kernel - Fix excessive call stack depth on stuck interrupt
[dragonfly.git] / sys / kern / vfs_journal.c
bloba8083d7665686809ca8c5392302f1e2c5a3065f4
1 /*
2 * Copyright (c) 2004-2006 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/kern/vfs_journal.c,v 1.33 2007/05/09 00:53:34 dillon Exp $
37 * The journaling protocol is intended to evolve into a two-way stream
38 * whereby transaction IDs can be acknowledged by the journaling target
39 * when the data has been committed to hard storage. Both implicit and
40 * explicit acknowledgement schemes will be supported, depending on the
41 * sophistication of the journaling stream, plus resynchronization and
42 * restart when a journaling stream is interrupted. This information will
43 * also be made available to journaling-aware filesystems to allow better
44 * management of their own physical storage synchronization mechanisms as
45 * well as to allow such filesystems to take direct advantage of the kernel's
46 * journaling layer so they don't have to roll their own.
48 * In addition, the worker thread will have access to much larger
49 * spooling areas then the memory buffer is able to provide by e.g.
50 * reserving swap space, in order to absorb potentially long interruptions
51 * of off-site journaling streams, and to prevent 'slow' off-site linkages
52 * from radically slowing down local filesystem operations.
54 * Because of the non-trivial algorithms the journaling system will be
55 * required to support, use of a worker thread is mandatory. Efficiencies
56 * are maintained by utilitizing the memory FIFO to batch transactions when
57 * possible, reducing the number of gratuitous thread switches and taking
58 * advantage of cpu caches through the use of shorter batched code paths
59 * rather then trying to do everything in the context of the process
60 * originating the filesystem op. In the future the memory FIFO can be
61 * made per-cpu to remove BGL or other locking requirements.
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/buf.h>
66 #include <sys/conf.h>
67 #include <sys/kernel.h>
68 #include <sys/queue.h>
69 #include <sys/lock.h>
70 #include <sys/malloc.h>
71 #include <sys/mount.h>
72 #include <sys/unistd.h>
73 #include <sys/vnode.h>
74 #include <sys/poll.h>
75 #include <sys/mountctl.h>
76 #include <sys/journal.h>
77 #include <sys/file.h>
78 #include <sys/proc.h>
79 #include <sys/xio.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
83 #include <machine/limits.h>
85 #include <vm/vm.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vnode_pager.h>
91 #include <sys/file2.h>
92 #include <sys/thread2.h>
93 #include <sys/mplock2.h>
94 #include <sys/spinlock2.h>
96 static void journal_wthread(void *info);
97 static void journal_rthread(void *info);
99 static void *journal_reserve(struct journal *jo,
100 struct journal_rawrecbeg **rawpp,
101 int16_t streamid, int bytes);
102 static void *journal_extend(struct journal *jo,
103 struct journal_rawrecbeg **rawpp,
104 int truncbytes, int bytes, int *newstreamrecp);
105 static void journal_abort(struct journal *jo,
106 struct journal_rawrecbeg **rawpp);
107 static void journal_commit(struct journal *jo,
108 struct journal_rawrecbeg **rawpp,
109 int bytes, int closeout);
110 static void jrecord_data(struct jrecord *jrec,
111 void *buf, int bytes, int dtype);
114 MALLOC_DEFINE(M_JOURNAL, "journal", "Journaling structures");
115 MALLOC_DEFINE(M_JFIFO, "journal-fifo", "Journal FIFO");
117 void
118 journal_create_threads(struct journal *jo)
120 jo->flags &= ~(MC_JOURNAL_STOP_REQ | MC_JOURNAL_STOP_IMM);
121 jo->flags |= MC_JOURNAL_WACTIVE;
122 lwkt_create(journal_wthread, jo, NULL, &jo->wthread,
123 TDF_NOSTART, -1,
124 "journal w:%.*s", JIDMAX, jo->id);
125 lwkt_setpri(&jo->wthread, TDPRI_KERN_DAEMON);
126 lwkt_schedule(&jo->wthread);
128 if (jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) {
129 jo->flags |= MC_JOURNAL_RACTIVE;
130 lwkt_create(journal_rthread, jo, NULL, &jo->rthread,
131 TDF_NOSTART, -1,
132 "journal r:%.*s", JIDMAX, jo->id);
133 lwkt_setpri(&jo->rthread, TDPRI_KERN_DAEMON);
134 lwkt_schedule(&jo->rthread);
138 void
139 journal_destroy_threads(struct journal *jo, int flags)
141 int wcount;
143 jo->flags |= MC_JOURNAL_STOP_REQ | (flags & MC_JOURNAL_STOP_IMM);
144 wakeup(&jo->fifo);
145 wcount = 0;
146 while (jo->flags & (MC_JOURNAL_WACTIVE | MC_JOURNAL_RACTIVE)) {
147 tsleep(jo, 0, "jwait", hz);
148 if (++wcount % 10 == 0) {
149 kprintf("Warning: journal %s waiting for descriptors to close\n",
150 jo->id);
155 * XXX SMP - threads should move to cpu requesting the restart or
156 * termination before finishing up to properly interlock.
158 tsleep(jo, 0, "jwait", hz);
159 lwkt_free_thread(&jo->wthread);
160 if (jo->flags & MC_JOURNAL_WANT_FULLDUPLEX)
161 lwkt_free_thread(&jo->rthread);
165 * The per-journal worker thread is responsible for writing out the
166 * journal's FIFO to the target stream.
168 static void
169 journal_wthread(void *info)
171 struct journal *jo = info;
172 struct journal_rawrecbeg *rawp;
173 int error;
174 size_t avail;
175 size_t bytes;
176 size_t res;
178 /* not MPSAFE yet */
179 get_mplock();
181 for (;;) {
183 * Calculate the number of bytes available to write. This buffer
184 * area may contain reserved records so we can't just write it out
185 * without further checks.
187 bytes = jo->fifo.windex - jo->fifo.rindex;
190 * sleep if no bytes are available or if an incomplete record is
191 * encountered (it needs to be filled in before we can write it
192 * out), and skip any pad records that we encounter.
194 if (bytes == 0) {
195 if (jo->flags & MC_JOURNAL_STOP_REQ)
196 break;
197 tsleep(&jo->fifo, 0, "jfifo", hz);
198 continue;
202 * Sleep if we can not go any further due to hitting an incomplete
203 * record. This case should occur rarely but may have to be better
204 * optimized XXX.
206 rawp = (void *)(jo->fifo.membase + (jo->fifo.rindex & jo->fifo.mask));
207 if (rawp->begmagic == JREC_INCOMPLETEMAGIC) {
208 tsleep(&jo->fifo, 0, "jpad", hz);
209 continue;
213 * Skip any pad records. We do not write out pad records if we can
214 * help it.
