kernel - Fix excessive call stack depth on stuck interrupt
[dragonfly.git] / sys / kern / vfs_cache.c
blob624563b78f52a7d5ac58e04b9fead6c714a93f0b
1 /*
2 * Copyright (c) 2003,2004,2009 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1989, 1993, 1995
35 * The Regents of the University of California. All rights reserved.
37 * This code is derived from software contributed to Berkeley by
38 * Poul-Henning Kamp of the FreeBSD Project.
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. Neither the name of the University nor the names of its contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/kernel.h>
68 #include <sys/sysctl.h>
69 #include <sys/mount.h>
70 #include <sys/vnode.h>
71 #include <sys/malloc.h>
72 #include <sys/sysproto.h>
73 #include <sys/spinlock.h>
74 #include <sys/proc.h>
75 #include <sys/namei.h>
76 #include <sys/nlookup.h>
77 #include <sys/filedesc.h>
78 #include <sys/fnv_hash.h>
79 #include <sys/globaldata.h>
80 #include <sys/kern_syscall.h>
81 #include <sys/dirent.h>
82 #include <ddb/ddb.h>
84 #include <sys/sysref2.h>
85 #include <sys/spinlock2.h>
87 #define MAX_RECURSION_DEPTH 64
90 * Random lookups in the cache are accomplished with a hash table using
91 * a hash key of (nc_src_vp, name). Each hash chain has its own spin lock.
93 * Negative entries may exist and correspond to resolved namecache
94 * structures where nc_vp is NULL. In a negative entry, NCF_WHITEOUT
95 * will be set if the entry corresponds to a whited-out directory entry
96 * (verses simply not finding the entry at all). ncneglist is locked
97 * with a global spinlock (ncspin).
99 * MPSAFE RULES:
101 * (1) A ncp must be referenced before it can be locked.
103 * (2) A ncp must be locked in order to modify it.
105 * (3) ncp locks are always ordered child -> parent. That may seem
106 * backwards but forward scans use the hash table and thus can hold
107 * the parent unlocked when traversing downward.
109 * This allows insert/rename/delete/dot-dot and other operations
110 * to use ncp->nc_parent links.
112 * This also prevents a locked up e.g. NFS node from creating a
113 * chain reaction all the way back to the root vnode / namecache.
115 * (4) parent linkages require both the parent and child to be locked.
119 * Structures associated with name cacheing.
121 #define NCHHASH(hash) (&nchashtbl[(hash) & nchash])
122 #define MINNEG 1024
123 #define MINPOS 1024
124 #define NCMOUNT_NUMCACHE 1009 /* prime number */
126 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
128 LIST_HEAD(nchash_list, namecache);
131 * Don't cachealign, but at least pad to 32 bytes so entries
132 * don't cross a cache line.
134 struct nchash_head {
135 struct nchash_list list; /* 16 bytes */
136 struct spinlock spin; /* 8 bytes */
137 long pad01; /* 8 bytes */
140 struct ncmount_cache {
141 struct spinlock spin;
142 struct namecache *ncp;
143 struct mount *mp;
144 int isneg; /* if != 0 mp is originator and not target */
147 static struct nchash_head *nchashtbl;
148 static struct namecache_list ncneglist;
149 static struct spinlock ncspin;
150 static struct ncmount_cache ncmount_cache[NCMOUNT_NUMCACHE];
153 * ncvp_debug - debug cache_fromvp(). This is used by the NFS server
154 * to create the namecache infrastructure leading to a dangling vnode.
156 * 0 Only errors are reported
157 * 1 Successes are reported
158 * 2 Successes + the whole directory scan is reported
159 * 3 Force the directory scan code run as if the parent vnode did not
160 * have a namecache record, even if it does have one.
162 static int ncvp_debug;
163 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0,
164 "Namecache debug level (0-3)");
166 static u_long nchash; /* size of hash table */
167 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
168 "Size of namecache hash table");
170 static int ncnegflush = 10; /* burst for negative flush */
171 SYSCTL_INT(_debug, OID_AUTO, ncnegflush, CTLFLAG_RW, &ncnegflush, 0,
172 "Batch flush negative entries");
174 static int ncposflush = 10; /* burst for positive flush */
175 SYSCTL_INT(_debug, OID_AUTO, ncposflush, CTLFLAG_RW, &ncposflush, 0,
176 "Batch flush positive entries");
178 static int ncnegfactor = 16; /* ratio of negative entries */
179 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0,
180 "Ratio of namecache negative entries");
182 static int nclockwarn; /* warn on locked entries in ticks */
183 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0,
184 "Warn on locked namecache entries in ticks");
186 static int numdefered; /* number of cache entries allocated */
187 SYSCTL_INT(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0,
188 "Number of cache entries allocated");
190 static int ncposlimit; /* number of cache entries allocated */
191 SYSCTL_INT(_debug, OID_AUTO, ncposlimit, CTLFLAG_RW, &ncposlimit, 0,
192 "Number of cache entries allocated");
194 static int ncp_shared_lock_disable = 0;
195 SYSCTL_INT(_debug, OID_AUTO, ncp_shared_lock_disable, CTLFLAG_RW,
196 &ncp_shared_lock_disable, 0, "Disable shared namecache locks");
198 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode),
199 "sizeof(struct vnode)");
200 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache),
201 "sizeof(struct namecache)");
203 static int ncmount_cache_enable = 1;
204 SYSCTL_INT(_debug, OID_AUTO, ncmount_cache_enable, CTLFLAG_RW,
205 &ncmount_cache_enable, 0, "mount point cache");
206 static long ncmount_cache_hit;
207 SYSCTL_LONG(_debug, OID_AUTO, ncmount_cache_hit, CTLFLAG_RW,
208 &ncmount_cache_hit, 0, "mpcache hits");
209 static long ncmount_cache_miss;
210 SYSCTL_LONG(_debug, OID_AUTO, ncmount_cache_miss, CTLFLAG_RW,
211 &ncmount_cache_miss, 0, "mpcache misses");
212 static long ncmount_cache_overwrite;
213 SYSCTL_LONG(_debug, OID_AUTO, ncmount_cache_overwrite, CTLFLAG_RW,
214 &ncmount_cache_overwrite, 0, "mpcache entry overwrites");
216 static __inline void _cache_drop(struct namecache *ncp);
217 static int cache_resolve_mp(struct mount *mp);
218 static struct vnode *cache_dvpref(struct namecache *ncp);
219 static void _cache_lock(struct namecache *ncp);
220 static void _cache_setunresolved(struct namecache *ncp);
221 static void _cache_cleanneg(int count);
222 static void _cache_cleanpos(int count);
223 static void _cache_cleandefered(void);
224 static void _cache_unlink(struct namecache *ncp);
227 * The new name cache statistics
229 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
230 static int numneg;
231 SYSCTL_INT(_vfs_cache, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0,
232 "Number of negative namecache entries");
233 static int numcache;
234 SYSCTL_INT(_vfs_cache, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0,
235 "Number of namecaches entries");
237 struct nchstats nchstats[SMP_MAXCPU];
239 * Export VFS cache effectiveness statistics to user-land.
241 * The statistics are left for aggregation to user-land so
242 * neat things can be achieved, like observing per-CPU cache
243 * distribution.
245 static int
246 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
248 struct globaldata *gd;
249 int i, error;
251 error = 0;
252 for (i = 0; i < ncpus; ++i) {
253 gd = globaldata_find(i);
254 if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
255 sizeof(struct nchstats))))
256 break;
259 return (error);
261 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
262 0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
264 static struct namecache *cache_zap(struct namecache *ncp, int nonblock);
267 * Cache mount points and namecache records in order to avoid unnecessary
268 * atomic ops on mnt_refs and ncp->refs. This improves concurrent SMP
269 * performance and is particularly important on multi-socket systems to
270 * reduce cache-line ping-ponging.
272 * Try to keep the pcpu structure within one cache line (~64 bytes).
274 #define MNTCACHE_COUNT 5
276 struct mntcache {
277 struct mount *mntary[MNTCACHE_COUNT];
278 struct namecache *ncp1;
279 struct namecache *ncp2;
280 struct nchandle ncdir;
281 int iter;
282 int unused01;
283 } __cachealign;
285 static struct mntcache pcpu_mntcache[MAXCPU];
287 static
288 void
289 _cache_mntref(struct mount *mp)
291 struct mntcache *cache = &pcpu_mntcache[mycpu->gd_cpuid];
292 int i;
294 for (i = 0; i < MNTCACHE_COUNT; ++i) {
295 if (cache->mntary[i] != mp)
296 continue;
297 if (atomic_cmpset_ptr((void *)&cache->mntary[i], mp, NULL))
298 return;
300 atomic_add_int(&mp->mnt_refs, 1);
303 static
304 void
305 _cache_mntrel(struct mount *mp)
307 struct mntcache *cache = &pcpu_mntcache[mycpu->gd_cpuid];
308 int i;
310 for (i = 0; i < MNTCACHE_COUNT; ++i) {
311 if (cache->mntary[i] == NULL) {
312 mp = atomic_swap_ptr((void *)&cache->mntary[i], mp);
313 if (mp == NULL)
314 return;
317 i = (int)((uint32_t)++cache->iter % (uint32_t)MNTCACHE_COUNT);
318 mp = atomic_swap_ptr((void *)&cache->mntary[i], mp);
319 if (mp)
320 atomic_add_int(&mp->mnt_refs, -1);
324 * Clears all cached mount points on all cpus. This routine should only
325 * be called when we are waiting for a mount to clear, e.g. so we can
326 * unmount.
328 void
329 cache_clearmntcache(void)
331 int n;
333 for (n = 0; n < ncpus; ++n) {
334 struct mntcache *cache = &pcpu_mntcache[n];
335 struct namecache *ncp;
336 struct mount *mp;
337 int i;
339 for (i = 0; i < MNTCACHE_COUNT; ++i) {
340 if (cache->mntary[i]) {
341 mp = atomic_swap_ptr(
342 (void *)&cache->mntary[i], NULL);
343 if (mp)
344 atomic_add_int(&mp->mnt_refs, -1);
347 if (cache->ncp1) {
348 ncp = atomic_swap_ptr((void *)&cache->ncp1, NULL);
349 if (ncp)
350 _cache_drop(ncp);
352 if (cache->ncp2) {
353 ncp = atomic_swap_ptr((void *)&cache->ncp2, NULL);
354 if (ncp)
355 _cache_drop(ncp);
357 if (cache->ncdir.ncp) {
358 ncp = atomic_swap_ptr((void *)&cache->ncdir.ncp, NULL);
359 if (ncp)
360 _cache_drop(ncp);
362 if (cache->ncdir.mount) {
363 mp = atomic_swap_ptr((void *)&cache->ncdir.mount, NULL);
364 if (mp)
365 atomic_add_int(&mp->mnt_refs, -1);
372 * Namespace locking. The caller must already hold a reference to the
373 * namecache structure in order to lock/unlock it. This function prevents
374 * the namespace from being created or destroyed by accessors other then
375 * the lock holder.
377 * Note that holding a locked namecache structure prevents other threads
378 * from making namespace changes (e.g. deleting or creating), prevents
379 * vnode association state changes by other threads, and prevents the
380 * namecache entry from being resolved or unresolved by other threads.
382 * An exclusive lock owner has full authority to associate/disassociate
383 * vnodes and resolve/unresolve the locked ncp.
385 * A shared lock owner only has authority to acquire the underlying vnode,
386 * if any.
388 * The primary lock field is nc_lockstatus. nc_locktd is set after the
389 * fact (when locking) or cleared prior to unlocking.
391 * WARNING! Holding a locked ncp will prevent a vnode from being destroyed
392 * or recycled, but it does NOT help you if the vnode had already
393 * initiated a recyclement. If this is important, use cache_get()
394 * rather then cache_lock() (and deal with the differences in the
395 * way the refs counter is handled). Or, alternatively, make an
396 * unconditional call to cache_validate() or cache_resolve()
397 * after cache_lock() returns.
399 static
400 void
401 _cache_lock(struct namecache *ncp)
403 thread_t td;
404 int didwarn;
405 int begticks;
406 int error;
407 u_int count;
409 KKASSERT(ncp->nc_refs != 0);
410 didwarn = 0;
411 begticks = 0;
412 td = curthread;
414 for (;;) {
415 count = ncp->nc_lockstatus;
416 cpu_ccfence();
418 if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 0) {
419 if (atomic_cmpset_int(&ncp->nc_lockstatus,
420 count, count + 1)) {
422 * The vp associated with a locked ncp must
423 * be held to prevent it from being recycled.
425 * WARNING! If VRECLAIMED is set the vnode
426 * could already be in the middle of a recycle.
427 * Callers must use cache_vref() or
428 * cache_vget() on the locked ncp to
429 * validate the vp or set the cache entry
430 * to unresolved.
432 * NOTE! vhold() is allowed if we hold a
433 * lock on the ncp (which we do).
435 ncp->nc_locktd = td;
436 if (ncp->nc_vp)
437 vhold(ncp->nc_vp);
438 break;
440 /* cmpset failed */
441 continue;
443 if (ncp->nc_locktd == td) {
444 KKASSERT((count & NC_SHLOCK_FLAG) == 0);
445 if (atomic_cmpset_int(&ncp->nc_lockstatus,
446 count, count + 1)) {
447 break;
449 /* cmpset failed */
450 continue;
452 tsleep_interlock(&ncp->nc_locktd, 0);
453 if (atomic_cmpset_int(&ncp->nc_lockstatus, count,
454 count | NC_EXLOCK_REQ) == 0) {
455 /* cmpset failed */
456 continue;
458 if (begticks == 0)
459 begticks = ticks;
460 error = tsleep(&ncp->nc_locktd, PINTERLOCKED,
461 "clock", nclockwarn);
462 if (error == EWOULDBLOCK) {
463 if (didwarn == 0) {
464 didwarn = ticks;
465 kprintf("[diagnostic] cache_lock: "
466 "%s blocked on %p %08x",
467 td->td_comm, ncp, count);
468 kprintf(" \"%*.*s\"\n",
469 ncp->nc_nlen, ncp->nc_nlen,
470 ncp->nc_name);
473 /* loop */
475 if (didwarn) {
476 kprintf("[diagnostic] cache_lock: %s unblocked %*.*s after "
477 "%d secs\n",
478 td->td_comm,
479 ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
480 (int)(ticks + (hz / 2) - begticks) / hz);
485 * The shared lock works similarly to the exclusive lock except
486 * nc_locktd is left NULL and we need an interlock (VHOLD) to
487 * prevent vhold() races, since the moment our cmpset_int succeeds
488 * another cpu can come in and get its own shared lock.
490 * A critical section is needed to prevent interruption during the
491 * VHOLD interlock.
493 static
494 void
495 _cache_lock_shared(struct namecache *ncp)
497 int didwarn;
498 int error;
499 u_int count;
500 u_int optreq = NC_EXLOCK_REQ;
502 KKASSERT(ncp->nc_refs != 0);
503 didwarn = 0;
505 for (;;) {
506 count = ncp->nc_lockstatus;
507 cpu_ccfence();
509 if ((count & ~NC_SHLOCK_REQ) == 0) {
510 crit_enter();
511 if (atomic_cmpset_int(&ncp->nc_lockstatus,
512 count,
513 (count + 1) | NC_SHLOCK_FLAG |
514 NC_SHLOCK_VHOLD)) {
516 * The vp associated with a locked ncp must
517 * be held to prevent it from being recycled.
519 * WARNING! If VRECLAIMED is set the vnode
520 * could already be in the middle of a recycle.
