periodic(8): Sync with FreeBSD current
[dragonfly.git] / sys / vm / vm_object.c
blob77d2f6b3b433cc320e5fb9f9829cc3f8206bec16
1 /*
2 * Copyright (c) 1991, 1993, 2013
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 * Carnegie Mellon requests users of this software to return to
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
60 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
64 * Virtual memory object module.
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h> /* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/refcount.h>
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
92 #include <vm/vm_page2.h>
94 #include <machine/specialreg.h>
96 #define EASY_SCAN_FACTOR 8
98 static void vm_object_qcollapse(vm_object_t object,
99 vm_object_t backing_object);
100 static void vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101 int pagerflags);
102 static void vm_object_lock_init(vm_object_t);
106 * Virtual memory objects maintain the actual data
107 * associated with allocated virtual memory. A given
108 * page of memory exists within exactly one object.
110 * An object is only deallocated when all "references"
111 * are given up. Only one "reference" to a given
112 * region of an object should be writeable.
114 * Associated with each object is a list of all resident
115 * memory pages belonging to that object; this list is
116 * maintained by the "vm_page" module, and locked by the object's
117 * lock.
119 * Each object also records a "pager" routine which is
120 * used to retrieve (and store) pages to the proper backing
121 * storage. In addition, objects may be backed by other
122 * objects from which they were virtual-copied.
124 * The only items within the object structure which are
125 * modified after time of creation are:
126 * reference count locked by object's lock
127 * pager routine locked by object's lock
131 struct vm_object kernel_object;
133 static long object_collapses;
134 static long object_bypasses;
136 struct vm_object_hash vm_object_hash[VMOBJ_HSIZE];
138 MALLOC_DEFINE(M_VM_OBJECT, "vm_object", "vm_object structures");
140 #if defined(DEBUG_LOCKS)
142 #define vm_object_vndeallocate(obj, vpp) \
143 debugvm_object_vndeallocate(obj, vpp, __FILE__, __LINE__)
146 * Debug helper to track hold/drop/ref/deallocate calls.
148 static void
149 debugvm_object_add(vm_object_t obj, char *file, int line, int addrem)
151 int i;
153 i = atomic_fetchadd_int(&obj->debug_index, 1);
154 i = i & (VMOBJ_DEBUG_ARRAY_SIZE - 1);
155 ksnprintf(obj->debug_hold_thrs[i],
156 sizeof(obj->debug_hold_thrs[i]),
157 "%c%d:(%d):%s",
158 (addrem == -1 ? '-' : (addrem == 1 ? '+' : '=')),
159 (curthread->td_proc ? curthread->td_proc->p_pid : -1),
160 obj->ref_count,
161 curthread->td_comm);
162 obj->debug_hold_file[i] = file;
163 obj->debug_hold_line[i] = line;
164 #if 0
165 /* Uncomment for debugging obj refs/derefs in reproducable cases */
166 if (strcmp(curthread->td_comm, "sshd") == 0) {
167 kprintf("%d %p refs=%d ar=%d file: %s/%d\n",
168 (curthread->td_proc ? curthread->td_proc->p_pid : -1),
169 obj, obj->ref_count, addrem, file, line);
171 #endif
174 #endif
177 * Misc low level routines
179 static void
180 vm_object_lock_init(vm_object_t obj)
182 #if defined(DEBUG_LOCKS)
183 int i;
185 obj->debug_index = 0;
186 for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
187 obj->debug_hold_thrs[i][0] = 0;
188 obj->debug_hold_file[i] = NULL;
189 obj->debug_hold_line[i] = 0;
191 #endif
194 void
195 vm_object_lock_swap(void)
197 lwkt_token_swap();
200 void
201 vm_object_lock(vm_object_t obj)
203 lwkt_gettoken(&obj->token);
207 * Returns TRUE on sucesss
209 static int
210 vm_object_lock_try(vm_object_t obj)
212 return(lwkt_trytoken(&obj->token));
215 void
216 vm_object_lock_shared(vm_object_t obj)
218 lwkt_gettoken_shared(&obj->token);
221 void
222 vm_object_unlock(vm_object_t obj)
224 lwkt_reltoken(&obj->token);
227 void
228 vm_object_upgrade(vm_object_t obj)
230 lwkt_reltoken(&obj->token);
231 lwkt_gettoken(&obj->token);
234 void
235 vm_object_downgrade(vm_object_t obj)
237 lwkt_reltoken(&obj->token);
238 lwkt_gettoken_shared(&obj->token);
241 static __inline void
242 vm_object_assert_held(vm_object_t obj)
244 ASSERT_LWKT_TOKEN_HELD(&obj->token);
247 static __inline int
248 vm_quickcolor(void)
250 globaldata_t gd = mycpu;
251 int pg_color;
253 pg_color = (int)(intptr_t)gd->gd_curthread >> 10;
254 pg_color += gd->gd_quick_color;
255 gd->gd_quick_color += PQ_PRIME2;
257 return pg_color;
260 void
261 VMOBJDEBUG(vm_object_hold)(vm_object_t obj VMOBJDBARGS)
263 KKASSERT(obj != NULL);
266 * Object must be held (object allocation is stable due to callers
267 * context, typically already holding the token on a parent object)
268 * prior to potentially blocking on the lock, otherwise the object
269 * can get ripped away from us.
271 refcount_acquire(&obj->hold_count);
272 vm_object_lock(obj);
274 #if defined(DEBUG_LOCKS)
275 debugvm_object_add(obj, file, line, 1);
276 #endif
280 VMOBJDEBUG(vm_object_hold_try)(vm_object_t obj VMOBJDBARGS)
282 KKASSERT(obj != NULL);
285 * Object must be held (object allocation is stable due to callers
286 * context, typically already holding the token on a parent object)
287 * prior to potentially blocking on the lock, otherwise the object
288 * can get ripped away from us.
290 refcount_acquire(&obj->hold_count);
291 if (vm_object_lock_try(obj) == 0) {
292 if (refcount_release(&obj->hold_count)) {
293 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
294 kfree(obj, M_VM_OBJECT);
296 return(0);
299 #if defined(DEBUG_LOCKS)
300 debugvm_object_add(obj, file, line, 1);
301 #endif
302 return(1);
305 void
306 VMOBJDEBUG(vm_object_hold_shared)(vm_object_t obj VMOBJDBARGS)
308 KKASSERT(obj != NULL);
311 * Object must be held (object allocation is stable due to callers
312 * context, typically already holding the token on a parent object)
313 * prior to potentially blocking on the lock, otherwise the object
314 * can get ripped away from us.
316 refcount_acquire(&obj->hold_count);
317 vm_object_lock_shared(obj);
319 #if defined(DEBUG_LOCKS)
320 debugvm_object_add(obj, file, line, 1);
321 #endif
325 * Drop the token and hold_count on the object.
327 * WARNING! Token might be shared.
329 void
330 VMOBJDEBUG(vm_object_drop)(vm_object_t obj VMOBJDBARGS)
332 if (obj == NULL)
333 return;
336 * No new holders should be possible once we drop hold_count 1->0 as
337 * there is no longer any way to reference the object.
339 KKASSERT(obj->hold_count > 0);
340 if (refcount_release(&obj->hold_count)) {
341 #if defined(DEBUG_LOCKS)
342 debugvm_object_add(obj, file, line, -1);
343 #endif
345 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
346 vm_object_unlock(obj);
347 kfree(obj, M_VM_OBJECT);
348 } else {
349 vm_object_unlock(obj);
351 } else {
352 #if defined(DEBUG_LOCKS)
353 debugvm_object_add(obj, file, line, -1);
354 #endif
355 vm_object_unlock(obj);
360 * Initialize a freshly allocated object, returning a held object.
362 * Used only by vm_object_allocate(), zinitna() and vm_object_init().
364 * No requirements.
366 void
367 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
369 struct vm_object_hash *hash;
371 RB_INIT(&object->rb_memq);
372 LIST_INIT(&object->shadow_head);
373 lwkt_token_init(&object->token, "vmobj");
375 object->type = type;
376 object->size = size;
377 object->ref_count = 1;
378 object->memattr = VM_MEMATTR_DEFAULT;
379 object->hold_count = 0;
380 object->flags = 0;
381 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
382 vm_object_set_flag(object, OBJ_ONEMAPPING);
383 object->paging_in_progress = 0;
384 object->resident_page_count = 0;
385 object->shadow_count = 0;
386 /* cpu localization twist */
387 object->pg_color = vm_quickcolor();
388 object->handle = NULL;
389 object->backing_object = NULL;
390 object->backing_object_offset = (vm_ooffset_t)0;
392 atomic_add_int(&object->generation, 1);
393 object->swblock_count = 0;
394 RB_INIT(&object->swblock_root);
395 vm_object_lock_init(object);
396 pmap_object_init(object);
398 vm_object_hold(object);
400 hash = VMOBJ_HASH(object);
401 lwkt_gettoken(&hash->token);
402 TAILQ_INSERT_TAIL(&hash->list, object, object_list);
403 lwkt_reltoken(&hash->token);
407 * Initialize a VM object.
409 void
410 vm_object_init(vm_object_t object, vm_pindex_t size)
412 _vm_object_allocate(OBJT_DEFAULT, size, object);
413 vm_object_drop(object);
417 * Initialize the VM objects module.
419 * Called from the low level boot code only. Note that this occurs before
420 * kmalloc is initialized so we cannot allocate any VM objects.
422 void
423 vm_object_init1(void)
425 int i;
427 for (i = 0; i < VMOBJ_HSIZE; ++i) {
428 TAILQ_INIT(&vm_object_hash[i].list);
429 lwkt_token_init(&vm_object_hash[i].token, "vmobjlst");
432 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
433 &kernel_object);
434 vm_object_drop(&kernel_object);
437 void
438 vm_object_init2(void)
440 kmalloc_set_unlimited(M_VM_OBJECT);
444 * Allocate and return a new object of the specified type and size.
446 * No requirements.
448 vm_object_t
449 vm_object_allocate(objtype_t type, vm_pindex_t size)
451 vm_object_t obj;
453 obj = kmalloc(sizeof(*obj), M_VM_OBJECT, M_INTWAIT|M_ZERO);
454 _vm_object_allocate(type, size, obj);
455 vm_object_drop(obj);
457 return (obj);
461 * This version returns a held object, allowing further atomic initialization
462 * of the object.
464 vm_object_t
465 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
467 vm_object_t obj;
469 obj = kmalloc(sizeof(*obj), M_VM_OBJECT, M_INTWAIT|M_ZERO);
470 _vm_object_allocate(type, size, obj);
472 return (obj);
476 * Add an additional reference to a vm_object. The object must already be
477 * held. The original non-lock version is no longer supported. The object
478 * must NOT be chain locked by anyone at the time the reference is added.
480 * Referencing a chain-locked object can blow up the fairly sensitive
481 * ref_count and shadow_count tests in the deallocator. Most callers
482 * will call vm_object_chain_wait() prior to calling
483 * vm_object_reference_locked() to avoid the case. The held token
484 * allows the caller to pair the wait and ref.
486 * The object must be held, but may be held shared if desired (hence why
487 * we use an atomic op).
