xio.xio_npages) ? bp->b_xio.xio_pages[i] : NULL;
3477 bp->b_xio.xio_pages[i] = NULL;
3478 KASSERT(m != bogus_page, ("repurposebuf: bogus page found"));
3479 m = vm_page_repurpose(obj, pi, FALSE, &error, m,
3480 &must_reenter, &iswired);
3482 if (error) {
3483 vm_page_sleep_busy(m, FALSE, "pgtblk");
3484 --i; /* retry */
3485 continue;
3487 if (m == NULL) {
3489 * note: must allocate system pages
3490 * since blocking here could intefere
3491 * with paging I/O, no matter which
3492 * process we are.
3494 must_reenter = 1;
3495 m = bio_page_alloc(bp, obj, pi, desiredpages - i);
3496 if (m) {
3497 vm_page_wire(m);
3498 vm_page_wakeup(m);
3499 bp->b_flags &= ~B_CACHE;
3500 bp->b_xio.xio_pages[i] = m;
3501 if (m->valid)
3502 deaccumulate += PAGE_SIZE;
3503 } else {
3504 --i; /* retry */
3506 continue;
3508 if (m->valid)
3509 deaccumulate += PAGE_SIZE;
3512 * We found a page and were able to busy it.
3514 if (!iswired)
3515 vm_page_wire(m);
3516 vm_page_wakeup(m);
3517 bp->b_xio.xio_pages[i] = m;
3518 if (bp->b_act_count < m->act_count)
3519 bp->b_act_count = m->act_count;
3521 if (desiredpages)
3522 vm_object_drop(obj);
3525 * Even though its a new buffer, any pages already in the VM
3526 * page cache should not count towards I/O bandwidth.
3528 if (deaccumulate)
3529 atomic_add_long(&bufcache_bw_accum, -deaccumulate);
3532 * Clean-up any loose pages.
3534 while (i < bp->b_xio.xio_npages) {
3535 m = bp->b_xio.xio_pages[i];
3536 KASSERT(m != bogus_page, ("repurposebuf: bogus page found"));
3537 vm_page_busy_wait(m, TRUE, "biodep");
3538 bp->b_xio.xio_pages[i] = NULL;
3539 vm_page_unwire(m, 0);
3540 vm_page_wakeup(m);
3541 ++i;
3543 if (desiredpages < bp->b_xio.xio_npages) {
3544 pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3545 (desiredpages << PAGE_SHIFT),
3546 (bp->b_xio.xio_npages - desiredpages));
3548 bp->b_xio.xio_npages = desiredpages;
3551 * Step 2. We've loaded the pages into the buffer,
3552 * we have to figure out if we can still have B_CACHE
3553 * set. Note that B_CACHE is set according to the
3554 * byte-granular range ( bcount and size ), not the
3555 * aligned range ( newbsize ).
3557 * The VM test is against m->valid, which is DEV_BSIZE
3558 * aligned. Needless to say, the validity of the data
3559 * needs to also be DEV_BSIZE aligned. Note that this
3560 * fails with NFS if the server or some other client
3561 * extends the file's EOF. If our buffer is resized,
3562 * B_CACHE may remain set! XXX
3564 toff = bp->b_bcount;
3565 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3567 while ((bp->b_flags & B_CACHE) && toff < size) {
3568 vm_pindex_t pi;
3570 if (tinc > (size - toff))
3571 tinc = size - toff;
3573 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3575 vfs_buf_test_cache(bp, bp->b_loffset, toff,
3576 tinc, bp->b_xio.xio_pages[pi]);
3577 toff += tinc;
3578 tinc = PAGE_SIZE;
3582 * Step 3, fixup the KVM pmap. Remember that
3583 * bp->b_data is relative to bp->b_loffset, but
3584 * bp->b_loffset may be offset into the first page.
3586 bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
3587 if (must_reenter) {
3588 pmap_qenter((vm_offset_t)bp->b_data,
3589 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3590 } else {
3591 atomic_add_long(&repurposedspace, newbsize);
3593 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3594 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3596 if (newbsize < bp->b_bufsize)
3597 bufspacewakeup();
3598 bp->b_bufsize = newbsize; /* actual buffer allocation */
3599 bp->b_bcount = size; /* requested buffer size */
3603 * biowait:
3605 * Wait for buffer I/O completion, returning error status. B_EINTR
3606 * is converted into an EINTR error but not cleared (since a chain
3607 * of biowait() calls may occur).
3609 * On return bpdone() will have been called but the buffer will remain
3610 * locked and will not have been brelse()'d.
3612 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is
3613 * likely still in progress on return.
3615 * NOTE! This operation is on a BIO, not a BUF.
3617 * NOTE! BIO_DONE is cleared by vn_strategy()
3619 static __inline int
3620 _biowait(struct bio *bio, const char *wmesg, int to)
3622 struct buf *bp = bio->bio_buf;
3623 u_int32_t flags;
3624 u_int32_t nflags;
3625 int error;
3627 KKASSERT(bio == &bp->b_bio1);
3628 for (;;) {
3629 flags = bio->bio_flags;
3630 if (flags & BIO_DONE)
3631 break;
3632 nflags = flags | BIO_WANT;
3633 tsleep_interlock(bio, 0);
3634 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3635 if (wmesg)
3636 error = tsleep(bio, PINTERLOCKED, wmesg, to);
3637 else if (bp->b_cmd == BUF_CMD_READ)
3638 error = tsleep(bio, PINTERLOCKED, "biord", to);
3639 else
3640 error = tsleep(bio, PINTERLOCKED, "biowr", to);
3641 if (error) {
3642 kprintf("tsleep error biowait %d\n", error);
3643 return (error);
3649 * Finish up.