521 * Callers must use cache_vref() or
522 * cache_vget() on the locked ncp to
523 * validate the vp or set the cache entry
524 * to unresolved.
526 * NOTE! vhold() is allowed if we hold a
527 * lock on the ncp (which we do).
529 if (ncp->nc_vp)
530 vhold(ncp->nc_vp);
531 atomic_clear_int(&ncp->nc_lockstatus,
532 NC_SHLOCK_VHOLD);
533 crit_exit();
534 break;
536 /* cmpset failed */
537 crit_exit();
538 continue;
542 * If already held shared we can just bump the count, but
543 * only allow this if nobody is trying to get the lock
544 * exclusively. If we are blocking too long ignore excl
545 * requests (which can race/deadlock us).
547 * VHOLD is a bit of a hack. Even though we successfully
548 * added another shared ref, the cpu that got the first
549 * shared ref might not yet have held the vnode.
551 if ((count & (optreq|NC_SHLOCK_FLAG)) == NC_SHLOCK_FLAG) {
552 KKASSERT((count & ~(NC_EXLOCK_REQ |
553 NC_SHLOCK_REQ |
554 NC_SHLOCK_FLAG)) > 0);
555 if (atomic_cmpset_int(&ncp->nc_lockstatus,
556 count, count + 1)) {
557 while (ncp->nc_lockstatus & NC_SHLOCK_VHOLD)
558 cpu_pause();
559 break;
561 continue;
563 tsleep_interlock(ncp, 0);
564 if (atomic_cmpset_int(&ncp->nc_lockstatus, count,
565 count | NC_SHLOCK_REQ) == 0) {
566 /* cmpset failed */
567 continue;
569 error = tsleep(ncp, PINTERLOCKED, "clocksh", nclockwarn);
570 if (error == EWOULDBLOCK) {
571 optreq = 0;
572 if (didwarn == 0) {
573 didwarn = ticks - nclockwarn;
574 kprintf("[diagnostic] cache_lock_shared: "
575 "%s blocked on %p %08x",
576 curthread->td_comm, ncp, count);
577 kprintf(" \"%*.*s\"\n",
578 ncp->nc_nlen, ncp->nc_nlen,
579 ncp->nc_name);
582 /* loop */
584 if (didwarn) {
585 kprintf("[diagnostic] cache_lock_shared: "
586 "%s unblocked %*.*s after %d secs\n",
587 curthread->td_comm,
588 ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
589 (int)(ticks - didwarn) / hz);
594 * Lock ncp exclusively, return 0 on success.
596 * NOTE: nc_refs may be zero if the ncp is interlocked by circumstance,
597 * such as the case where one of its children is locked.
599 static
601 _cache_lock_nonblock(struct namecache *ncp)
603 thread_t td;
604 u_int count;
606 td = curthread;
608 for (;;) {
609 count = ncp->nc_lockstatus;
611 if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 0) {
612 if (atomic_cmpset_int(&ncp->nc_lockstatus,
613 count, count + 1)) {
615 * The vp associated with a locked ncp must
616 * be held to prevent it from being recycled.
618 * WARNING! If VRECLAIMED is set the vnode
619 * could already be in the middle of a recycle.
620 * Callers must use cache_vref() or
621 * cache_vget() on the locked ncp to
622 * validate the vp or set the cache entry
623 * to unresolved.
625 * NOTE! vhold() is allowed if we hold a
626 * lock on the ncp (which we do).
628 ncp->nc_locktd = td;
629 if (ncp->nc_vp)
630 vhold(ncp->nc_vp);
631 break;
633 /* cmpset failed */
634 continue;
636 if (ncp->nc_locktd == td) {
637 if (atomic_cmpset_int(&ncp->nc_lockstatus,
638 count, count + 1)) {
639 break;
641 /* cmpset failed */
642 continue;
644 return(EWOULDBLOCK);
646 return(0);
650 * The shared lock works similarly to the exclusive lock except
651 * nc_locktd is left NULL and we need an interlock (VHOLD) to
652 * prevent vhold() races, since the moment our cmpset_int succeeds
653 * another cpu can come in and get its own shared lock.
655 * A critical section is needed to prevent interruption during the
656 * VHOLD interlock.
658 static
660 _cache_lock_shared_nonblock(struct namecache *ncp)
662 u_int count;
664 for (;;) {
665 count = ncp->nc_lockstatus;
667 if ((count & ~NC_SHLOCK_REQ) == 0) {
668 crit_enter();
669 if (atomic_cmpset_int(&ncp->nc_lockstatus,
670 count,
671 (count + 1) | NC_SHLOCK_FLAG |
672 NC_SHLOCK_VHOLD)) {
674 * The vp associated with a locked ncp must
675 * be held to prevent it from being recycled.
677 * WARNING! If VRECLAIMED is set the vnode
678 * could already be in the middle of a recycle.
679 * Callers must use cache_vref() or
680 * cache_vget() on the locked ncp to
681 * validate the vp or set the cache entry
682 * to unresolved.
684 * NOTE! vhold() is allowed if we hold a
685 * lock on the ncp (which we do).
687 if (ncp->nc_vp)
688 vhold(ncp->nc_vp);
689 atomic_clear_int(&ncp->nc_lockstatus,
690 NC_SHLOCK_VHOLD);
691 crit_exit();
692 break;
694 /* cmpset failed */
695 crit_exit();
696 continue;
700 * If already held shared we can just bump the count, but
701 * only allow this if nobody is trying to get the lock
702 * exclusively.
704 * VHOLD is a bit of a hack. Even though we successfully
705 * added another shared ref, the cpu that got the first
706 * shared ref might not yet have held the vnode.
708 if ((count & (NC_EXLOCK_REQ|NC_SHLOCK_FLAG)) ==
709 NC_SHLOCK_FLAG) {
710 KKASSERT((count & ~(NC_EXLOCK_REQ |
711 NC_SHLOCK_REQ |
712 NC_SHLOCK_FLAG)) > 0);
713 if (atomic_cmpset_int(&ncp->nc_lockstatus,
714 count, count + 1)) {
715 while (ncp->nc_lockstatus & NC_SHLOCK_VHOLD)
716 cpu_pause();
717 break;
719 continue;
721 return(EWOULDBLOCK);
723 return(0);
727 * Helper function
729 * NOTE: nc_refs can be 0 (degenerate case during _cache_drop).
731 * nc_locktd must be NULLed out prior to nc_lockstatus getting cleared.
733 static
734 void
735 _cache_unlock(struct namecache *ncp)
737 thread_t td __debugvar = curthread;
738 u_int count;
739 u_int ncount;
740 struct vnode *dropvp;
742 KKASSERT(ncp->nc_refs >= 0);
743 KKASSERT((ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) > 0);
744 KKASSERT((ncp->nc_lockstatus & NC_SHLOCK_FLAG) || ncp->nc_locktd == td);
746 count = ncp->nc_lockstatus;
747 cpu_ccfence();
750 * Clear nc_locktd prior to the atomic op (excl lock only)
752 if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 1)
753 ncp->nc_locktd = NULL;
754 dropvp = NULL;
756 for (;;) {
757 if ((count &
758 ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ|NC_SHLOCK_FLAG)) == 1) {
759 dropvp = ncp->nc_vp;
760 if (count & NC_EXLOCK_REQ)
761 ncount = count & NC_SHLOCK_REQ; /* cnt->0 */
762 else
763 ncount = 0;
765 if (atomic_cmpset_int(&ncp->nc_lockstatus,
766 count, ncount)) {
767 if (count & NC_EXLOCK_REQ)
768 wakeup(&ncp->nc_locktd);
769 else if (count & NC_SHLOCK_REQ)
770 wakeup(ncp);
771 break;
773 dropvp = NULL;
774 } else {
775 KKASSERT((count & NC_SHLOCK_VHOLD) == 0);
776 KKASSERT((count & ~(NC_EXLOCK_REQ |
777 NC_SHLOCK_REQ |
778 NC_SHLOCK_FLAG)) > 1);
779 if (atomic_cmpset_int(&ncp->nc_lockstatus,
780 count, count - 1)) {
781 break;
784 count = ncp->nc_lockstatus;
785 cpu_ccfence();
789 * Don't actually drop the vp until we successfully clean out
790 * the lock, otherwise we may race another shared lock.
792 if (dropvp)
793 vdrop(dropvp);
796 static
798 _cache_lockstatus(struct namecache *ncp)
800 if (ncp->nc_locktd == curthread)
801 return(LK_EXCLUSIVE);
802 if (ncp->nc_lockstatus & NC_SHLOCK_FLAG)
803 return(LK_SHARED);
804 return(-1);
808 * cache_hold() and cache_drop() prevent the premature deletion of a
809 * namecache entry but do not prevent operations (such as zapping) on
810 * that namecache entry.
812 * This routine may only be called from outside this source module if
813 * nc_refs is already at least 1.
815 * This is a rare case where callers are allowed to hold a spinlock,
816 * so we can't ourselves.
818 static __inline
819 struct namecache *
820 _cache_hold(struct namecache *ncp)
822 atomic_add_int(&ncp->nc_refs, 1);
823 return(ncp);
827 * Drop a cache entry, taking care to deal with races.
829 * For potential 1->0 transitions we must hold the ncp lock to safely
830 * test its flags. An unresolved entry with no children must be zapped
831 * to avoid leaks.
833 * The call to cache_zap() itself will handle all remaining races and
834 * will decrement the ncp's refs regardless. If we are resolved or
835 * have children nc_refs can safely be dropped to 0 without having to
836 * zap the entry.
838 * NOTE: cache_zap() will re-check nc_refs and nc_list in a MPSAFE fashion.
840 * NOTE: cache_zap() may return a non-NULL referenced parent which must
841 * be dropped in a loop.
843 static __inline
844 void
845 _cache_drop(struct namecache *ncp)
847 int refs;
849 while (ncp) {
850 KKASSERT(ncp->nc_refs > 0);
851 refs = ncp->nc_refs;
853 if (refs == 1) {
854 if (_cache_lock_nonblock(ncp) == 0) {
855 ncp->nc_flag &= ~NCF_DEFEREDZAP;
856 if ((ncp->nc_flag & NCF_UNRESOLVED) &&
857 TAILQ_EMPTY(&ncp->nc_list)) {
858 ncp = cache_zap(ncp, 1);
859 continue;
861 if (atomic_cmpset_int(&ncp->nc_refs, 1, 0)) {
862 _cache_unlock(ncp);
863 break;
865 _cache_unlock(ncp);
867 } else {
868 if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1))
869 break;
871 cpu_pause();
876 * Link a new namecache entry to its parent and to the hash table. Be
877 * careful to avoid races if vhold() blocks in the future.
879 * Both ncp and par must be referenced and locked.
881 * NOTE: The hash table spinlock is held during this call, we can't do
882 * anything fancy.
884 static void
885 _cache_link_parent(struct namecache *ncp, struct namecache *par,
886 struct nchash_head *nchpp)
888 KKASSERT(ncp->nc_parent == NULL);
889 ncp->nc_parent = par;
890 ncp->nc_head = nchpp;
893 * Set inheritance flags. Note that the parent flags may be
894 * stale due to getattr potentially not having been run yet
895 * (it gets run during nlookup()'s).
897 ncp->nc_flag &= ~(NCF_SF_PNOCACHE | NCF_UF_PCACHE);
898 if (par->nc_flag & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE))
899 ncp->nc_flag |= NCF_SF_PNOCACHE;
900 if (par->nc_flag & (NCF_UF_CACHE | NCF_UF_PCACHE))
901 ncp->nc_flag |= NCF_UF_PCACHE;
903 LIST_INSERT_HEAD(&nchpp->list, ncp, nc_hash);
905 if (TAILQ_EMPTY(&par->nc_list)) {
906 TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
908 * Any vp associated with an ncp which has children must
909 * be held to prevent it from being recycled.
911 if (par->nc_vp)
912 vhold(par->nc_vp);
913 } else {
914 TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
919 * Remove the parent and hash associations from a namecache structure.
920 * If this is the last child of the parent the cache_drop(par) will
921 * attempt to recursively zap the parent.
923 * ncp must be locked. This routine will acquire a temporary lock on
924 * the parent as wlel as the appropriate hash chain.
926 static void
927 _cache_unlink_parent(struct namecache *ncp)
929 struct namecache *par;
930 struct vnode *dropvp;
932 if ((par = ncp->nc_parent) != NULL) {
933 KKASSERT(ncp->nc_parent == par);
934 _cache_hold(par);
935 _cache_lock(par);
936 spin_lock(&ncp->nc_head->spin);
937 LIST_REMOVE(ncp, nc_hash);
938 TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
939 dropvp = NULL;
940 if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
941 dropvp = par->nc_vp;
942 spin_unlock(&ncp->nc_head->spin);
943 ncp->nc_parent = NULL;
944 ncp->nc_head = NULL;
945 _cache_unlock(par);
946 _cache_drop(par);
949 * We can only safely vdrop with no spinlocks held.
951 if (dropvp)
952 vdrop(dropvp);
957 * Allocate a new namecache structure. Most of the code does not require
958 * zero-termination of the string but it makes vop_compat_ncreate() easier.
960 static struct namecache *
961 cache_alloc(int nlen)
963 struct namecache *ncp;
965 ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
966 if (nlen)
967 ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
968 ncp->nc_nlen = nlen;
969 ncp->nc_flag = NCF_UNRESOLVED;
970 ncp->nc_error = ENOTCONN; /* needs to be resolved */
971 ncp->nc_refs = 1;
973 TAILQ_INIT(&ncp->nc_list);
974 _cache_lock(ncp);
975 return(ncp);
979 * Can only be called for the case where the ncp has never been
980 * associated with anything (so no spinlocks are needed).
982 static void
983 _cache_free(struct namecache *ncp)
985 KKASSERT(ncp->nc_refs == 1 && ncp->nc_lockstatus == 1);
986 if (ncp->nc_name)
987 kfree(ncp->nc_name, M_VFSCACHE);
988 kfree(ncp, M_VFSCACHE);
992 * [re]initialize a nchandle.
994 void
995 cache_zero(struct nchandle *nch)
997 nch->ncp = NULL;
998 nch->mount = NULL;
1002 * Ref and deref a namecache structure.
1004 * The caller must specify a stable ncp pointer, typically meaning the
1005 * ncp is already referenced but this can also occur indirectly through
1006 * e.g. holding a lock on a direct child.
1008 * WARNING: Caller may hold an unrelated read spinlock, which means we can't
1009 * use read spinlocks here.
1011 struct nchandle *
1012 cache_hold(struct nchandle *nch)
1014 _cache_hold(nch->ncp);
1015 _cache_mntref(nch->mount);
1016 return(nch);
1020 * Create a copy of a namecache handle for an already-referenced
1021 * entry.
1023 void
1024 cache_copy(struct nchandle *nch, struct nchandle *target)
1026 struct mntcache *cache = &pcpu_mntcache[mycpu->gd_cpuid];
1027 struct namecache *ncp;
1029 *target = *nch;
1030 _cache_mntref(target->mount);
1031 ncp = target->ncp;
1032 if (ncp) {
1033 if (ncp == cache->ncp1) {
1034 if (atomic_cmpset_ptr((void *)&cache->ncp1, ncp, NULL))
1035 return;
1037 if (ncp == cache->ncp2) {
1038 if (atomic_cmpset_ptr((void *)&cache->ncp2, ncp, NULL))
1039 return;
1041 _cache_hold(ncp);
1046 * Caller wants to copy the current directory, copy it out from our
1047 * pcpu cache if possible (the entire critical path is just two localized
1048 * cmpset ops). If the pcpu cache has a snapshot at all it will be a
1049 * valid one, so we don't have to lock p->p_fd even though we are loading
1050 * two fields.
