HAMMER VFS - Major retooling of the refcount mechanics, and fix a deadlock
[dragonfly.git] / sys / vfs / hammer / hammer_flusher.c
blobabf1ceb93b51462d175096aa2a6290ced9421325
1 /*
2 * Copyright (c) 2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_flusher.c,v 1.45 2008/07/31 04:42:04 dillon Exp $
37 * HAMMER dependancy flusher thread
39 * Meta data updates create buffer dependancies which are arranged as a
40 * hierarchy of lists.
43 #include "hammer.h"
45 static void hammer_flusher_master_thread(void *arg);
46 static void hammer_flusher_slave_thread(void *arg);
47 static void hammer_flusher_flush(hammer_mount_t hmp);
48 static void hammer_flusher_flush_inode(hammer_inode_t ip,
49 hammer_transaction_t trans);
51 RB_GENERATE(hammer_fls_rb_tree, hammer_inode, rb_flsnode,
52 hammer_ino_rb_compare);
55 * Inodes are sorted and assigned to slave threads in groups of 128.
56 * We want a flush group size large enough such that the slave threads
57 * are not likely to interfere with each other when accessing the B-Tree,
58 * but not so large that we lose concurrency.
60 #define HAMMER_FLUSH_GROUP_SIZE 128
63 * Support structures for the flusher threads.
65 struct hammer_flusher_info {
66 TAILQ_ENTRY(hammer_flusher_info) entry;
67 struct hammer_mount *hmp;
68 thread_t td;
69 int runstate;
70 int count;
71 hammer_flush_group_t flg;
72 hammer_inode_t work_array[HAMMER_FLUSH_GROUP_SIZE];
75 typedef struct hammer_flusher_info *hammer_flusher_info_t;
78 * Sync all inodes pending on the flusher.
80 * All flush groups will be flushed. This does not queue dirty inodes
81 * to the flush groups, it just flushes out what has already been queued!
83 void
84 hammer_flusher_sync(hammer_mount_t hmp)
86 int seq;
88 seq = hammer_flusher_async(hmp, NULL);
89 hammer_flusher_wait(hmp, seq);
93 * Sync all inodes pending on the flusher - return immediately.
95 * All flush groups will be flushed.
97 int
98 hammer_flusher_async(hammer_mount_t hmp, hammer_flush_group_t close_flg)
100 hammer_flush_group_t flg;
101 int seq = hmp->flusher.next;
103 TAILQ_FOREACH(flg, &hmp->flush_group_list, flush_entry) {
104 if (flg->running == 0)
105 ++seq;
106 flg->closed = 1;
107 if (flg == close_flg)
108 break;
110 if (hmp->flusher.td) {
111 if (hmp->flusher.signal++ == 0)
112 wakeup(&hmp->flusher.signal);
113 } else {
114 seq = hmp->flusher.done;
116 return(seq);
120 hammer_flusher_async_one(hammer_mount_t hmp)
122 int seq;
124 if (hmp->flusher.td) {
125 seq = hmp->flusher.next;
126 if (hmp->flusher.signal++ == 0)
127 wakeup(&hmp->flusher.signal);
128 } else {
129 seq = hmp->flusher.done;
131 return(seq);
135 * Wait for the flusher to get to the specified sequence number.
136 * Signal the flusher as often as necessary to keep it going.