3651 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3652 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3653 if (bp->b_flags & B_EINTR)
3654 return (EINTR);
3655 if (bp->b_flags & B_ERROR)
3656 return (bp->b_error ? bp->b_error : EIO);
3657 return (0);
3661 biowait(struct bio *bio, const char *wmesg)
3663 return(_biowait(bio, wmesg, 0));
3667 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3669 return(_biowait(bio, wmesg, to));
3673 * This associates a tracking count with an I/O. vn_strategy() and
3674 * dev_dstrategy() do this automatically but there are a few cases
3675 * where a vnode or device layer is bypassed when a block translation
3676 * is cached. In such cases bio_start_transaction() may be called on
3677 * the bypassed layers so the system gets an I/O in progress indication
3678 * for those higher layers.
3680 void
3681 bio_start_transaction(struct bio *bio, struct bio_track *track)
3683 bio->bio_track = track;
3684 bio_track_ref(track);
3685 dsched_buf_enter(bio->bio_buf); /* might stack */
3689 * Initiate I/O on a vnode.
3691 * SWAPCACHE OPERATION:
3693 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately
3694 * devfs also uses b_vp for fake buffers so we also have to check
3695 * that B_PAGING is 0. In this case the passed 'vp' is probably the
3696 * underlying block device. The swap assignments are related to the
3697 * buffer cache buffer's b_vp, not the passed vp.
3699 * The passed vp == bp->b_vp only in the case where the strategy call
3700 * is made on the vp itself for its own buffers (a regular file or
3701 * block device vp). The filesystem usually then re-calls vn_strategy()
3702 * after translating the request to an underlying device.
3704 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3705 * underlying buffer cache buffers.
3707 * We can only deal with page-aligned buffers at the moment, because
3708 * we can't tell what the real dirty state for pages straddling a buffer
3709 * are.
3711 * In order to call swap_pager_strategy() we must provide the VM object
3712 * and base offset for the underlying buffer cache pages so it can find
3713 * the swap blocks.
3715 void
3716 vn_strategy(struct vnode *vp, struct bio *bio)
3718 struct bio_track *track;
3719 struct buf *bp = bio->bio_buf;
3721 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3724 * Set when an I/O is issued on the bp. Cleared by consumers
3725 * (aka HAMMER), allowing the consumer to determine if I/O had
3726 * actually occurred.
3728 bp->b_flags |= B_IOISSUED;
3731 * Handle the swap cache intercept.
3733 if (vn_cache_strategy(vp, bio))
3734 return;
3737 * Otherwise do the operation through the filesystem
3739 if (bp->b_cmd == BUF_CMD_READ)
3740 track = &vp->v_track_read;
3741 else
3742 track = &vp->v_track_write;
3743 KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3744 bio->bio_track = track;
3745 bio_track_ref(track);
3746 dsched_buf_enter(bp); /* might stack */
3747 vop_strategy(*vp->v_ops, vp, bio);
3750 static void vn_cache_strategy_callback(struct bio *bio);
3753 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3755 struct buf *bp = bio->bio_buf;
3756 struct bio *nbio;
3757 vm_object_t object;
3758 vm_page_t m;
3759 int i;
3762 * Stop using swapcache if paniced, dumping, or dumped
3764 if (panicstr || dumping)
3765 return(0);
3768 * Is this buffer cache buffer suitable for reading from
3769 * the swap cache?
3771 if (vm_swapcache_read_enable == 0 ||
3772 bp->b_cmd != BUF_CMD_READ ||
3773 ((bp->b_flags & B_CLUSTER) == 0 &&
3774 (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3775 ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3776 (bp->b_bcount & PAGE_MASK) != 0) {
3777 return(0);
3781 * Figure out the original VM object (it will match the underlying
3782 * VM pages). Note that swap cached data uses page indices relative
3783 * to that object, not relative to bio->bio_offset.
3785 if (bp->b_flags & B_CLUSTER)
3786 object = vp->v_object;
3787 else
3788 object = bp->b_vp->v_object;
3791 * In order to be able to use the swap cache all underlying VM
3792 * pages must be marked as such, and we can't have any bogus pages.
3794 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3795 m = bp->b_xio.xio_pages[i];
3796 if ((m->flags & PG_SWAPPED) == 0)
3797 break;
3798 if (m == bogus_page)
3799 break;
3803 * If we are good then issue the I/O using swap_pager_strategy().
3805 * We can only do this if the buffer actually supports object-backed
3806 * I/O. If it doesn't npages will be 0.
3808 if (i && i == bp->b_xio.xio_npages) {
3809 m = bp->b_xio.xio_pages[0];
3810 nbio = push_bio(bio);
3811 nbio->bio_done = vn_cache_strategy_callback;
3812 nbio->bio_offset = ptoa(m->pindex);
3813 KKASSERT(m->object == object);
3814 swap_pager_strategy(object, nbio);
3815 return(1);
3817 return(0);
3821 * This is a bit of a hack but since the vn_cache_strategy() function can
3822 * override a VFS's strategy function we must make sure that the bio, which
3823 * is probably bio2, doesn't leak an unexpected offset value back to the
3824 * filesystem. The filesystem (e.g. UFS) might otherwise assume that the
3825 * bio went through its own file strategy function and the the bio2 offset
3826 * is a cached disk offset when, in fact, it isn't.
3828 static void
3829 vn_cache_strategy_callback(struct bio *bio)
3831 bio->bio_offset = NOOFFSET;
3832 biodone(pop_bio(bio));
3836 * bpdone:
3838 * Finish I/O on a buffer after all BIOs have been processed.
3839 * Called when the bio chain is exhausted or by biowait. If called
3840 * by biowait, elseit is typically 0.
3842 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3843 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3844 * assuming B_INVAL is clear.
3846 * For the VMIO case, we set B_CACHE if the op was a read and no
3847 * read error occured, or if the op was a write. B_CACHE is never
3848 * set if the buffer is invalid or otherwise uncacheable.
3850 * bpdone does not mess with B_INVAL, allowing the I/O routine or the
3851 * initiator to leave B_INVAL set to brelse the buffer out of existance
3852 * in the biodone routine.