1052 * This has a limited effect since nlookup must still ref and shlock the
1053 * vnode to check perms. We do avoid the per-proc spin-lock though, which
1054 * can aid threaded programs.
1056 void
1057 cache_copy_ncdir(struct proc *p, struct nchandle *target)
1059 struct mntcache *cache = &pcpu_mntcache[mycpu->gd_cpuid];
1061 *target = p->p_fd->fd_ncdir;
1062 if (target->ncp == cache->ncdir.ncp &&
1063 target->mount == cache->ncdir.mount) {
1064 if (atomic_cmpset_ptr((void *)&cache->ncdir.ncp,
1065 target->ncp, NULL)) {
1066 if (atomic_cmpset_ptr((void *)&cache->ncdir.mount,
1067 target->mount, NULL)) {
1068 /* CRITICAL PATH */
1069 return;
1071 _cache_drop(target->ncp);
1074 spin_lock_shared(&p->p_fd->fd_spin);
1075 cache_copy(&p->p_fd->fd_ncdir, target);
1076 spin_unlock_shared(&p->p_fd->fd_spin);
1079 void
1080 cache_changemount(struct nchandle *nch, struct mount *mp)
1082 _cache_mntref(mp);
1083 _cache_mntrel(nch->mount);
1084 nch->mount = mp;
1087 void
1088 cache_drop(struct nchandle *nch)
1090 _cache_mntrel(nch->mount);
1091 _cache_drop(nch->ncp);
1092 nch->ncp = NULL;
1093 nch->mount = NULL;
1097 * Drop the nchandle, but try to cache the ref to avoid global atomic
1098 * ops. This is typically done on the system root and jail root nchandles.
1100 void
1101 cache_drop_and_cache(struct nchandle *nch)
1103 struct mntcache *cache = &pcpu_mntcache[mycpu->gd_cpuid];
1104 struct namecache *ncp;
1106 _cache_mntrel(nch->mount);
1107 ncp = nch->ncp;
1108 if (cache->ncp1 == NULL) {
1109 ncp = atomic_swap_ptr((void *)&cache->ncp1, ncp);
1110 if (ncp == NULL)
1111 goto done;
1113 if (cache->ncp2 == NULL) {
1114 ncp = atomic_swap_ptr((void *)&cache->ncp2, ncp);
1115 if (ncp == NULL)
1116 goto done;
1118 if (++cache->iter & 1)
1119 ncp = atomic_swap_ptr((void *)&cache->ncp2, ncp);
1120 else
1121 ncp = atomic_swap_ptr((void *)&cache->ncp1, ncp);
1122 if (ncp)
1123 _cache_drop(ncp);
1124 done:
1125 nch->ncp = NULL;
1126 nch->mount = NULL;
1130 * We are dropping what the caller believes is the current directory,
1131 * unconditionally store it in our pcpu cache. Anything already in
1132 * the cache will be discarded.
1134 void
1135 cache_drop_ncdir(struct nchandle *nch)
1137 struct mntcache *cache = &pcpu_mntcache[mycpu->gd_cpuid];
1139 nch->ncp = atomic_swap_ptr((void *)&cache->ncdir.ncp, nch->ncp);
1140 nch->mount = atomic_swap_ptr((void *)&cache->ncdir.mount, nch->mount);
1141 if (nch->ncp)
1142 _cache_drop(nch->ncp);
1143 if (nch->mount)
1144 _cache_mntrel(nch->mount);
1145 nch->ncp = NULL;
1146 nch->mount = NULL;
1150 cache_lockstatus(struct nchandle *nch)
1152 return(_cache_lockstatus(nch->ncp));
1155 void
1156 cache_lock(struct nchandle *nch)
1158 _cache_lock(nch->ncp);
1161 void
1162 cache_lock_maybe_shared(struct nchandle *nch, int excl)
1164 struct namecache *ncp = nch->ncp;
1166 if (ncp_shared_lock_disable || excl ||
1167 (ncp->nc_flag & NCF_UNRESOLVED)) {
1168 _cache_lock(ncp);
1169 } else {
1170 _cache_lock_shared(ncp);
1171 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1172 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1173 _cache_unlock(ncp);
1174 _cache_lock(ncp);
1176 } else {
1177 _cache_unlock(ncp);
1178 _cache_lock(ncp);
1184 * Relock nch1 given an unlocked nch1 and a locked nch2. The caller
1185 * is responsible for checking both for validity on return as they
1186 * may have become invalid.
1188 * We have to deal with potential deadlocks here, just ping pong
1189 * the lock until we get it (we will always block somewhere when
1190 * looping so this is not cpu-intensive).
1192 * which = 0 nch1 not locked, nch2 is locked
1193 * which = 1 nch1 is locked, nch2 is not locked
1195 void
1196 cache_relock(struct nchandle *nch1, struct ucred *cred1,
1197 struct nchandle *nch2, struct ucred *cred2)
1199 int which;
1201 which = 0;
1203 for (;;) {
1204 if (which == 0) {
1205 if (cache_lock_nonblock(nch1) == 0) {
1206 cache_resolve(nch1, cred1);
1207 break;
1209 cache_unlock(nch2);
1210 cache_lock(nch1);
1211 cache_resolve(nch1, cred1);
1212 which = 1;
1213 } else {
1214 if (cache_lock_nonblock(nch2) == 0) {
1215 cache_resolve(nch2, cred2);
1216 break;
1218 cache_unlock(nch1);
1219 cache_lock(nch2);
1220 cache_resolve(nch2, cred2);
1221 which = 0;
1227 cache_lock_nonblock(struct nchandle *nch)
1229 return(_cache_lock_nonblock(nch->ncp));
1232 void
1233 cache_unlock(struct nchandle *nch)
1235 _cache_unlock(nch->ncp);
1239 * ref-and-lock, unlock-and-deref functions.
1241 * This function is primarily used by nlookup. Even though cache_lock
1242 * holds the vnode, it is possible that the vnode may have already
1243 * initiated a recyclement.
1245 * We want cache_get() to return a definitively usable vnode or a
1246 * definitively unresolved ncp.
1248 static
1249 struct namecache *
1250 _cache_get(struct namecache *ncp)
1252 _cache_hold(ncp);
1253 _cache_lock(ncp);
1254 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1255 _cache_setunresolved(ncp);
1256 return(ncp);
1260 * Attempt to obtain a shared lock on the ncp. A shared lock will only
1261 * be obtained if the ncp is resolved and the vnode (if not ENOENT) is
1262 * valid. Otherwise an exclusive lock will be acquired instead.
1264 static
1265 struct namecache *
1266 _cache_get_maybe_shared(struct namecache *ncp, int excl)
1268 if (ncp_shared_lock_disable || excl ||
1269 (ncp->nc_flag & NCF_UNRESOLVED)) {
1270 return(_cache_get(ncp));
1272 _cache_hold(ncp);
1273 _cache_lock_shared(ncp);
1274 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1275 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1276 _cache_unlock(ncp);
1277 ncp = _cache_get(ncp);
1278 _cache_drop(ncp);
1280 } else {
1281 _cache_unlock(ncp);
1282 ncp = _cache_get(ncp);
1283 _cache_drop(ncp);
1285 return(ncp);
1289 * This is a special form of _cache_lock() which only succeeds if
1290 * it can get a pristine, non-recursive lock. The caller must have
1291 * already ref'd the ncp.
1293 * On success the ncp will be locked, on failure it will not. The
1294 * ref count does not change either way.
1296 * We want _cache_lock_special() (on success) to return a definitively
1297 * usable vnode or a definitively unresolved ncp.
1299 static int
1300 _cache_lock_special(struct namecache *ncp)
1302 if (_cache_lock_nonblock(ncp) == 0) {
1303 if ((ncp->nc_lockstatus &
1304 ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 1) {
1305 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1306 _cache_setunresolved(ncp);
1307 return(0);
1309 _cache_unlock(ncp);
1311 return(EWOULDBLOCK);
1315 * This function tries to get a shared lock but will back-off to an exclusive
1316 * lock if:
1318 * (1) Some other thread is trying to obtain an exclusive lock
1319 * (to prevent the exclusive requester from getting livelocked out
1320 * by many shared locks).
1322 * (2) The current thread already owns an exclusive lock (to avoid
1323 * deadlocking).
1325 * WARNING! On machines with lots of cores we really want to try hard to
1326 * get a shared lock or concurrent path lookups can chain-react
1327 * into a very high-latency exclusive lock.
1329 static int
1330 _cache_lock_shared_special(struct namecache *ncp)
1333 * Only honor a successful shared lock (returning 0) if there is
1334 * no exclusive request pending and the vnode, if present, is not
1335 * in a reclaimed state.
1337 if (_cache_lock_shared_nonblock(ncp) == 0) {
1338 if ((ncp->nc_lockstatus & NC_EXLOCK_REQ) == 0) {
1339 if (ncp->nc_vp == NULL ||
1340 (ncp->nc_vp->v_flag & VRECLAIMED) == 0) {
1341 return(0);
1344 _cache_unlock(ncp);
1345 return(EWOULDBLOCK);
1349 * Non-blocking shared lock failed. If we already own the exclusive
1350 * lock just acquire another exclusive lock (instead of deadlocking).
1351 * Otherwise acquire a shared lock.
1353 if (ncp->nc_locktd == curthread) {
1354 _cache_lock(ncp);
1355 return(0);
1357 _cache_lock_shared(ncp);
1358 return(0);
1363 * NOTE: The same nchandle can be passed for both arguments.
1365 void
1366 cache_get(struct nchandle *nch, struct nchandle *target)
1368 KKASSERT(nch->ncp->nc_refs > 0);
1369 target->mount = nch->mount;
1370 target->ncp = _cache_get(nch->ncp);
1371 _cache_mntref(target->mount);
1374 void
1375 cache_get_maybe_shared(struct nchandle *nch, struct nchandle *target, int excl)
1377 KKASSERT(nch->ncp->nc_refs > 0);
1378 target->mount = nch->mount;
1379 target->ncp = _cache_get_maybe_shared(nch->ncp, excl);
1380 _cache_mntref(target->mount);
1386 static __inline
1387 void
1388 _cache_put(struct namecache *ncp)
1390 _cache_unlock(ncp);
1391 _cache_drop(ncp);
1397 void
1398 cache_put(struct nchandle *nch)
1400 _cache_mntrel(nch->mount);
1401 _cache_put(nch->ncp);
1402 nch->ncp = NULL;
1403 nch->mount = NULL;
1407 * Resolve an unresolved ncp by associating a vnode with it. If the
1408 * vnode is NULL, a negative cache entry is created.
1410 * The ncp should be locked on entry and will remain locked on return.
1412 static
1413 void
1414 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
1416 KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
1417 KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
1419 if (vp != NULL) {
1421 * Any vp associated with an ncp which has children must
1422 * be held. Any vp associated with a locked ncp must be held.
1424 if (!TAILQ_EMPTY(&ncp->nc_list))
1425 vhold(vp);
1426 spin_lock(&vp->v_spin);
1427 ncp->nc_vp = vp;
1428 TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
1429 spin_unlock(&vp->v_spin);
1430 if (ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ))
1431 vhold(vp);
1434 * Set auxiliary flags
1436 switch(vp->v_type) {
1437 case VDIR:
1438 ncp->nc_flag |= NCF_ISDIR;
1439 break;
1440 case VLNK:
1441 ncp->nc_flag |= NCF_ISSYMLINK;
1442 /* XXX cache the contents of the symlink */
1443 break;
1444 default:
1445 break;
1447 atomic_add_int(&numcache, 1);
1448 ncp->nc_error = 0;
1449 /* XXX: this is a hack to work-around the lack of a real pfs vfs
1450 * implementation*/
1451 if (mp != NULL)
1452 if (strncmp(mp->mnt_stat.f_fstypename, "null", 5) == 0)
1453 vp->v_pfsmp = mp;
1454 } else {
1456 * When creating a negative cache hit we set the
1457 * namecache_gen. A later resolve will clean out the
1458 * negative cache hit if the mount point's namecache_gen
1459 * has changed. Used by devfs, could also be used by
1460 * other remote FSs.
1462 ncp->nc_vp = NULL;
1463 spin_lock(&ncspin);
1464 TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
1465 ++numneg;
1466 spin_unlock(&ncspin);
1467 ncp->nc_error = ENOENT;
1468 if (mp)
1469 VFS_NCPGEN_SET(mp, ncp);
1471 ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP);
1477 void
1478 cache_setvp(struct nchandle *nch, struct vnode *vp)
1480 _cache_setvp(nch->mount, nch->ncp, vp);
1486 void
1487 cache_settimeout(struct nchandle *nch, int nticks)
1489 struct namecache *ncp = nch->ncp;
1491 if ((ncp->nc_timeout = ticks + nticks) == 0)
1492 ncp->nc_timeout = 1;
1496 * Disassociate the vnode or negative-cache association and mark a
1497 * namecache entry as unresolved again. Note that the ncp is still
1498 * left in the hash table and still linked to its parent.
1500 * The ncp should be locked and refd on entry and will remain locked and refd
1501 * on return.
1503 * This routine is normally never called on a directory containing children.
1504 * However, NFS often does just that in its rename() code as a cop-out to
1505 * avoid complex namespace operations. This disconnects a directory vnode
1506 * from its namecache and can cause the OLDAPI and NEWAPI to get out of
1507 * sync.
1510 static
1511 void
1512 _cache_setunresolved(struct namecache *ncp)
1514 struct vnode *vp;
1516 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1517 ncp->nc_flag |= NCF_UNRESOLVED;
1518 ncp->nc_timeout = 0;
1519 ncp->nc_error = ENOTCONN;
1520 if ((vp = ncp->nc_vp) != NULL) {
1521 atomic_add_int(&numcache, -1);
1522 spin_lock(&vp->v_spin);
1523 ncp->nc_vp = NULL;
1524 TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
1525 spin_unlock(&vp->v_spin);
1528 * Any vp associated with an ncp with children is
1529 * held by that ncp. Any vp associated with a locked
1530 * ncp is held by that ncp. These conditions must be
1531 * undone when the vp is cleared out from the ncp.
1533 if (!TAILQ_EMPTY(&ncp->nc_list))
1534 vdrop(vp);
1535 if (ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ))
1536 vdrop(vp);
1537 } else {
1538 spin_lock(&ncspin);
1539 TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
1540 --numneg;
1541 spin_unlock(&ncspin);
1543 ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
1548 * The cache_nresolve() code calls this function to automatically
1549 * set a resolved cache element to unresolved if it has timed out
1550 * or if it is a negative cache hit and the mount point namecache_gen
1551 * has changed.
1553 static __inline int
1554 _cache_auto_unresolve_test(struct mount *mp, struct namecache *ncp)
1557 * Try to zap entries that have timed out. We have
1558 * to be careful here because locked leafs may depend
1559 * on the vnode remaining intact in a parent, so only
1560 * do this under very specific conditions.
1562 if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
1563 TAILQ_EMPTY(&ncp->nc_list)) {
1564 return 1;
1568 * If a resolved negative cache hit is invalid due to
1569 * the mount's namecache generation being bumped, zap it.
1571 if (ncp->nc_vp == NULL && VFS_NCPGEN_TEST(mp, ncp)) {
1572 return 1;
1576 * Otherwise we are good
1578 return 0;
1581 static __inline void
1582 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
1585 * Already in an unresolved state, nothing to do.