138 void
139 hammer_flusher_wait(hammer_mount_t hmp, int seq)
141 while ((int)(seq - hmp->flusher.done) > 0) {
142 if (hmp->flusher.act != seq) {
143 if (hmp->flusher.signal++ == 0)
144 wakeup(&hmp->flusher.signal);
146 tsleep(&hmp->flusher.done, 0, "hmrfls", 0);
150 void
151 hammer_flusher_wait_next(hammer_mount_t hmp)
153 int seq;
155 seq = hammer_flusher_async_one(hmp);
156 hammer_flusher_wait(hmp, seq);
159 void
160 hammer_flusher_create(hammer_mount_t hmp)
162 hammer_flusher_info_t info;
163 int i;
165 hmp->flusher.signal = 0;
166 hmp->flusher.act = 0;
167 hmp->flusher.done = 0;
168 hmp->flusher.next = 1;
169 hammer_ref(&hmp->flusher.finalize_lock);
170 TAILQ_INIT(&hmp->flusher.run_list);
171 TAILQ_INIT(&hmp->flusher.ready_list);
173 lwkt_create(hammer_flusher_master_thread, hmp,
174 &hmp->flusher.td, NULL, 0, -1, "hammer-M");
175 for (i = 0; i < HAMMER_MAX_FLUSHERS; ++i) {
176 info = kmalloc(sizeof(*info), hmp->m_misc, M_WAITOK|M_ZERO);
177 info->hmp = hmp;
178 TAILQ_INSERT_TAIL(&hmp->flusher.ready_list, info, entry);
179 lwkt_create(hammer_flusher_slave_thread, info,
180 &info->td, NULL, 0, -1, "hammer-S%d", i);
184 void
185 hammer_flusher_destroy(hammer_mount_t hmp)
187 hammer_flusher_info_t info;
190 * Kill the master
192 hmp->flusher.exiting = 1;
193 while (hmp->flusher.td) {
194 ++hmp->flusher.signal;
195 wakeup(&hmp->flusher.signal);
196 tsleep(&hmp->flusher.exiting, 0, "hmrwex", hz);
200 * Kill the slaves
202 while ((info = TAILQ_FIRST(&hmp->flusher.ready_list)) != NULL) {
203 KKASSERT(info->runstate == 0);
204 TAILQ_REMOVE(&hmp->flusher.ready_list, info, entry);
205 info->runstate = -1;
206 wakeup(&info->runstate);
207 while (info->td)
208 tsleep(&info->td, 0, "hmrwwc", 0);
209 kfree(info, hmp->m_misc);
214 * The master flusher thread manages the flusher sequence id and
215 * synchronization with the slave work threads.
217 static void
218 hammer_flusher_master_thread(void *arg)
220 hammer_flush_group_t flg;
221 hammer_mount_t hmp;
223 hmp = arg;
225 for (;;) {
227 * Do at least one flush cycle. We may have to update the
228 * UNDO FIFO even if no inodes are queued.
230 for (;;) {
231 while (hmp->flusher.group_lock)
232 tsleep(&hmp->flusher.group_lock, 0, "hmrhld", 0);
233 hmp->flusher.act = hmp->flusher.next;
234 ++hmp->flusher.next;
235 hammer_flusher_clean_loose_ios(hmp);
236 hammer_flusher_flush(hmp);
237 hmp->flusher.done = hmp->flusher.act;
238 wakeup(&hmp->flusher.done);
239 flg = TAILQ_FIRST(&hmp->flush_group_list);
240 if (flg == NULL || flg->closed == 0)
241 break;
242 if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
243 break;
247 * Wait for activity.
249 if (hmp->flusher.exiting && TAILQ_EMPTY(&hmp->flush_group_list))
250 break;
251 while (hmp->flusher.signal == 0)
252 tsleep(&hmp->flusher.signal, 0, "hmrwwa", 0);
255 * Flush for each count on signal but only allow one extra
256 * flush request to build up.
258 if (--hmp->flusher.signal != 0)
259 hmp->flusher.signal = 1;
263 * And we are done.
265 hmp->flusher.td = NULL;
266 wakeup(&hmp->flusher.exiting);
267 lwkt_exit();
271 * Flush all inodes in the current flush group.
273 static void
274 hammer_flusher_flush(hammer_mount_t hmp)
276 hammer_flusher_info_t info;
277 hammer_flush_group_t flg;
278 hammer_reserve_t resv;
279 hammer_inode_t ip;
280 hammer_inode_t next_ip;
281 int slave_index;
282 int count;
285 * Just in-case there's a flush race on mount
287 if (TAILQ_FIRST(&hmp->flusher.ready_list) == NULL)
288 return;
291 * We only do one flg but we may have to loop/retry.
293 count = 0;
294 while ((flg = TAILQ_FIRST(&hmp->flush_group_list)) != NULL) {
295 ++count;
296 if (hammer_debug_general & 0x0001) {
297 kprintf("hammer_flush %d ttl=%d recs=%d\n",
298 hmp->flusher.act,
299 flg->total_count, flg->refs);
301 if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
302 break;
303 hammer_start_transaction_fls(&hmp->flusher.trans, hmp);
306 * If the previous flush cycle just about exhausted our
307 * UNDO space we may have to do a dummy cycle to move the
308 * first_offset up before actually digging into a new cycle,
309 * or the new cycle will not have sufficient undo space.