216 if (rawp->streamid == JREC_STREAMID_PAD) {
217 if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) {
218 if (jo->fifo.rindex == jo->fifo.xindex) {
219 jo->fifo.xindex += (rawp->recsize + 15) & ~15;
220 jo->total_acked += (rawp->recsize + 15) & ~15;
223 jo->fifo.rindex += (rawp->recsize + 15) & ~15;
224 jo->total_acked += bytes;
225 KKASSERT(jo->fifo.windex - jo->fifo.rindex >= 0);
226 continue;
230 * 'bytes' is the amount of data that can potentially be written out.
231 * Calculate 'res', the amount of data that can actually be written
232 * out. res is bounded either by hitting the end of the physical
233 * memory buffer or by hitting an incomplete record. Incomplete
234 * records often occur due to the way the space reservation model
235 * works.
237 res = 0;
238 avail = jo->fifo.size - (jo->fifo.rindex & jo->fifo.mask);
239 while (res < bytes && rawp->begmagic == JREC_BEGMAGIC) {
240 res += (rawp->recsize + 15) & ~15;
241 if (res >= avail) {
242 KKASSERT(res == avail);
243 break;
245 rawp = (void *)((char *)rawp + ((rawp->recsize + 15) & ~15));
249 * Issue the write and deal with any errors or other conditions.
250 * For now assume blocking I/O. Since we are record-aware the
251 * code cannot yet handle partial writes.
253 * We bump rindex prior to issuing the write to avoid racing
254 * the acknowledgement coming back (which could prevent the ack
255 * from bumping xindex). Restarts are always based on xindex so
256 * we do not try to undo the rindex if an error occurs.
258 * XXX EWOULDBLOCK/NBIO
259 * XXX notification on failure
260 * XXX permanent verses temporary failures
261 * XXX two-way acknowledgement stream in the return direction / xindex
263 bytes = res;
264 jo->fifo.rindex += bytes;
265 error = fp_write(jo->fp,
266 jo->fifo.membase +
267 ((jo->fifo.rindex - bytes) & jo->fifo.mask),
268 bytes, &res, UIO_SYSSPACE);
269 if (error) {
270 kprintf("journal_thread(%s) write, error %d\n", jo->id, error);
271 /* XXX */
272 } else {
273 KKASSERT(res == bytes);
277 * Advance rindex. If the journal stream is not full duplex we also
278 * advance xindex, otherwise the rjournal thread is responsible for
279 * advancing xindex.
281 if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) {
282 jo->fifo.xindex += bytes;
283 jo->total_acked += bytes;
285 KKASSERT(jo->fifo.windex - jo->fifo.rindex >= 0);
286 if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) {
287 if (jo->flags & MC_JOURNAL_WWAIT) {
288 jo->flags &= ~MC_JOURNAL_WWAIT; /* XXX hysteresis */
289 wakeup(&jo->fifo.windex);
293 fp_shutdown(jo->fp, SHUT_WR);
294 jo->flags &= ~MC_JOURNAL_WACTIVE;
295 wakeup(jo);
296 wakeup(&jo->fifo.windex);
297 rel_mplock();
301 * A second per-journal worker thread is created for two-way journaling
302 * streams to deal with the return acknowledgement stream.
304 static void
305 journal_rthread(void *info)
307 struct journal_rawrecbeg *rawp;
308 struct journal_ackrecord ack;
309 struct journal *jo = info;
310 int64_t transid;
311 int error;
312 size_t count;
313 size_t bytes;
315 transid = 0;
316 error = 0;
318 /* not MPSAFE yet */
319 get_mplock();
321 for (;;) {
323 * We have been asked to stop
325 if (jo->flags & MC_JOURNAL_STOP_REQ)
326 break;
329 * If we have no active transaction id, get one from the return
330 * stream.
332 if (transid == 0) {
333 error = fp_read(jo->fp, &ack, sizeof(ack), &count,
334 1, UIO_SYSSPACE);
335 #if 0
336 kprintf("fp_read ack error %d count %d\n", error, count);
337 #endif
338 if (error || count != sizeof(ack))
339 break;
340 if (error) {
341 kprintf("read error %d on receive stream\n", error);
342 break;
344 if (ack.rbeg.begmagic != JREC_BEGMAGIC ||
345 ack.rend.endmagic != JREC_ENDMAGIC
347 kprintf("bad begmagic or endmagic on receive stream\n");
348 break;
350 transid = ack.rbeg.transid;
354 * Calculate the number of unacknowledged bytes. If there are no
355 * unacknowledged bytes then unsent data was acknowledged, report,
356 * sleep a bit, and loop in that case. This should not happen
357 * normally. The ack record is thrown away.
359 bytes = jo->fifo.rindex - jo->fifo.xindex;
361 if (bytes == 0) {
362 kprintf("warning: unsent data acknowledged transid %08llx\n",
363 (long long)transid);
364 tsleep(&jo->fifo.xindex, 0, "jrseq", hz);
365 transid = 0;
366 continue;
370 * Since rindex has advanced, the record pointed to by xindex
371 * must be a valid record.
373 rawp = (void *)(jo->fifo.membase + (jo->fifo.xindex & jo->fifo.mask));
374 KKASSERT(rawp->begmagic == JREC_BEGMAGIC);
375 KKASSERT(rawp->recsize <= bytes);
378 * The target can acknowledge several records at once.
380 if (rawp->transid < transid) {
381 #if 1
382 kprintf("ackskip %08llx/%08llx\n",
383 (long long)rawp->transid,
384 (long long)transid);
385 #endif
386 jo->fifo.xindex += (rawp->recsize + 15) & ~15;
387 jo->total_acked += (rawp->recsize + 15) & ~15;
388 if (jo->flags & MC_JOURNAL_WWAIT) {
389 jo->flags &= ~MC_JOURNAL_WWAIT; /* XXX hysteresis */
390 wakeup(&jo->fifo.windex);
392 continue;
394 if (rawp->transid == transid) {
395 #if 1
396 kprintf("ackskip %08llx/%08llx\n",
397 (long long)rawp->transid,
398 (long long)transid);
399 #endif
400 jo->fifo.xindex += (rawp->recsize + 15) & ~15;
401 jo->total_acked += (rawp->recsize + 15) & ~15;
402 if (jo->flags & MC_JOURNAL_WWAIT) {
403 jo->flags &= ~MC_JOURNAL_WWAIT; /* XXX hysteresis */
404 wakeup(&jo->fifo.windex);
406 transid = 0;
407 continue;
409 kprintf("warning: unsent data(2) acknowledged transid %08llx\n",
410 (long long)transid);
411 transid = 0;
413 jo->flags &= ~MC_JOURNAL_RACTIVE;
414 wakeup(jo);
415 wakeup(&jo->fifo.windex);
416 rel_mplock();
420 * This builds a pad record which the journaling thread will skip over. Pad
421 * records are required when we are unable to reserve sufficient stream space
422 * due to insufficient space at the end of the physical memory fifo.