3854 * bpdone is responsible for calling bundirty() on the buffer after a
3855 * successful write. We previously did this prior to initiating the
3856 * write under the assumption that the buffer might be dirtied again
3857 * while the write was in progress, however doing it before-hand creates
3858 * a race condition prior to the call to vn_strategy() where the
3859 * filesystem may not be aware that a dirty buffer is present.
3860 * It should not be possible for the buffer or its underlying pages to
3861 * be redirtied prior to bpdone()'s unbusying of the underlying VM
3862 * pages.
3864 void
3865 bpdone(struct buf *bp, int elseit)
3867 buf_cmd_t cmd;
3869 KASSERT(BUF_REFCNTNB(bp) > 0,
3870 ("bpdone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3871 KASSERT(bp->b_cmd != BUF_CMD_DONE,
3872 ("bpdone: bp %p already done!", bp));
3875 * No more BIOs are left. All completion functions have been dealt
3876 * with, now we clean up the buffer.
3878 cmd = bp->b_cmd;
3879 bp->b_cmd = BUF_CMD_DONE;
3882 * Only reads and writes are processed past this point.
3884 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3885 if (cmd == BUF_CMD_FREEBLKS)
3886 bp->b_flags |= B_NOCACHE;
3887 if (elseit)
3888 brelse(bp);
3889 return;
3893 * A failed write must re-dirty the buffer unless B_INVAL
3894 * was set.
3896 * A successful write must clear the dirty flag. This is done after
3897 * the write to ensure that the buffer remains on the vnode's dirty
3898 * list for filesystem interlocks / checks until the write is actually
3899 * complete. HAMMER2 is sensitive to this issue.
3901 * Only applicable to normal buffers (with VPs). vinum buffers may
3902 * not have a vp.
3904 * Must be done prior to calling buf_complete() as the callback might
3905 * re-dirty the buffer.
3907 if (cmd == BUF_CMD_WRITE) {
3908 if ((bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3909 bp->b_flags &= ~B_NOCACHE;
3910 if (bp->b_vp)
3911 bdirty(bp);
3912 } else {
3913 if (bp->b_vp)
3914 bundirty(bp);
3919 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3920 * a lot worse. XXX - move this above the clearing of b_cmd
3922 if (LIST_FIRST(&bp->b_dep) != NULL)
3923 buf_complete(bp);
3925 if (bp->b_flags & B_VMIO) {
3926 int i;
3927 vm_ooffset_t foff;
3928 vm_page_t m;
3929 vm_object_t obj;
3930 int iosize;
3931 struct vnode *vp = bp->b_vp;
3933 obj = vp->v_object;
3935 #if defined(VFS_BIO_DEBUG)
3936 if (vp->v_auxrefs == 0)
3937 panic("bpdone: zero vnode hold count");
3938 if ((vp->v_flag & VOBJBUF) == 0)
3939 panic("bpdone: vnode is not setup for merged cache");
3940 #endif
3942 foff = bp->b_loffset;
3943 KASSERT(foff != NOOFFSET, ("bpdone: no buffer offset"));
3944 KASSERT(obj != NULL, ("bpdone: missing VM object"));
3946 #if defined(VFS_BIO_DEBUG)
3947 if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3948 kprintf("bpdone: paging in progress(%d) < "
3949 "bp->b_xio.xio_npages(%d)\n",
3950 obj->paging_in_progress,
3951 bp->b_xio.xio_npages);
3953 #endif
3956 * Set B_CACHE if the op was a normal read and no error
3957 * occured. B_CACHE is set for writes in the b*write()
3958 * routines.
3960 iosize = bp->b_bcount - bp->b_resid;
3961 if (cmd == BUF_CMD_READ &&
3962 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3963 bp->b_flags |= B_CACHE;
3966 vm_object_hold(obj);
3967 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3968 int resid;
3969 int isbogus;
3971 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3972 if (resid > iosize)
3973 resid = iosize;
3976 * cleanup bogus pages, restoring the originals. Since
3977 * the originals should still be wired, we don't have
3978 * to worry about interrupt/freeing races destroying
3979 * the VM object association.
3981 m = bp->b_xio.xio_pages[i];
3982 if (m == bogus_page) {
3983 if ((bp->b_flags & B_HASBOGUS) == 0)
3984 panic("bpdone: bp %p corrupt bogus", bp);
3985 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3986 if (m == NULL)
3987 panic("bpdone: page disappeared");
3988 bp->b_xio.xio_pages[i] = m;
3989 isbogus = 1;
3990 } else {
3991 isbogus = 0;
3993 #if defined(VFS_BIO_DEBUG)
3994 if (OFF_TO_IDX(foff) != m->pindex) {
3995 kprintf("bpdone: foff(%lu)/m->pindex(%ld) "
3996 "mismatch\n",
3997 (unsigned long)foff, (long)m->pindex);
3999 #endif
4002 * In the write case, the valid and clean bits are
4003 * already changed correctly (see bdwrite()), so we
4004 * only need to do this here in the read case.
4006 vm_page_busy_wait(m, FALSE, "bpdpgw");
4007 if (cmd == BUF_CMD_READ && isbogus == 0 && resid > 0)
4008 vfs_clean_one_page(bp, i, m);
4011 * when debugging new filesystems or buffer I/O
4012 * methods, this is the most common error that pops
4013 * up. if you see this, you have not set the page
4014 * busy flag correctly!!!