311 if (hammer_flusher_undo_exhausted(&hmp->flusher.trans, 3))
312 hammer_flusher_finalize(&hmp->flusher.trans, 0);
315 * Ok, we are running this flush group now (this prevents new
316 * additions to it).
318 flg->running = 1;
319 if (hmp->next_flush_group == flg)
320 hmp->next_flush_group = TAILQ_NEXT(flg, flush_entry);
323 * Iterate the inodes in the flg's flush_tree and assign
324 * them to slaves.
326 slave_index = 0;
327 info = TAILQ_FIRST(&hmp->flusher.ready_list);
328 next_ip = RB_FIRST(hammer_fls_rb_tree, &flg->flush_tree);
330 while ((ip = next_ip) != NULL) {
331 next_ip = RB_NEXT(hammer_fls_rb_tree,
332 &flg->flush_tree, ip);
334 if (++hmp->check_yield > hammer_yield_check) {
335 hmp->check_yield = 0;
336 lwkt_user_yield();
340 * Add ip to the slave's work array. The slave is
341 * not currently running.
343 info->work_array[info->count++] = ip;
344 if (info->count != HAMMER_FLUSH_GROUP_SIZE)
345 continue;
348 * Get the slave running
350 TAILQ_REMOVE(&hmp->flusher.ready_list, info, entry);
351 TAILQ_INSERT_TAIL(&hmp->flusher.run_list, info, entry);
352 info->flg = flg;
353 info->runstate = 1;
354 wakeup(&info->runstate);
357 * Get a new slave. We may have to wait for one to
358 * finish running.
360 while ((info = TAILQ_FIRST(&hmp->flusher.ready_list)) == NULL) {
361 tsleep(&hmp->flusher.ready_list, 0, "hmrfcc", 0);
366 * Run the current slave if necessary
368 if (info->count) {
369 TAILQ_REMOVE(&hmp->flusher.ready_list, info, entry);
370 TAILQ_INSERT_TAIL(&hmp->flusher.run_list, info, entry);
371 info->flg = flg;
372 info->runstate = 1;
373 wakeup(&info->runstate);
377 * Wait for all slaves to finish running
379 while (TAILQ_FIRST(&hmp->flusher.run_list) != NULL)
380 tsleep(&hmp->flusher.ready_list, 0, "hmrfcc", 0);
383 * Do the final finalization, clean up
385 hammer_flusher_finalize(&hmp->flusher.trans, 1);
386 hmp->flusher.tid = hmp->flusher.trans.tid;
388 hammer_done_transaction(&hmp->flusher.trans);
391 * Loop up on the same flg. If the flg is done clean it up
392 * and break out. We only flush one flg.
394 if (RB_EMPTY(&flg->flush_tree)) {
395 KKASSERT(flg->refs == 0);
396 TAILQ_REMOVE(&hmp->flush_group_list, flg, flush_entry);
397 kfree(flg, hmp->m_misc);
398 break;
403 * We may have pure meta-data to flush, or we may have to finish
404 * cycling the UNDO FIFO, even if there were no flush groups.
406 if (count == 0 && hammer_flusher_haswork(hmp)) {
407 hammer_start_transaction_fls(&hmp->flusher.trans, hmp);
408 hammer_flusher_finalize(&hmp->flusher.trans, 1);
409 hammer_done_transaction(&hmp->flusher.trans);
413 * Clean up any freed big-blocks (typically zone-2).
414 * resv->flush_group is typically set several flush groups ahead
415 * of the free to ensure that the freed block is not reused until
416 * it can no longer be reused.
418 while ((resv = TAILQ_FIRST(&hmp->delay_list)) != NULL) {
419 if (resv->flush_group != hmp->flusher.act)
420 break;
421 hammer_reserve_clrdelay(hmp, resv);
427 * The slave flusher thread pulls work off the master flush list until no
428 * work is left.