489 void
490 VMOBJDEBUG(vm_object_reference_locked)(vm_object_t object VMOBJDBARGS)
492 KKASSERT(object != NULL);
493 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
494 KKASSERT((object->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) == 0);
495 atomic_add_int(&object->ref_count, 1);
496 if (object->type == OBJT_VNODE) {
497 vref(object->handle);
498 /* XXX what if the vnode is being destroyed? */
500 #if defined(DEBUG_LOCKS)
501 debugvm_object_add(object, file, line, 1);
502 #endif
506 * This version explicitly allows the chain to be held (i.e. by the
507 * caller). The token must also be held.
509 void
510 VMOBJDEBUG(vm_object_reference_locked_chain_held)(vm_object_t object
511 VMOBJDBARGS)
513 KKASSERT(object != NULL);
514 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
515 atomic_add_int(&object->ref_count, 1);
516 if (object->type == OBJT_VNODE) {
517 vref(object->handle);
518 /* XXX what if the vnode is being destroyed? */
520 #if defined(DEBUG_LOCKS)
521 debugvm_object_add(object, file, line, 1);
522 #endif
526 * This version is only allowed for vnode objects.
528 void
529 VMOBJDEBUG(vm_object_reference_quick)(vm_object_t object VMOBJDBARGS)
531 KKASSERT(object->type == OBJT_VNODE);
532 atomic_add_int(&object->ref_count, 1);
533 vref(object->handle);
534 #if defined(DEBUG_LOCKS)
535 debugvm_object_add(object, file, line, 1);
536 #endif
540 * Object OBJ_CHAINLOCK lock handling.
542 * The caller can chain-lock backing objects recursively and then
543 * use vm_object_chain_release_all() to undo the whole chain.
545 * Chain locks are used to prevent collapses and are only applicable
546 * to OBJT_DEFAULT and OBJT_SWAP objects. Chain locking operations
547 * on other object types are ignored. This is also important because
548 * it allows e.g. the vnode underlying a memory mapping to take concurrent
549 * faults.
551 * The object must usually be held on entry, though intermediate
552 * objects need not be held on release. The object must be held exclusively,
553 * NOT shared. Note that the prefault path checks the shared state and
554 * avoids using the chain functions.
556 void
557 vm_object_chain_wait(vm_object_t object, int shared)
559 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
560 for (;;) {
561 uint32_t chainlk = object->chainlk;
563 cpu_ccfence();
564 if (shared) {
565 if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
566 tsleep_interlock(object, 0);
567 if (atomic_cmpset_int(&object->chainlk,
568 chainlk,
569 chainlk | CHAINLK_WAIT)) {
570 tsleep(object, PINTERLOCKED,
571 "objchns", 0);
573 /* retry */
574 } else {
575 break;
577 /* retry */
578 } else {
579 if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
580 tsleep_interlock(object, 0);
581 if (atomic_cmpset_int(&object->chainlk,
582 chainlk,
583 chainlk | CHAINLK_WAIT))
585 tsleep(object, PINTERLOCKED,
586 "objchnx", 0);
588 /* retry */
589 } else {
590 if (atomic_cmpset_int(&object->chainlk,
591 chainlk,
592 chainlk & ~CHAINLK_WAIT))
594 if (chainlk & CHAINLK_WAIT)
595 wakeup(object);
596 break;
598 /* retry */
601 /* retry */
605 void
606 vm_object_chain_acquire(vm_object_t object, int shared)
608 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
609 return;
610 if (vm_shared_fault == 0)
611 shared = 0;
613 for (;;) {
614 uint32_t chainlk = object->chainlk;
616 cpu_ccfence();
617 if (shared) {
618 if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
619 tsleep_interlock(object, 0);
620 if (atomic_cmpset_int(&object->chainlk,
621 chainlk,
622 chainlk | CHAINLK_WAIT)) {
623 tsleep(object, PINTERLOCKED,
624 "objchns", 0);
626 /* retry */
627 } else if (atomic_cmpset_int(&object->chainlk,
628 chainlk, chainlk + 1)) {
629 break;
631 /* retry */
632 } else {
633 if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
634 tsleep_interlock(object, 0);
635 if (atomic_cmpset_int(&object->chainlk,
636 chainlk,
637 chainlk |
638 CHAINLK_WAIT |
639 CHAINLK_EXCLREQ)) {
640 tsleep(object, PINTERLOCKED,
641 "objchnx", 0);
643 /* retry */
644 } else {
645 if (atomic_cmpset_int(&object->chainlk,
646 chainlk,
647 (chainlk | CHAINLK_EXCL) &
648 ~(CHAINLK_EXCLREQ |
649 CHAINLK_WAIT))) {
650 if (chainlk & CHAINLK_WAIT)
651 wakeup(object);
652 break;
654 /* retry */
657 /* retry */
661 void
662 vm_object_chain_release(vm_object_t object)
664 /*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/
665 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
666 return;
667 KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
668 for (;;) {
669 uint32_t chainlk = object->chainlk;
671 cpu_ccfence();
672 if (chainlk & CHAINLK_MASK) {
673 if ((chainlk & CHAINLK_MASK) == 1 &&
674 atomic_cmpset_int(&object->chainlk,
675 chainlk,
676 (chainlk - 1) & ~CHAINLK_WAIT)) {
677 if (chainlk & CHAINLK_WAIT)
678 wakeup(object);
679 break;
681 if ((chainlk & CHAINLK_MASK) > 1 &&
682 atomic_cmpset_int(&object->chainlk,
683 chainlk, chainlk - 1)) {
684 break;
686 /* retry */
687 } else {
688 KKASSERT(chainlk & CHAINLK_EXCL);
689 if (atomic_cmpset_int(&object->chainlk,
690 chainlk,
691 chainlk & ~(CHAINLK_EXCL |
692 CHAINLK_WAIT))) {
693 if (chainlk & CHAINLK_WAIT)
694 wakeup(object);
695 break;
702 * Release the chain from first_object through and including stopobj.
703 * The caller is typically holding the first and last object locked
704 * (shared or exclusive) to prevent destruction races.
706 * We release stopobj first as an optimization as this object is most
707 * likely to be shared across multiple processes.
709 void
710 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
712 vm_object_t backing_object;
713 vm_object_t object;
715 vm_object_chain_release(stopobj);
716 object = first_object;
718 while (object != stopobj) {
719 KKASSERT(object);
720 backing_object = object->backing_object;
721 vm_object_chain_release(object);
722 object = backing_object;
727 * Dereference an object and its underlying vnode. The object may be
728 * held shared. On return the object will remain held.
730 * This function may return a vnode in *vpp which the caller must release
731 * after the caller drops its own lock. If vpp is NULL, we assume that
732 * the caller was holding an exclusive lock on the object and we vrele()
733 * the vp ourselves.
735 static void
736 VMOBJDEBUG(vm_object_vndeallocate)(vm_object_t object, struct vnode **vpp
737 VMOBJDBARGS)
739 struct vnode *vp = (struct vnode *) object->handle;
741 KASSERT(object->type == OBJT_VNODE,
742 ("vm_object_vndeallocate: not a vnode object"));
743 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
744 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
745 #ifdef INVARIANTS
746 if (object->ref_count == 0) {
747 vprint("vm_object_vndeallocate", vp);
748 panic("vm_object_vndeallocate: bad object reference count");
750 #endif
751 for (;;) {
752 int count = object->ref_count;
753 cpu_ccfence();
754 if (count == 1) {
755 vm_object_upgrade(object);
756 if (atomic_cmpset_int(&object->ref_count, count, 0)) {
757 vclrflags(vp, VTEXT);
758 break;
760 } else {
761 if (atomic_cmpset_int(&object->ref_count,
762 count, count - 1)) {
763 break;
766 /* retry */
768 #if defined(DEBUG_LOCKS)
769 debugvm_object_add(object, file, line, -1);
770 #endif
773 * vrele or return the vp to vrele. We can only safely vrele(vp)
774 * if the object was locked exclusively. But there are two races
775 * here.
777 * We had to upgrade the object above to safely clear VTEXT
778 * but the alternative path where the shared lock is retained
779 * can STILL race to 0 in other paths and cause our own vrele()
780 * to terminate the vnode. We can't allow that if the VM object
781 * is still locked shared.
783 if (vpp)
784 *vpp = vp;
785 else
786 vrele(vp);
790 * Release a reference to the specified object, gained either through a
791 * vm_object_allocate or a vm_object_reference call. When all references
792 * are gone, storage associated with this object may be relinquished.
794 * The caller does not have to hold the object locked but must have control
795 * over the reference in question in order to guarantee that the object
796 * does not get ripped out from under us.
798 * XXX Currently all deallocations require an exclusive lock.
800 void
801 VMOBJDEBUG(vm_object_deallocate)(vm_object_t object VMOBJDBARGS)
803 struct vnode *vp;
804 int count;
806 if (object == NULL)
807 return;
809 for (;;) {
810 count = object->ref_count;
811 cpu_ccfence();
814 * If decrementing the count enters into special handling
815 * territory (0, 1, or 2) we have to do it the hard way.
816 * Fortunate though, objects with only a few refs like this
817 * are not likely to be heavily contended anyway.
819 * For vnode objects we only care about 1->0 transitions.
821 if (count <= 3 || (object->type == OBJT_VNODE && count <= 1)) {
822 #if defined(DEBUG_LOCKS)
823 debugvm_object_add(object, file, line, 0);
824 #endif
825 vm_object_hold(object);
826 vm_object_deallocate_locked(object);
827 vm_object_drop(object);
828 break;
832 * Try to decrement ref_count without acquiring a hold on
833 * the object. This is particularly important for the exec*()
834 * and exit*() code paths because the program binary may
835 * have a great deal of sharing and an exclusive lock will
836 * crowbar performance in those circumstances.
838 if (object->type == OBJT_VNODE) {
839 vp = (struct vnode *)object->handle;
840 if (atomic_cmpset_int(&object->ref_count,
841 count, count - 1)) {
842 #if defined(DEBUG_LOCKS)
843 debugvm_object_add(object, file, line, -1);
844 #endif
846 vrele(vp);
847 break;
849 /* retry */
850 } else {
851 if (atomic_cmpset_int(&object->ref_count,
852 count, count - 1)) {
853 #if defined(DEBUG_LOCKS)
854 debugvm_object_add(object, file, line, -1);
855 #endif
856 break;
858 /* retry */
860 /* retry */
864 void
865 VMOBJDEBUG(vm_object_deallocate_locked)(vm_object_t object VMOBJDBARGS)
867 struct vm_object_dealloc_list *dlist = NULL;
868 struct vm_object_dealloc_list *dtmp;
869 vm_object_t temp;
870 int must_drop = 0;
873 * We may chain deallocate object, but additional objects may
874 * collect on the dlist which also have to be deallocated. We
875 * must avoid a recursion, vm_object chains can get deep.
878 again:
879 while (object != NULL) {
881 * vnode case, caller either locked the object exclusively
882 * or this is a recursion with must_drop != 0 and the vnode
883 * object will be locked shared.
885 * If locked shared we have to drop the object before we can
886 * call vrele() or risk a shared/exclusive livelock.