4016 if (m->busy == 0) {
4017 kprintf("bpdone: page busy < 0, "
4018 "pindex: %d, foff: 0x(%x,%x), "
4019 "resid: %d, index: %d\n",
4020 (int) m->pindex, (int)(foff >> 32),
4021 (int) foff & 0xffffffff, resid, i);
4022 if (!vn_isdisk(vp, NULL))
4023 kprintf(" iosize: %ld, loffset: %lld, "
4024 "flags: 0x%08x, npages: %d\n",
4025 bp->b_vp->v_mount->mnt_stat.f_iosize,
4026 (long long)bp->b_loffset,
4027 bp->b_flags, bp->b_xio.xio_npages);
4028 else
4029 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
4030 (long long)bp->b_loffset,
4031 bp->b_flags, bp->b_xio.xio_npages);
4032 kprintf(" valid: 0x%x, dirty: 0x%x, "
4033 "wired: %d\n",
4034 m->valid, m->dirty,
4035 m->wire_count);
4036 panic("bpdone: page busy < 0");
4038 vm_page_io_finish(m);
4039 vm_page_wakeup(m);
4040 vm_object_pip_wakeup(obj);
4041 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4042 iosize -= resid;
4044 if (bp->b_flags & B_HASBOGUS) {
4045 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4046 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4047 bp->b_flags &= ~B_HASBOGUS;
4049 vm_object_drop(obj);
4053 * Finish up by releasing the buffer. There are no more synchronous
4054 * or asynchronous completions, those were handled by bio_done
4055 * callbacks.
4057 if (elseit) {
4058 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
4059 brelse(bp);
4060 else
4061 bqrelse(bp);
4066 * Normal biodone.
4068 void
4069 biodone(struct bio *bio)
4071 struct buf *bp = bio->bio_buf;
4073 runningbufwakeup(bp);
4076 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
4078 while (bio) {
4079 biodone_t *done_func;
4080 struct bio_track *track;
4083 * BIO tracking. Most but not all BIOs are tracked.
4085 if ((track = bio->bio_track) != NULL) {
4086 bio_track_rel(track);
4087 bio->bio_track = NULL;
4091 * A bio_done function terminates the loop. The function
4092 * will be responsible for any further chaining and/or
4093 * buffer management.
4095 * WARNING! The done function can deallocate the buffer!
4097 if ((done_func = bio->bio_done) != NULL) {
4098 bio->bio_done = NULL;
4099 done_func(bio);
4100 return;
4102 bio = bio->bio_prev;
4106 * If we've run out of bio's do normal [a]synchronous completion.
4108 bpdone(bp, 1);
4112 * Synchronous biodone - this terminates a synchronous BIO.
4114 * bpdone() is called with elseit=FALSE, leaving the buffer completed
4115 * but still locked. The caller must brelse() the buffer after waiting
4116 * for completion.
4118 void
4119 biodone_sync(struct bio *bio)
4121 struct buf *bp = bio->bio_buf;
4122 int flags;
4123 int nflags;
4125 KKASSERT(bio == &bp->b_bio1);
4126 bpdone(bp, 0);
4128 for (;;) {
4129 flags = bio->bio_flags;
4130 nflags = (flags | BIO_DONE) & ~BIO_WANT;
4132 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
4133 if (flags & BIO_WANT)
4134 wakeup(bio);
4135 break;
4141 * vfs_unbusy_pages:
4143 * This routine is called in lieu of iodone in the case of
4144 * incomplete I/O. This keeps the busy status for pages
4145 * consistant.
4147 void
4148 vfs_unbusy_pages(struct buf *bp)
4150 int i;
4152 runningbufwakeup(bp);
4154 if (bp->b_flags & B_VMIO) {
4155 struct vnode *vp = bp->b_vp;
4156 vm_object_t obj;
4158 obj = vp->v_object;
4159 vm_object_hold(obj);
4161 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4162 vm_page_t m = bp->b_xio.xio_pages[i];
4165 * When restoring bogus changes the original pages
4166 * should still be wired, so we are in no danger of
4167 * losing the object association and do not need
4168 * critical section protection particularly.
4170 if (m == bogus_page) {
4171 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
4172 if (!m) {
4173 panic("vfs_unbusy_pages: page missing");
4175 bp->b_xio.xio_pages[i] = m;
4177 vm_page_busy_wait(m, FALSE, "bpdpgw");
4178 vm_page_io_finish(m);
4179 vm_page_wakeup(m);
4180 vm_object_pip_wakeup(obj);
4182 if (bp->b_flags & B_HASBOGUS) {
4183 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4184 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4185 bp->b_flags &= ~B_HASBOGUS;
4187 vm_object_drop(obj);
4192 * vfs_busy_pages:
4194 * This routine is called before a device strategy routine.
4195 * It is used to tell the VM system that paging I/O is in
4196 * progress, and treat the pages associated with the buffer
4197 * almost as being PG_BUSY. Also the object 'paging_in_progress'
4198 * flag is handled to make sure that the object doesn't become
4199 * inconsistant.
4201 * Since I/O has not been initiated yet, certain buffer flags
4202 * such as B_ERROR or B_INVAL may be in an inconsistant state
4203 * and should be ignored.
4205 void
4206 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4208 int i, bogus;
4209 struct lwp *lp = curthread->td_lwp;
4212 * The buffer's I/O command must already be set. If reading,
4213 * B_CACHE must be 0 (double check against callers only doing
4214 * I/O when B_CACHE is 0).
4216 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4217 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4219 if (bp->b_flags & B_VMIO) {
4220 vm_object_t obj;
4222 obj = vp->v_object;
4223 KASSERT(bp->b_loffset != NOOFFSET,
4224 ("vfs_busy_pages: no buffer offset"));
4227 * Busy all the pages. We have to busy them all at once
4228 * to avoid deadlocks.
4230 retry:
4231 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4232 vm_page_t m = bp->b_xio.xio_pages[i];
4234 if (vm_page_busy_try(m, FALSE)) {
4235 vm_page_sleep_busy(m, FALSE, "vbpage");
4236 while (--i >= 0)
4237 vm_page_wakeup(bp->b_xio.xio_pages[i]);
4238 goto retry;
4243 * Setup for I/O, soft-busy the page right now because
4244 * the next loop may block.
4246 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4247 vm_page_t m = bp->b_xio.xio_pages[i];
4249 if ((bp->b_flags & B_CLUSTER) == 0) {
4250 vm_object_pip_add(obj, 1);
4251 vm_page_io_start(m);
4256 * Adjust protections for I/O and do bogus-page mapping.
4257 * Assume that vm_page_protect() can block (it can block
4258 * if VM_PROT_NONE, don't take any chances regardless).