430 static void
431 hammer_flusher_slave_thread(void *arg)
433 hammer_flush_group_t flg;
434 hammer_flusher_info_t info;
435 hammer_mount_t hmp;
436 hammer_inode_t ip;
437 int i;
439 info = arg;
440 hmp = info->hmp;
442 for (;;) {
443 while (info->runstate == 0)
444 tsleep(&info->runstate, 0, "hmrssw", 0);
445 if (info->runstate < 0)
446 break;
447 flg = info->flg;
449 for (i = 0; i < info->count; ++i) {
450 ip = info->work_array[i];
451 hammer_flusher_flush_inode(ip, &hmp->flusher.trans);
452 ++hammer_stats_inode_flushes;
454 info->count = 0;
455 info->runstate = 0;
456 TAILQ_REMOVE(&hmp->flusher.run_list, info, entry);
457 TAILQ_INSERT_TAIL(&hmp->flusher.ready_list, info, entry);
458 wakeup(&hmp->flusher.ready_list);
460 info->td = NULL;
461 wakeup(&info->td);
462 lwkt_exit();
465 void
466 hammer_flusher_clean_loose_ios(hammer_mount_t hmp)
468 hammer_buffer_t buffer;
469 hammer_io_t io;
472 * loose ends - buffers without bp's aren't tracked by the kernel
473 * and can build up, so clean them out. This can occur when an
474 * IO completes on a buffer with no references left.
476 if ((io = TAILQ_FIRST(&hmp->lose_list)) != NULL) {
477 crit_enter(); /* biodone() race */
478 while ((io = TAILQ_FIRST(&hmp->lose_list)) != NULL) {
479 KKASSERT(io->mod_list == &hmp->lose_list);
480 TAILQ_REMOVE(&hmp->lose_list, io, mod_entry);
481 io->mod_list = NULL;
482 hammer_ref(&io->lock);
483 buffer = (void *)io;
484 hammer_rel_buffer(buffer, 0);
486 crit_exit();
491 * Flush a single inode that is part of a flush group.
493 * Flusher errors are extremely serious, even ENOSPC shouldn't occur because
494 * the front-end should have reserved sufficient space on the media. Any
495 * error other then EWOULDBLOCK will force the mount to be read-only.
497 static
498 void
499 hammer_flusher_flush_inode(hammer_inode_t ip, hammer_transaction_t trans)
501 hammer_mount_t hmp = ip->hmp;
502 int error;
504 hammer_flusher_clean_loose_ios(hmp);
505 error = hammer_sync_inode(trans, ip);
508 * EWOULDBLOCK can happen under normal operation, all other errors
509 * are considered extremely serious. We must set WOULDBLOCK
510 * mechanics to deal with the mess left over from the abort of the
511 * previous flush.
513 if (error) {
514 ip->flags |= HAMMER_INODE_WOULDBLOCK;
515 if (error == EWOULDBLOCK)
516 error = 0;
518 hammer_flush_inode_done(ip, error);
519 while (hmp->flusher.finalize_want)
520 tsleep(&hmp->flusher.finalize_want, 0, "hmrsxx", 0);
521 if (hammer_flusher_undo_exhausted(trans, 1)) {
522 kprintf("HAMMER: Warning: UNDO area too small!\n");
523 hammer_flusher_finalize(trans, 1);
524 } else if (hammer_flusher_meta_limit(trans->hmp)) {
525 hammer_flusher_finalize(trans, 0);
530 * Return non-zero if the UNDO area has less then (QUARTER / 4) of its
531 * space left.
533 * 1/4 - Emergency free undo space level. Below this point the flusher
534 * will finalize even if directory dependancies have not been resolved.
536 * 2/4 - Used by the pruning and reblocking code. These functions may be
537 * running in parallel with a flush and cannot be allowed to drop
538 * available undo space to emergency levels.
540 * 3/4 - Used at the beginning of a flush to force-sync the volume header
541 * to give the flush plenty of runway to work in.
544 hammer_flusher_undo_exhausted(hammer_transaction_t trans, int quarter)
546 if (hammer_undo_space(trans) <
547 hammer_undo_max(trans->hmp) * quarter / 4) {
548 return(1);
549 } else {
550 return(0);
555 * Flush all pending UNDOs, wait for write completion, update the volume
556 * header with the new UNDO end position, and flush it. Then
557 * asynchronously flush the meta-data.