424 * Even though the record is not transmitted, a normal transid must be
425 * assigned to it so link recovery operations after a failure work properly.
427 static
428 void
429 journal_build_pad(struct journal_rawrecbeg *rawp, int recsize, int64_t transid)
431 struct journal_rawrecend *rendp;
433 KKASSERT((recsize & 15) == 0 && recsize >= 16);
435 rawp->streamid = JREC_STREAMID_PAD;
436 rawp->recsize = recsize; /* must be 16-byte aligned */
437 rawp->transid = transid;
439 * WARNING, rendp may overlap rawp->transid. This is necessary to
440 * allow PAD records to fit in 16 bytes. Use cpu_ccfence() to
441 * hopefully cause the compiler to not make any assumptions.
443 rendp = (void *)((char *)rawp + rawp->recsize - sizeof(*rendp));
444 rendp->endmagic = JREC_ENDMAGIC;
445 rendp->check = 0;
446 rendp->recsize = rawp->recsize;
449 * Set the begin magic last. This is what will allow the journal
450 * thread to write the record out. Use a store fence to prevent
451 * compiler and cpu reordering of the writes.
453 cpu_sfence();
454 rawp->begmagic = JREC_BEGMAGIC;
458 * Wake up the worker thread if the FIFO is more then half full or if
459 * someone is waiting for space to be freed up. Otherwise let the
460 * heartbeat deal with it. Being able to avoid waking up the worker
461 * is the key to the journal's cpu performance.
463 static __inline
464 void
465 journal_commit_wakeup(struct journal *jo)
467 int avail;
469 avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex);
470 KKASSERT(avail >= 0);
471 if ((avail < (jo->fifo.size >> 1)) || (jo->flags & MC_JOURNAL_WWAIT))
472 wakeup(&jo->fifo);
476 * Create a new BEGIN stream record with the specified streamid and the
477 * specified amount of payload space. *rawpp will be set to point to the
478 * base of the new stream record and a pointer to the base of the payload
479 * space will be returned. *rawpp does not need to be pre-NULLd prior to
480 * making this call. The raw record header will be partially initialized.
482 * A stream can be extended, aborted, or committed by other API calls
483 * below. This may result in a sequence of potentially disconnected
484 * stream records to be output to the journaling target. The first record
485 * (the one created by this function) will be marked JREC_STREAMCTL_BEGIN,
486 * while the last record on commit or abort will be marked JREC_STREAMCTL_END
487 * (and possibly also JREC_STREAMCTL_ABORTED). The last record could wind
488 * up being the same as the first, in which case the bits are all set in
489 * the first record.
491 * The stream record is created in an incomplete state by setting the begin
492 * magic to JREC_INCOMPLETEMAGIC. This prevents the worker thread from
493 * flushing the fifo past our record until we have finished populating it.
494 * Other threads can reserve and operate on their own space without stalling
495 * but the stream output will stall until we have completed operations. The
496 * memory FIFO is intended to be large enough to absorb such situations
497 * without stalling out other threads.
499 static
500 void *
501 journal_reserve(struct journal *jo, struct journal_rawrecbeg **rawpp,
502 int16_t streamid, int bytes)
504 struct journal_rawrecbeg *rawp;
505 int avail;
506 int availtoend;
507 int req;
510 * Add header and trailer overheads to the passed payload. Note that
511 * the passed payload size need not be aligned in any way.
513 bytes += sizeof(struct journal_rawrecbeg);
514 bytes += sizeof(struct journal_rawrecend);
516 for (;;) {
518 * First, check boundary conditions. If the request would wrap around
519 * we have to skip past the ending block and return to the beginning
520 * of the FIFO's buffer. Calculate 'req' which is the actual number
521 * of bytes being reserved, including wrap-around dead space.
523 * Neither 'bytes' or 'req' are aligned.
525 * Note that availtoend is not truncated to avail and so cannot be
526 * used to determine whether the reservation is possible by itself.
527 * Also, since all fifo ops are 16-byte aligned, we can check
528 * the size before calculating the aligned size.
530 availtoend = jo->fifo.size - (jo->fifo.windex & jo->fifo.mask);
531 KKASSERT((availtoend & 15) == 0);
532 if (bytes > availtoend)
533 req = bytes + availtoend; /* add pad to end */
534 else
535 req = bytes;
538 * Next calculate the total available space and see if it is
539 * sufficient. We cannot overwrite previously buffered data
540 * past xindex because otherwise we would not be able to restart
541 * a broken link at the target's last point of commit.
543 avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex);
544 KKASSERT(avail >= 0 && (avail & 15) == 0);
546 if (avail < req) {
547 /* XXX MC_JOURNAL_STOP_IMM */
548 jo->flags |= MC_JOURNAL_WWAIT;
549 ++jo->fifostalls;
550 tsleep(&jo->fifo.windex, 0, "jwrite", 0);
551 continue;
555 * Create a pad record for any dead space and create an incomplete
556 * record for the live space, then return a pointer to the
557 * contiguous buffer space that was requested.
559 * NOTE: The worker thread will not flush past an incomplete
560 * record, so the reserved space can be filled in at-will. The
561 * journaling code must also be aware the reserved sections occuring
562 * after this one will also not be written out even if completed
563 * until this one is completed.
565 * The transaction id must accomodate real and potential pad creation.
567 rawp = (void *)(jo->fifo.membase + (jo->fifo.windex & jo->fifo.mask));
568 if (req != bytes) {
569 journal_build_pad(rawp, availtoend, jo->transid);
570 ++jo->transid;
571 rawp = (void *)jo->fifo.membase;
573 rawp->begmagic = JREC_INCOMPLETEMAGIC; /* updated by abort/commit */
574 rawp->recsize = bytes; /* (unaligned size) */
575 rawp->streamid = streamid | JREC_STREAMCTL_BEGIN;
576 rawp->transid = jo->transid;
577 jo->transid += 2;
580 * Issue a memory barrier to guarentee that the record data has been
581 * properly initialized before we advance the write index and return
582 * a pointer to the reserved record. Otherwise the worker thread
583 * could accidently run past us.
585 * Note that stream records are always 16-byte aligned.
587 cpu_sfence();
588 jo->fifo.windex += (req + 15) & ~15;
589 *rawpp = rawp;
590 return(rawp + 1);
592 /* not reached */
593 *rawpp = NULL;
594 return(NULL);
598 * Attempt to extend the stream record by <bytes> worth of payload space.