1587 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1588 if (_cache_auto_unresolve_test(mp, ncp))
1589 _cache_setunresolved(ncp);
1596 void
1597 cache_setunresolved(struct nchandle *nch)
1599 _cache_setunresolved(nch->ncp);
1603 * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
1604 * looking for matches. This flag tells the lookup code when it must
1605 * check for a mount linkage and also prevents the directories in question
1606 * from being deleted or renamed.
1608 static
1610 cache_clrmountpt_callback(struct mount *mp, void *data)
1612 struct nchandle *nch = data;
1614 if (mp->mnt_ncmounton.ncp == nch->ncp)
1615 return(1);
1616 if (mp->mnt_ncmountpt.ncp == nch->ncp)
1617 return(1);
1618 return(0);
1624 void
1625 cache_clrmountpt(struct nchandle *nch)
1627 int count;
1629 count = mountlist_scan(cache_clrmountpt_callback, nch,
1630 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1631 if (count == 0)
1632 nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
1636 * Invalidate portions of the namecache topology given a starting entry.
1637 * The passed ncp is set to an unresolved state and:
1639 * The passed ncp must be referencxed and locked. The routine may unlock
1640 * and relock ncp several times, and will recheck the children and loop
1641 * to catch races. When done the passed ncp will be returned with the
1642 * reference and lock intact.
1644 * CINV_DESTROY - Set a flag in the passed ncp entry indicating
1645 * that the physical underlying nodes have been
1646 * destroyed... as in deleted. For example, when
1647 * a directory is removed. This will cause record
1648 * lookups on the name to no longer be able to find
1649 * the record and tells the resolver to return failure
1650 * rather then trying to resolve through the parent.
1652 * The topology itself, including ncp->nc_name,
1653 * remains intact.
1655 * This only applies to the passed ncp, if CINV_CHILDREN
1656 * is specified the children are not flagged.
1658 * CINV_CHILDREN - Set all children (recursively) to an unresolved
1659 * state as well.
1661 * Note that this will also have the side effect of
1662 * cleaning out any unreferenced nodes in the topology
1663 * from the leaves up as the recursion backs out.
1665 * Note that the topology for any referenced nodes remains intact, but
1666 * the nodes will be marked as having been destroyed and will be set
1667 * to an unresolved state.
1669 * It is possible for cache_inval() to race a cache_resolve(), meaning that
1670 * the namecache entry may not actually be invalidated on return if it was
1671 * revalidated while recursing down into its children. This code guarentees
1672 * that the node(s) will go through an invalidation cycle, but does not
1673 * guarentee that they will remain in an invalidated state.
1675 * Returns non-zero if a revalidation was detected during the invalidation
1676 * recursion, zero otherwise. Note that since only the original ncp is
1677 * locked the revalidation ultimately can only indicate that the original ncp
1678 * *MIGHT* no have been reresolved.
1680 * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
1681 * have to avoid blowing out the kernel stack. We do this by saving the
1682 * deep namecache node and aborting the recursion, then re-recursing at that
1683 * node using a depth-first algorithm in order to allow multiple deep
1684 * recursions to chain through each other, then we restart the invalidation
1685 * from scratch.
1688 struct cinvtrack {
1689 struct namecache *resume_ncp;
1690 int depth;
1693 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
1695 static
1697 _cache_inval(struct namecache *ncp, int flags)
1699 struct cinvtrack track;
1700 struct namecache *ncp2;
1701 int r;
1703 track.depth = 0;
1704 track.resume_ncp = NULL;
1706 for (;;) {
1707 r = _cache_inval_internal(ncp, flags, &track);
1708 if (track.resume_ncp == NULL)
1709 break;
1710 _cache_unlock(ncp);
1711 while ((ncp2 = track.resume_ncp) != NULL) {
1712 track.resume_ncp = NULL;
1713 _cache_lock(ncp2);
1714 _cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
1715 &track);
1716 _cache_put(ncp2);
1718 _cache_lock(ncp);
1720 return(r);
1724 cache_inval(struct nchandle *nch, int flags)
1726 return(_cache_inval(nch->ncp, flags));
1730 * Helper for _cache_inval(). The passed ncp is refd and locked and
1731 * remains that way on return, but may be unlocked/relocked multiple
1732 * times by the routine.
1734 static int
1735 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
1737 struct namecache *nextkid;
1738 int rcnt = 0;
1740 KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
1742 _cache_setunresolved(ncp);
1743 if (flags & CINV_DESTROY) {
1744 ncp->nc_flag |= NCF_DESTROYED;
1745 ++ncp->nc_generation;
1747 while ((flags & CINV_CHILDREN) &&
1748 (nextkid = TAILQ_FIRST(&ncp->nc_list)) != NULL
1750 struct namecache *kid;
1751 int restart;
1753 restart = 0;
1754 _cache_hold(nextkid);
1755 if (++track->depth > MAX_RECURSION_DEPTH) {
1756 track->resume_ncp = ncp;
1757 _cache_hold(ncp);
1758 ++rcnt;
1760 while ((kid = nextkid) != NULL) {
1762 * Parent (ncp) must be locked for the iteration.
1764 nextkid = NULL;
1765 if (kid->nc_parent != ncp) {
1766 _cache_drop(kid);
1767 kprintf("cache_inval_internal restartA %s\n",
1768 ncp->nc_name);
1769 restart = 1;
1770 break;
1772 if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
1773 _cache_hold(nextkid);
1776 * Parent unlocked for this section to avoid
1777 * deadlocks.
1779 _cache_unlock(ncp);
1780 if (track->resume_ncp) {
1781 _cache_drop(kid);
1782 _cache_lock(ncp);
1783 break;
1785 if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
1786 TAILQ_FIRST(&kid->nc_list)
1788 _cache_lock(kid);
1789 if (kid->nc_parent != ncp) {
1790 kprintf("cache_inval_internal "
1791 "restartB %s\n",
1792 ncp->nc_name);
1793 restart = 1;
1794 _cache_unlock(kid);
1795 _cache_drop(kid);
1796 _cache_lock(ncp);
1797 break;
1800 rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track);
1801 _cache_unlock(kid);
1803 _cache_drop(kid);
1804 _cache_lock(ncp);
1806 if (nextkid)
1807 _cache_drop(nextkid);
1808 --track->depth;
1809 if (restart == 0)
1810 break;
1814 * Someone could have gotten in there while ncp was unlocked,
1815 * retry if so.
1817 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1818 ++rcnt;
1819 return (rcnt);
1823 * Invalidate a vnode's namecache associations. To avoid races against
1824 * the resolver we do not invalidate a node which we previously invalidated
1825 * but which was then re-resolved while we were in the invalidation loop.
1827 * Returns non-zero if any namecache entries remain after the invalidation
1828 * loop completed.
1830 * NOTE: Unlike the namecache topology which guarentees that ncp's will not
1831 * be ripped out of the topology while held, the vnode's v_namecache
1832 * list has no such restriction. NCP's can be ripped out of the list
1833 * at virtually any time if not locked, even if held.
1835 * In addition, the v_namecache list itself must be locked via
1836 * the vnode's spinlock.
1839 cache_inval_vp(struct vnode *vp, int flags)
1841 struct namecache *ncp;
1842 struct namecache *next;
1844 restart:
1845 spin_lock(&vp->v_spin);
1846 ncp = TAILQ_FIRST(&vp->v_namecache);
1847 if (ncp)
1848 _cache_hold(ncp);
1849 while (ncp) {
1850 /* loop entered with ncp held and vp spin-locked */
1851 if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1852 _cache_hold(next);
1853 spin_unlock(&vp->v_spin);
1854 _cache_lock(ncp);
1855 if (ncp->nc_vp != vp) {
1856 kprintf("Warning: cache_inval_vp: race-A detected on "
1857 "%s\n", ncp->nc_name);
1858 _cache_put(ncp);
1859 if (next)
1860 _cache_drop(next);
1861 goto restart;
1863 _cache_inval(ncp, flags);
1864 _cache_put(ncp); /* also releases reference */
1865 ncp = next;
1866 spin_lock(&vp->v_spin);
1867 if (ncp && ncp->nc_vp != vp) {
1868 spin_unlock(&vp->v_spin);
1869 kprintf("Warning: cache_inval_vp: race-B detected on "
1870 "%s\n", ncp->nc_name);
1871 _cache_drop(ncp);
1872 goto restart;
1875 spin_unlock(&vp->v_spin);
1876 return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1880 * This routine is used instead of the normal cache_inval_vp() when we
1881 * are trying to recycle otherwise good vnodes.
1883 * Return 0 on success, non-zero if not all namecache records could be
1884 * disassociated from the vnode (for various reasons).
1887 cache_inval_vp_nonblock(struct vnode *vp)
1889 struct namecache *ncp;
1890 struct namecache *next;
1892 spin_lock(&vp->v_spin);
1893 ncp = TAILQ_FIRST(&vp->v_namecache);
1894 if (ncp)
1895 _cache_hold(ncp);
1896 while (ncp) {
1897 /* loop entered with ncp held */
1898 if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1899 _cache_hold(next);
1900 spin_unlock(&vp->v_spin);
1901 if (_cache_lock_nonblock(ncp)) {
1902 _cache_drop(ncp);
1903 if (next)
1904 _cache_drop(next);
1905 goto done;
1907 if (ncp->nc_vp != vp) {
1908 kprintf("Warning: cache_inval_vp: race-A detected on "
1909 "%s\n", ncp->nc_name);
1910 _cache_put(ncp);
1911 if (next)
1912 _cache_drop(next);
1913 goto done;
1915 _cache_inval(ncp, 0);
1916 _cache_put(ncp); /* also releases reference */
1917 ncp = next;
1918 spin_lock(&vp->v_spin);
1919 if (ncp && ncp->nc_vp != vp) {
1920 spin_unlock(&vp->v_spin);
1921 kprintf("Warning: cache_inval_vp: race-B detected on "
1922 "%s\n", ncp->nc_name);
1923 _cache_drop(ncp);
1924 goto done;
1927 spin_unlock(&vp->v_spin);
1928 done:
1929 return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1933 * Clears the universal directory search 'ok' flag. This flag allows
1934 * nlookup() to bypass normal vnode checks. This flag is a cached flag
1935 * so clearing it simply forces revalidation.
1937 void
1938 cache_inval_wxok(struct vnode *vp)
1940 struct namecache *ncp;
1942 spin_lock(&vp->v_spin);
1943 TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1944 if (ncp->nc_flag & NCF_WXOK)
1945 atomic_clear_short(&ncp->nc_flag, NCF_WXOK);
1947 spin_unlock(&vp->v_spin);
1951 * The source ncp has been renamed to the target ncp. Both fncp and tncp
1952 * must be locked. The target ncp is destroyed (as a normal rename-over
1953 * would destroy the target file or directory).
1955 * Because there may be references to the source ncp we cannot copy its
1956 * contents to the target. Instead the source ncp is relinked as the target
1957 * and the target ncp is removed from the namecache topology.
1959 void
1960 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1962 struct namecache *fncp = fnch->ncp;
1963 struct namecache *tncp = tnch->ncp;
1964 struct namecache *tncp_par;
1965 struct nchash_head *nchpp;
1966 u_int32_t hash;
1967 char *oname;
1968 char *nname;
1970 ++fncp->nc_generation;
1971 ++tncp->nc_generation;
1972 if (tncp->nc_nlen) {
1973 nname = kmalloc(tncp->nc_nlen + 1, M_VFSCACHE, M_WAITOK);
1974 bcopy(tncp->nc_name, nname, tncp->nc_nlen);
1975 nname[tncp->nc_nlen] = 0;
1976 } else {
1977 nname = NULL;
1981 * Rename fncp (unlink)
1983 _cache_unlink_parent(fncp);
1984 oname = fncp->nc_name;
1985 fncp->nc_name = nname;
1986 fncp->nc_nlen = tncp->nc_nlen;
1987 if (oname)
1988 kfree(oname, M_VFSCACHE);
1990 tncp_par = tncp->nc_parent;
1991 _cache_hold(tncp_par);
1992 _cache_lock(tncp_par);
1995 * Rename fncp (relink)
1997 hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT);
1998 hash = fnv_32_buf(&tncp_par, sizeof(tncp_par), hash);
1999 nchpp = NCHHASH(hash);
2001 spin_lock(&nchpp->spin);
2002 _cache_link_parent(fncp, tncp_par, nchpp);
2003 spin_unlock(&nchpp->spin);
2005 _cache_put(tncp_par);
2008 * Get rid of the overwritten tncp (unlink)
2010 _cache_unlink(tncp);
2014 * Perform actions consistent with unlinking a file. The passed-in ncp
2015 * must be locked.
2017 * The ncp is marked DESTROYED so it no longer shows up in searches,
2018 * and will be physically deleted when the vnode goes away.
2020 * If the related vnode has no refs then we cycle it through vget()/vput()
2021 * to (possibly if we don't have a ref race) trigger a deactivation,
2022 * allowing the VFS to trivially detect and recycle the deleted vnode
2023 * via VOP_INACTIVE().
2025 * NOTE: _cache_rename() will automatically call _cache_unlink() on the
2026 * target ncp.
2028 void
2029 cache_unlink(struct nchandle *nch)
2031 _cache_unlink(nch->ncp);
2034 static void
2035 _cache_unlink(struct namecache *ncp)
2037 struct vnode *vp;
2040 * Causes lookups to fail and allows another ncp with the same
2041 * name to be created under ncp->nc_parent.
2043 ncp->nc_flag |= NCF_DESTROYED;
2044 ++ncp->nc_generation;
2047 * Attempt to trigger a deactivation. Set VREF_FINALIZE to
2048 * force action on the 1->0 transition.
2050 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
2051 (vp = ncp->nc_vp) != NULL) {
2052 atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
2053 if (VREFCNT(vp) <= 0) {
2054 if (vget(vp, LK_SHARED) == 0)
2055 vput(vp);
2061 * Return non-zero if the nch might be associated with an open and/or mmap()'d
2062 * file. The easy solution is to just return non-zero if the vnode has refs.
2063 * Used to interlock hammer2 reclaims (VREF_FINALIZE should already be set to
2064 * force the reclaim).
2067 cache_isopen(struct nchandle *nch)
2069 struct vnode *vp;
2070 struct namecache *ncp = nch->ncp;
2072 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
2073 (vp = ncp->nc_vp) != NULL &&
2074 VREFCNT(vp)) {
2075 return 1;
2077 return 0;
2082 * vget the vnode associated with the namecache entry. Resolve the namecache
2083 * entry if necessary. The passed ncp must be referenced and locked. If
2084 * the ncp is resolved it might be locked shared.
2086 * lk_type may be LK_SHARED, LK_EXCLUSIVE. A ref'd, possibly locked
2087 * (depending on the passed lk_type) will be returned in *vpp with an error
2088 * of 0, or NULL will be returned in *vpp with a non-0 error code. The
2089 * most typical error is ENOENT, meaning that the ncp represents a negative
2090 * cache hit and there is no vnode to retrieve, but other errors can occur
2091 * too.
2093 * The vget() can race a reclaim. If this occurs we re-resolve the
2094 * namecache entry.
2096 * There are numerous places in the kernel where vget() is called on a
2097 * vnode while one or more of its namecache entries is locked. Releasing
2098 * a vnode never deadlocks against locked namecache entries (the vnode
2099 * will not get recycled while referenced ncp's exist). This means we
2100 * can safely acquire the vnode. In fact, we MUST NOT release the ncp
2101 * lock when acquiring the vp lock or we might cause a deadlock.