559 * If this is the last finalization in a flush group we also synchronize
560 * our cached blockmap and set hmp->flusher_undo_start and our cached undo
561 * fifo first_offset so the next flush resets the FIFO pointers.
563 * If this is not final it is being called because too many dirty meta-data
564 * buffers have built up and must be flushed with UNDO synchronization to
565 * avoid a buffer cache deadlock.
567 void
568 hammer_flusher_finalize(hammer_transaction_t trans, int final)
570 hammer_volume_t root_volume;
571 hammer_blockmap_t cundomap, dundomap;
572 hammer_mount_t hmp;
573 hammer_io_t io;
574 hammer_off_t save_undo_next_offset;
575 int count;
576 int i;
578 hmp = trans->hmp;
579 root_volume = trans->rootvol;
582 * Exclusively lock the flusher. This guarantees that all dirty
583 * buffers will be idled (have a mod-count of 0).
585 ++hmp->flusher.finalize_want;
586 hammer_lock_ex(&hmp->flusher.finalize_lock);
589 * If this isn't the final sync several threads may have hit the
590 * meta-limit at the same time and raced. Only sync if we really
591 * have to, after acquiring the lock.
593 if (final == 0 && !hammer_flusher_meta_limit(hmp))
594 goto done;
596 if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
597 goto done;
600 * Flush data buffers. This can occur asynchronously and at any
601 * time. We must interlock against the frontend direct-data write
602 * but do not have to acquire the sync-lock yet.
604 * These data buffers have already been collected prior to the
605 * related inode(s) getting queued to the flush group.
607 count = 0;
608 while ((io = TAILQ_FIRST(&hmp->data_list)) != NULL) {
609 if (io->ioerror)
610 break;
611 hammer_ref(&io->lock);
612 hammer_io_write_interlock(io);
613 KKASSERT(io->type != HAMMER_STRUCTURE_VOLUME);
614 hammer_io_flush(io, 0);
615 hammer_io_done_interlock(io);
616 hammer_rel_buffer((hammer_buffer_t)io, 0);
617 ++count;
621 * The sync-lock is required for the remaining sequence. This lock
622 * prevents meta-data from being modified.
624 hammer_sync_lock_ex(trans);
627 * If we have been asked to finalize the volume header sync the
628 * cached blockmap to the on-disk blockmap. Generate an UNDO
629 * record for the update.
631 if (final) {
632 cundomap = &hmp->blockmap[0];
633 dundomap = &root_volume->ondisk->vol0_blockmap[0];
634 if (root_volume->io.modified) {
635 hammer_modify_volume(trans, root_volume,
636 dundomap, sizeof(hmp->blockmap));
637 for (i = 0; i < HAMMER_MAX_ZONES; ++i)
638 hammer_crc_set_blockmap(&cundomap[i]);
639 bcopy(cundomap, dundomap, sizeof(hmp->blockmap));
640 hammer_modify_volume_done(root_volume);
645 * Flush UNDOs. This can occur concurrently with the data flush
646 * because data writes never overwrite.
648 * This also waits for I/Os to complete and flushes the cache on
649 * the target disk.
651 * Record the UNDO append point as this can continue to change
652 * after we have flushed the UNDOs.
654 cundomap = &hmp->blockmap[HAMMER_ZONE_UNDO_INDEX];
655 hammer_lock_ex(&hmp->undo_lock);
656 save_undo_next_offset = cundomap->next_offset;
657 hammer_unlock(&hmp->undo_lock);
658 hammer_flusher_flush_undos(hmp, HAMMER_FLUSH_UNDOS_FORCED);
660 if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
661 goto failed;
664 * HAMMER VERSION < 4:
665 * Update the on-disk volume header with new UNDO FIFO end
666 * position (do not generate new UNDO records for this change).
667 * We have to do this for the UNDO FIFO whether (final) is
668 * set or not in order for the UNDOs to be recognized on
669 * recovery.
671 * HAMMER VERSION >= 4:
672 * The UNDO FIFO data written above will be recognized on
673 * recovery without us having to sync the volume header.
675 * Also update the on-disk next_tid field. This does not require
676 * an UNDO. However, because our TID is generated before we get
677 * the sync lock another sync may have beat us to the punch.