888 if (object->type == OBJT_VNODE) {
889 ASSERT_LWKT_TOKEN_HELD(&object->token);
890 if (must_drop) {
891 struct vnode *tmp_vp;
893 vm_object_vndeallocate(object, &tmp_vp);
894 vm_object_drop(object);
895 must_drop = 0;
896 object = NULL;
897 vrele(tmp_vp);
898 } else {
899 vm_object_vndeallocate(object, NULL);
901 break;
903 ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
906 * Normal case (object is locked exclusively)
908 if (object->ref_count == 0) {
909 panic("vm_object_deallocate: object deallocated "
910 "too many times: %d", object->type);
912 if (object->ref_count > 2) {
913 atomic_add_int(&object->ref_count, -1);
914 #if defined(DEBUG_LOCKS)
915 debugvm_object_add(object, file, line, -1);
916 #endif
917 break;
921 * Here on ref_count of one or two, which are special cases for
922 * objects.
924 * Nominal ref_count > 1 case if the second ref is not from
925 * a shadow.
927 * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
929 if (object->ref_count == 2 && object->shadow_count == 0) {
930 if (object->type == OBJT_DEFAULT ||
931 object->type == OBJT_SWAP) {
932 vm_object_set_flag(object, OBJ_ONEMAPPING);
934 atomic_add_int(&object->ref_count, -1);
935 #if defined(DEBUG_LOCKS)
936 debugvm_object_add(object, file, line, -1);
937 #endif
938 break;
942 * If the second ref is from a shadow we chain along it
943 * upwards if object's handle is exhausted.
945 * We have to decrement object->ref_count before potentially
946 * collapsing the first shadow object or the collapse code
947 * will not be able to handle the degenerate case to remove
948 * object. However, if we do it too early the object can
949 * get ripped out from under us.
951 if (object->ref_count == 2 && object->shadow_count == 1 &&
952 object->handle == NULL && (object->type == OBJT_DEFAULT ||
953 object->type == OBJT_SWAP)) {
954 temp = LIST_FIRST(&object->shadow_head);
955 KKASSERT(temp != NULL);
956 vm_object_hold(temp);
959 * Wait for any paging to complete so the collapse
960 * doesn't (or isn't likely to) qcollapse. pip
961 * waiting must occur before we acquire the
962 * chainlock.
964 while (
965 temp->paging_in_progress ||
966 object->paging_in_progress
968 vm_object_pip_wait(temp, "objde1");
969 vm_object_pip_wait(object, "objde2");
973 * If the parent is locked we have to give up, as
974 * otherwise we would be acquiring locks in the
975 * wrong order and potentially deadlock.
977 if (temp->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) {
978 vm_object_drop(temp);
979 goto skip;
981 vm_object_chain_acquire(temp, 0);
984 * Recheck/retry after the hold and the paging
985 * wait, both of which can block us.
987 if (object->ref_count != 2 ||
988 object->shadow_count != 1 ||
989 object->handle ||
990 LIST_FIRST(&object->shadow_head) != temp ||
991 (object->type != OBJT_DEFAULT &&
992 object->type != OBJT_SWAP)) {
993 vm_object_chain_release(temp);
994 vm_object_drop(temp);
995 continue;
999 * We can safely drop object's ref_count now.
1001 KKASSERT(object->ref_count == 2);
1002 atomic_add_int(&object->ref_count, -1);
1003 #if defined(DEBUG_LOCKS)
1004 debugvm_object_add(object, file, line, -1);
1005 #endif
1008 * If our single parent is not collapseable just
1009 * decrement ref_count (2->1) and stop.
1011 if (temp->handle || (temp->type != OBJT_DEFAULT &&
1012 temp->type != OBJT_SWAP)) {
1013 vm_object_chain_release(temp);
1014 vm_object_drop(temp);
1015 break;
1019 * At this point we have already dropped object's
1020 * ref_count so it is possible for a race to
1021 * deallocate obj out from under us. Any collapse
1022 * will re-check the situation. We must not block
1023 * until we are able to collapse.
1025 * Bump temp's ref_count to avoid an unwanted
1026 * degenerate recursion (can't call
1027 * vm_object_reference_locked() because it asserts
1028 * that CHAINLOCK is not set).
1030 atomic_add_int(&temp->ref_count, 1);
1031 KKASSERT(temp->ref_count > 1);
1034 * Collapse temp, then deallocate the extra ref
1035 * formally.
1037 vm_object_collapse(temp, &dlist);
1038 vm_object_chain_release(temp);
1039 if (must_drop) {
1040 vm_object_lock_swap();
1041 vm_object_drop(object);
1043 object = temp;
1044 must_drop = 1;
1045 continue;
1049 * Drop the ref and handle termination on the 1->0 transition.
1050 * We may have blocked above so we have to recheck.
1052 skip:
1053 KKASSERT(object->ref_count != 0);
1054 if (object->ref_count >= 2) {
1055 atomic_add_int(&object->ref_count, -1);
1056 #if defined(DEBUG_LOCKS)
1057 debugvm_object_add(object, file, line, -1);
1058 #endif
1059 break;
1061 KKASSERT(object->ref_count == 1);
1064 * 1->0 transition. Chain through the backing_object.
1065 * Maintain the ref until we've located the backing object,
1066 * then re-check.
1068 while ((temp = object->backing_object) != NULL) {
1069 if (temp->type == OBJT_VNODE)
1070 vm_object_hold_shared(temp);
1071 else
1072 vm_object_hold(temp);
1073 if (temp == object->backing_object)
1074 break;
1075 vm_object_drop(temp);
1079 * 1->0 transition verified, retry if ref_count is no longer
1080 * 1. Otherwise disconnect the backing_object (temp) and
1081 * clean up.
1083 if (object->ref_count != 1) {
1084 vm_object_drop(temp);
1085 continue;
1089 * It shouldn't be possible for the object to be chain locked
1090 * if we're removing the last ref on it.
1092 * Removing object from temp's shadow list requires dropping
1093 * temp, which we will do on loop.
1095 * NOTE! vnodes do not use the shadow list, but still have
1096 * the backing_object reference.
1098 KKASSERT((object->chainlk & (CHAINLK_EXCL|CHAINLK_MASK)) == 0);
1100 if (temp) {
1101 if (object->flags & OBJ_ONSHADOW) {
1102 LIST_REMOVE(object, shadow_list);
1103 temp->shadow_count--;
1104 atomic_add_int(&temp->generation, 1);
1105 vm_object_clear_flag(object, OBJ_ONSHADOW);
1107 object->backing_object = NULL;
1110 atomic_add_int(&object->ref_count, -1);
1111 if ((object->flags & OBJ_DEAD) == 0)
1112 vm_object_terminate(object);
1113 if (must_drop && temp)
1114 vm_object_lock_swap();
1115 if (must_drop)
1116 vm_object_drop(object);
1117 object = temp;
1118 must_drop = 1;
1121 if (must_drop && object)
1122 vm_object_drop(object);
1125 * Additional tail recursion on dlist. Avoid a recursion. Objects
1126 * on the dlist have a hold count but are not locked.
1128 if ((dtmp = dlist) != NULL) {
1129 dlist = dtmp->next;
1130 object = dtmp->object;
1131 kfree(dtmp, M_TEMP);
1133 vm_object_lock(object); /* already held, add lock */
1134 must_drop = 1; /* and we're responsible for it */
1135 goto again;
1140 * Destroy the specified object, freeing up related resources.
1142 * The object must have zero references.
1144 * The object must held. The caller is responsible for dropping the object
1145 * after terminate returns. Terminate does NOT drop the object.
1147 static int vm_object_terminate_callback(vm_page_t p, void *data);
1149 void
1150 vm_object_terminate(vm_object_t object)
1152 struct rb_vm_page_scan_info info;
1153 struct vm_object_hash *hash;
1156 * Make sure no one uses us. Once we set OBJ_DEAD we should be
1157 * able to safely block.
1159 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1160 KKASSERT((object->flags & OBJ_DEAD) == 0);
1161 vm_object_set_flag(object, OBJ_DEAD);
1164 * Wait for the pageout daemon to be done with the object
1166 vm_object_pip_wait(object, "objtrm1");
1168 KASSERT(!object->paging_in_progress,
1169 ("vm_object_terminate: pageout in progress"));
1172 * Clean and free the pages, as appropriate. All references to the
1173 * object are gone, so we don't need to lock it.
1175 if (object->type == OBJT_VNODE) {
1176 struct vnode *vp;
1179 * Clean pages and flush buffers.
1181 * NOTE! TMPFS buffer flushes do not typically flush the
1182 * actual page to swap as this would be highly
1183 * inefficient, and normal filesystems usually wrap
1184 * page flushes with buffer cache buffers.
1186 * To deal with this we have to call vinvalbuf() both
1187 * before and after the vm_object_page_clean().
1189 vp = (struct vnode *) object->handle;
1190 vinvalbuf(vp, V_SAVE, 0, 0);
1191 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
1192 vinvalbuf(vp, V_SAVE, 0, 0);
1196 * Wait for any I/O to complete, after which there had better not
1197 * be any references left on the object.
1199 vm_object_pip_wait(object, "objtrm2");
1201 if (object->ref_count != 0) {
1202 panic("vm_object_terminate: object with references, "
1203 "ref_count=%d", object->ref_count);
1207 * Cleanup any shared pmaps associated with this object.
1209 pmap_object_free(object);
1212 * Now free any remaining pages. For internal objects, this also
1213 * removes them from paging queues. Don't free wired pages, just
1214 * remove them from the object.
1216 info.count = 0;
1217 info.object = object;
1218 do {
1219 info.error = 0;
1220 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1221 vm_object_terminate_callback, &info);
1222 } while (info.error);
1225 * Let the pager know object is dead.
1227 vm_pager_deallocate(object);
1230 * Wait for the object hold count to hit 1, clean out pages as
1231 * we go. vmobj_token interlocks any race conditions that might
1232 * pick the object up from the vm_object_list after we have cleared
1233 * rb_memq.
1235 for (;;) {
1236 if (RB_ROOT(&object->rb_memq) == NULL)
1237 break;
1238 kprintf("vm_object_terminate: Warning, object %p "
1239 "still has %ld pages\n",
1240 object, object->resident_page_count);
1241 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1242 vm_object_terminate_callback, &info);
1246 * There had better not be any pages left
1248 KKASSERT(object->resident_page_count == 0);
1251 * Remove the object from the global object list.
1253 hash = VMOBJ_HASH(object);
1254 lwkt_gettoken(&hash->token);
1255 TAILQ_REMOVE(&hash->list, object, object_list);
1256 lwkt_reltoken(&hash->token);
1258 if (object->ref_count != 0) {
1259 panic("vm_object_terminate2: object with references, "
1260 "ref_count=%d", object->ref_count);
1264 * NOTE: The object hold_count is at least 1, so we cannot kfree()
1265 * the object here. See vm_object_drop().
1270 * The caller must hold the object.