2103 * NOTE: The passed-in ncp must be locked exclusively if it is initially
2104 * unresolved. If a reclaim race occurs the passed-in ncp will be
2105 * relocked exclusively before being re-resolved.
2108 cache_vget(struct nchandle *nch, struct ucred *cred,
2109 int lk_type, struct vnode **vpp)
2111 struct namecache *ncp;
2112 struct vnode *vp;
2113 int error;
2115 ncp = nch->ncp;
2116 again:
2117 vp = NULL;
2118 if (ncp->nc_flag & NCF_UNRESOLVED)
2119 error = cache_resolve(nch, cred);
2120 else
2121 error = 0;
2123 if (error == 0 && (vp = ncp->nc_vp) != NULL) {
2124 error = vget(vp, lk_type);
2125 if (error) {
2127 * VRECLAIM race
2129 * The ncp may have been locked shared, we must relock
2130 * it exclusively before we can set it to unresolved.
2132 if (error == ENOENT) {
2133 kprintf("Warning: vnode reclaim race detected "
2134 "in cache_vget on %p (%s)\n",
2135 vp, ncp->nc_name);
2136 _cache_unlock(ncp);
2137 _cache_lock(ncp);
2138 _cache_setunresolved(ncp);
2139 goto again;
2143 * Not a reclaim race, some other error.
2145 KKASSERT(ncp->nc_vp == vp);
2146 vp = NULL;
2147 } else {
2148 KKASSERT(ncp->nc_vp == vp);
2149 KKASSERT((vp->v_flag & VRECLAIMED) == 0);
2152 if (error == 0 && vp == NULL)
2153 error = ENOENT;
2154 *vpp = vp;
2155 return(error);
2159 * Similar to cache_vget() but only acquires a ref on the vnode.
2161 * NOTE: The passed-in ncp must be locked exclusively if it is initially
2162 * unresolved. If a reclaim race occurs the passed-in ncp will be
2163 * relocked exclusively before being re-resolved.
2166 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
2168 struct namecache *ncp;
2169 struct vnode *vp;
2170 int error;
2172 ncp = nch->ncp;
2173 again:
2174 vp = NULL;
2175 if (ncp->nc_flag & NCF_UNRESOLVED)
2176 error = cache_resolve(nch, cred);
2177 else
2178 error = 0;
2180 if (error == 0 && (vp = ncp->nc_vp) != NULL) {
2181 error = vget(vp, LK_SHARED);
2182 if (error) {
2184 * VRECLAIM race
2186 if (error == ENOENT) {
2187 kprintf("Warning: vnode reclaim race detected "
2188 "in cache_vget on %p (%s)\n",
2189 vp, ncp->nc_name);
2190 _cache_unlock(ncp);
2191 _cache_lock(ncp);
2192 _cache_setunresolved(ncp);
2193 goto again;
2197 * Not a reclaim race, some other error.
2199 KKASSERT(ncp->nc_vp == vp);
2200 vp = NULL;
2201 } else {
2202 KKASSERT(ncp->nc_vp == vp);
2203 KKASSERT((vp->v_flag & VRECLAIMED) == 0);
2204 /* caller does not want a lock */
2205 vn_unlock(vp);
2208 if (error == 0 && vp == NULL)
2209 error = ENOENT;
2210 *vpp = vp;
2211 return(error);
2215 * Return a referenced vnode representing the parent directory of
2216 * ncp.
2218 * Because the caller has locked the ncp it should not be possible for
2219 * the parent ncp to go away. However, the parent can unresolve its
2220 * dvp at any time so we must be able to acquire a lock on the parent
2221 * to safely access nc_vp.
2223 * We have to leave par unlocked when vget()ing dvp to avoid a deadlock,
2224 * so use vhold()/vdrop() while holding the lock to prevent dvp from
2225 * getting destroyed.
2227 * NOTE: vhold() is allowed when dvp has 0 refs if we hold a
2228 * lock on the ncp in question..
2230 static struct vnode *
2231 cache_dvpref(struct namecache *ncp)
2233 struct namecache *par;
2234 struct vnode *dvp;
2236 dvp = NULL;
2237 if ((par = ncp->nc_parent) != NULL) {
2238 _cache_hold(par);
2239 _cache_lock(par);
2240 if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
2241 if ((dvp = par->nc_vp) != NULL)
2242 vhold(dvp);
2244 _cache_unlock(par);
2245 if (dvp) {
2246 if (vget(dvp, LK_SHARED) == 0) {
2247 vn_unlock(dvp);
2248 vdrop(dvp);
2249 /* return refd, unlocked dvp */
2250 } else {
2251 vdrop(dvp);
2252 dvp = NULL;
2255 _cache_drop(par);
2257 return(dvp);
2261 * Convert a directory vnode to a namecache record without any other
2262 * knowledge of the topology. This ONLY works with directory vnodes and
2263 * is ONLY used by the NFS server. dvp must be refd but unlocked, and the
2264 * returned ncp (if not NULL) will be held and unlocked.
2266 * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
2267 * If 'makeit' is 1 we attempt to track-down and create the namecache topology
2268 * for dvp. This will fail only if the directory has been deleted out from
2269 * under the caller.
2271 * Callers must always check for a NULL return no matter the value of 'makeit'.
2273 * To avoid underflowing the kernel stack each recursive call increments
2274 * the makeit variable.
2277 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2278 struct vnode *dvp, char *fakename);
2279 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2280 struct vnode **saved_dvp);
2283 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
2284 struct nchandle *nch)
2286 struct vnode *saved_dvp;
2287 struct vnode *pvp;
2288 char *fakename;
2289 int error;
2291 nch->ncp = NULL;
2292 nch->mount = dvp->v_mount;
2293 saved_dvp = NULL;
2294 fakename = NULL;
2297 * Handle the makeit == 0 degenerate case
2299 if (makeit == 0) {
2300 spin_lock_shared(&dvp->v_spin);
2301 nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2302 if (nch->ncp)
2303 cache_hold(nch);
2304 spin_unlock_shared(&dvp->v_spin);
2308 * Loop until resolution, inside code will break out on error.
2310 while (makeit) {
2312 * Break out if we successfully acquire a working ncp.
2314 spin_lock_shared(&dvp->v_spin);
2315 nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2316 if (nch->ncp) {
2317 cache_hold(nch);
2318 spin_unlock_shared(&dvp->v_spin);
2319 break;
2321 spin_unlock_shared(&dvp->v_spin);
2324 * If dvp is the root of its filesystem it should already
2325 * have a namecache pointer associated with it as a side
2326 * effect of the mount, but it may have been disassociated.
2328 if (dvp->v_flag & VROOT) {
2329 nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
2330 error = cache_resolve_mp(nch->mount);
2331 _cache_put(nch->ncp);
2332 if (ncvp_debug) {
2333 kprintf("cache_fromdvp: resolve root of mount %p error %d",
2334 dvp->v_mount, error);
2336 if (error) {
2337 if (ncvp_debug)
2338 kprintf(" failed\n");
2339 nch->ncp = NULL;
2340 break;
2342 if (ncvp_debug)
2343 kprintf(" succeeded\n");
2344 continue;
2348 * If we are recursed too deeply resort to an O(n^2)
2349 * algorithm to resolve the namecache topology. The
2350 * resolved pvp is left referenced in saved_dvp to
2351 * prevent the tree from being destroyed while we loop.
2353 if (makeit > 20) {
2354 error = cache_fromdvp_try(dvp, cred, &saved_dvp);
2355 if (error) {
2356 kprintf("lookupdotdot(longpath) failed %d "
2357 "dvp %p\n", error, dvp);
2358 nch->ncp = NULL;
2359 break;
2361 continue;
2365 * Get the parent directory and resolve its ncp.
2367 if (fakename) {
2368 kfree(fakename, M_TEMP);
2369 fakename = NULL;
2371 error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2372 &fakename);
2373 if (error) {
2374 kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
2375 break;
2377 vn_unlock(pvp);
2380 * Reuse makeit as a recursion depth counter. On success
2381 * nch will be fully referenced.
2383 cache_fromdvp(pvp, cred, makeit + 1, nch);
2384 vrele(pvp);
2385 if (nch->ncp == NULL)
2386 break;
2389 * Do an inefficient scan of pvp (embodied by ncp) to look
2390 * for dvp. This will create a namecache record for dvp on
2391 * success. We loop up to recheck on success.
2393 * ncp and dvp are both held but not locked.
2395 error = cache_inefficient_scan(nch, cred, dvp, fakename);
2396 if (error) {
2397 kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
2398 pvp, nch->ncp->nc_name, dvp);
2399 cache_drop(nch);
2400 /* nch was NULLed out, reload mount */
2401 nch->mount = dvp->v_mount;
2402 break;
2404 if (ncvp_debug) {
2405 kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
2406 pvp, nch->ncp->nc_name);
2408 cache_drop(nch);
2409 /* nch was NULLed out, reload mount */
2410 nch->mount = dvp->v_mount;
2414 * If nch->ncp is non-NULL it will have been held already.
2416 if (fakename)
2417 kfree(fakename, M_TEMP);
2418 if (saved_dvp)
2419 vrele(saved_dvp);
2420 if (nch->ncp)
2421 return (0);
2422 return (EINVAL);
2426 * Go up the chain of parent directories until we find something
2427 * we can resolve into the namecache. This is very inefficient.
2429 static
2431 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2432 struct vnode **saved_dvp)
2434 struct nchandle nch;
2435 struct vnode *pvp;
2436 int error;
2437 static time_t last_fromdvp_report;
2438 char *fakename;
2441 * Loop getting the parent directory vnode until we get something we
2442 * can resolve in the namecache.
2444 vref(dvp);
2445 nch.mount = dvp->v_mount;
2446 nch.ncp = NULL;
2447 fakename = NULL;
2449 for (;;) {
2450 if (fakename) {
2451 kfree(fakename, M_TEMP);
2452 fakename = NULL;
2454 error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2455 &fakename);
2456 if (error) {
2457 vrele(dvp);
2458 break;
2460 vn_unlock(pvp);
2461 spin_lock_shared(&pvp->v_spin);
2462 if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
2463 _cache_hold(nch.ncp);
2464 spin_unlock_shared(&pvp->v_spin);
2465 vrele(pvp);
2466 break;
2468 spin_unlock_shared(&pvp->v_spin);
2469 if (pvp->v_flag & VROOT) {
2470 nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
2471 error = cache_resolve_mp(nch.mount);
2472 _cache_unlock(nch.ncp);
2473 vrele(pvp);
2474 if (error) {
2475 _cache_drop(nch.ncp);
2476 nch.ncp = NULL;
2477 vrele(dvp);
2479 break;
2481 vrele(dvp);
2482 dvp = pvp;
2484 if (error == 0) {
2485 if (last_fromdvp_report != time_uptime) {
2486 last_fromdvp_report = time_uptime;
2487 kprintf("Warning: extremely inefficient path "
2488 "resolution on %s\n",
2489 nch.ncp->nc_name);
2491 error = cache_inefficient_scan(&nch, cred, dvp, fakename);
2494 * Hopefully dvp now has a namecache record associated with
2495 * it. Leave it referenced to prevent the kernel from
2496 * recycling the vnode. Otherwise extremely long directory
2497 * paths could result in endless recycling.
2499 if (*saved_dvp)
2500 vrele(*saved_dvp);
2501 *saved_dvp = dvp;
2502 _cache_drop(nch.ncp);
2504 if (fakename)
2505 kfree(fakename, M_TEMP);
2506 return (error);
2510 * Do an inefficient scan of the directory represented by ncp looking for
2511 * the directory vnode dvp. ncp must be held but not locked on entry and
2512 * will be held on return. dvp must be refd but not locked on entry and
2513 * will remain refd on return.
2515 * Why do this at all? Well, due to its stateless nature the NFS server
2516 * converts file handles directly to vnodes without necessarily going through
2517 * the namecache ops that would otherwise create the namecache topology
2518 * leading to the vnode. We could either (1) Change the namecache algorithms
2519 * to allow disconnect namecache records that are re-merged opportunistically,
2520 * or (2) Make the NFS server backtrack and scan to recover a connected
2521 * namecache topology in order to then be able to issue new API lookups.
2523 * It turns out that (1) is a huge mess. It takes a nice clean set of
2524 * namecache algorithms and introduces a lot of complication in every subsystem
2525 * that calls into the namecache to deal with the re-merge case, especially
2526 * since we are using the namecache to placehold negative lookups and the
2527 * vnode might not be immediately assigned. (2) is certainly far less
2528 * efficient then (1), but since we are only talking about directories here
2529 * (which are likely to remain cached), the case does not actually run all
2530 * that often and has the supreme advantage of not polluting the namecache
2531 * algorithms.
2533 * If a fakename is supplied just construct a namecache entry using the
2534 * fake name.
2536 static int
2537 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2538 struct vnode *dvp, char *fakename)
2540 struct nlcomponent nlc;
2541 struct nchandle rncp;
2542 struct dirent *den;
2543 struct vnode *pvp;
2544 struct vattr vat;
2545 struct iovec iov;
2546 struct uio uio;
2547 int blksize;
2548 int eofflag;
2549 int bytes;
2550 char *rbuf;
2551 int error;
2553 vat.va_blocksize = 0;
2554 if ((error = VOP_GETATTR(dvp, &vat)) != 0)
2555 return (error);
2556 cache_lock(nch);
2557 error = cache_vref(nch, cred, &pvp);
2558 cache_unlock(nch);
2559 if (error)
2560 return (error);
2561 if (ncvp_debug) {
2562 kprintf("inefficient_scan of (%p,%s): directory iosize %ld "
2563 "vattr fileid = %lld\n",
2564 nch->ncp, nch->ncp->nc_name,
2565 vat.va_blocksize,
2566 (long long)vat.va_fileid);
2570 * Use the supplied fakename if not NULL. Fake names are typically
2571 * not in the actual filesystem hierarchy. This is used by HAMMER
2572 * to glue @@timestamp recursions together.
2574 if (fakename) {
2575 nlc.nlc_nameptr = fakename;
2576 nlc.nlc_namelen = strlen(fakename);
2577 rncp = cache_nlookup(nch, &nlc);
2578 goto done;
2581 if ((blksize = vat.va_blocksize) == 0)
2582 blksize = DEV_BSIZE;
2583 rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
2584 rncp.ncp = NULL;
2586 eofflag = 0;
2587 uio.uio_offset = 0;
2588 again:
2589 iov.iov_base = rbuf;
2590 iov.iov_len = blksize;
2591 uio.uio_iov = &iov;
2592 uio.uio_iovcnt = 1;
2593 uio.uio_resid = blksize;
2594 uio.uio_segflg = UIO_SYSSPACE;
2595 uio.uio_rw = UIO_READ;
2596 uio.uio_td = curthread;
2598 if (ncvp_debug >= 2)
2599 kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
2600 error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
2601 if (error == 0) {
2602 den = (struct dirent *)rbuf;
2603 bytes = blksize - uio.uio_resid;
2605 while (bytes > 0) {
2606 if (ncvp_debug >= 2) {
2607 kprintf("cache_inefficient_scan: %*.*s\n",
2608 den->d_namlen, den->d_namlen,
2609 den->d_name);
2611 if (den->d_type != DT_WHT &&
2612 den->d_ino == vat.va_fileid) {
2613 if (ncvp_debug) {
2614 kprintf("cache_inefficient_scan: "
2615 "MATCHED inode %lld path %s/%*.*s\n",
2616 (long long)vat.va_fileid,
2617 nch->ncp->nc_name,
2618 den->d_namlen, den->d_namlen,
2619 den->d_name);
2621 nlc.nlc_nameptr = den->d_name;
2622 nlc.nlc_namelen = den->d_namlen;
2623 rncp = cache_nlookup(nch, &nlc);
2624 KKASSERT(rncp.ncp != NULL);
2625 break;
2627 bytes -= _DIRENT_DIRSIZ(den);
2628 den = _DIRENT_NEXT(den);
2630 if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
2631 goto again;
2633 kfree(rbuf, M_TEMP);
2634 done:
2635 vrele(pvp);
2636 if (rncp.ncp) {
2637 if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
2638 _cache_setvp(rncp.mount, rncp.ncp, dvp);
2639 if (ncvp_debug >= 2) {
2640 kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
2641 nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
2643 } else {
2644 if (ncvp_debug >= 2) {
2645 kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
2646 nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
2647 rncp.ncp->nc_vp);
2650 if (rncp.ncp->nc_vp == NULL)
2651 error = rncp.ncp->nc_error;
2653 * Release rncp after a successful nlookup. rncp was fully
2654 * referenced.