4260 * In particular note that for writes we must incorporate
4261 * page dirtyness from the VM system into the buffer's
4262 * dirty range.
4264 * For reads we theoretically must incorporate page dirtyness
4265 * from the VM system to determine if the page needs bogus
4266 * replacement, but we shortcut the test by simply checking
4267 * that all m->valid bits are set, indicating that the page
4268 * is fully valid and does not need to be re-read. For any
4269 * VM system dirtyness the page will also be fully valid
4270 * since it was mapped at one point.
4272 bogus = 0;
4273 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4274 vm_page_t m = bp->b_xio.xio_pages[i];
4276 if (bp->b_cmd == BUF_CMD_WRITE) {
4278 * When readying a vnode-backed buffer for
4279 * a write we must zero-fill any invalid
4280 * portions of the backing VM pages, mark
4281 * it valid and clear related dirty bits.
4283 * vfs_clean_one_page() incorporates any
4284 * VM dirtyness and updates the b_dirtyoff
4285 * range (after we've made the page RO).
4287 * It is also expected that the pmap modified
4288 * bit has already been cleared by the
4289 * vm_page_protect(). We may not be able
4290 * to clear all dirty bits for a page if it
4291 * was also memory mapped (NFS).
4293 * Finally be sure to unassign any swap-cache
4294 * backing store as it is now stale.
4296 vm_page_protect(m, VM_PROT_READ);
4297 vfs_clean_one_page(bp, i, m);
4298 swap_pager_unswapped(m);
4299 } else if (m->valid == VM_PAGE_BITS_ALL) {
4301 * When readying a vnode-backed buffer for
4302 * read we must replace any dirty pages with
4303 * a bogus page so dirty data is not destroyed
4304 * when filling gaps.
4306 * To avoid testing whether the page is
4307 * dirty we instead test that the page was
4308 * at some point mapped (m->valid fully
4309 * valid) with the understanding that
4310 * this also covers the dirty case.
4312 bp->b_xio.xio_pages[i] = bogus_page;
4313 bp->b_flags |= B_HASBOGUS;
4314 bogus++;
4315 } else if (m->valid & m->dirty) {
4317 * This case should not occur as partial
4318 * dirtyment can only happen if the buffer
4319 * is B_CACHE, and this code is not entered
4320 * if the buffer is B_CACHE.
4322 kprintf("Warning: vfs_busy_pages - page not "
4323 "fully valid! loff=%jx bpf=%08x "
4324 "idx=%d val=%02x dir=%02x\n",
4325 (uintmax_t)bp->b_loffset, bp->b_flags,
4326 i, m->valid, m->dirty);
4327 vm_page_protect(m, VM_PROT_NONE);
4328 } else {
4330 * The page is not valid and can be made
4331 * part of the read.
4333 vm_page_protect(m, VM_PROT_NONE);
4335 vm_page_wakeup(m);
4337 if (bogus) {
4338 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4339 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4344 * This is the easiest place to put the process accounting for the I/O
4345 * for now.
4347 if (lp != NULL) {
4348 if (bp->b_cmd == BUF_CMD_READ)
4349 lp->lwp_ru.ru_inblock++;
4350 else
4351 lp->lwp_ru.ru_oublock++;
4356 * Tell the VM system that the pages associated with this buffer
4357 * are clean. This is used for delayed writes where the data is
4358 * going to go to disk eventually without additional VM intevention.
4360 * NOTE: While we only really need to clean through to b_bcount, we
4361 * just go ahead and clean through to b_bufsize.
4363 static void
4364 vfs_clean_pages(struct buf *bp)
4366 vm_page_t m;
4367 int i;
4369 if ((bp->b_flags & B_VMIO) == 0)
4370 return;
4372 KASSERT(bp->b_loffset != NOOFFSET,
4373 ("vfs_clean_pages: no buffer offset"));
4375 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4376 m = bp->b_xio.xio_pages[i];
4377 vfs_clean_one_page(bp, i, m);
4382 * vfs_clean_one_page:
4384 * Set the valid bits and clear the dirty bits in a page within a
4385 * buffer. The range is restricted to the buffer's size and the
4386 * buffer's logical offset might index into the first page.
4388 * The caller has busied or soft-busied the page and it is not mapped,
4389 * test and incorporate the dirty bits into b_dirtyoff/end before
4390 * clearing them. Note that we need to clear the pmap modified bits
4391 * after determining the the page was dirty, vm_page_set_validclean()
4392 * does not do it for us.
4394 * This routine is typically called after a read completes (dirty should
4395 * be zero in that case as we are not called on bogus-replace pages),
4396 * or before a write is initiated.
4398 static void
4399 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4401 int bcount;
4402 int xoff;
4403 int soff;
4404 int eoff;
4407 * Calculate offset range within the page but relative to buffer's
4408 * loffset. loffset might be offset into the first page.
4410 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
4411 bcount = bp->b_bcount + xoff; /* offset adjusted */
4413 if (pageno == 0) {
4414 soff = xoff;
4415 eoff = PAGE_SIZE;
4416 } else {
4417 soff = (pageno << PAGE_SHIFT);
4418 eoff = soff + PAGE_SIZE;
4420 if (eoff > bcount)
4421 eoff = bcount;
4422 if (soff >= eoff)
4423 return;
4426 * Test dirty bits and adjust b_dirtyoff/end.
4428 * If dirty pages are incorporated into the bp any prior
4429 * B_NEEDCOMMIT state (NFS) must be cleared because the
4430 * caller has not taken into account the new dirty data.
4432 * If the page was memory mapped the dirty bits might go beyond the
4433 * end of the buffer, but we can't really make the assumption that
4434 * a file EOF straddles the buffer (even though this is the case for
4435 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing
4436 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4437 * This also saves some console spam.
4439 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4440 * NFS can handle huge commits but not huge writes.