600 * If it is possible to extend the existing stream record no truncation
601 * occurs and the record is extended as specified. A pointer to the
602 * truncation offset within the payload space is returned.
604 * If it is not possible to do this the existing stream record is truncated
605 * and committed, and a new stream record of size <bytes> is created. A
606 * pointer to the base of the new stream record's payload space is returned.
608 * *rawpp is set to the new reservation in the case of a new record but
609 * the caller cannot depend on a comparison with the old rawp to determine if
610 * this case occurs because we could end up using the same memory FIFO
611 * offset for the new stream record. Use *newstreamrecp instead.
613 static void *
614 journal_extend(struct journal *jo, struct journal_rawrecbeg **rawpp,
615 int truncbytes, int bytes, int *newstreamrecp)
617 struct journal_rawrecbeg *rawp;
618 int16_t streamid;
619 int availtoend;
620 int avail;
621 int osize;
622 int nsize;
623 int wbase;
624 void *rptr;
626 *newstreamrecp = 0;
627 rawp = *rawpp;
628 osize = (rawp->recsize + 15) & ~15;
629 nsize = (rawp->recsize + bytes + 15) & ~15;
630 wbase = (char *)rawp - jo->fifo.membase;
633 * If the aligned record size does not change we can trivially adjust
634 * the record size.
636 if (nsize == osize) {
637 rawp->recsize += bytes;
638 return((char *)(rawp + 1) + truncbytes);
642 * If the fifo's write index hasn't been modified since we made the
643 * reservation and we do not hit any boundary conditions, we can
644 * trivially make the record smaller or larger.
646 if ((jo->fifo.windex & jo->fifo.mask) == wbase + osize) {
647 availtoend = jo->fifo.size - wbase;
648 avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex) + osize;
649 KKASSERT((availtoend & 15) == 0);
650 KKASSERT((avail & 15) == 0);
651 if (nsize <= avail && nsize <= availtoend) {
652 jo->fifo.windex += nsize - osize;
653 rawp->recsize += bytes;
654 return((char *)(rawp + 1) + truncbytes);
659 * It was not possible to extend the buffer. Commit the current
660 * buffer and create a new one. We manually clear the BEGIN mark that
661 * journal_reserve() creates (because this is a continuing record, not
662 * the start of a new stream).
664 streamid = rawp->streamid & JREC_STREAMID_MASK;
665 journal_commit(jo, rawpp, truncbytes, 0);
666 rptr = journal_reserve(jo, rawpp, streamid, bytes);
667 rawp = *rawpp;
668 rawp->streamid &= ~JREC_STREAMCTL_BEGIN;
669 *newstreamrecp = 1;
670 return(rptr);
674 * Abort a journal record. If the transaction record represents a stream
675 * BEGIN and we can reverse the fifo's write index we can simply reverse
676 * index the entire record, as if it were never reserved in the first place.
678 * Otherwise we set the JREC_STREAMCTL_ABORTED bit and commit the record
679 * with the payload truncated to 0 bytes.
681 static void
682 journal_abort(struct journal *jo, struct journal_rawrecbeg **rawpp)
684 struct journal_rawrecbeg *rawp;
685 int osize;
687 rawp = *rawpp;
688 osize = (rawp->recsize + 15) & ~15;
690 if ((rawp->streamid & JREC_STREAMCTL_BEGIN) &&
691 (jo->fifo.windex & jo->fifo.mask) ==
692 (char *)rawp - jo->fifo.membase + osize)
694 jo->fifo.windex -= osize;
695 *rawpp = NULL;
696 } else {
697 rawp->streamid |= JREC_STREAMCTL_ABORTED;
698 journal_commit(jo, rawpp, 0, 1);
703 * Commit a journal record and potentially truncate it to the specified
704 * number of payload bytes. If you do not want to truncate the record,
705 * simply pass -1 for the bytes parameter. Do not pass rawp->recsize, that
706 * field includes header and trailer and will not be correct. Note that
707 * passing 0 will truncate the entire data payload of the record.
709 * The logical stream is terminated by this function.
711 * If truncation occurs, and it is not possible to physically optimize the
712 * memory FIFO due to other threads having reserved space after ours,
713 * the remaining reserved space will be covered by a pad record.
715 static void
716 journal_commit(struct journal *jo, struct journal_rawrecbeg **rawpp,
717 int bytes, int closeout)
719 struct journal_rawrecbeg *rawp;
720 struct journal_rawrecend *rendp;
721 int osize;
722 int nsize;
724 rawp = *rawpp;
725 *rawpp = NULL;
727 KKASSERT((char *)rawp >= jo->fifo.membase &&
728 (char *)rawp + rawp->recsize <= jo->fifo.membase + jo->fifo.size);
729 KKASSERT(((intptr_t)rawp & 15) == 0);
732 * Truncate the record if necessary. If the FIFO write index as still
733 * at the end of our record we can optimally backindex it. Otherwise
734 * we have to insert a pad record to cover the dead space.
736 * We calculate osize which is the 16-byte-aligned original recsize.
737 * We calculate nsize which is the 16-byte-aligned new recsize.
739 * Due to alignment issues or in case the passed truncation bytes is
740 * the same as the original payload, nsize may be equal to osize even
741 * if the committed bytes is less then the originally reserved bytes.
743 if (bytes >= 0) {
744 KKASSERT(bytes >= 0 && bytes <= rawp->recsize - sizeof(struct journal_rawrecbeg) - sizeof(struct journal_rawrecend));
745 osize = (rawp->recsize + 15) & ~15;
746 rawp->recsize = bytes + sizeof(struct journal_rawrecbeg) +
747 sizeof(struct journal_rawrecend);
748 nsize = (rawp->recsize + 15) & ~15;
749 KKASSERT(nsize <= osize);
750 if (osize == nsize) {
751 /* do nothing */
752 } else if ((jo->fifo.windex & jo->fifo.mask) == (char *)rawp - jo->fifo.membase + osize) {
753 /* we are able to backindex the fifo */
754 jo->fifo.windex -= osize - nsize;
755 } else {
756 /* we cannot backindex the fifo, emplace a pad in the dead space */
757 journal_build_pad((void *)((char *)rawp + nsize), osize - nsize,
758 rawp->transid + 1);
763 * Fill in the trailer. Note that unlike pad records, the trailer will
764 * never overlap the header.
766 rendp = (void *)((char *)rawp +
767 ((rawp->recsize + 15) & ~15) - sizeof(*rendp));
768 rendp->endmagic = JREC_ENDMAGIC;
769 rendp->recsize = rawp->recsize;
770 rendp->check = 0; /* XXX check word, disabled for now */
773 * Fill in begmagic last. This will allow the worker thread to proceed.