2656 cache_put(&rncp);
2657 } else {
2658 kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
2659 dvp, nch->ncp->nc_name);
2660 error = ENOENT;
2662 return (error);
2666 * Zap a namecache entry. The ncp is unconditionally set to an unresolved
2667 * state, which disassociates it from its vnode or ncneglist.
2669 * Then, if there are no additional references to the ncp and no children,
2670 * the ncp is removed from the topology and destroyed.
2672 * References and/or children may exist if the ncp is in the middle of the
2673 * topology, preventing the ncp from being destroyed.
2675 * This function must be called with the ncp held and locked and will unlock
2676 * and drop it during zapping.
2678 * If nonblock is non-zero and the parent ncp cannot be locked we give up.
2679 * This case can occur in the cache_drop() path.
2681 * This function may returned a held (but NOT locked) parent node which the
2682 * caller must drop. We do this so _cache_drop() can loop, to avoid
2683 * blowing out the kernel stack.
2685 * WARNING! For MPSAFE operation this routine must acquire up to three
2686 * spin locks to be able to safely test nc_refs. Lock order is
2687 * very important.
2689 * hash spinlock if on hash list
2690 * parent spinlock if child of parent
2691 * (the ncp is unresolved so there is no vnode association)
2693 static struct namecache *
2694 cache_zap(struct namecache *ncp, int nonblock)
2696 struct namecache *par;
2697 struct vnode *dropvp;
2698 struct nchash_head *nchpp;
2699 int refs;
2702 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
2704 _cache_setunresolved(ncp);
2707 * Try to scrap the entry and possibly tail-recurse on its parent.
2708 * We only scrap unref'd (other then our ref) unresolved entries,
2709 * we do not scrap 'live' entries.
2711 * Note that once the spinlocks are acquired if nc_refs == 1 no
2712 * other references are possible. If it isn't, however, we have
2713 * to decrement but also be sure to avoid a 1->0 transition.
2715 KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
2716 KKASSERT(ncp->nc_refs > 0);
2719 * Acquire locks. Note that the parent can't go away while we hold
2720 * a child locked.
2722 nchpp = NULL;
2723 if ((par = ncp->nc_parent) != NULL) {
2724 if (nonblock) {
2725 for (;;) {
2726 if (_cache_lock_nonblock(par) == 0)
2727 break;
2728 refs = ncp->nc_refs;
2729 ncp->nc_flag |= NCF_DEFEREDZAP;
2730 ++numdefered; /* MP race ok */
2731 if (atomic_cmpset_int(&ncp->nc_refs,
2732 refs, refs - 1)) {
2733 _cache_unlock(ncp);
2734 return(NULL);
2736 cpu_pause();
2738 _cache_hold(par);
2739 } else {
2740 _cache_hold(par);
2741 _cache_lock(par);
2743 nchpp = ncp->nc_head;
2744 spin_lock(&nchpp->spin);
2748 * At this point if we find refs == 1 it should not be possible for
2749 * anyone else to have access to the ncp. We are holding the only
2750 * possible access point left (nchpp) spin-locked.
2752 * If someone other then us has a ref or we have children
2753 * we cannot zap the entry. The 1->0 transition and any
2754 * further list operation is protected by the spinlocks
2755 * we have acquired but other transitions are not.
2757 for (;;) {
2758 refs = ncp->nc_refs;
2759 cpu_ccfence();
2760 if (refs == 1 && TAILQ_EMPTY(&ncp->nc_list))
2761 break;
2762 if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1)) {
2763 if (par) {
2764 spin_unlock(&nchpp->spin);
2765 _cache_put(par);
2767 _cache_unlock(ncp);
2768 return(NULL);
2770 cpu_pause();
2774 * We are the only ref and with the spinlocks held no further
2775 * refs can be acquired by others.
2777 * Remove us from the hash list and parent list. We have to
2778 * drop a ref on the parent's vp if the parent's list becomes
2779 * empty.
2781 dropvp = NULL;
2782 if (par) {
2783 KKASSERT(nchpp == ncp->nc_head);
2784 LIST_REMOVE(ncp, nc_hash);
2785 TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
2786 if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
2787 dropvp = par->nc_vp;
2788 ncp->nc_head = NULL;
2789 ncp->nc_parent = NULL;
2790 spin_unlock(&nchpp->spin);
2791 _cache_unlock(par);
2792 } else {
2793 KKASSERT(ncp->nc_head == NULL);
2797 * ncp should not have picked up any refs. Physically
2798 * destroy the ncp.
2800 if (ncp->nc_refs != 1) {
2801 int save_refs = ncp->nc_refs;
2802 cpu_ccfence();
2803 panic("cache_zap: %p bad refs %d (%d)\n",
2804 ncp, save_refs, atomic_fetchadd_int(&ncp->nc_refs, 0));
2806 KKASSERT(ncp->nc_refs == 1);
2807 /* _cache_unlock(ncp) not required */
2808 ncp->nc_refs = -1; /* safety */
2809 if (ncp->nc_name)
2810 kfree(ncp->nc_name, M_VFSCACHE);
2811 kfree(ncp, M_VFSCACHE);
2814 * Delayed drop (we had to release our spinlocks)
2816 * The refed parent (if not NULL) must be dropped. The
2817 * caller is responsible for looping.
2819 if (dropvp)
2820 vdrop(dropvp);
2821 return(par);
2825 * Clean up dangling negative cache and defered-drop entries in the
2826 * namecache.
2828 * This routine is called in the critical path and also called from
2829 * vnlru(). When called from vnlru we use a lower limit to try to
2830 * deal with the negative cache before the critical path has to start
2831 * dealing with it.
2833 typedef enum { CHI_LOW, CHI_HIGH } cache_hs_t;
2835 static cache_hs_t neg_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2836 static cache_hs_t pos_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2838 void
2839 cache_hysteresis(int critpath)
2841 int poslimit;
2842 int neglimit = maxvnodes / ncnegfactor;
2843 int xnumcache = numcache;
2845 if (critpath == 0)
2846 neglimit = neglimit * 8 / 10;
2849 * Don't cache too many negative hits. We use hysteresis to reduce
2850 * the impact on the critical path.
2852 switch(neg_cache_hysteresis_state[critpath]) {
2853 case CHI_LOW:
2854 if (numneg > MINNEG && numneg > neglimit) {
2855 if (critpath)
2856 _cache_cleanneg(ncnegflush);
2857 else
2858 _cache_cleanneg(ncnegflush +
2859 numneg - neglimit);
2860 neg_cache_hysteresis_state[critpath] = CHI_HIGH;
2862 break;
2863 case CHI_HIGH:
2864 if (numneg > MINNEG * 9 / 10 &&
2865 numneg * 9 / 10 > neglimit
2867 if (critpath)
2868 _cache_cleanneg(ncnegflush);
2869 else
2870 _cache_cleanneg(ncnegflush +
2871 numneg * 9 / 10 - neglimit);
2872 } else {
2873 neg_cache_hysteresis_state[critpath] = CHI_LOW;
2875 break;
2879 * Don't cache too many positive hits. We use hysteresis to reduce
2880 * the impact on the critical path.
2882 * Excessive positive hits can accumulate due to large numbers of
2883 * hardlinks (the vnode cache will not prevent hl ncps from growing
2884 * into infinity).
2886 if ((poslimit = ncposlimit) == 0)
2887 poslimit = maxvnodes * 2;
2888 if (critpath == 0)
2889 poslimit = poslimit * 8 / 10;
2891 switch(pos_cache_hysteresis_state[critpath]) {
2892 case CHI_LOW:
2893 if (xnumcache > poslimit && xnumcache > MINPOS) {
2894 if (critpath)
2895 _cache_cleanpos(ncposflush);
2896 else
2897 _cache_cleanpos(ncposflush +
2898 xnumcache - poslimit);
2899 pos_cache_hysteresis_state[critpath] = CHI_HIGH;
2901 break;
2902 case CHI_HIGH:
2903 if (xnumcache > poslimit * 5 / 6 && xnumcache > MINPOS) {
2904 if (critpath)
2905 _cache_cleanpos(ncposflush);
2906 else
2907 _cache_cleanpos(ncposflush +
2908 xnumcache - poslimit * 5 / 6);
2909 } else {
2910 pos_cache_hysteresis_state[critpath] = CHI_LOW;
2912 break;
2916 * Clean out dangling defered-zap ncps which could not
2917 * be cleanly dropped if too many build up. Note
2918 * that numdefered is not an exact number as such ncps
2919 * can be reused and the counter is not handled in a MP
2920 * safe manner by design.
2922 if (numdefered > neglimit) {
2923 _cache_cleandefered();
2928 * NEW NAMECACHE LOOKUP API
2930 * Lookup an entry in the namecache. The passed par_nch must be referenced
2931 * and unlocked. A referenced and locked nchandle with a non-NULL nch.ncp
2932 * is ALWAYS returned, eve if the supplied component is illegal.
2934 * The resulting namecache entry should be returned to the system with
2935 * cache_put() or cache_unlock() + cache_drop().
2937 * namecache locks are recursive but care must be taken to avoid lock order
2938 * reversals (hence why the passed par_nch must be unlocked). Locking
2939 * rules are to order for parent traversals, not for child traversals.
2941 * Nobody else will be able to manipulate the associated namespace (e.g.
2942 * create, delete, rename, rename-target) until the caller unlocks the
2943 * entry.
2945 * The returned entry will be in one of three states: positive hit (non-null
2946 * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
2947 * Unresolved entries must be resolved through the filesystem to associate the
2948 * vnode and/or determine whether a positive or negative hit has occured.
2950 * It is not necessary to lock a directory in order to lock namespace under
2951 * that directory. In fact, it is explicitly not allowed to do that. A
2952 * directory is typically only locked when being created, renamed, or
2953 * destroyed.
2955 * The directory (par) may be unresolved, in which case any returned child
2956 * will likely also be marked unresolved. Likely but not guarenteed. Since
2957 * the filesystem lookup requires a resolved directory vnode the caller is
2958 * responsible for resolving the namecache chain top-down. This API
2959 * specifically allows whole chains to be created in an unresolved state.
2961 struct nchandle
2962 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
2964 struct nchandle nch;
2965 struct namecache *ncp;
2966 struct namecache *new_ncp;
2967 struct nchash_head *nchpp;
2968 struct mount *mp;
2969 u_int32_t hash;
2970 globaldata_t gd;
2971 int par_locked;
2973 gd = mycpu;
2974 mp = par_nch->mount;
2975 par_locked = 0;
2978 * This is a good time to call it, no ncp's are locked by
2979 * the caller or us.
2981 cache_hysteresis(1);
2984 * Try to locate an existing entry
2986 hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2987 hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2988 new_ncp = NULL;
2989 nchpp = NCHHASH(hash);
2990 restart:
2991 if (new_ncp)
2992 spin_lock(&nchpp->spin);
2993 else
2994 spin_lock_shared(&nchpp->spin);
2996 LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2998 * Break out if we find a matching entry. Note that
2999 * UNRESOLVED entries may match, but DESTROYED entries
3000 * do not.
3002 if (ncp->nc_parent == par_nch->ncp &&
3003 ncp->nc_nlen == nlc->nlc_namelen &&
3004 bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3005 (ncp->nc_flag & NCF_DESTROYED) == 0
3007 _cache_hold(ncp);
3008 if (new_ncp)
3009 spin_unlock(&nchpp->spin);
3010 else
3011 spin_unlock_shared(&nchpp->spin);
3012 if (par_locked) {
3013 _cache_unlock(par_nch->ncp);
3014 par_locked = 0;
3016 if (_cache_lock_special(ncp) == 0) {
3018 * Successfully locked but we must re-test
3019 * conditions that might have changed since
3020 * we did not have the lock before.
3022 if (ncp->nc_parent != par_nch->ncp ||
3023 ncp->nc_nlen != nlc->nlc_namelen ||
3024 bcmp(ncp->nc_name, nlc->nlc_nameptr,
3025 ncp->nc_nlen) ||
3026 (ncp->nc_flag & NCF_DESTROYED)) {
3027 _cache_put(ncp);
3028 goto restart;
3030 _cache_auto_unresolve(mp, ncp);
3031 if (new_ncp)
3032 _cache_free(new_ncp);
3033 goto found;
3035 _cache_get(ncp); /* cycle the lock to block */
3036 _cache_put(ncp);
3037 _cache_drop(ncp);
3038 goto restart;
3043 * We failed to locate an entry, create a new entry and add it to
3044 * the cache. The parent ncp must also be locked so we
3045 * can link into it.
3047 * We have to relookup after possibly blocking in kmalloc or
3048 * when locking par_nch.
3050 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
3051 * mount case, in which case nc_name will be NULL.
3053 if (new_ncp == NULL) {
3054 spin_unlock_shared(&nchpp->spin);
3055 new_ncp = cache_alloc(nlc->nlc_namelen);
3056 if (nlc->nlc_namelen) {
3057 bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
3058 nlc->nlc_namelen);
3059 new_ncp->nc_name[nlc->nlc_namelen] = 0;
3061 goto restart;
3065 * NOTE! The spinlock is held exclusively here because new_ncp
3066 * is non-NULL.
3068 if (par_locked == 0) {
3069 spin_unlock(&nchpp->spin);
3070 _cache_lock(par_nch->ncp);
3071 par_locked = 1;
3072 goto restart;
3076 * WARNING! We still hold the spinlock. We have to set the hash
3077 * table entry atomically.
3079 ncp = new_ncp;
3080 _cache_link_parent(ncp, par_nch->ncp, nchpp);
3081 spin_unlock(&nchpp->spin);
3082 _cache_unlock(par_nch->ncp);
3083 /* par_locked = 0 - not used */
3084 found:
3086 * stats and namecache size management
3088 if (ncp->nc_flag & NCF_UNRESOLVED)
3089 ++gd->gd_nchstats->ncs_miss;
3090 else if (ncp->nc_vp)
3091 ++gd->gd_nchstats->ncs_goodhits;
3092 else
3093 ++gd->gd_nchstats->ncs_neghits;
3094 nch.mount = mp;
3095 nch.ncp = ncp;
3096 _cache_mntref(nch.mount);
3098 return(nch);
3102 * Attempt to lookup a namecache entry and return with a shared namecache
3103 * lock.
3106 cache_nlookup_maybe_shared(struct nchandle *par_nch, struct nlcomponent *nlc,
3107 int excl, struct nchandle *res_nch)
3109 struct namecache *ncp;
3110 struct nchash_head *nchpp;
3111 struct mount *mp;
3112 u_int32_t hash;
3113 globaldata_t gd;
3116 * If exclusive requested or shared namecache locks are disabled,
3117 * return failure.