1272 static int
1273 vm_object_terminate_callback(vm_page_t p, void *data)
1275 struct rb_vm_page_scan_info *info = data;
1276 vm_object_t object;
1278 object = p->object;
1279 KKASSERT(object == info->object);
1280 if (vm_page_busy_try(p, TRUE)) {
1281 vm_page_sleep_busy(p, TRUE, "vmotrm");
1282 info->error = 1;
1283 return 0;
1285 if (object != p->object) {
1286 /* XXX remove once we determine it can't happen */
1287 kprintf("vm_object_terminate: Warning: Encountered "
1288 "busied page %p on queue %d\n", p, p->queue);
1289 vm_page_wakeup(p);
1290 info->error = 1;
1291 } else if (p->wire_count == 0) {
1293 * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1295 vm_page_free(p);
1296 mycpu->gd_cnt.v_pfree++;
1297 } else {
1298 if (p->queue != PQ_NONE)
1299 kprintf("vm_object_terminate: Warning: Encountered "
1300 "wired page %p on queue %d\n", p, p->queue);
1301 vm_page_remove(p);
1302 vm_page_wakeup(p);
1306 * Must be at end to avoid SMP races, caller holds object token
1308 if ((++info->count & 63) == 0)
1309 lwkt_user_yield();
1310 return(0);
1314 * Clean all dirty pages in the specified range of object. Leaves page
1315 * on whatever queue it is currently on. If NOSYNC is set then do not
1316 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1317 * leaving the object dirty.
1319 * When stuffing pages asynchronously, allow clustering. XXX we need a
1320 * synchronous clustering mode implementation.
1322 * Odd semantics: if start == end, we clean everything.
1324 * The object must be locked? XXX
1326 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1327 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1329 void
1330 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1331 int flags)
1333 struct rb_vm_page_scan_info info;
1334 struct vnode *vp;
1335 int wholescan;
1336 int pagerflags;
1337 int generation;
1339 vm_object_hold(object);
1340 if (object->type != OBJT_VNODE ||
1341 (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1342 vm_object_drop(object);
1343 return;
1346 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
1347 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1348 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1350 vp = object->handle;
1353 * Interlock other major object operations. This allows us to
1354 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1356 vm_object_set_flag(object, OBJ_CLEANING);
1359 * Handle 'entire object' case
1361 info.start_pindex = start;
1362 if (end == 0) {
1363 info.end_pindex = object->size - 1;
1364 } else {
1365 info.end_pindex = end - 1;
1367 wholescan = (start == 0 && info.end_pindex == object->size - 1);
1368 info.limit = flags;
1369 info.pagerflags = pagerflags;
1370 info.object = object;
1373 * If cleaning the entire object do a pass to mark the pages read-only.
1374 * If everything worked out ok, clear OBJ_WRITEABLE and
1375 * OBJ_MIGHTBEDIRTY.
1377 if (wholescan) {
1378 info.error = 0;
1379 info.count = 0;
1380 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1381 vm_object_page_clean_pass1, &info);
1382 if (info.error == 0) {
1383 vm_object_clear_flag(object,
1384 OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1385 if (object->type == OBJT_VNODE &&
1386 (vp = (struct vnode *)object->handle) != NULL) {
1388 * Use new-style interface to clear VISDIRTY
1389 * because the vnode is not necessarily removed
1390 * from the syncer list(s) as often as it was
1391 * under the old interface, which can leave
1392 * the vnode on the syncer list after reclaim.
1394 vclrobjdirty(vp);
1400 * Do a pass to clean all the dirty pages we find.
1402 do {
1403 info.error = 0;
1404 info.count = 0;
1405 generation = object->generation;
1406 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1407 vm_object_page_clean_pass2, &info);
1408 } while (info.error || generation != object->generation);
1410 vm_object_clear_flag(object, OBJ_CLEANING);
1411 vm_object_drop(object);
1415 * The caller must hold the object.
1417 static
1419 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1421 struct rb_vm_page_scan_info *info = data;
1423 KKASSERT(p->object == info->object);
1425 vm_page_flag_set(p, PG_CLEANCHK);
1426 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1427 info->error = 1;
1428 } else if (vm_page_busy_try(p, FALSE)) {
1429 info->error = 1;
1430 } else {
1431 KKASSERT(p->object == info->object);
1432 vm_page_protect(p, VM_PROT_READ);
1433 vm_page_wakeup(p);
1437 * Must be at end to avoid SMP races, caller holds object token
1439 if ((++info->count & 63) == 0)
1440 lwkt_user_yield();
1441 return(0);
1445 * The caller must hold the object
1447 static
1449 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1451 struct rb_vm_page_scan_info *info = data;
1452 int generation;
1454 KKASSERT(p->object == info->object);
1457 * Do not mess with pages that were inserted after we started
1458 * the cleaning pass.
1460 if ((p->flags & PG_CLEANCHK) == 0)
1461 goto done;
1463 generation = info->object->generation;
1465 if (vm_page_busy_try(p, TRUE)) {
1466 vm_page_sleep_busy(p, TRUE, "vpcwai");
1467 info->error = 1;
1468 goto done;
1471 KKASSERT(p->object == info->object &&
1472 info->object->generation == generation);
1475 * Before wasting time traversing the pmaps, check for trivial
1476 * cases where the page cannot be dirty.
1478 if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1479 KKASSERT((p->dirty & p->valid) == 0 &&
1480 (p->flags & PG_NEED_COMMIT) == 0);
1481 vm_page_wakeup(p);
1482 goto done;
1486 * Check whether the page is dirty or not. The page has been set
1487 * to be read-only so the check will not race a user dirtying the
1488 * page.
1490 vm_page_test_dirty(p);
1491 if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1492 vm_page_flag_clear(p, PG_CLEANCHK);
1493 vm_page_wakeup(p);
1494 goto done;
1498 * If we have been asked to skip nosync pages and this is a
1499 * nosync page, skip it. Note that the object flags were
1500 * not cleared in this case (because pass1 will have returned an
1501 * error), so we do not have to set them.
1503 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1504 vm_page_flag_clear(p, PG_CLEANCHK);
1505 vm_page_wakeup(p);
1506 goto done;
1510 * Flush as many pages as we can. PG_CLEANCHK will be cleared on
1511 * the pages that get successfully flushed. Set info->error if
1512 * we raced an object modification.
1514 vm_object_page_collect_flush(info->object, p, info->pagerflags);
1515 /* vm_wait_nominal(); this can deadlock the system in syncer/pageout */
1518 * Must be at end to avoid SMP races, caller holds object token
1520 done:
1521 if ((++info->count & 63) == 0)
1522 lwkt_user_yield();
1523 return(0);
1527 * Collect the specified page and nearby pages and flush them out.
1528 * The number of pages flushed is returned. The passed page is busied
1529 * by the caller and we are responsible for its disposition.
1531 * The caller must hold the object.
1533 static void
1534 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1536 int error;
1537 int is;
1538 int ib;
1539 int i;
1540 int page_base;
1541 vm_pindex_t pi;
1542 vm_page_t ma[BLIST_MAX_ALLOC];
1544 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1546 pi = p->pindex;
1547 page_base = pi % BLIST_MAX_ALLOC;
1548 ma[page_base] = p;
1549 ib = page_base - 1;
1550 is = page_base + 1;
1552 while (ib >= 0) {
1553 vm_page_t tp;
1555 tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
1556 TRUE, &error);
1557 if (error)
1558 break;
1559 if (tp == NULL)
1560 break;
1561 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1562 (tp->flags & PG_CLEANCHK) == 0) {
1563 vm_page_wakeup(tp);
1564 break;
1566 if ((tp->queue - tp->pc) == PQ_CACHE) {
1567 vm_page_flag_clear(tp, PG_CLEANCHK);
1568 vm_page_wakeup(tp);
1569 break;
1571 vm_page_test_dirty(tp);
1572 if ((tp->dirty & tp->valid) == 0 &&
1573 (tp->flags & PG_NEED_COMMIT) == 0) {
1574 vm_page_flag_clear(tp, PG_CLEANCHK);
1575 vm_page_wakeup(tp);
1576 break;
1578 ma[ib] = tp;
1579 --ib;
1581 ++ib; /* fixup */
1583 while (is < BLIST_MAX_ALLOC &&
1584 pi - page_base + is < object->size) {
1585 vm_page_t tp;
1587 tp = vm_page_lookup_busy_try(object, pi - page_base + is,
1588 TRUE, &error);
1589 if (error)
1590 break;
1591 if (tp == NULL)
1592 break;
1593 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1594 (tp->flags & PG_CLEANCHK) == 0) {
1595 vm_page_wakeup(tp);
1596 break;
1598 if ((tp->queue - tp->pc) == PQ_CACHE) {
1599 vm_page_flag_clear(tp, PG_CLEANCHK);
1600 vm_page_wakeup(tp);
1601 break;
1603 vm_page_test_dirty(tp);
1604 if ((tp->dirty & tp->valid) == 0 &&
1605 (tp->flags & PG_NEED_COMMIT) == 0) {
1606 vm_page_flag_clear(tp, PG_CLEANCHK);
1607 vm_page_wakeup(tp);
1608 break;
1610 ma[is] = tp;
1611 ++is;
1615 * All pages in the ma[] array are busied now
1617 for (i = ib; i < is; ++i) {
1618 vm_page_flag_clear(ma[i], PG_CLEANCHK);
1619 vm_page_hold(ma[i]); /* XXX need this any more? */
1621 vm_pageout_flush(&ma[ib], is - ib, pagerflags);
1622 for (i = ib; i < is; ++i) /* XXX need this any more? */
1623 vm_page_unhold(ma[i]);
1627 * Same as vm_object_pmap_copy, except range checking really
1628 * works, and is meant for small sections of an object.
1630 * This code protects resident pages by making them read-only
1631 * and is typically called on a fork or split when a page
1632 * is converted to copy-on-write.
1634 * NOTE: If the page is already at VM_PROT_NONE, calling
1635 * vm_page_protect will have no effect.
1637 void
1638 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1640 vm_pindex_t idx;
1641 vm_page_t p;
1643 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1644 return;
1646 vm_object_hold(object);
1647 for (idx = start; idx < end; idx++) {
1648 p = vm_page_lookup(object, idx);
1649 if (p == NULL)
1650 continue;
1651 vm_page_protect(p, VM_PROT_READ);
1653 vm_object_drop(object);
1657 * Removes all physical pages in the specified object range from all
1658 * physical maps.
1660 * The object must *not* be locked.
1663 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1665 void
1666 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1668 struct rb_vm_page_scan_info info;
1670 if (object == NULL)
1671 return;
1672 if (start == end)
1673 return;
1674 info.start_pindex = start;
1675 info.end_pindex = end - 1;
1676 info.count = 0;
1677 info.object = object;
1679 vm_object_hold(object);
1680 do {
1681 info.error = 0;
1682 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1683 vm_object_pmap_remove_callback, &info);
1684 } while (info.error);
1685 if (start == 0 && end == object->size)
1686 vm_object_clear_flag(object, OBJ_WRITEABLE);
1687 vm_object_drop(object);
1691 * The caller must hold the object
1693 static int
1694 vm_object_pmap_remove_callback(vm_page_t p, void *data)
1696 struct rb_vm_page_scan_info *info = data;
1698 if (info->object != p->object ||
1699 p->pindex < info->start_pindex ||
1700 p->pindex > info->end_pindex) {
1701 kprintf("vm_object_pmap_remove_callback: obj/pg race %p/%p\n",
1702 info->object, p);
1703 info->error = 1;
1704 return(0);
1707 vm_page_protect(p, VM_PROT_NONE);
1710 * Must be at end to avoid SMP races, caller holds object token
1712 if ((++info->count & 63) == 0)
1713 lwkt_user_yield();
1714 return(0);
1718 * Implements the madvise function at the object/page level.