4442 vm_page_test_dirty(m);
4443 if (m->dirty) {
4444 if ((bp->b_flags & B_NEEDCOMMIT) &&
4445 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4446 if (debug_commit)
4447 kprintf("Warning: vfs_clean_one_page: bp %p "
4448 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4449 " cmd %d vd %02x/%02x x/s/e %d %d %d "
4450 "doff/end %d %d\n",
4451 bp, (uintmax_t)bp->b_loffset, bp->b_bcount,
4452 bp->b_flags, bp->b_cmd,
4453 m->valid, m->dirty, xoff, soff, eoff,
4454 bp->b_dirtyoff, bp->b_dirtyend);
4455 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4456 if (debug_commit)
4457 print_backtrace(-1);
4460 * Only clear the pmap modified bits if ALL the dirty bits
4461 * are set, otherwise the system might mis-clear portions
4462 * of a page.
4464 if (m->dirty == VM_PAGE_BITS_ALL &&
4465 (bp->b_flags & B_NEEDCOMMIT) == 0) {
4466 pmap_clear_modify(m);
4468 if (bp->b_dirtyoff > soff - xoff)
4469 bp->b_dirtyoff = soff - xoff;
4470 if (bp->b_dirtyend < eoff - xoff)
4471 bp->b_dirtyend = eoff - xoff;
4475 * Set related valid bits, clear related dirty bits.
4476 * Does not mess with the pmap modified bit.
4478 * WARNING! We cannot just clear all of m->dirty here as the
4479 * buffer cache buffers may use a DEV_BSIZE'd aligned
4480 * block size, or have an odd size (e.g. NFS at file EOF).
4481 * The putpages code can clear m->dirty to 0.
4483 * If a VOP_WRITE generates a buffer cache buffer which
4484 * covers the same space as mapped writable pages the
4485 * buffer flush might not be able to clear all the dirty
4486 * bits and still require a putpages from the VM system
4487 * to finish it off.
4489 * WARNING! vm_page_set_validclean() currently assumes vm_token
4490 * is held. The page might not be busied (bdwrite() case).
4491 * XXX remove this comment once we've validated that this
4492 * is no longer an issue.
4494 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4497 #if 0
4499 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4500 * The page data is assumed to be valid (there is no zeroing here).
4502 static void
4503 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4505 int bcount;
4506 int xoff;
4507 int soff;
4508 int eoff;
4511 * Calculate offset range within the page but relative to buffer's
4512 * loffset. loffset might be offset into the first page.
4514 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
4515 bcount = bp->b_bcount + xoff; /* offset adjusted */
4517 if (pageno == 0) {
4518 soff = xoff;
4519 eoff = PAGE_SIZE;
4520 } else {
4521 soff = (pageno << PAGE_SHIFT);
4522 eoff = soff + PAGE_SIZE;
4524 if (eoff > bcount)
4525 eoff = bcount;
4526 if (soff >= eoff)
4527 return;
4528 vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4530 #endif
4533 * vfs_bio_clrbuf:
4535 * Clear a buffer. This routine essentially fakes an I/O, so we need
4536 * to clear B_ERROR and B_INVAL.
4538 * Note that while we only theoretically need to clear through b_bcount,
4539 * we go ahead and clear through b_bufsize.
4542 void
4543 vfs_bio_clrbuf(struct buf *bp)
4545 int i, mask = 0;
4546 caddr_t sa, ea;
4547 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4548 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4549 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4550 (bp->b_loffset & PAGE_MASK) == 0) {
4551 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4552 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4553 bp->b_resid = 0;
4554 return;
4556 if ((bp->b_xio.xio_pages[0]->valid & mask) == 0) {
4557 bzero(bp->b_data, bp->b_bufsize);
4558 bp->b_xio.xio_pages[0]->valid |= mask;
4559 bp->b_resid = 0;
4560 return;
4563 sa = bp->b_data;
4564 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4565 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4566 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4567 ea = (caddr_t)(vm_offset_t)ulmin(
4568 (u_long)(vm_offset_t)ea,
4569 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4570 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4571 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4572 continue;
4573 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4574 bzero(sa, ea - sa);
4575 } else {
4576 for (; sa < ea; sa += DEV_BSIZE, j++) {
4577 if ((bp->b_xio.xio_pages[i]->valid &
4578 (1<<j)) == 0) {
4579 bzero(sa, DEV_BSIZE);
4583 bp->b_xio.xio_pages[i]->valid |= mask;
4585 bp->b_resid = 0;
4586 } else {
4587 clrbuf(bp);
4592 * vm_hold_load_pages:
4594 * Load pages into the buffer's address space. The pages are
4595 * allocated from the kernel object in order to reduce interference
4596 * with the any VM paging I/O activity. The range of loaded
4597 * pages will be wired.
4599 * If a page cannot be allocated, the 'pagedaemon' is woken up to
4600 * retrieve the full range (to - from) of pages.
4602 void
4603 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4605 vm_offset_t pg;
4606 vm_page_t p;
4607 int index;
4609 to = round_page(to);
4610 from = round_page(from);
4611 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4613 pg = from;
4614 while (pg < to) {
4616 * Note: must allocate system pages since blocking here
4617 * could intefere with paging I/O, no matter which
4618 * process we are.
4620 vm_object_hold(&kernel_object);
4621 p = bio_page_alloc(bp, &kernel_object, pg >> PAGE_SHIFT,
4622 (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4623 vm_object_drop(&kernel_object);
4624 if (p) {
4625 vm_page_wire(p);
4626 p->valid = VM_PAGE_BITS_ALL;
4627 pmap_kenter_noinval(pg, VM_PAGE_TO_PHYS(p));
4628 bp->b_xio.xio_pages[index] = p;
4629 vm_page_wakeup(p);
4631 pg += PAGE_SIZE;
4632 ++index;
4635 pmap_invalidate_range(&kernel_pmap, from, to);
4636 bp->b_xio.xio_npages = index;
4640 * Allocate a page for a buffer cache buffer.
4642 * If NULL is returned the caller is expected to retry (typically check if
4643 * the page already exists on retry before trying to allocate one).