774 * Use a memory barrier to guarentee write ordering. Mark the stream
775 * as terminated if closeout is set. This is the typical case.
777 if (closeout)
778 rawp->streamid |= JREC_STREAMCTL_END;
779 cpu_sfence(); /* memory and compiler barrier */
780 rawp->begmagic = JREC_BEGMAGIC;
782 journal_commit_wakeup(jo);
785 /************************************************************************
786 * TRANSACTION SUPPORT ROUTINES *
787 ************************************************************************
789 * JRECORD_*() - routines to create subrecord transactions and embed them
790 * in the logical streams managed by the journal_*() routines.
794 * Initialize the passed jrecord structure and start a new stream transaction
795 * by reserving an initial build space in the journal's memory FIFO.
797 void
798 jrecord_init(struct journal *jo, struct jrecord *jrec, int16_t streamid)
800 bzero(jrec, sizeof(*jrec));
801 jrec->jo = jo;
802 jrec->streamid = streamid;
803 jrec->stream_residual = JREC_DEFAULTSIZE;
804 jrec->stream_reserved = jrec->stream_residual;
805 jrec->stream_ptr =
806 journal_reserve(jo, &jrec->rawp, streamid, jrec->stream_reserved);
810 * Push a recursive record type. All pushes should have matching pops.
811 * The old parent is returned and the newly pushed record becomes the
812 * new parent. Note that the old parent's pointer may already be invalid
813 * or may become invalid if jrecord_write() had to build a new stream
814 * record, so the caller should not mess with the returned pointer in
815 * any way other then to save it.
817 struct journal_subrecord *
818 jrecord_push(struct jrecord *jrec, int16_t rectype)
820 struct journal_subrecord *save;
822 save = jrec->parent;
823 jrec->parent = jrecord_write(jrec, rectype|JMASK_NESTED, 0);
824 jrec->last = NULL;
825 KKASSERT(jrec->parent != NULL);
826 ++jrec->pushcount;
827 ++jrec->pushptrgood; /* cleared on flush */
828 return(save);
832 * Pop a previously pushed sub-transaction. We must set JMASK_LAST
833 * on the last record written within the subtransaction. If the last
834 * record written is not accessible or if the subtransaction is empty,
835 * we must write out a pad record with JMASK_LAST set before popping.
837 * When popping a subtransaction the parent record's recsize field
838 * will be properly set. If the parent pointer is no longer valid
839 * (which can occur if the data has already been flushed out to the
840 * stream), the protocol spec allows us to leave it 0.
842 * The saved parent pointer which we restore may or may not be valid,
843 * and if not valid may or may not be NULL, depending on the value
844 * of pushptrgood.
846 void
847 jrecord_pop(struct jrecord *jrec, struct journal_subrecord *save)
849 struct journal_subrecord *last;
851 KKASSERT(jrec->pushcount > 0);
852 KKASSERT(jrec->residual == 0);
855 * Set JMASK_LAST on the last record we wrote at the current
856 * level. If last is NULL we either no longer have access to the
857 * record or the subtransaction was empty and we must write out a pad
858 * record.
860 if ((last = jrec->last) == NULL) {
861 jrecord_write(jrec, JLEAF_PAD|JMASK_LAST, 0);
862 last = jrec->last; /* reload after possible flush */
863 } else {
864 last->rectype |= JMASK_LAST;
868 * pushptrgood tells us how many levels of parent record pointers
869 * are valid. The jrec only stores the current parent record pointer
870 * (and it is only valid if pushptrgood != 0). The higher level parent
871 * record pointers are saved by the routines calling jrecord_push() and
872 * jrecord_pop(). These pointers may become stale and we determine
873 * that fact by tracking the count of valid parent pointers with
874 * pushptrgood. Pointers become invalid when their related stream
875 * record gets pushed out.
877 * If no pointer is available (the data has already been pushed out),
878 * then no fixup of e.g. the length field is possible for non-leaf
879 * nodes. The protocol allows for this situation by placing a larger
880 * burden on the program scanning the stream on the other end.
882 * [parentA]
883 * [node X]
884 * [parentB]
885 * [node Y]
886 * [node Z]
887 * (pop B) see NOTE B
888 * (pop A) see NOTE A
890 * NOTE B: This pop sets LAST in node Z if the node is still accessible,
891 * else a PAD record is appended and LAST is set in that.
893 * This pop sets the record size in parentB if parentB is still
894 * accessible, else the record size is left 0 (the scanner must
895 * deal with that).
897 * This pop sets the new 'last' record to parentB, the pointer
898 * to which may or may not still be accessible.
900 * NOTE A: This pop sets LAST in parentB if the node is still accessible,
901 * else a PAD record is appended and LAST is set in that.
903 * This pop sets the record size in parentA if parentA is still
904 * accessible, else the record size is left 0 (the scanner must
905 * deal with that).
907 * This pop sets the new 'last' record to parentA, the pointer
908 * to which may or may not still be accessible.
910 * Also note that the last record in the stream transaction, which in
911 * the above example is parentA, does not currently have the LAST bit
912 * set.
914 * The current parent becomes the last record relative to the
915 * saved parent passed into us. It's validity is based on
916 * whether pushptrgood is non-zero prior to decrementing. The saved
917 * parent becomes the new parent, and its validity is based on whether
918 * pushptrgood is non-zero after decrementing.
920 * The old jrec->parent may be NULL if it is no longer accessible.
921 * If pushptrgood is non-zero, however, it is guarenteed to not
922 * be NULL (since no flush occured).
924 jrec->last = jrec->parent;
925 --jrec->pushcount;
926 if (jrec->pushptrgood) {
927 KKASSERT(jrec->last != NULL && last != NULL);
928 if (--jrec->pushptrgood == 0) {
929 jrec->parent = NULL; /* 'save' contains garbage or NULL */
930 } else {
931 KKASSERT(save != NULL);
932 jrec->parent = save; /* 'save' must not be NULL */
936 * Set the record size in the old parent. 'last' still points to
937 * the original last record in the subtransaction being popped,
938 * jrec->last points to the old parent (which became the last
939 * record relative to the new parent being popped into).
941 jrec->last->recsize = (char *)last + last->recsize - (char *)jrec->last;
942 } else {
943 jrec->parent = NULL;
944 KKASSERT(jrec->last == NULL);
949 * Write out a leaf record, including associated data.