1720 * MADV_WILLNEED (any object)
1722 * Activate the specified pages if they are resident.
1724 * MADV_DONTNEED (any object)
1726 * Deactivate the specified pages if they are resident.
1728 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1730 * Deactivate and clean the specified pages if they are
1731 * resident. This permits the process to reuse the pages
1732 * without faulting or the kernel to reclaim the pages
1733 * without I/O.
1735 * No requirements.
1737 void
1738 vm_object_madvise(vm_object_t object, vm_pindex_t pindex,
1739 vm_pindex_t count, int advise)
1741 vm_pindex_t end, tpindex;
1742 vm_object_t tobject;
1743 vm_object_t xobj;
1744 vm_page_t m;
1745 int error;
1747 if (object == NULL)
1748 return;
1750 end = pindex + count;
1752 vm_object_hold(object);
1753 tobject = object;
1756 * Locate and adjust resident pages
1758 for (; pindex < end; pindex += 1) {
1759 relookup:
1760 if (tobject != object)
1761 vm_object_drop(tobject);
1762 tobject = object;
1763 tpindex = pindex;
1764 shadowlookup:
1766 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1767 * and those pages must be OBJ_ONEMAPPING.
1769 if (advise == MADV_FREE) {
1770 if ((tobject->type != OBJT_DEFAULT &&
1771 tobject->type != OBJT_SWAP) ||
1772 (tobject->flags & OBJ_ONEMAPPING) == 0) {
1773 continue;
1777 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1779 if (error) {
1780 vm_page_sleep_busy(m, TRUE, "madvpo");
1781 goto relookup;
1783 if (m == NULL) {
1785 * There may be swap even if there is no backing page
1787 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1788 swap_pager_freespace(tobject, tpindex, 1);
1791 * next object
1793 while ((xobj = tobject->backing_object) != NULL) {
1794 KKASSERT(xobj != object);
1795 vm_object_hold(xobj);
1796 if (xobj == tobject->backing_object)
1797 break;
1798 vm_object_drop(xobj);
1800 if (xobj == NULL)
1801 continue;
1802 tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1803 if (tobject != object) {
1804 vm_object_lock_swap();
1805 vm_object_drop(tobject);
1807 tobject = xobj;
1808 goto shadowlookup;
1812 * If the page is not in a normal active state, we skip it.
1813 * If the page is not managed there are no page queues to
1814 * mess with. Things can break if we mess with pages in
1815 * any of the below states.
1817 if (m->wire_count ||
1818 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1819 m->valid != VM_PAGE_BITS_ALL
1821 vm_page_wakeup(m);
1822 continue;
1826 * Theoretically once a page is known not to be busy, an
1827 * interrupt cannot come along and rip it out from under us.
1830 if (advise == MADV_WILLNEED) {
1831 vm_page_activate(m);
1832 } else if (advise == MADV_DONTNEED) {
1833 vm_page_dontneed(m);
1834 } else if (advise == MADV_FREE) {
1836 * Mark the page clean. This will allow the page
1837 * to be freed up by the system. However, such pages
1838 * are often reused quickly by malloc()/free()
1839 * so we do not do anything that would cause
1840 * a page fault if we can help it.
1842 * Specifically, we do not try to actually free
1843 * the page now nor do we try to put it in the
1844 * cache (which would cause a page fault on reuse).
1846 * But we do make the page is freeable as we
1847 * can without actually taking the step of unmapping
1848 * it.
1850 pmap_clear_modify(m);
1851 m->dirty = 0;
1852 m->act_count = 0;
1853 vm_page_dontneed(m);
1854 if (tobject->type == OBJT_SWAP)
1855 swap_pager_freespace(tobject, tpindex, 1);
1857 vm_page_wakeup(m);
1859 if (tobject != object)
1860 vm_object_drop(tobject);
1861 vm_object_drop(object);
1865 * Create a new object which is backed by the specified existing object
1866 * range. Replace the pointer and offset that was pointing at the existing
1867 * object with the pointer/offset for the new object.
1869 * If addref is non-zero the returned object is given an additional reference.
1870 * This mechanic exists to avoid the situation where refs might be 1 and
1871 * race against a collapse when the caller intends to bump it. So the
1872 * caller cannot add the ref after the fact. Used when the caller is
1873 * duplicating a vm_map_entry.
1875 * No other requirements.
1877 void
1878 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1879 int addref)
1881 vm_object_t source;
1882 vm_object_t result;
1883 int useshadowlist;
1885 source = *objectp;
1888 * Don't create the new object if the old object isn't shared.
1889 * We have to chain wait before adding the reference to avoid
1890 * racing a collapse or deallocation.
1892 * Clear OBJ_ONEMAPPING flag when shadowing.
1894 * The caller owns a ref on source via *objectp which we are going
1895 * to replace. This ref is inherited by the backing_object assignment.
1896 * from nobject and does not need to be incremented here.
1898 * However, we add a temporary extra reference to the original source
1899 * prior to holding nobject in case we block, to avoid races where
1900 * someone else might believe that the source can be collapsed.
1902 useshadowlist = 0;
1903 if (source) {
1904 if (source->type != OBJT_VNODE) {
1905 useshadowlist = 1;
1906 vm_object_hold(source);
1907 vm_object_chain_wait(source, 0);
1908 if (source->ref_count == 1 &&
1909 source->handle == NULL &&
1910 (source->type == OBJT_DEFAULT ||
1911 source->type == OBJT_SWAP)) {
1912 if (addref) {
1913 vm_object_reference_locked(source);
1914 vm_object_clear_flag(source,
1915 OBJ_ONEMAPPING);
1917 vm_object_drop(source);
1918 return;
1920 vm_object_reference_locked(source);
1921 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1922 } else {
1923 vm_object_reference_quick(source);
1924 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1929 * Allocate a new object with the given length. The new object
1930 * is returned referenced but we may have to add another one.
1931 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1932 * (typically because the caller is about to clone a vm_map_entry).
1934 * The source object currently has an extra reference to prevent
1935 * collapses into it while we mess with its shadow list, which
1936 * we will remove later in this routine.
1938 * The target object may require a second reference if asked for one
1939 * by the caller.
1941 result = vm_object_allocate(OBJT_DEFAULT, length);
1942 if (result == NULL)
1943 panic("vm_object_shadow: no object for shadowing");
1944 vm_object_hold(result);
1945 if (addref) {
1946 vm_object_reference_locked(result);
1947 vm_object_clear_flag(result, OBJ_ONEMAPPING);
1951 * The new object shadows the source object. Chain wait before
1952 * adjusting shadow_count or the shadow list to avoid races.
1954 * Try to optimize the result object's page color when shadowing
1955 * in order to maintain page coloring consistency in the combined
1956 * shadowed object.
1958 * The backing_object reference to source requires adding a ref to
1959 * source. We simply inherit the ref from the original *objectp
1960 * (which we are replacing) so no additional refs need to be added.
1961 * (we must still clean up the extra ref we had to prevent collapse
1962 * races).
1964 * SHADOWING IS NOT APPLICABLE TO OBJT_VNODE OBJECTS
1966 KKASSERT(result->backing_object == NULL);
1967 result->backing_object = source;
1968 if (source) {
1969 if (useshadowlist) {
1970 vm_object_chain_wait(source, 0);
1971 LIST_INSERT_HEAD(&source->shadow_head,
1972 result, shadow_list);
1973 source->shadow_count++;
1974 atomic_add_int(&source->generation, 1);
1975 vm_object_set_flag(result, OBJ_ONSHADOW);
1977 /* cpu localization twist */
1978 result->pg_color = vm_quickcolor();
1982 * Adjust the return storage. Drop the ref on source before
1983 * returning.
1985 result->backing_object_offset = *offset;
1986 vm_object_drop(result);
1987 *offset = 0;
1988 if (source) {
1989 if (useshadowlist) {
1990 vm_object_deallocate_locked(source);
1991 vm_object_drop(source);
1992 } else {
1993 vm_object_deallocate(source);
1998 * Return the new things
2000 *objectp = result;
2003 #define OBSC_TEST_ALL_SHADOWED 0x0001
2004 #define OBSC_COLLAPSE_NOWAIT 0x0002
2005 #define OBSC_COLLAPSE_WAIT 0x0004
2007 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
2010 * The caller must hold the object.
2012 static __inline int
2013 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
2015 struct rb_vm_page_scan_info info;
2016 struct vm_object_hash *hash;
2018 vm_object_assert_held(object);
2019 vm_object_assert_held(backing_object);
2021 KKASSERT(backing_object == object->backing_object);
2022 info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
2025 * Initial conditions
2027 if (op & OBSC_TEST_ALL_SHADOWED) {
2029 * We do not want to have to test for the existence of
2030 * swap pages in the backing object. XXX but with the
2031 * new swapper this would be pretty easy to do.
2033 * XXX what about anonymous MAP_SHARED memory that hasn't
2034 * been ZFOD faulted yet? If we do not test for this, the
2035 * shadow test may succeed! XXX
2037 if (backing_object->type != OBJT_DEFAULT)
2038 return(0);
2040 if (op & OBSC_COLLAPSE_WAIT) {
2041 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
2042 vm_object_set_flag(backing_object, OBJ_DEAD);
2044 hash = VMOBJ_HASH(backing_object);
2045 lwkt_gettoken(&hash->token);
2046 TAILQ_REMOVE(&hash->list, backing_object, object_list);
2047 lwkt_reltoken(&hash->token);
2051 * Our scan. We have to retry if a negative error code is returned,
2052 * otherwise 0 or 1 will be returned in info.error. 0 Indicates that
2053 * the scan had to be stopped because the parent does not completely
2054 * shadow the child.
2056 info.object = object;
2057 info.backing_object = backing_object;
2058 info.limit = op;
2059 info.count = 0;
2060 do {
2061 info.error = 1;
2062 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
2063 vm_object_backing_scan_callback,
2064 &info);
2065 } while (info.error < 0);
2067 return(info.error);
2071 * The caller must hold the object.
2073 static int
2074 vm_object_backing_scan_callback(vm_page_t p, void *data)
2076 struct rb_vm_page_scan_info *info = data;
2077 vm_object_t backing_object;
2078 vm_object_t object;
2079 vm_pindex_t pindex;
2080 vm_pindex_t new_pindex;
2081 vm_pindex_t backing_offset_index;
2082 int op;
2084 pindex = p->pindex;
2085 new_pindex = pindex - info->backing_offset_index;
2086 op = info->limit;
2087 object = info->object;
2088 backing_object = info->backing_object;
2089 backing_offset_index = info->backing_offset_index;
2091 if (op & OBSC_TEST_ALL_SHADOWED) {
2092 vm_page_t pp;
2095 * Ignore pages outside the parent object's range
2096 * and outside the parent object's mapping of the
2097 * backing object.