4645 * NOTE! Low-memory handling is dealt with in b[q]relse(), not here. This
4646 * function will use the system reserve with the hope that the page
4647 * allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4648 * is done with the buffer.
4650 * NOTE! However, TMPFS is a special case because flushing a dirty buffer
4651 * to TMPFS doesn't clean the page. For TMPFS, only the pagedaemon
4652 * is capable of retiring pages (to swap). For TMPFS we don't dig
4653 * into the system reserve because doing so could stall out pretty
4654 * much every process running on the system.
4656 static
4657 vm_page_t
4658 bio_page_alloc(struct buf *bp, vm_object_t obj, vm_pindex_t pg, int deficit)
4660 int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK;
4661 vm_page_t p;
4663 ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4666 * Try a normal allocation first.
4668 p = vm_page_alloc(obj, pg, vmflags);
4669 if (p)
4670 return(p);
4671 if (vm_page_lookup(obj, pg))
4672 return(NULL);
4673 vm_pageout_deficit += deficit;
4676 * Try again, digging into the system reserve.
4678 * Trying to recover pages from the buffer cache here can deadlock
4679 * against other threads trying to busy underlying pages so we
4680 * depend on the code in brelse() and bqrelse() to free/cache the
4681 * underlying buffer cache pages when memory is low.
4683 if (curthread->td_flags & TDF_SYSTHREAD)
4684 vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT;
4685 else if (bp->b_vp && bp->b_vp->v_tag == VT_TMPFS)
4686 vmflags |= 0;
4687 else
4688 vmflags |= VM_ALLOC_SYSTEM;
4690 /*recoverbufpages();*/
4691 p = vm_page_alloc(obj, pg, vmflags);
4692 if (p)
4693 return(p);
4694 if (vm_page_lookup(obj, pg))
4695 return(NULL);
4698 * Wait for memory to free up and try again
4700 if (vm_page_count_severe())
4701 ++lowmempgallocs;
4702 vm_wait(hz / 20 + 1);
4704 p = vm_page_alloc(obj, pg, vmflags);
4705 if (p)
4706 return(p);
4707 if (vm_page_lookup(obj, pg))
4708 return(NULL);
4711 * Ok, now we are really in trouble.
4714 static struct krate biokrate = { .freq = 1 };
4715 krateprintf(&biokrate,
4716 "Warning: bio_page_alloc: memory exhausted "
4717 "during buffer cache page allocation from %s\n",
4718 curthread->td_comm);
4720 if (curthread->td_flags & TDF_SYSTHREAD)
4721 vm_wait(hz / 20 + 1);
4722 else
4723 vm_wait(hz / 2 + 1);
4724 return (NULL);
4728 * vm_hold_free_pages:
4730 * Return pages associated with the buffer back to the VM system.
4732 * The range of pages underlying the buffer's address space will
4733 * be unmapped and un-wired.
4735 void
4736 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4738 vm_offset_t pg;
4739 vm_page_t p;
4740 int index, newnpages;
4742 from = round_page(from);
4743 to = round_page(to);
4744 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4745 newnpages = index;
4747 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4748 p = bp->b_xio.xio_pages[index];
4749 if (p && (index < bp->b_xio.xio_npages)) {
4750 if (p->busy) {
4751 kprintf("vm_hold_free_pages: doffset: %lld, "
4752 "loffset: %lld\n",
4753 (long long)bp->b_bio2.bio_offset,
4754 (long long)bp->b_loffset);
4756 bp->b_xio.xio_pages[index] = NULL;
4757 pmap_kremove_noinval(pg);
4758 vm_page_busy_wait(p, FALSE, "vmhldpg");
4759 vm_page_unwire(p, 0);
4760 vm_page_free(p);
4763 pmap_invalidate_range(&kernel_pmap, from, to);
4764 bp->b_xio.xio_npages = newnpages;
4768 * vmapbuf:
4770 * Map a user buffer into KVM via a pbuf. On return the buffer's
4771 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4772 * initialized.
4775 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4777 caddr_t addr;
4778 vm_offset_t va;
4779 vm_page_t m;
4780 int vmprot;
4781 int error;
4782 int pidx;
4783 int i;
4786 * bp had better have a command and it better be a pbuf.
4788 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4789 KKASSERT(bp->b_flags & B_PAGING);
4790 KKASSERT(bp->b_kvabase);
4792 if (bytes < 0)
4793 return (-1);
4796 * Map the user data into KVM. Mappings have to be page-aligned.
4798 addr = (caddr_t)trunc_page((vm_offset_t)udata);
4799 pidx = 0;
4801 vmprot = VM_PROT_READ;
4802 if (bp->b_cmd == BUF_CMD_READ)
4803 vmprot |= VM_PROT_WRITE;
4805 while (addr < udata + bytes) {
4807 * Do the vm_fault if needed; do the copy-on-write thing
4808 * when reading stuff off device into memory.
4810 * vm_fault_page*() returns a held VM page.
4812 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4813 va = trunc_page(va);
4815 m = vm_fault_page_quick(va, vmprot, &error);
4816 if (m == NULL) {
4817 for (i = 0; i < pidx; ++i) {
4818 vm_page_unhold(bp->b_xio.xio_pages[i]);
4819 bp->b_xio.xio_pages[i] = NULL;
4821 return(-1);
4823 bp->b_xio.xio_pages[pidx] = m;
4824 addr += PAGE_SIZE;
4825 ++pidx;
4829 * Map the page array and set the buffer fields to point to
4830 * the mapped data buffer.
4832 if (pidx > btoc(MAXPHYS))
4833 panic("vmapbuf: mapped more than MAXPHYS");
4834 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4836 bp->b_xio.xio_npages = pidx;
4837 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4838 bp->b_bcount = bytes;
4839 bp->b_bufsize = bytes;
4841 return(0);
4845 * vunmapbuf:
4847 * Free the io map PTEs associated with this IO operation.
4848 * We also invalidate the TLB entries and restore the original b_addr.