679 * This also has the side effect of updating first_offset based on
680 * a prior finalization when the first finalization of the next flush
681 * cycle occurs, removing any undo info from the prior finalization
682 * from consideration.
684 * The volume header will be flushed out synchronously.
686 dundomap = &root_volume->ondisk->vol0_blockmap[HAMMER_ZONE_UNDO_INDEX];
687 cundomap = &hmp->blockmap[HAMMER_ZONE_UNDO_INDEX];
689 if (dundomap->first_offset != cundomap->first_offset ||
690 dundomap->next_offset != save_undo_next_offset) {
691 hammer_modify_volume(NULL, root_volume, NULL, 0);
692 dundomap->first_offset = cundomap->first_offset;
693 dundomap->next_offset = save_undo_next_offset;
694 hammer_crc_set_blockmap(dundomap);
695 hammer_modify_volume_done(root_volume);
699 * vol0_next_tid is used for TID selection and is updated without
700 * an UNDO so we do not reuse a TID that may have been rolled-back.
702 * vol0_last_tid is the highest fully-synchronized TID. It is
703 * set-up when the UNDO fifo is fully synced, later on (not here).
705 * The root volume can be open for modification by other threads
706 * generating UNDO or REDO records. For example, reblocking,
707 * pruning, REDO mode fast-fsyncs, so the write interlock is
708 * mandatory.
710 if (root_volume->io.modified) {
711 hammer_modify_volume(NULL, root_volume, NULL, 0);
712 if (root_volume->ondisk->vol0_next_tid < trans->tid)
713 root_volume->ondisk->vol0_next_tid = trans->tid;
714 hammer_crc_set_volume(root_volume->ondisk);
715 hammer_modify_volume_done(root_volume);
716 hammer_io_write_interlock(&root_volume->io);
717 hammer_io_flush(&root_volume->io, 0);
718 hammer_io_done_interlock(&root_volume->io);
722 * Wait for I/Os to complete.
724 * For HAMMER VERSION 4+ filesystems we do not have to wait for
725 * the I/O to complete as the new UNDO FIFO entries are recognized
726 * even without the volume header update. This allows the volume
727 * header to flushed along with meta-data, significantly reducing
728 * flush overheads.
730 hammer_flusher_clean_loose_ios(hmp);
731 if (hmp->version < HAMMER_VOL_VERSION_FOUR)
732 hammer_io_wait_all(hmp, "hmrfl3", 1);
734 if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
735 goto failed;
738 * Flush meta-data. The meta-data will be undone if we crash
739 * so we can safely flush it asynchronously. There is no need
740 * to wait for I/O to complete (or issue a synchronous disk flush).
742 * In fact, even if we did wait the meta-data will still be undone
743 * by a crash up until the next flush cycle due to the first_offset
744 * in the volume header for the UNDO FIFO not being adjusted until
745 * the following flush cycle.
747 count = 0;
748 while ((io = TAILQ_FIRST(&hmp->meta_list)) != NULL) {
749 if (io->ioerror)
750 break;
751 KKASSERT(io->modify_refs == 0);
752 hammer_ref(&io->lock);
753 KKASSERT(io->type != HAMMER_STRUCTURE_VOLUME);
754 hammer_io_flush(io, 0);
755 hammer_rel_buffer((hammer_buffer_t)io, 0);
756 ++count;
760 * If this is the final finalization for the flush group set
761 * up for the next sequence by setting a new first_offset in
762 * our cached blockmap and clearing the undo history.
764 * Even though we have updated our cached first_offset, the on-disk
765 * first_offset still governs available-undo-space calculations.
767 * We synchronize to save_undo_next_offset rather than
768 * cundomap->next_offset because that is what we flushed out
769 * above.
771 * NOTE! UNDOs can only be added with the sync_lock held
772 * so we can clear the undo history without racing.
773 * REDOs can be added at any time which is why we
774 * have to be careful and use save_undo_next_offset
775 * when setting the new first_offset.