951 void
952 jrecord_leaf(struct jrecord *jrec, int16_t rectype, void *ptr, int bytes)
954 jrecord_write(jrec, rectype, bytes);
955 jrecord_data(jrec, ptr, bytes, JDATA_KERN);
958 void
959 jrecord_leaf_uio(struct jrecord *jrec, int16_t rectype,
960 struct uio *uio)
962 struct iovec *iov;
963 int i;
965 for (i = 0; i < uio->uio_iovcnt; ++i) {
966 iov = &uio->uio_iov[i];
967 if (iov->iov_len == 0)
968 continue;
969 if (uio->uio_segflg == UIO_SYSSPACE) {
970 jrecord_write(jrec, rectype, iov->iov_len);
971 jrecord_data(jrec, iov->iov_base, iov->iov_len, JDATA_KERN);
972 } else { /* UIO_USERSPACE */
973 jrecord_write(jrec, rectype, iov->iov_len);
974 jrecord_data(jrec, iov->iov_base, iov->iov_len, JDATA_USER);
979 void
980 jrecord_leaf_xio(struct jrecord *jrec, int16_t rectype, xio_t xio)
982 int bytes = xio->xio_npages * PAGE_SIZE;
984 jrecord_write(jrec, rectype, bytes);
985 jrecord_data(jrec, xio, bytes, JDATA_XIO);
989 * Write a leaf record out and return a pointer to its base. The leaf
990 * record may contain potentially megabytes of data which is supplied
991 * in jrecord_data() calls. The exact amount must be specified in this
992 * call.
994 * THE RETURNED SUBRECORD POINTER IS ONLY VALID IMMEDIATELY AFTER THE
995 * CALL AND MAY BECOME INVALID AT ANY TIME. ONLY THE PUSH/POP CODE SHOULD
996 * USE THE RETURN VALUE.
998 struct journal_subrecord *
999 jrecord_write(struct jrecord *jrec, int16_t rectype, int bytes)
1001 struct journal_subrecord *last;
1002 int pusheditout;
1005 * Try to catch some obvious errors. Nesting records must specify a
1006 * size of 0, and there should be no left-overs from previous operations
1007 * (such as incomplete data writeouts).
1009 KKASSERT(bytes == 0 || (rectype & JMASK_NESTED) == 0);
1010 KKASSERT(jrec->residual == 0);
1013 * Check to see if the current stream record has enough room for
1014 * the new subrecord header. If it doesn't we extend the current
1015 * stream record.
1017 * This may have the side effect of pushing out the current stream record
1018 * and creating a new one. We must adjust our stream tracking fields
1019 * accordingly.
1021 if (jrec->stream_residual < sizeof(struct journal_subrecord)) {
1022 jrec->stream_ptr = journal_extend(jrec->jo, &jrec->rawp,
1023 jrec->stream_reserved - jrec->stream_residual,
1024 JREC_DEFAULTSIZE, &pusheditout);
1025 if (pusheditout) {
1027 * If a pushout occured, the pushed out stream record was
1028 * truncated as specified and the new record is exactly the
1029 * extension size specified.
1031 jrec->stream_reserved = JREC_DEFAULTSIZE;
1032 jrec->stream_residual = JREC_DEFAULTSIZE;
1033 jrec->parent = NULL; /* no longer accessible */
1034 jrec->pushptrgood = 0; /* restored parents in pops no good */
1035 } else {
1037 * If no pushout occured the stream record is NOT truncated and
1038 * IS extended.
1040 jrec->stream_reserved += JREC_DEFAULTSIZE;
1041 jrec->stream_residual += JREC_DEFAULTSIZE;
1044 last = (void *)jrec->stream_ptr;
1045 last->rectype = rectype;
1046 last->reserved = 0;
1049 * We may not know the record size for recursive records and the
1050 * header may become unavailable due to limited FIFO space. Write
1051 * -1 to indicate this special case.
1053 if ((rectype & JMASK_NESTED) && bytes == 0)
1054 last->recsize = -1;
1055 else
1056 last->recsize = sizeof(struct journal_subrecord) + bytes;
1057 jrec->last = last;
1058 jrec->residual = bytes; /* remaining data to be posted */
1059 jrec->residual_align = -bytes & 7; /* post-data alignment required */
1060 jrec->stream_ptr += sizeof(*last); /* current write pointer */
1061 jrec->stream_residual -= sizeof(*last); /* space remaining in stream */
1062 return(last);
1066 * Write out the data associated with a leaf record. Any number of calls
1067 * to this routine may be made as long as the byte count adds up to the
1068 * amount originally specified in jrecord_write().
1070 * The act of writing out the leaf data may result in numerous stream records
1071 * being pushed out. Callers should be aware that even the associated
1072 * subrecord header may become inaccessible due to stream record pushouts.
1074 static void
1075 jrecord_data(struct jrecord *jrec, void *buf, int bytes, int dtype)
1077 int pusheditout;
1078 int extsize;
1079 int xio_offset = 0;
1081 KKASSERT(bytes >= 0 && bytes <= jrec->residual);
1084 * Push out stream records as long as there is insufficient room to hold
1085 * the remaining data.
1087 while (jrec->stream_residual < bytes) {
1089 * Fill in any remaining space in the current stream record.
1091 switch (dtype) {
1092 case JDATA_KERN:
1093 bcopy(buf, jrec->stream_ptr, jrec->stream_residual);
1094 break;
1095 case JDATA_USER:
1096 copyin(buf, jrec->stream_ptr, jrec->stream_residual);
1097 break;
1098 case JDATA_XIO:
1099 xio_copy_xtok((xio_t)buf, xio_offset, jrec->stream_ptr,
1100 jrec->stream_residual);
1101 xio_offset += jrec->stream_residual;
1102 break;
1104 if (dtype != JDATA_XIO)
1105 buf = (char *)buf + jrec->stream_residual;
1106 bytes -= jrec->stream_residual;
1107 /*jrec->stream_ptr += jrec->stream_residual;*/
1108 jrec->residual -= jrec->stream_residual;
1109 jrec->stream_residual = 0;
1112 * Try to extend the current stream record, but no more then 1/4
1113 * the size of the FIFO.
1115 extsize = jrec->jo->fifo.size >> 2;
1116 if (extsize > bytes)
1117 extsize = (bytes + 15) & ~15;
1119 jrec->stream_ptr = journal_extend(jrec->jo, &jrec->rawp,
1120 jrec->stream_reserved - jrec->stream_residual,
1121 extsize, &pusheditout);
1122 if (pusheditout) {
1123 jrec->stream_reserved = extsize;
1124 jrec->stream_residual = extsize;
1125 jrec->parent = NULL; /* no longer accessible */
1126 jrec->last = NULL; /* no longer accessible */
1127 jrec->pushptrgood = 0; /* restored parents in pops no good */
1128 } else {
1129 jrec->stream_reserved += extsize;
1130 jrec->stream_residual += extsize;
1135 * Push out any remaining bytes into the current stream record.