4850 void
4851 vunmapbuf(struct buf *bp)
4853 int pidx;
4854 int npages;
4856 KKASSERT(bp->b_flags & B_PAGING);
4858 npages = bp->b_xio.xio_npages;
4859 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4860 for (pidx = 0; pidx < npages; ++pidx) {
4861 vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4862 bp->b_xio.xio_pages[pidx] = NULL;
4864 bp->b_xio.xio_npages = 0;
4865 bp->b_data = bp->b_kvabase;
4869 * Scan all buffers in the system and issue the callback.
4872 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4874 int count = 0;
4875 int error;
4876 long n;
4878 for (n = 0; n < nbuf; ++n) {
4879 if ((error = callback(&buf[n], info)) < 0) {
4880 count = error;
4881 break;
4883 count += error;
4885 return (count);
4889 * nestiobuf_iodone: biodone callback for nested buffers and propagate
4890 * completion to the master buffer.
4892 static void
4893 nestiobuf_iodone(struct bio *bio)
4895 struct bio *mbio;
4896 struct buf *mbp, *bp;
4897 struct devstat *stats;
4898 int error;
4899 int donebytes;
4901 bp = bio->bio_buf;
4902 mbio = bio->bio_caller_info1.ptr;
4903 stats = bio->bio_caller_info2.ptr;
4904 mbp = mbio->bio_buf;
4906 KKASSERT(bp->b_bcount <= bp->b_bufsize);
4907 KKASSERT(mbp != bp);
4909 error = bp->b_error;
4910 if (bp->b_error == 0 &&
4911 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4913 * Not all got transfered, raise an error. We have no way to
4914 * propagate these conditions to mbp.
4916 error = EIO;
4919 donebytes = bp->b_bufsize;
4921 relpbuf(bp, NULL);
4923 nestiobuf_done(mbio, donebytes, error, stats);
4926 void
4927 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4929 struct buf *mbp;
4931 mbp = mbio->bio_buf;
4933 KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4936 * If an error occured, propagate it to the master buffer.
4938 * Several biodone()s may wind up running concurrently so
4939 * use an atomic op to adjust b_flags.
4941 if (error) {
4942 mbp->b_error = error;
4943 atomic_set_int(&mbp->b_flags, B_ERROR);
4947 * Decrement the operations in progress counter and terminate the
4948 * I/O if this was the last bit.
4950 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4951 mbp->b_resid = 0;
4952 if (stats)
4953 devstat_end_transaction_buf(stats, mbp);
4954 biodone(mbio);
4959 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent
4960 * the mbio from being biodone()'d while we are still adding sub-bios to
4961 * it.
4963 void
4964 nestiobuf_init(struct bio *bio)
4966 bio->bio_driver_info = (void *)1;
4970 * The BIOs added to the nestedio have already been started, remove the
4971 * count that placeheld our mbio and biodone() it if the count would
4972 * transition to 0.
4974 void
4975 nestiobuf_start(struct bio *mbio)
4977 struct buf *mbp = mbio->bio_buf;
4980 * Decrement the operations in progress counter and terminate the
4981 * I/O if this was the last bit.
4983 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4984 if (mbp->b_flags & B_ERROR)
4985 mbp->b_resid = mbp->b_bcount;
4986 else
4987 mbp->b_resid = 0;
4988 biodone(mbio);
4993 * Set an intermediate error prior to calling nestiobuf_start()
4995 void
4996 nestiobuf_error(struct bio *mbio, int error)
4998 struct buf *mbp = mbio->bio_buf;
5000 if (error) {
5001 mbp->b_error = error;
5002 atomic_set_int(&mbp->b_flags, B_ERROR);
5007 * nestiobuf_add: setup a "nested" buffer.
5009 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
5010 * => 'bp' should be a buffer allocated by getiobuf.
5011 * => 'offset' is a byte offset in the master buffer.
5012 * => 'size' is a size in bytes of this nested buffer.
5014 void
5015 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
5017 struct buf *mbp = mbio->bio_buf;
5018 struct vnode *vp = mbp->b_vp;
5020 KKASSERT(mbp->b_bcount >= offset + size);
5022 atomic_add_int((int *)&mbio->bio_driver_info, 1);
5024 /* kernel needs to own the lock for it to be released in biodone */
5025 BUF_KERNPROC(bp);
5026 bp->b_vp = vp;
5027 bp->b_cmd = mbp->b_cmd;
5028 bp->b_bio1.bio_done = nestiobuf_iodone;
5029 bp->b_data = (char *)mbp->b_data + offset;
5030 bp->b_resid = bp->b_bcount = size;
5031 bp->b_bufsize = bp->b_bcount;
5033 bp->b_bio1.bio_track = NULL;
5034 bp->b_bio1.bio_caller_info1.ptr = mbio;
5035 bp->b_bio1.bio_caller_info2.ptr = stats;
5038 #ifdef DDB
5040 DB_SHOW_COMMAND(buffer, db_show_buffer)
5042 /* get args */
5043 struct buf *bp = (struct buf *)addr;
5045 if (!have_addr) {
5046 db_printf("usage: show buffer <addr>\n");
5047 return;
5050 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
5051 db_printf("b_cmd = %d\n", bp->b_cmd);
5052 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
5053 "b_resid = %d\n, b_data = %p, "
5054 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
5055 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5056 bp->b_data,
5057 (long long)bp->b_bio2.bio_offset,
5058 (long long)(bp->b_bio2.bio_next ?
5059 bp->b_bio2.bio_next->bio_offset : (off_t)-1));
5060 if (bp->b_xio.xio_npages) {
5061 int i;
5062 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
5063 bp->b_xio.xio_npages);
5064 for (i = 0; i < bp->b_xio.xio_npages; i++) {
5065 vm_page_t m;
5066 m = bp->b_xio.xio_pages[i];
5067 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
5068 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
5069 if ((i + 1) < bp->b_xio.xio_npages)
5070 db_printf(",");
5072 db_printf("\n");
5075 #endif /* DDB */