3119 if (ncp_shared_lock_disable || excl)
3120 return(EWOULDBLOCK);
3122 gd = mycpu;
3123 mp = par_nch->mount;
3126 * This is a good time to call it, no ncp's are locked by
3127 * the caller or us.
3129 cache_hysteresis(1);
3132 * Try to locate an existing entry
3134 hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3135 hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3136 nchpp = NCHHASH(hash);
3138 spin_lock_shared(&nchpp->spin);
3140 LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
3142 * Break out if we find a matching entry. Note that
3143 * UNRESOLVED entries may match, but DESTROYED entries
3144 * do not.
3146 if (ncp->nc_parent == par_nch->ncp &&
3147 ncp->nc_nlen == nlc->nlc_namelen &&
3148 bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3149 (ncp->nc_flag & NCF_DESTROYED) == 0
3151 _cache_hold(ncp);
3152 spin_unlock_shared(&nchpp->spin);
3153 if (_cache_lock_shared_special(ncp) == 0) {
3154 if (ncp->nc_parent == par_nch->ncp &&
3155 ncp->nc_nlen == nlc->nlc_namelen &&
3156 bcmp(ncp->nc_name, nlc->nlc_nameptr,
3157 ncp->nc_nlen) == 0 &&
3158 (ncp->nc_flag & NCF_DESTROYED) == 0 &&
3159 (ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
3160 _cache_auto_unresolve_test(mp, ncp) == 0) {
3161 goto found;
3163 _cache_unlock(ncp);
3165 _cache_drop(ncp);
3166 spin_lock_shared(&nchpp->spin);
3167 break;
3172 * Failure
3174 spin_unlock_shared(&nchpp->spin);
3175 return(EWOULDBLOCK);
3178 * Success
3180 * Note that nc_error might be non-zero (e.g ENOENT).
3182 found:
3183 res_nch->mount = mp;
3184 res_nch->ncp = ncp;
3185 ++gd->gd_nchstats->ncs_goodhits;
3186 _cache_mntref(res_nch->mount);
3188 KKASSERT(ncp->nc_error != EWOULDBLOCK);
3189 return(ncp->nc_error);
3193 * This is a non-blocking verison of cache_nlookup() used by
3194 * nfs_readdirplusrpc_uio(). It can fail for any reason and
3195 * will return nch.ncp == NULL in that case.
3197 struct nchandle
3198 cache_nlookup_nonblock(struct nchandle *par_nch, struct nlcomponent *nlc)
3200 struct nchandle nch;
3201 struct namecache *ncp;
3202 struct namecache *new_ncp;
3203 struct nchash_head *nchpp;
3204 struct mount *mp;
3205 u_int32_t hash;
3206 globaldata_t gd;
3207 int par_locked;
3209 gd = mycpu;
3210 mp = par_nch->mount;
3211 par_locked = 0;
3214 * Try to locate an existing entry
3216 hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
3217 hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
3218 new_ncp = NULL;
3219 nchpp = NCHHASH(hash);
3220 restart:
3221 spin_lock(&nchpp->spin);
3222 LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
3224 * Break out if we find a matching entry. Note that
3225 * UNRESOLVED entries may match, but DESTROYED entries
3226 * do not.
3228 if (ncp->nc_parent == par_nch->ncp &&
3229 ncp->nc_nlen == nlc->nlc_namelen &&
3230 bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
3231 (ncp->nc_flag & NCF_DESTROYED) == 0
3233 _cache_hold(ncp);
3234 spin_unlock(&nchpp->spin);
3235 if (par_locked) {
3236 _cache_unlock(par_nch->ncp);
3237 par_locked = 0;
3239 if (_cache_lock_special(ncp) == 0) {
3240 if (ncp->nc_parent != par_nch->ncp ||
3241 ncp->nc_nlen != nlc->nlc_namelen ||
3242 bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) ||
3243 (ncp->nc_flag & NCF_DESTROYED)) {
3244 kprintf("cache_lookup_nonblock: "
3245 "ncp-race %p %*.*s\n",
3246 ncp,
3247 nlc->nlc_namelen,
3248 nlc->nlc_namelen,
3249 nlc->nlc_nameptr);
3250 _cache_unlock(ncp);
3251 _cache_drop(ncp);
3252 goto failed;
3254 _cache_auto_unresolve(mp, ncp);
3255 if (new_ncp) {
3256 _cache_free(new_ncp);
3257 new_ncp = NULL;
3259 goto found;
3261 _cache_drop(ncp);
3262 goto failed;
3267 * We failed to locate an entry, create a new entry and add it to
3268 * the cache. The parent ncp must also be locked so we
3269 * can link into it.
3271 * We have to relookup after possibly blocking in kmalloc or
3272 * when locking par_nch.
3274 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
3275 * mount case, in which case nc_name will be NULL.
3277 if (new_ncp == NULL) {
3278 spin_unlock(&nchpp->spin);
3279 new_ncp = cache_alloc(nlc->nlc_namelen);
3280 if (nlc->nlc_namelen) {
3281 bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
3282 nlc->nlc_namelen);
3283 new_ncp->nc_name[nlc->nlc_namelen] = 0;
3285 goto restart;
3287 if (par_locked == 0) {
3288 spin_unlock(&nchpp->spin);
3289 if (_cache_lock_nonblock(par_nch->ncp) == 0) {
3290 par_locked = 1;
3291 goto restart;
3293 goto failed;
3297 * WARNING! We still hold the spinlock. We have to set the hash
3298 * table entry atomically.
3300 ncp = new_ncp;
3301 _cache_link_parent(ncp, par_nch->ncp, nchpp);
3302 spin_unlock(&nchpp->spin);
3303 _cache_unlock(par_nch->ncp);
3304 /* par_locked = 0 - not used */
3305 found:
3307 * stats and namecache size management
3309 if (ncp->nc_flag & NCF_UNRESOLVED)
3310 ++gd->gd_nchstats->ncs_miss;
3311 else if (ncp->nc_vp)
3312 ++gd->gd_nchstats->ncs_goodhits;
3313 else
3314 ++gd->gd_nchstats->ncs_neghits;
3315 nch.mount = mp;
3316 nch.ncp = ncp;
3317 _cache_mntref(nch.mount);
3319 return(nch);
3320 failed:
3321 if (new_ncp) {
3322 _cache_free(new_ncp);
3323 new_ncp = NULL;
3325 nch.mount = NULL;
3326 nch.ncp = NULL;
3327 return(nch);
3331 * The namecache entry is marked as being used as a mount point.
3332 * Locate the mount if it is visible to the caller. The DragonFly
3333 * mount system allows arbitrary loops in the topology and disentangles
3334 * those loops by matching against (mp, ncp) rather than just (ncp).
3335 * This means any given ncp can dive any number of mounts, depending
3336 * on the relative mount (e.g. nullfs) the caller is at in the topology.
3338 * We use a very simple frontend cache to reduce SMP conflicts,
3339 * which we have to do because the mountlist scan needs an exclusive
3340 * lock around its ripout info list. Not to mention that there might
3341 * be a lot of mounts.
3343 struct findmount_info {
3344 struct mount *result;
3345 struct mount *nch_mount;
3346 struct namecache *nch_ncp;
3349 static
3350 struct ncmount_cache *
3351 ncmount_cache_lookup(struct mount *mp, struct namecache *ncp)
3353 int hash;
3355 hash = ((int)(intptr_t)mp / sizeof(*mp)) ^
3356 ((int)(intptr_t)ncp / sizeof(*ncp));
3357 hash = (hash & 0x7FFFFFFF) % NCMOUNT_NUMCACHE;
3358 return (&ncmount_cache[hash]);
3361 static
3363 cache_findmount_callback(struct mount *mp, void *data)
3365 struct findmount_info *info = data;
3368 * Check the mount's mounted-on point against the passed nch.
3370 if (mp->mnt_ncmounton.mount == info->nch_mount &&
3371 mp->mnt_ncmounton.ncp == info->nch_ncp
3373 info->result = mp;
3374 _cache_mntref(mp);
3375 return(-1);
3377 return(0);
3380 struct mount *
3381 cache_findmount(struct nchandle *nch)
3383 struct findmount_info info;
3384 struct ncmount_cache *ncc;
3385 struct mount *mp;
3388 * Fast
3390 if (ncmount_cache_enable == 0) {
3391 ncc = NULL;
3392 goto skip;
3394 ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3395 if (ncc->ncp == nch->ncp) {
3396 spin_lock_shared(&ncc->spin);
3397 if (ncc->isneg == 0 &&
3398 ncc->ncp == nch->ncp && (mp = ncc->mp) != NULL) {
3399 if (mp->mnt_ncmounton.mount == nch->mount &&
3400 mp->mnt_ncmounton.ncp == nch->ncp) {
3402 * Cache hit (positive)
3404 _cache_mntref(mp);
3405 spin_unlock_shared(&ncc->spin);
3406 ++ncmount_cache_hit;
3407 return(mp);
3409 /* else cache miss */
3411 if (ncc->isneg &&
3412 ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3414 * Cache hit (negative)
3416 spin_unlock_shared(&ncc->spin);
3417 ++ncmount_cache_hit;
3418 return(NULL);
3420 spin_unlock_shared(&ncc->spin);
3422 skip:
3425 * Slow
3427 info.result = NULL;
3428 info.nch_mount = nch->mount;
3429 info.nch_ncp = nch->ncp;
3430 mountlist_scan(cache_findmount_callback, &info,
3431 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
3434 * Cache the result.
3436 * Negative lookups: We cache the originating {ncp,mp}. (mp) is
3437 * only used for pointer comparisons and is not
3438 * referenced (otherwise there would be dangling
3439 * refs).
3441 * Positive lookups: We cache the originating {ncp} and the target
3442 * (mp). (mp) is referenced.
3444 * Indeterminant: If the match is undergoing an unmount we do
3445 * not cache it to avoid racing cache_unmounting(),
3446 * but still return the match.
3448 if (ncc) {
3449 spin_lock(&ncc->spin);
3450 if (info.result == NULL) {
3451 if (ncc->isneg == 0 && ncc->mp)
3452 _cache_mntrel(ncc->mp);
3453 ncc->ncp = nch->ncp;
3454 ncc->mp = nch->mount;
3455 ncc->isneg = 1;
3456 spin_unlock(&ncc->spin);
3457 ++ncmount_cache_overwrite;
3458 } else if ((info.result->mnt_kern_flag & MNTK_UNMOUNT) == 0) {
3459 if (ncc->isneg == 0 && ncc->mp)
3460 _cache_mntrel(ncc->mp);
3461 _cache_mntref(info.result);
3462 ncc->ncp = nch->ncp;
3463 ncc->mp = info.result;
3464 ncc->isneg = 0;
3465 spin_unlock(&ncc->spin);
3466 ++ncmount_cache_overwrite;
3467 } else {
3468 spin_unlock(&ncc->spin);
3470 ++ncmount_cache_miss;
3472 return(info.result);
3475 void
3476 cache_dropmount(struct mount *mp)
3478 _cache_mntrel(mp);
3481 void
3482 cache_ismounting(struct mount *mp)
3484 struct nchandle *nch = &mp->mnt_ncmounton;
3485 struct ncmount_cache *ncc;
3487 ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3488 if (ncc->isneg &&
3489 ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3490 spin_lock(&ncc->spin);
3491 if (ncc->isneg &&
3492 ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3493 ncc->ncp = NULL;
3494 ncc->mp = NULL;
3496 spin_unlock(&ncc->spin);
3500 void
3501 cache_unmounting(struct mount *mp)
3503 struct nchandle *nch = &mp->mnt_ncmounton;
3504 struct ncmount_cache *ncc;
3506 ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3507 if (ncc->isneg == 0 &&
3508 ncc->ncp == nch->ncp && ncc->mp == mp) {
3509 spin_lock(&ncc->spin);
3510 if (ncc->isneg == 0 &&
3511 ncc->ncp == nch->ncp && ncc->mp == mp) {
3512 _cache_mntrel(mp);
3513 ncc->ncp = NULL;
3514 ncc->mp = NULL;
3516 spin_unlock(&ncc->spin);
3521 * Resolve an unresolved namecache entry, generally by looking it up.
3522 * The passed ncp must be locked and refd.
3524 * Theoretically since a vnode cannot be recycled while held, and since
3525 * the nc_parent chain holds its vnode as long as children exist, the
3526 * direct parent of the cache entry we are trying to resolve should
3527 * have a valid vnode. If not then generate an error that we can
3528 * determine is related to a resolver bug.
3530 * However, if a vnode was in the middle of a recyclement when the NCP
3531 * got locked, ncp->nc_vp might point to a vnode that is about to become
3532 * invalid. cache_resolve() handles this case by unresolving the entry
3533 * and then re-resolving it.
3535 * Note that successful resolution does not necessarily return an error
3536 * code of 0. If the ncp resolves to a negative cache hit then ENOENT
3537 * will be returned.
3540 cache_resolve(struct nchandle *nch, struct ucred *cred)
3542 struct namecache *par_tmp;
3543 struct namecache *par;
3544 struct namecache *ncp;
3545 struct nchandle nctmp;
3546 struct mount *mp;
3547 struct vnode *dvp;
3548 int error;
3550 ncp = nch->ncp;
3551 mp = nch->mount;
3552 KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
3553 restart:
3555 * If the ncp is already resolved we have nothing to do. However,
3556 * we do want to guarentee that a usable vnode is returned when
3557 * a vnode is present, so make sure it hasn't been reclaimed.
3559 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3560 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
3561 _cache_setunresolved(ncp);
3562 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
3563 return (ncp->nc_error);
3567 * If the ncp was destroyed it will never resolve again. This
3568 * can basically only happen when someone is chdir'd into an
3569 * empty directory which is then rmdir'd. We want to catch this
3570 * here and not dive the VFS because the VFS might actually
3571 * have a way to re-resolve the disconnected ncp, which will
3572 * result in inconsistencies in the cdir/nch for proc->p_fd.
3574 if (ncp->nc_flag & NCF_DESTROYED)
3575 return(EINVAL);
3578 * Mount points need special handling because the parent does not
3579 * belong to the same filesystem as the ncp.
3581 if (ncp == mp->mnt_ncmountpt.ncp)
3582 return (cache_resolve_mp(mp));
3585 * We expect an unbroken chain of ncps to at least the mount point,
3586 * and even all the way to root (but this code doesn't have to go
3587 * past the mount point).
3589 if (ncp->nc_parent == NULL) {
3590 kprintf("EXDEV case 1 %p %*.*s\n", ncp,
3591 ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
3592 ncp->nc_error = EXDEV;
3593 return(ncp->nc_error);
3597 * The vp's of the parent directories in the chain are held via vhold()
3598 * due to the existance of the child, and should not disappear.
3599 * However, there are cases where they can disappear:
3601 * - due to filesystem I/O errors.
3602 * - due to NFS being stupid about tracking the namespace and
3603 * destroys the namespace for entire directories quite often.
3604 * - due to forced unmounts.
3605 * - due to an rmdir (parent will be marked DESTROYED)
3607 * When this occurs we have to track the chain backwards and resolve
3608 * it, looping until the resolver catches up to the current node. We
3609 * could recurse here but we might run ourselves out of kernel stack
3610 * so we do it in a more painful manner. This situation really should
3611 * not occur all that often, or if it does not have to go back too
3612 * many nodes to resolve the ncp.
3614 while ((dvp = cache_dvpref(ncp)) == NULL) {
3616 * This case can occur if a process is CD'd into a
3617 * directory which is then rmdir'd. If the parent is marked
3618 * destroyed there is no point trying to resolve it.