1137 if (bytes) {
1138 switch (dtype) {
1139 case JDATA_KERN:
1140 bcopy(buf, jrec->stream_ptr, bytes);
1141 break;
1142 case JDATA_USER:
1143 copyin(buf, jrec->stream_ptr, bytes);
1144 break;
1145 case JDATA_XIO:
1146 xio_copy_xtok((xio_t)buf, xio_offset, jrec->stream_ptr, bytes);
1147 break;
1149 jrec->stream_ptr += bytes;
1150 jrec->stream_residual -= bytes;
1151 jrec->residual -= bytes;
1155 * Handle data alignment requirements for the subrecord. Because the
1156 * stream record's data space is more strictly aligned, it must already
1157 * have sufficient space to hold any subrecord alignment slop.
1159 if (jrec->residual == 0 && jrec->residual_align) {
1160 KKASSERT(jrec->residual_align <= jrec->stream_residual);
1161 bzero(jrec->stream_ptr, jrec->residual_align);
1162 jrec->stream_ptr += jrec->residual_align;
1163 jrec->stream_residual -= jrec->residual_align;
1164 jrec->residual_align = 0;
1169 * We are finished with the transaction. This closes the transaction created
1170 * by jrecord_init().
1172 * NOTE: If abortit is not set then we must be at the top level with no
1173 * residual subrecord data left to output.
1175 * If abortit is set then we can be in any state, all pushes will be
1176 * popped and it is ok for there to be residual data. This works
1177 * because the virtual stream itself is truncated. Scanners must deal
1178 * with this situation.
1180 * The stream record will be committed or aborted as specified and jrecord
1181 * resources will be cleaned up.
1183 void
1184 jrecord_done(struct jrecord *jrec, int abortit)
1186 KKASSERT(jrec->rawp != NULL);
1188 if (abortit) {
1189 journal_abort(jrec->jo, &jrec->rawp);
1190 } else {
1191 KKASSERT(jrec->pushcount == 0 && jrec->residual == 0);
1192 journal_commit(jrec->jo, &jrec->rawp,
1193 jrec->stream_reserved - jrec->stream_residual, 1);
1197 * jrec should not be used beyond this point without another init,
1198 * but clean up some fields to ensure that we panic if it is.
1200 * Note that jrec->rawp is NULLd out by journal_abort/journal_commit.
1202 jrec->jo = NULL;
1203 jrec->stream_ptr = NULL;
1206 /************************************************************************
1207 * LOW LEVEL RECORD SUPPORT ROUTINES *
1208 ************************************************************************
1210 * These routine create low level recursive and leaf subrecords representing
1211 * common filesystem structures.
1215 * Write out a filename path relative to the base of the mount point.
1216 * rectype is typically JLEAF_PATH{1,2,3,4}.
1218 void
1219 jrecord_write_path(struct jrecord *jrec, int16_t rectype, struct namecache *ncp)
1221 char buf[64]; /* local buffer if it fits, else malloced */
1222 char *base;
1223 int pathlen;
1224 int index;
1225 struct namecache *scan;
1228 * Pass 1 - figure out the number of bytes required. Include terminating
1229 * \0 on last element and '/' separator on other elements.
1231 * The namecache topology terminates at the root of the filesystem
1232 * (the normal lookup code would then continue by using the mount
1233 * structure to figure out what it was mounted on).
1235 again:
1236 pathlen = 0;
1237 for (scan = ncp; scan; scan = scan->nc_parent) {
1238 if (scan->nc_nlen > 0)
1239 pathlen += scan->nc_nlen + 1;
1242 if (pathlen <= sizeof(buf))
1243 base = buf;
1244 else
1245 base = kmalloc(pathlen, M_TEMP, M_INTWAIT);
1248 * Pass 2 - generate the path buffer
1250 index = pathlen;
1251 for (scan = ncp; scan; scan = scan->nc_parent) {
1252 if (scan->nc_nlen == 0)
1253 continue;
1254 if (scan->nc_nlen >= index) {
1255 if (base != buf)
1256 kfree(base, M_TEMP);
1257 goto again;
1259 if (index == pathlen)
1260 base[--index] = 0;
1261 else
1262 base[--index] = '/';
1263 index -= scan->nc_nlen;
1264 bcopy(scan->nc_name, base + index, scan->nc_nlen);
1266 jrecord_leaf(jrec, rectype, base + index, pathlen - index);
1267 if (base != buf)
1268 kfree(base, M_TEMP);
1272 * Write out a file attribute structure. While somewhat inefficient, using
1273 * a recursive data structure is the most portable and extensible way.
1275 void
1276 jrecord_write_vattr(struct jrecord *jrec, struct vattr *vat)
1278 void *save;
1280 save = jrecord_push(jrec, JTYPE_VATTR);
1281 if (vat->va_type != VNON)
1282 jrecord_leaf(jrec, JLEAF_VTYPE, &vat->va_type, sizeof(vat->va_type));
1283 if (vat->va_mode != (mode_t)VNOVAL)
1284 jrecord_leaf(jrec, JLEAF_MODES, &vat->va_mode, sizeof(vat->va_mode));
1285 if (vat->va_nlink != VNOVAL)
1286 jrecord_leaf(jrec, JLEAF_NLINK, &vat->va_nlink, sizeof(vat->va_nlink));
1287 if (vat->va_uid != VNOVAL)
1288 jrecord_leaf(jrec, JLEAF_UID, &vat->va_uid, sizeof(vat->va_uid));
1289 if (vat->va_gid != VNOVAL)
1290 jrecord_leaf(jrec, JLEAF_GID, &vat->va_gid, sizeof(vat->va_gid));
1291 if (vat->va_fsid != VNOVAL)
1292 jrecord_leaf(jrec, JLEAF_FSID, &vat->va_fsid, sizeof(vat->va_fsid));
1293 if (vat->va_fileid != VNOVAL)
1294 jrecord_leaf(jrec, JLEAF_INUM, &vat->va_fileid, sizeof(vat->va_fileid));
1295 if (vat->va_size != VNOVAL)
1296 jrecord_leaf(jrec, JLEAF_SIZE, &vat->va_size, sizeof(vat->va_size));
1297 if (vat->va_atime.tv_sec != VNOVAL)
1298 jrecord_leaf(jrec, JLEAF_ATIME, &vat->va_atime, sizeof(vat->va_atime));
1299 if (vat->va_mtime.tv_sec != VNOVAL)
1300 jrecord_leaf(jrec, JLEAF_MTIME, &vat->va_mtime, sizeof(vat->va_mtime));
1301 if (vat->va_ctime.tv_sec != VNOVAL)
1302 jrecord_leaf(jrec, JLEAF_CTIME, &vat->va_ctime, sizeof(vat->va_ctime));
1303 if (vat->va_gen != VNOVAL)
1304 jrecord_leaf(jrec, JLEAF_GEN, &vat->va_gen, sizeof(vat->va_gen));
1305 if (vat->va_flags != VNOVAL)
1306 jrecord_leaf(jrec, JLEAF_FLAGS, &vat->va_flags, sizeof(vat->va_flags));
1307 if (vat->va_rmajor != VNOVAL) {
1308 udev_t rdev = makeudev(vat->va_rmajor, vat->va_rminor);
1309 jrecord_leaf(jrec, JLEAF_UDEV, &rdev, sizeof(rdev));
1310 jrecord_leaf(jrec, JLEAF_UMAJOR, &vat->va_rmajor, sizeof(vat->va_rmajor));
1311 jrecord_leaf(jrec, JLEAF_UMINOR, &vat->va_rminor, sizeof(vat->va_rminor));
1313 #if 0
1314 if (vat->va_filerev != VNOVAL)
1315 jrecord_leaf(jrec, JLEAF_FILEREV, &vat->va_filerev, sizeof(vat->va_filerev));
1316 #endif
1317 jrecord_pop(jrec, save);
1321 * Write out the creds used to issue a file operation. If a process is
1322 * available write out additional tracking information related to the
1323 * process.