2099 * note that we do not busy the backing object's
2100 * page.
2102 if (pindex < backing_offset_index ||
2103 new_pindex >= object->size
2105 return(0);
2109 * See if the parent has the page or if the parent's
2110 * object pager has the page. If the parent has the
2111 * page but the page is not valid, the parent's
2112 * object pager must have the page.
2114 * If this fails, the parent does not completely shadow
2115 * the object and we might as well give up now.
2117 pp = vm_page_lookup(object, new_pindex);
2118 if ((pp == NULL || pp->valid == 0) &&
2119 !vm_pager_has_page(object, new_pindex)
2121 info->error = 0; /* problemo */
2122 return(-1); /* stop the scan */
2127 * Check for busy page. Note that we may have lost (p) when we
2128 * possibly blocked above.
2130 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
2131 vm_page_t pp;
2133 if (vm_page_busy_try(p, TRUE)) {
2134 if (op & OBSC_COLLAPSE_NOWAIT) {
2135 return(0);
2136 } else {
2138 * If we slept, anything could have
2139 * happened. Ask that the scan be restarted.
2141 * Since the object is marked dead, the
2142 * backing offset should not have changed.
2144 vm_page_sleep_busy(p, TRUE, "vmocol");
2145 info->error = -1;
2146 return(-1);
2151 * If (p) is no longer valid restart the scan.
2153 if (p->object != backing_object || p->pindex != pindex) {
2154 kprintf("vm_object_backing_scan: Warning: page "
2155 "%p ripped out from under us\n", p);
2156 vm_page_wakeup(p);
2157 info->error = -1;
2158 return(-1);
2161 if (op & OBSC_COLLAPSE_NOWAIT) {
2162 if (p->valid == 0 ||
2163 p->wire_count ||
2164 (p->flags & PG_NEED_COMMIT)) {
2165 vm_page_wakeup(p);
2166 return(0);
2168 } else {
2169 /* XXX what if p->valid == 0 , hold_count, etc? */
2172 KASSERT(
2173 p->object == backing_object,
2174 ("vm_object_qcollapse(): object mismatch")
2178 * Destroy any associated swap
2180 if (backing_object->type == OBJT_SWAP)
2181 swap_pager_freespace(backing_object, p->pindex, 1);
2183 if (
2184 p->pindex < backing_offset_index ||
2185 new_pindex >= object->size
2188 * Page is out of the parent object's range, we
2189 * can simply destroy it.
2191 vm_page_protect(p, VM_PROT_NONE);
2192 vm_page_free(p);
2193 return(0);
2196 pp = vm_page_lookup(object, new_pindex);
2197 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
2199 * page already exists in parent OR swap exists
2200 * for this location in the parent. Destroy
2201 * the original page from the backing object.
2203 * Leave the parent's page alone
2205 vm_page_protect(p, VM_PROT_NONE);
2206 vm_page_free(p);
2207 return(0);
2211 * Page does not exist in parent, rename the
2212 * page from the backing object to the main object.
2214 * If the page was mapped to a process, it can remain
2215 * mapped through the rename.
2217 if ((p->queue - p->pc) == PQ_CACHE)
2218 vm_page_deactivate(p);
2220 vm_page_rename(p, object, new_pindex);
2221 vm_page_wakeup(p);
2222 /* page automatically made dirty by rename */
2224 return(0);
2228 * This version of collapse allows the operation to occur earlier and
2229 * when paging_in_progress is true for an object... This is not a complete
2230 * operation, but should plug 99.9% of the rest of the leaks.
2232 * The caller must hold the object and backing_object and both must be
2233 * chainlocked.
2235 * (only called from vm_object_collapse)
2237 static void
2238 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
2240 if (backing_object->ref_count == 1) {
2241 atomic_add_int(&backing_object->ref_count, 2);
2242 #if defined(DEBUG_LOCKS)
2243 debugvm_object_add(backing_object, "qcollapse", 1, 2);
2244 #endif
2245 vm_object_backing_scan(object, backing_object,
2246 OBSC_COLLAPSE_NOWAIT);
2247 atomic_add_int(&backing_object->ref_count, -2);
2248 #if defined(DEBUG_LOCKS)
2249 debugvm_object_add(backing_object, "qcollapse", 2, -2);
2250 #endif
2255 * Collapse an object with the object backing it. Pages in the backing
2256 * object are moved into the parent, and the backing object is deallocated.
2257 * Any conflict is resolved in favor of the parent's existing pages.
2259 * object must be held and chain-locked on call.
2261 * The caller must have an extra ref on object to prevent a race from
2262 * destroying it during the collapse.
2264 void
2265 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
2267 struct vm_object_dealloc_list *dlist = NULL;
2268 vm_object_t backing_object;
2271 * Only one thread is attempting a collapse at any given moment.
2272 * There are few restrictions for (object) that callers of this
2273 * function check so reentrancy is likely.
2275 KKASSERT(object != NULL);
2276 vm_object_assert_held(object);
2277 KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
2279 for (;;) {
2280 vm_object_t bbobj;
2281 int dodealloc;
2284 * We can only collapse a DEFAULT/SWAP object with a
2285 * DEFAULT/SWAP object.
2287 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) {
2288 backing_object = NULL;
2289 break;
2292 backing_object = object->backing_object;
2293 if (backing_object == NULL)
2294 break;
2295 if (backing_object->type != OBJT_DEFAULT &&
2296 backing_object->type != OBJT_SWAP) {
2297 backing_object = NULL;
2298 break;
2302 * Hold (token lock) the backing_object and retest conditions.
2304 vm_object_hold(backing_object);
2305 if (backing_object != object->backing_object ||
2306 (backing_object->type != OBJT_DEFAULT &&
2307 backing_object->type != OBJT_SWAP)) {
2308 vm_object_drop(backing_object);
2309 continue;
2313 * Chain-lock the backing object too because if we
2314 * successfully merge its pages into the top object we
2315 * will collapse backing_object->backing_object as the
2316 * new backing_object. Re-check that it is still our
2317 * backing object.
2319 vm_object_chain_acquire(backing_object, 0);
2320 if (backing_object != object->backing_object) {
2321 vm_object_chain_release(backing_object);
2322 vm_object_drop(backing_object);
2323 continue;
2327 * We check the backing object first, because it is most
2328 * likely not collapsable.
2330 if (backing_object->handle != NULL ||
2331 (backing_object->type != OBJT_DEFAULT &&
2332 backing_object->type != OBJT_SWAP) ||
2333 (backing_object->flags & OBJ_DEAD) ||
2334 object->handle != NULL ||
2335 (object->type != OBJT_DEFAULT &&
2336 object->type != OBJT_SWAP) ||
2337 (object->flags & OBJ_DEAD)) {
2338 break;
2342 * If paging is in progress we can't do a normal collapse.
2344 if (object->paging_in_progress != 0 ||
2345 backing_object->paging_in_progress != 0
2347 vm_object_qcollapse(object, backing_object);
2348 break;
2352 * We know that we can either collapse the backing object (if
2353 * the parent is the only reference to it) or (perhaps) have
2354 * the parent bypass the object if the parent happens to shadow
2355 * all the resident pages in the entire backing object.
2357 * This is ignoring pager-backed pages such as swap pages.
2358 * vm_object_backing_scan fails the shadowing test in this
2359 * case.
2361 if (backing_object->ref_count == 1) {
2363 * If there is exactly one reference to the backing
2364 * object, we can collapse it into the parent.
2366 KKASSERT(object->backing_object == backing_object);
2367 vm_object_backing_scan(object, backing_object,
2368 OBSC_COLLAPSE_WAIT);
2371 * Move the pager from backing_object to object.
2373 if (backing_object->type == OBJT_SWAP) {
2374 vm_object_pip_add(backing_object, 1);
2377 * scrap the paging_offset junk and do a
2378 * discrete copy. This also removes major
2379 * assumptions about how the swap-pager
2380 * works from where it doesn't belong. The
2381 * new swapper is able to optimize the
2382 * destroy-source case.
2384 vm_object_pip_add(object, 1);
2385 swap_pager_copy(backing_object, object,
2386 OFF_TO_IDX(object->backing_object_offset),
2387 TRUE);
2388 vm_object_pip_wakeup(object);
2389 vm_object_pip_wakeup(backing_object);
2393 * Object now shadows whatever backing_object did.
2394 * Remove object from backing_object's shadow_list.
2396 * Removing object from backing_objects shadow list
2397 * requires releasing object, which we will do below.
2399 KKASSERT(object->backing_object == backing_object);
2400 if (object->flags & OBJ_ONSHADOW) {
2401 LIST_REMOVE(object, shadow_list);
2402 backing_object->shadow_count--;
2403 atomic_add_int(&backing_object->generation, 1);
2404 vm_object_clear_flag(object, OBJ_ONSHADOW);
2408 * backing_object->backing_object moves from within
2409 * backing_object to within object.
2411 * OBJT_VNODE bbobj's should have empty shadow lists.
2413 while ((bbobj = backing_object->backing_object) != NULL) {
2414 if (bbobj->type == OBJT_VNODE)
2415 vm_object_hold_shared(bbobj);
2416 else
2417 vm_object_hold(bbobj);
2418 if (bbobj == backing_object->backing_object)
2419 break;
2420 vm_object_drop(bbobj);
2424 * We are removing backing_object from bbobj's
2425 * shadow list and adding object to bbobj's shadow
2426 * list, so the ref_count on bbobj is unchanged.
2428 if (bbobj) {
2429 if (backing_object->flags & OBJ_ONSHADOW) {
2430 /* not locked exclusively if vnode */
2431 KKASSERT(bbobj->type != OBJT_VNODE);
2432 LIST_REMOVE(backing_object,
2433 shadow_list);
2434 bbobj->shadow_count--;
2435 atomic_add_int(&bbobj->generation, 1);
2436 vm_object_clear_flag(backing_object,
2437 OBJ_ONSHADOW);
2439 backing_object->backing_object = NULL;
2441 object->backing_object = bbobj;
2442 if (bbobj) {
2443 if (bbobj->type != OBJT_VNODE) {
2444 LIST_INSERT_HEAD(&bbobj->shadow_head,
2445 object, shadow_list);
2446 bbobj->shadow_count++;
2447 atomic_add_int(&bbobj->generation, 1);
2448 vm_object_set_flag(object,
2449 OBJ_ONSHADOW);
2453 object->backing_object_offset +=
2454 backing_object->backing_object_offset;
2456 vm_object_drop(bbobj);
2459 * Discard the old backing_object. Nothing should be
2460 * able to ref it, other than a vm_map_split(),
2461 * and vm_map_split() will stall on our chain lock.
2462 * And we control the parent so it shouldn't be
2463 * possible for it to go away either.
2465 * Since the backing object has no pages, no pager
2466 * left, and no object references within it, all
2467 * that is necessary is to dispose of it.
2469 KASSERT(backing_object->ref_count == 1,
2470 ("backing_object %p was somehow "
2471 "re-referenced during collapse!",
2472 backing_object));
2473 KASSERT(RB_EMPTY(&backing_object->rb_memq),
2474 ("backing_object %p somehow has left "
2475 "over pages during collapse!",
2476 backing_object));
2479 * The object can be destroyed.