777 if (final) {
778 cundomap = &hmp->blockmap[HAMMER_ZONE_UNDO_INDEX];
779 if (cundomap->first_offset != save_undo_next_offset) {
780 cundomap->first_offset = save_undo_next_offset;
781 hmp->hflags |= HMNT_UNDO_DIRTY;
782 } else if (cundomap->first_offset != cundomap->next_offset) {
783 hmp->hflags |= HMNT_UNDO_DIRTY;
784 } else {
785 hmp->hflags &= ~HMNT_UNDO_DIRTY;
787 hammer_clear_undo_history(hmp);
790 * Flush tid sequencing. flush_tid1 is fully synchronized,
791 * meaning a crash will not roll it back. flush_tid2 has
792 * been written out asynchronously and a crash will roll
793 * it back. flush_tid1 is used for all mirroring masters.
795 if (hmp->flush_tid1 != hmp->flush_tid2) {
796 hmp->flush_tid1 = hmp->flush_tid2;
797 wakeup(&hmp->flush_tid1);
799 hmp->flush_tid2 = trans->tid;
802 * Clear the REDO SYNC flag. This flag is used to ensure
803 * that the recovery span in the UNDO/REDO FIFO contains
804 * at least one REDO SYNC record.
806 hmp->flags &= ~HAMMER_MOUNT_REDO_SYNC;
810 * Cleanup. Report any critical errors.
812 failed:
813 hammer_sync_unlock(trans);
815 if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) {
816 kprintf("HAMMER(%s): Critical write error during flush, "
817 "refusing to sync UNDO FIFO\n",
818 root_volume->ondisk->vol_name);
821 done:
822 hammer_unlock(&hmp->flusher.finalize_lock);
824 if (--hmp->flusher.finalize_want == 0)
825 wakeup(&hmp->flusher.finalize_want);
826 hammer_stats_commits += final;
830 * Flush UNDOs.
832 void
833 hammer_flusher_flush_undos(hammer_mount_t hmp, int mode)
835 hammer_io_t io;
836 int count;
838 count = 0;
839 while ((io = TAILQ_FIRST(&hmp->undo_list)) != NULL) {
840 if (io->ioerror)
841 break;
842 hammer_ref(&io->lock);
843 KKASSERT(io->type != HAMMER_STRUCTURE_VOLUME);
844 hammer_io_write_interlock(io);
845 hammer_io_flush(io, hammer_undo_reclaim(io));
846 hammer_io_done_interlock(io);
847 hammer_rel_buffer((hammer_buffer_t)io, 0);
848 ++count;
850 hammer_flusher_clean_loose_ios(hmp);
851 if (mode == HAMMER_FLUSH_UNDOS_FORCED ||
852 (mode == HAMMER_FLUSH_UNDOS_AUTO && count)) {
853 hammer_io_wait_all(hmp, "hmrfl1", 1);
854 } else {
855 hammer_io_wait_all(hmp, "hmrfl2", 0);
860 * Return non-zero if too many dirty meta-data buffers have built up.
862 * Since we cannot allow such buffers to flush until we have dealt with
863 * the UNDOs, we risk deadlocking the kernel's buffer cache.
866 hammer_flusher_meta_limit(hammer_mount_t hmp)
868 if (hmp->locked_dirty_space + hmp->io_running_space >
869 hammer_limit_dirtybufspace) {
870 return(1);
872 return(0);
876 * Return non-zero if too many dirty meta-data buffers have built up.
878 * This version is used by background operations (mirror, prune, reblock)
879 * to leave room for foreground operations.
882 hammer_flusher_meta_halflimit(hammer_mount_t hmp)
884 if (hmp->locked_dirty_space + hmp->io_running_space >
885 hammer_limit_dirtybufspace / 2) {
886 return(1);
888 return(0);
892 * Return non-zero if the flusher still has something to flush.
895 hammer_flusher_haswork(hammer_mount_t hmp)
897 if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
898 return(0);
899 if (TAILQ_FIRST(&hmp->flush_group_list) || /* dirty inodes */
900 TAILQ_FIRST(&hmp->volu_list) || /* dirty buffers */
901 TAILQ_FIRST(&hmp->undo_list) ||
902 TAILQ_FIRST(&hmp->data_list) ||
903 TAILQ_FIRST(&hmp->meta_list) ||
904 (hmp->hflags & HMNT_UNDO_DIRTY) /* UNDO FIFO sync */
906 return(1);
908 return(0);