1325 * XXX additional tracking info
1326 * XXX tty line info
1328 void
1329 jrecord_write_cred(struct jrecord *jrec, struct thread *td, struct ucred *cred)
1331 void *save;
1332 struct proc *p;
1334 save = jrecord_push(jrec, JTYPE_CRED);
1335 jrecord_leaf(jrec, JLEAF_UID, &cred->cr_uid, sizeof(cred->cr_uid));
1336 jrecord_leaf(jrec, JLEAF_GID, &cred->cr_gid, sizeof(cred->cr_gid));
1337 if (td && (p = td->td_proc) != NULL) {
1338 jrecord_leaf(jrec, JLEAF_PID, &p->p_pid, sizeof(p->p_pid));
1339 jrecord_leaf(jrec, JLEAF_COMM, p->p_comm, sizeof(p->p_comm));
1341 jrecord_pop(jrec, save);
1345 * Write out information required to identify a vnode
1347 * XXX this needs work. We should write out the inode number as well,
1348 * and in fact avoid writing out the file path for seqential writes
1349 * occuring within e.g. a certain period of time.
1351 void
1352 jrecord_write_vnode_ref(struct jrecord *jrec, struct vnode *vp)
1354 struct nchandle nch;
1356 nch.mount = vp->v_mount;
1357 spin_lock(&vp->v_spin);
1358 TAILQ_FOREACH(nch.ncp, &vp->v_namecache, nc_vnode) {
1359 if ((nch.ncp->nc_flag & (NCF_UNRESOLVED|NCF_DESTROYED)) == 0)
1360 break;
1362 if (nch.ncp) {
1363 cache_hold(&nch);
1364 spin_unlock(&vp->v_spin);
1365 jrecord_write_path(jrec, JLEAF_PATH_REF, nch.ncp);
1366 cache_drop(&nch);
1367 } else {
1368 spin_unlock(&vp->v_spin);
1372 void
1373 jrecord_write_vnode_link(struct jrecord *jrec, struct vnode *vp,
1374 struct namecache *notncp)
1376 struct nchandle nch;
1378 nch.mount = vp->v_mount;
1379 spin_lock(&vp->v_spin);
1380 TAILQ_FOREACH(nch.ncp, &vp->v_namecache, nc_vnode) {
1381 if (nch.ncp == notncp)
1382 continue;
1383 if ((nch.ncp->nc_flag & (NCF_UNRESOLVED|NCF_DESTROYED)) == 0)
1384 break;
1386 if (nch.ncp) {
1387 cache_hold(&nch);
1388 spin_unlock(&vp->v_spin);
1389 jrecord_write_path(jrec, JLEAF_PATH_REF, nch.ncp);
1390 cache_drop(&nch);
1391 } else {
1392 spin_unlock(&vp->v_spin);
1397 * Write out the data represented by a pagelist
1399 void
1400 jrecord_write_pagelist(struct jrecord *jrec, int16_t rectype,
1401 struct vm_page **pglist, int *rtvals, int pgcount,
1402 off_t offset)
1404 struct xio xio;
1405 int error;
1406 int b;
1407 int i;
1409 i = 0;
1410 xio_init(&xio);
1411 while (i < pgcount) {
1413 * Find the next valid section. Skip any invalid elements
1415 if (rtvals[i] != VM_PAGER_OK) {
1416 ++i;
1417 offset += PAGE_SIZE;
1418 continue;
1422 * Figure out how big the valid section is, capping I/O at what the
1423 * MSFBUF can represent.
1425 b = i;
1426 while (i < pgcount && i - b != XIO_INTERNAL_PAGES &&
1427 rtvals[i] == VM_PAGER_OK
1429 ++i;
1433 * And write it out.
1435 if (i - b) {
1436 error = xio_init_pages(&xio, pglist + b, i - b, XIOF_READ);
1437 if (error == 0) {
1438 jrecord_leaf(jrec, JLEAF_SEEKPOS, &offset, sizeof(offset));
1439 jrecord_leaf_xio(jrec, rectype, &xio);
1440 } else {
1441 kprintf("jrecord_write_pagelist: xio init failure\n");
1443 xio_release(&xio);
1444 offset += (off_t)(i - b) << PAGE_SHIFT;
1450 * Write out the data represented by a UIO.
1452 void
1453 jrecord_write_uio(struct jrecord *jrec, int16_t rectype, struct uio *uio)
1455 if (uio->uio_segflg != UIO_NOCOPY) {
1456 jrecord_leaf(jrec, JLEAF_SEEKPOS, &uio->uio_offset,
1457 sizeof(uio->uio_offset));
1458 jrecord_leaf_uio(jrec, rectype, uio);
1462 void
1463 jrecord_file_data(struct jrecord *jrec, struct vnode *vp,
1464 off_t off, off_t bytes)
1466 const int bufsize = 8192;
1467 char *buf;
1468 int error;
1469 int n;
1471 buf = kmalloc(bufsize, M_JOURNAL, M_WAITOK);
1472 jrecord_leaf(jrec, JLEAF_SEEKPOS, &off, sizeof(off));
1473 while (bytes) {
1474 n = (bytes > bufsize) ? bufsize : (int)bytes;
1475 error = vn_rdwr(UIO_READ, vp, buf, n, off, UIO_SYSSPACE, IO_NODELOCKED,
1476 proc0.p_ucred, NULL);
1477 if (error) {
1478 jrecord_leaf(jrec, JLEAF_ERROR, &error, sizeof(error));
1479 break;
1481 jrecord_leaf(jrec, JLEAF_FILEDATA, buf, n);
1482 bytes -= n;
1483 off += n;
1485 kfree(buf, M_JOURNAL);