2481 * XXX just fall through and dodealloc instead
2482 * of forcing destruction?
2484 atomic_add_int(&backing_object->ref_count, -1);
2485 #if defined(DEBUG_LOCKS)
2486 debugvm_object_add(backing_object, "collapse", 1, -1);
2487 #endif
2488 if ((backing_object->flags & OBJ_DEAD) == 0)
2489 vm_object_terminate(backing_object);
2490 object_collapses++;
2491 dodealloc = 0;
2492 } else {
2494 * If we do not entirely shadow the backing object,
2495 * there is nothing we can do so we give up.
2497 if (vm_object_backing_scan(object, backing_object,
2498 OBSC_TEST_ALL_SHADOWED) == 0) {
2499 break;
2503 * bbobj is backing_object->backing_object. Since
2504 * object completely shadows backing_object we can
2505 * bypass it and become backed by bbobj instead.
2507 * The shadow list for vnode backing objects is not
2508 * used and a shared hold is allowed.
2510 while ((bbobj = backing_object->backing_object) != NULL) {
2511 if (bbobj->type == OBJT_VNODE)
2512 vm_object_hold_shared(bbobj);
2513 else
2514 vm_object_hold(bbobj);
2515 if (bbobj == backing_object->backing_object)
2516 break;
2517 vm_object_drop(bbobj);
2521 * Make object shadow bbobj instead of backing_object.
2522 * Remove object from backing_object's shadow list.
2524 * Deallocating backing_object will not remove
2525 * it, since its reference count is at least 2.
2527 * Removing object from backing_object's shadow
2528 * list requires releasing a ref, which we do
2529 * below by setting dodealloc to 1.
2531 KKASSERT(object->backing_object == backing_object);
2532 if (object->flags & OBJ_ONSHADOW) {
2533 LIST_REMOVE(object, shadow_list);
2534 backing_object->shadow_count--;
2535 atomic_add_int(&backing_object->generation, 1);
2536 vm_object_clear_flag(object, OBJ_ONSHADOW);
2540 * Add a ref to bbobj, bbobj now shadows object.
2542 * NOTE: backing_object->backing_object still points
2543 * to bbobj. That relationship remains intact
2544 * because backing_object has > 1 ref, so
2545 * someone else is pointing to it (hence why
2546 * we can't collapse it into object and can
2547 * only handle the all-shadowed bypass case).
2549 if (bbobj) {
2550 if (bbobj->type != OBJT_VNODE) {
2551 vm_object_chain_wait(bbobj, 0);
2552 vm_object_reference_locked(bbobj);
2553 LIST_INSERT_HEAD(&bbobj->shadow_head,
2554 object, shadow_list);
2555 bbobj->shadow_count++;
2556 atomic_add_int(&bbobj->generation, 1);
2557 vm_object_set_flag(object,
2558 OBJ_ONSHADOW);
2559 } else {
2560 vm_object_reference_quick(bbobj);
2562 object->backing_object_offset +=
2563 backing_object->backing_object_offset;
2564 object->backing_object = bbobj;
2565 vm_object_drop(bbobj);
2566 } else {
2567 object->backing_object = NULL;
2571 * Drop the reference count on backing_object. To
2572 * handle ref_count races properly we can't assume
2573 * that the ref_count is still at least 2 so we
2574 * have to actually call vm_object_deallocate()
2575 * (after clearing the chainlock).
2577 object_bypasses++;
2578 dodealloc = 1;
2582 * Ok, we want to loop on the new object->bbobj association,
2583 * possibly collapsing it further. However if dodealloc is
2584 * non-zero we have to deallocate the backing_object which
2585 * itself can potentially undergo a collapse, creating a
2586 * recursion depth issue with the LWKT token subsystem.
2588 * In the case where we must deallocate the backing_object
2589 * it is possible now that the backing_object has a single
2590 * shadow count on some other object (not represented here
2591 * as yet), since it no longer shadows us. Thus when we
2592 * call vm_object_deallocate() it may attempt to collapse
2593 * itself into its remaining parent.
2595 if (dodealloc) {
2596 struct vm_object_dealloc_list *dtmp;
2598 vm_object_chain_release(backing_object);
2599 vm_object_unlock(backing_object);
2600 /* backing_object remains held */
2603 * Auto-deallocation list for caller convenience.
2605 if (dlistp == NULL)
2606 dlistp = &dlist;
2608 dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2609 dtmp->object = backing_object;
2610 dtmp->next = *dlistp;
2611 *dlistp = dtmp;
2612 } else {
2613 vm_object_chain_release(backing_object);
2614 vm_object_drop(backing_object);
2616 /* backing_object = NULL; not needed */
2617 /* loop */
2621 * Clean up any left over backing_object
2623 if (backing_object) {
2624 vm_object_chain_release(backing_object);
2625 vm_object_drop(backing_object);
2629 * Clean up any auto-deallocation list. This is a convenience
2630 * for top-level callers so they don't have to pass &dlist.
2631 * Do not clean up any caller-passed dlistp, the caller will
2632 * do that.
2634 if (dlist)
2635 vm_object_deallocate_list(&dlist);
2640 * vm_object_collapse() may collect additional objects in need of
2641 * deallocation. This routine deallocates these objects. The
2642 * deallocation itself can trigger additional collapses (which the
2643 * deallocate function takes care of). This procedure is used to
2644 * reduce procedural recursion since these vm_object shadow chains
2645 * can become quite long.
2647 void
2648 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2650 struct vm_object_dealloc_list *dlist;
2652 while ((dlist = *dlistp) != NULL) {
2653 *dlistp = dlist->next;
2654 vm_object_lock(dlist->object);
2655 vm_object_deallocate_locked(dlist->object);
2656 vm_object_drop(dlist->object);
2657 kfree(dlist, M_TEMP);
2662 * Removes all physical pages in the specified object range from the
2663 * object's list of pages.
2665 * No requirements.
2667 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2669 void
2670 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2671 boolean_t clean_only)
2673 struct rb_vm_page_scan_info info;
2674 int all;
2677 * Degenerate cases and assertions
2679 vm_object_hold(object);
2680 if (object == NULL ||
2681 (object->resident_page_count == 0 && object->swblock_count == 0)) {
2682 vm_object_drop(object);
2683 return;
2685 KASSERT(object->type != OBJT_PHYS,
2686 ("attempt to remove pages from a physical object"));
2689 * Indicate that paging is occuring on the object
2691 vm_object_pip_add(object, 1);
2694 * Figure out the actual removal range and whether we are removing
2695 * the entire contents of the object or not. If removing the entire
2696 * contents, be sure to get all pages, even those that might be
2697 * beyond the end of the object.
2699 info.object = object;
2700 info.start_pindex = start;
2701 if (end == 0)
2702 info.end_pindex = (vm_pindex_t)-1;
2703 else
2704 info.end_pindex = end - 1;
2705 info.limit = clean_only;
2706 info.count = 0;
2707 all = (start == 0 && info.end_pindex >= object->size - 1);
2710 * Loop until we are sure we have gotten them all.
2712 do {
2713 info.error = 0;
2714 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2715 vm_object_page_remove_callback, &info);
2716 } while (info.error);
2719 * Remove any related swap if throwing away pages, or for
2720 * non-swap objects (the swap is a clean copy in that case).
2722 if (object->type != OBJT_SWAP || clean_only == FALSE) {
2723 if (all)
2724 swap_pager_freespace_all(object);
2725 else
2726 swap_pager_freespace(object, info.start_pindex,
2727 info.end_pindex - info.start_pindex + 1);
2731 * Cleanup
2733 vm_object_pip_wakeup(object);
2734 vm_object_drop(object);
2738 * The caller must hold the object.
2740 * NOTE: User yields are allowed when removing more than one page, but not
2741 * allowed if only removing one page (the path for single page removals
2742 * might hold a spinlock).
2744 static int
2745 vm_object_page_remove_callback(vm_page_t p, void *data)
2747 struct rb_vm_page_scan_info *info = data;
2749 if (info->object != p->object ||
2750 p->pindex < info->start_pindex ||
2751 p->pindex > info->end_pindex) {
2752 kprintf("vm_object_page_remove_callbackA: obj/pg race %p/%p\n",
2753 info->object, p);
2754 return(0);
2756 if (vm_page_busy_try(p, TRUE)) {
2757 vm_page_sleep_busy(p, TRUE, "vmopar");
2758 info->error = 1;
2759 return(0);
2761 if (info->object != p->object) {
2762 /* this should never happen */
2763 kprintf("vm_object_page_remove_callbackB: obj/pg race %p/%p\n",
2764 info->object, p);
2765 vm_page_wakeup(p);
2766 return(0);
2770 * Wired pages cannot be destroyed, but they can be invalidated
2771 * and we do so if clean_only (limit) is not set.
2773 * WARNING! The page may be wired due to being part of a buffer
2774 * cache buffer, and the buffer might be marked B_CACHE.
2775 * This is fine as part of a truncation but VFSs must be
2776 * sure to fix the buffer up when re-extending the file.
2778 * NOTE! PG_NEED_COMMIT is ignored.
2780 if (p->wire_count != 0) {
2781 vm_page_protect(p, VM_PROT_NONE);
2782 if (info->limit == 0)
2783 p->valid = 0;
2784 vm_page_wakeup(p);
2785 goto done;
2789 * limit is our clean_only flag. If set and the page is dirty or
2790 * requires a commit, do not free it. If set and the page is being
2791 * held by someone, do not free it.
2793 if (info->limit && p->valid) {
2794 vm_page_test_dirty(p);
2795 if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2796 vm_page_wakeup(p);
2797 goto done;
2802 * Destroy the page
2804 vm_page_protect(p, VM_PROT_NONE);
2805 vm_page_free(p);
2808 * Must be at end to avoid SMP races, caller holds object token
2810 done:
2811 if ((++info->count & 63) == 0)
2812 lwkt_user_yield();
2814 return(0);
2818 * Try to extend prev_object into an adjoining region of virtual
2819 * memory, return TRUE on success.
2821 * The caller does not need to hold (prev_object) but must have a stable
2822 * pointer to it (typically by holding the vm_map locked).
2824 * This function only works for anonymous memory objects which either
2825 * have (a) one reference or (b) we are extending the object's size.
2826 * Otherwise the related VM pages we want to use for the object might
2827 * be in use by another mapping.
2829 boolean_t
2830 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2831 vm_size_t prev_size, vm_size_t next_size)
2833 vm_pindex_t next_pindex;
2835 if (prev_object == NULL)
2836 return (TRUE);
2838 vm_object_hold(prev_object);
2840 if (prev_object->type != OBJT_DEFAULT &&
2841 prev_object->type != OBJT_SWAP) {
2842 vm_object_drop(prev_object);
2843 return (FALSE);
2847 * Try to collapse the object first
2849 vm_object_chain_acquire(prev_object, 0);
2850 vm_object_collapse(prev_object, NULL);
2853 * We can't coalesce if we shadow another object (figuring out the
2854 * relationships become too complex).
2856 if (prev_object->backing_object != NULL) {
2857 vm_object_chain_release(prev_object);
2858 vm_object_drop(prev_object);
2859 return (FALSE);
2862 prev_size >>= PAGE_SHIFT;
2863 next_size >>= PAGE_SHIFT;
2864 next_pindex = prev_pindex + prev_size;
2867 * We can't if the object has more than one ref count unless we
2868 * are extending it into newly minted space.
2870 if (prev_object->ref_count > 1 &&
2871 prev_object->size != next_pindex) {
2872 vm_object_chain_release(prev_object);
2873 vm_object_drop(prev_object);
2874 return (FALSE);
2878 * Remove any pages that may still be in the object from a previous
2879 * deallocation.
2881 if (next_pindex < prev_object->size) {
2882 vm_object_page_remove(prev_object,
2883 next_pindex,
2884 next_pindex + next_size, FALSE);
2885 if (prev_object->type == OBJT_SWAP)
2886 swap_pager_freespace(prev_object,
2887 next_pindex, next_size);
2891 * Extend the object if necessary.
2893 if (next_pindex + next_size > prev_object->size)
2894 prev_object->size = next_pindex + next_size;
2895 vm_object_chain_release(prev_object);
2896 vm_object_drop(prev_object);
2898 return (TRUE);
2902 * Make the object writable and flag is being possibly dirty.
2904 * The object might not be held (or might be held but held shared),
2905 * the related vnode is probably not held either. Object and vnode are
2906 * stable by virtue of the vm_page busied by the caller preventing
2907 * destruction.
2909 * If the related mount is flagged MNTK_THR_SYNC we need to call
2910 * vsetobjdirty(). Filesystems using this option usually shortcut
2911 * synchronization by only scanning the syncer list.
2913 void
2914 vm_object_set_writeable_dirty(vm_object_t object)
2916 struct vnode *vp;
2918 /*vm_object_assert_held(object);*/
2920 * Avoid contention in vm fault path by checking the state before
2921 * issuing an atomic op on it.
2923 if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2924 (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2925 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2927 if (object->type == OBJT_VNODE &&
2928 (vp = (struct vnode *)object->handle) != NULL) {
2929 if ((vp->v_flag & VOBJDIRTY) == 0) {
2930 if (vp->v_mount &&
2931 (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
2933 * New style THR_SYNC places vnodes on the
2934 * syncer list more deterministically.
2936 vsetobjdirty(vp);
2937 } else {
2939 * Old style scan would not necessarily place
2940 * a vnode on the syncer list when possibly
2941 * modified via mmap.
2943 vsetflags(vp, VOBJDIRTY);
2949 #include "opt_ddb.h"
2950 #ifdef DDB
2951 #include <sys/cons.h>
2953 #include <ddb/ddb.h>
2955 static int _vm_object_in_map (vm_map_t map, vm_object_t object,
2956 vm_map_entry_t entry);
2957 static int vm_object_in_map (vm_object_t object);
2960 * The caller must hold the object.
2962 static int
2963 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2965 vm_map_t tmpm;
2966 vm_map_entry_t tmpe;
2967 vm_object_t obj, nobj;
2968 int entcount;
2970 if (map == 0)
2971 return 0;
2972 if (entry == 0) {
2973 tmpe = map->header.next;
2974 entcount = map->nentries;
2975 while (entcount-- && (tmpe != &map->header)) {
2976 if( _vm_object_in_map(map, object, tmpe)) {
2977 return 1;
2979 tmpe = tmpe->next;
2981 return (0);
2983 switch(entry->maptype) {
2984 case VM_MAPTYPE_SUBMAP:
2985 tmpm = entry->object.sub_map;
2986 tmpe = tmpm->header.next;
2987 entcount = tmpm->nentries;
2988 while (entcount-- && tmpe != &tmpm->header) {
2989 if( _vm_object_in_map(tmpm, object, tmpe)) {
2990 return 1;
2992 tmpe = tmpe->next;
2994 break;
2995 case VM_MAPTYPE_NORMAL:
2996 case VM_MAPTYPE_VPAGETABLE:
2997 obj = entry->object.vm_object;
2998 while (obj) {
2999 if (obj == object) {
3000 if (obj != entry->object.vm_object)
3001 vm_object_drop(obj);
3002 return 1;
3004 while ((nobj = obj->backing_object) != NULL) {
3005 vm_object_hold(nobj);
3006 if (nobj == obj->backing_object)
3007 break;
3008 vm_object_drop(nobj);
3010 if (obj != entry->object.vm_object) {
3011 if (nobj)
3012 vm_object_lock_swap();
3013 vm_object_drop(obj);
3015 obj = nobj;
3017 break;
3018 default:
3019 break;
3021 return 0;
3024 static int vm_object_in_map_callback(struct proc *p, void *data);
3026 struct vm_object_in_map_info {
3027 vm_object_t object;
3028 int rv;
3032 * Debugging only
3034 static int
3035 vm_object_in_map(vm_object_t object)
3037 struct vm_object_in_map_info info;
3039 info.rv = 0;
3040 info.object = object;
3042 allproc_scan(vm_object_in_map_callback, &info, 0);
3043 if (info.rv)
3044 return 1;
3045 if( _vm_object_in_map(&kernel_map, object, 0))
3046 return 1;
3047 if( _vm_object_in_map(&pager_map, object, 0))
3048 return 1;
3049 if( _vm_object_in_map(&buffer_map, object, 0))
3050 return 1;
3051 return 0;
3055 * Debugging only
3057 static int
3058 vm_object_in_map_callback(struct proc *p, void *data)
3060 struct vm_object_in_map_info *info = data;
3062 if (p->p_vmspace) {
3063 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
3064 info->rv = 1;
3065 return -1;
3068 return (0);
3071 DB_SHOW_COMMAND(vmochk, vm_object_check)
3073 struct vm_object_hash *hash;
3074 vm_object_t object;
3075 int n;
3078 * make sure that internal objs are in a map somewhere
3079 * and none have zero ref counts.
3081 for (n = 0; n < VMOBJ_HSIZE; ++n) {
3082 hash = &vm_object_hash[n];
3083 for (object = TAILQ_FIRST(&hash->list);
3084 object != NULL;
3085 object = TAILQ_NEXT(object, object_list)) {
3086 if (object->type == OBJT_MARKER)
3087 continue;
3088 if (object->handle != NULL ||
3089 (object->type != OBJT_DEFAULT &&
3090 object->type != OBJT_SWAP)) {
3091 continue;
3093 if (object->ref_count == 0) {
3094 db_printf("vmochk: internal obj has "
3095 "zero ref count: %ld\n",
3096 (long)object->size);
3098 if (vm_object_in_map(object))
3099 continue;
3100 db_printf("vmochk: internal obj is not in a map: "
3101 "ref: %d, size: %lu: 0x%lx, "
3102 "backing_object: %p\n",
3103 object->ref_count, (u_long)object->size,
3104 (u_long)object->size,
3105 (void *)object->backing_object);
3111 * Debugging only
3113 DB_SHOW_COMMAND(object, vm_object_print_static)
3115 /* XXX convert args. */
3116 vm_object_t object = (vm_object_t)addr;
3117 boolean_t full = have_addr;
3119 vm_page_t p;
3121 /* XXX count is an (unused) arg. Avoid shadowing it. */
3122 #define count was_count
3124 int count;
3126 if (object == NULL)
3127 return;
3129 db_iprintf(
3130 "Object %p: type=%d, size=0x%lx, res=%ld, ref=%d, flags=0x%x\n",
3131 object, (int)object->type, (u_long)object->size,
3132 object->resident_page_count, object->ref_count, object->flags);
3134 * XXX no %qd in kernel. Truncate object->backing_object_offset.
3136 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
3137 object->shadow_count,
3138 object->backing_object ? object->backing_object->ref_count : 0,
3139 object->backing_object, (long)object->backing_object_offset);
3141 if (!full)
3142 return;
3144 db_indent += 2;
3145 count = 0;
3146 RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
3147 if (count == 0)
3148 db_iprintf("memory:=");
3149 else if (count == 6) {
3150 db_printf("\n");
3151 db_iprintf(" ...");
3152 count = 0;
3153 } else
3154 db_printf(",");
3155 count++;
3157 db_printf("(off=0x%lx,page=0x%lx)",
3158 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
3160 if (count != 0)
3161 db_printf("\n");
3162 db_indent -= 2;
3165 /* XXX. */
3166 #undef count
3169 * XXX need this non-static entry for calling from vm_map_print.
3171 * Debugging only
3173 void
3174 vm_object_print(/* db_expr_t */ long addr,
3175 boolean_t have_addr,
3176 /* db_expr_t */ long count,
3177 char *modif)
3179 vm_object_print_static(addr, have_addr, count, modif);
3183 * Debugging only
3185 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
3187 struct vm_object_hash *hash;
3188 vm_object_t object;
3189 int nl = 0;
3190 int c;
3191 int n;
3193 for (n = 0; n < VMOBJ_HSIZE; ++n) {
3194 hash = &vm_object_hash[n];
3195 for (object = TAILQ_FIRST(&hash->list);
3196 object != NULL;
3197 object = TAILQ_NEXT(object, object_list)) {
3198 vm_pindex_t idx, fidx;
3199 vm_pindex_t osize;
3200 vm_paddr_t pa = -1, padiff;
3201 int rcount;
3202 vm_page_t m;
3204 if (object->type == OBJT_MARKER)
3205 continue;
3206 db_printf("new object: %p\n", (void *)object);
3207 if ( nl > 18) {
3208 c = cngetc();
3209 if (c != ' ')
3210 return;
3211 nl = 0;
3213 nl++;
3214 rcount = 0;
3215 fidx = 0;
3216 osize = object->size;
3217 if (osize > 128)
3218 osize = 128;
3219 for (idx = 0; idx < osize; idx++) {
3220 m = vm_page_lookup(object, idx);
3221 if (m == NULL) {
3222 if (rcount) {
3223 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3224 (long)fidx, rcount, (long)pa);
3225 if ( nl > 18) {
3226 c = cngetc();
3227 if (c != ' ')
3228 return;
3229 nl = 0;
3231 nl++;
3232 rcount = 0;
3234 continue;
3237 if (rcount &&
3238 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
3239 ++rcount;
3240 continue;
3242 if (rcount) {
3243 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
3244 padiff >>= PAGE_SHIFT;
3245 padiff &= PQ_L2_MASK;
3246 if (padiff == 0) {
3247 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
3248 ++rcount;
3249 continue;
3251 db_printf(" index(%ld)run(%d)pa(0x%lx)",
3252 (long)fidx, rcount, (long)pa);
3253 db_printf("pd(%ld)\n", (long)padiff);
3254 if ( nl > 18) {
3255 c = cngetc();
3256 if (c != ' ')
3257 return;
3258 nl = 0;
3260 nl++;
3262 fidx = idx;
3263 pa = VM_PAGE_TO_PHYS(m);
3264 rcount = 1;
3266 if (rcount) {
3267 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3268 (long)fidx, rcount, (long)pa);
3269 if ( nl > 18) {
3270 c = cngetc();
3271 if (c != ' ')
3272 return;
3273 nl = 0;
3275 nl++;
3280 #endif /* DDB */