3620 if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
3621 return(ENOENT);
3622 par = ncp->nc_parent;
3623 _cache_hold(par);
3624 _cache_lock(par);
3625 while ((par_tmp = par->nc_parent) != NULL &&
3626 par_tmp->nc_vp == NULL) {
3627 _cache_hold(par_tmp);
3628 _cache_lock(par_tmp);
3629 _cache_put(par);
3630 par = par_tmp;
3632 if (par->nc_parent == NULL) {
3633 kprintf("EXDEV case 2 %*.*s\n",
3634 par->nc_nlen, par->nc_nlen, par->nc_name);
3635 _cache_put(par);
3636 return (EXDEV);
3639 * The parent is not set in stone, ref and lock it to prevent
3640 * it from disappearing. Also note that due to renames it
3641 * is possible for our ncp to move and for par to no longer
3642 * be one of its parents. We resolve it anyway, the loop
3643 * will handle any moves.
3645 _cache_get(par); /* additional hold/lock */
3646 _cache_put(par); /* from earlier hold/lock */
3647 if (par == nch->mount->mnt_ncmountpt.ncp) {
3648 cache_resolve_mp(nch->mount);
3649 } else if ((dvp = cache_dvpref(par)) == NULL) {
3650 kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
3651 _cache_put(par);
3652 continue;
3653 } else {
3654 if (par->nc_flag & NCF_UNRESOLVED) {
3655 nctmp.mount = mp;
3656 nctmp.ncp = par;
3657 par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
3659 vrele(dvp);
3661 if ((error = par->nc_error) != 0) {
3662 if (par->nc_error != EAGAIN) {
3663 kprintf("EXDEV case 3 %*.*s error %d\n",
3664 par->nc_nlen, par->nc_nlen, par->nc_name,
3665 par->nc_error);
3666 _cache_put(par);
3667 return(error);
3669 kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
3670 par, par->nc_nlen, par->nc_nlen, par->nc_name);
3672 _cache_put(par);
3673 /* loop */
3677 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
3678 * ncp's and reattach them. If this occurs the original ncp is marked
3679 * EAGAIN to force a relookup.
3681 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
3682 * ncp must already be resolved.
3684 if (dvp) {
3685 nctmp.mount = mp;
3686 nctmp.ncp = ncp;
3687 ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
3688 vrele(dvp);
3689 } else {
3690 ncp->nc_error = EPERM;
3692 if (ncp->nc_error == EAGAIN) {
3693 kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
3694 ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
3695 goto restart;
3697 return(ncp->nc_error);
3701 * Resolve the ncp associated with a mount point. Such ncp's almost always
3702 * remain resolved and this routine is rarely called. NFS MPs tends to force
3703 * re-resolution more often due to its mac-truck-smash-the-namecache
3704 * method of tracking namespace changes.
3706 * The semantics for this call is that the passed ncp must be locked on
3707 * entry and will be locked on return. However, if we actually have to
3708 * resolve the mount point we temporarily unlock the entry in order to
3709 * avoid race-to-root deadlocks due to e.g. dead NFS mounts. Because of
3710 * the unlock we have to recheck the flags after we relock.
3712 static int
3713 cache_resolve_mp(struct mount *mp)
3715 struct namecache *ncp = mp->mnt_ncmountpt.ncp;
3716 struct vnode *vp;
3717 int error;
3719 KKASSERT(mp != NULL);
3722 * If the ncp is already resolved we have nothing to do. However,
3723 * we do want to guarentee that a usable vnode is returned when
3724 * a vnode is present, so make sure it hasn't been reclaimed.
3726 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3727 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
3728 _cache_setunresolved(ncp);
3731 if (ncp->nc_flag & NCF_UNRESOLVED) {
3732 _cache_unlock(ncp);
3733 while (vfs_busy(mp, 0))
3735 error = VFS_ROOT(mp, &vp);
3736 _cache_lock(ncp);
3739 * recheck the ncp state after relocking.
3741 if (ncp->nc_flag & NCF_UNRESOLVED) {
3742 ncp->nc_error = error;
3743 if (error == 0) {
3744 _cache_setvp(mp, ncp, vp);
3745 vput(vp);
3746 } else {
3747 kprintf("[diagnostic] cache_resolve_mp: failed"
3748 " to resolve mount %p err=%d ncp=%p\n",
3749 mp, error, ncp);
3750 _cache_setvp(mp, ncp, NULL);
3752 } else if (error == 0) {
3753 vput(vp);
3755 vfs_unbusy(mp);
3757 return(ncp->nc_error);
3761 * Clean out negative cache entries when too many have accumulated.
3763 static void
3764 _cache_cleanneg(int count)
3766 struct namecache *ncp;
3769 * Attempt to clean out the specified number of negative cache
3770 * entries.
3772 while (count) {
3773 spin_lock(&ncspin);
3774 ncp = TAILQ_FIRST(&ncneglist);
3775 if (ncp == NULL) {
3776 spin_unlock(&ncspin);
3777 break;
3779 TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
3780 TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
3781 _cache_hold(ncp);
3782 spin_unlock(&ncspin);
3785 * This can race, so we must re-check that the ncp
3786 * is on the ncneglist after successfully locking it.
3788 if (_cache_lock_special(ncp) == 0) {
3789 if (ncp->nc_vp == NULL &&
3790 (ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3791 ncp = cache_zap(ncp, 1);
3792 if (ncp)
3793 _cache_drop(ncp);
3794 } else {
3795 kprintf("cache_cleanneg: race avoided\n");
3796 _cache_unlock(ncp);
3798 } else {
3799 _cache_drop(ncp);
3801 --count;
3806 * Clean out positive cache entries when too many have accumulated.
3808 static void
3809 _cache_cleanpos(int count)
3811 static volatile int rover;
3812 struct nchash_head *nchpp;
3813 struct namecache *ncp;
3814 int rover_copy;
3817 * Attempt to clean out the specified number of negative cache
3818 * entries.
3820 while (count) {
3821 rover_copy = ++rover; /* MPSAFEENOUGH */
3822 cpu_ccfence();
3823 nchpp = NCHHASH(rover_copy);
3825 spin_lock_shared(&nchpp->spin);
3826 ncp = LIST_FIRST(&nchpp->list);
3827 while (ncp && (ncp->nc_flag & NCF_DESTROYED))
3828 ncp = LIST_NEXT(ncp, nc_hash);
3829 if (ncp)
3830 _cache_hold(ncp);
3831 spin_unlock_shared(&nchpp->spin);
3833 if (ncp) {
3834 if (_cache_lock_special(ncp) == 0) {
3835 ncp = cache_zap(ncp, 1);
3836 if (ncp)
3837 _cache_drop(ncp);
3838 } else {
3839 _cache_drop(ncp);
3842 --count;
3847 * This is a kitchen sink function to clean out ncps which we
3848 * tried to zap from cache_drop() but failed because we were
3849 * unable to acquire the parent lock.
3851 * Such entries can also be removed via cache_inval_vp(), such
3852 * as when unmounting.
3854 static void
3855 _cache_cleandefered(void)
3857 struct nchash_head *nchpp;
3858 struct namecache *ncp;
3859 struct namecache dummy;
3860 int i;
3862 numdefered = 0;
3863 bzero(&dummy, sizeof(dummy));
3864 dummy.nc_flag = NCF_DESTROYED;
3865 dummy.nc_refs = 1;
3867 for (i = 0; i <= nchash; ++i) {
3868 nchpp = &nchashtbl[i];
3870 spin_lock(&nchpp->spin);
3871 LIST_INSERT_HEAD(&nchpp->list, &dummy, nc_hash);
3872 ncp = &dummy;
3873 while ((ncp = LIST_NEXT(ncp, nc_hash)) != NULL) {
3874 if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0)
3875 continue;
3876 LIST_REMOVE(&dummy, nc_hash);
3877 LIST_INSERT_AFTER(ncp, &dummy, nc_hash);
3878 _cache_hold(ncp);
3879 spin_unlock(&nchpp->spin);
3880 if (_cache_lock_nonblock(ncp) == 0) {
3881 ncp->nc_flag &= ~NCF_DEFEREDZAP;
3882 _cache_unlock(ncp);
3884 _cache_drop(ncp);
3885 spin_lock(&nchpp->spin);
3886 ncp = &dummy;
3888 LIST_REMOVE(&dummy, nc_hash);
3889 spin_unlock(&nchpp->spin);
3894 * Name cache initialization, from vfsinit() when we are booting
3896 void
3897 nchinit(void)
3899 int i;
3900 globaldata_t gd;
3903 * Initialise per-cpu namecache effectiveness statistics.
3905 for (i = 0; i < ncpus; ++i) {
3906 gd = globaldata_find(i);
3907 gd->gd_nchstats = &nchstats[i];
3911 * Create a generous namecache hash table
3913 TAILQ_INIT(&ncneglist);
3914 spin_init(&ncspin, "nchinit");
3915 nchashtbl = hashinit_ext(vfs_inodehashsize(),
3916 sizeof(struct nchash_head),
3917 M_VFSCACHE, &nchash);
3918 for (i = 0; i <= (int)nchash; ++i) {
3919 LIST_INIT(&nchashtbl[i].list);
3920 spin_init(&nchashtbl[i].spin, "nchinit_hash");
3922 for (i = 0; i < NCMOUNT_NUMCACHE; ++i)
3923 spin_init(&ncmount_cache[i].spin, "nchinit_cache");
3924 nclockwarn = 5 * hz;
3928 * Called from start_init() to bootstrap the root filesystem. Returns
3929 * a referenced, unlocked namecache record.
3931 void
3932 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
3934 nch->ncp = cache_alloc(0);
3935 nch->mount = mp;
3936 _cache_mntref(mp);
3937 if (vp)
3938 _cache_setvp(nch->mount, nch->ncp, vp);
3942 * vfs_cache_setroot()
3944 * Create an association between the root of our namecache and
3945 * the root vnode. This routine may be called several times during
3946 * booting.
3948 * If the caller intends to save the returned namecache pointer somewhere
3949 * it must cache_hold() it.
3951 void
3952 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
3954 struct vnode *ovp;
3955 struct nchandle onch;
3957 ovp = rootvnode;
3958 onch = rootnch;
3959 rootvnode = nvp;
3960 if (nch)
3961 rootnch = *nch;
3962 else
3963 cache_zero(&rootnch);
3964 if (ovp)
3965 vrele(ovp);
3966 if (onch.ncp)
3967 cache_drop(&onch);
3971 * XXX OLD API COMPAT FUNCTION. This really messes up the new namecache
3972 * topology and is being removed as quickly as possible. The new VOP_N*()
3973 * API calls are required to make specific adjustments using the supplied
3974 * ncp pointers rather then just bogusly purging random vnodes.
3976 * Invalidate all namecache entries to a particular vnode as well as
3977 * any direct children of that vnode in the namecache. This is a
3978 * 'catch all' purge used by filesystems that do not know any better.
3980 * Note that the linkage between the vnode and its namecache entries will
3981 * be removed, but the namecache entries themselves might stay put due to
3982 * active references from elsewhere in the system or due to the existance of
3983 * the children. The namecache topology is left intact even if we do not
3984 * know what the vnode association is. Such entries will be marked
3985 * NCF_UNRESOLVED.
3987 void
3988 cache_purge(struct vnode *vp)
3990 cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
3993 static int disablecwd;
3994 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0,
3995 "Disable getcwd");
3997 static u_long numcwdcalls;
3998 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdcalls, CTLFLAG_RD, &numcwdcalls, 0,
3999 "Number of current directory resolution calls");
4000 static u_long numcwdfailnf;
4001 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailnf, CTLFLAG_RD, &numcwdfailnf, 0,
4002 "Number of current directory failures due to lack of file");
4003 static u_long numcwdfailsz;
4004 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailsz, CTLFLAG_RD, &numcwdfailsz, 0,
4005 "Number of current directory failures due to large result");
4006 static u_long numcwdfound;
4007 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfound, CTLFLAG_RD, &numcwdfound, 0,
4008 "Number of current directory resolution successes");
4011 * MPALMOSTSAFE
4014 sys___getcwd(struct __getcwd_args *uap)
4016 u_int buflen;
4017 int error;
4018 char *buf;
4019 char *bp;
4021 if (disablecwd)
4022 return (ENODEV);
4024 buflen = uap->buflen;
4025 if (buflen == 0)
4026 return (EINVAL);
4027 if (buflen > MAXPATHLEN)
4028 buflen = MAXPATHLEN;
4030 buf = kmalloc(buflen, M_TEMP, M_WAITOK);
4031 bp = kern_getcwd(buf, buflen, &error);
4032 if (error == 0)
4033 error = copyout(bp, uap->buf, strlen(bp) + 1);
4034 kfree(buf, M_TEMP);
4035 return (error);
4038 char *
4039 kern_getcwd(char *buf, size_t buflen, int *error)
4041 struct proc *p = curproc;
4042 char *bp;
4043 int i, slash_prefixed;
4044 struct filedesc *fdp;
4045 struct nchandle nch;
4046 struct namecache *ncp;
4048 numcwdcalls++;
4049 bp = buf;
4050 bp += buflen - 1;
4051 *bp = '\0';
4052 fdp = p->p_fd;
4053 slash_prefixed = 0;
4055 nch = fdp->fd_ncdir;
4056 ncp = nch.ncp;
4057 if (ncp)
4058 _cache_hold(ncp);
4060 while (ncp && (ncp != fdp->fd_nrdir.ncp ||
4061 nch.mount != fdp->fd_nrdir.mount)
4064 * While traversing upwards if we encounter the root
4065 * of the current mount we have to skip to the mount point
4066 * in the underlying filesystem.
4068 if (ncp == nch.mount->mnt_ncmountpt.ncp) {
4069 nch = nch.mount->mnt_ncmounton;
4070 _cache_drop(ncp);
4071 ncp = nch.ncp;
4072 if (ncp)
4073 _cache_hold(ncp);
4074 continue;
4078 * Prepend the path segment
4080 for (i = ncp->nc_nlen - 1; i >= 0; i--) {
4081 if (bp == buf) {
4082 numcwdfailsz++;
4083 *error = ERANGE;
4084 bp = NULL;
4085 goto done;
4087 *--bp = ncp->nc_name[i];
4089 if (bp == buf) {
4090 numcwdfailsz++;
4091 *error = ERANGE;
4092 bp = NULL;
4093 goto done;
4095 *--bp = '/';
4096 slash_prefixed = 1;
4099 * Go up a directory. This isn't a mount point so we don't
4100 * have to check again.
4102 while ((nch.ncp = ncp->nc_parent) != NULL) {
4103 if (ncp_shared_lock_disable)
4104 _cache_lock(ncp);
4105 else
4106 _cache_lock_shared(ncp);
4107 if (nch.ncp != ncp->nc_parent) {
4108 _cache_unlock(ncp);
4109 continue;
4111 _cache_hold(nch.ncp);
4112 _cache_unlock(ncp);
4113 break;
4115 _cache_drop(ncp);
4116 ncp = nch.ncp;
4118 if (ncp == NULL) {
4119 numcwdfailnf++;
4120 *error = ENOENT;
4121 bp = NULL;
4122 goto done;
4124 if (!slash_prefixed) {
4125 if (bp == buf) {
4126 numcwdfailsz++;
4127 *error = ERANGE;
4128 bp = NULL;
4129 goto done;
4131 *--bp = '/';
4133 numcwdfound++;
4134 *error = 0;
4135 done:
4136 if (ncp)
4137 _cache_drop(ncp);
4138 return (bp);
4142 * Thus begins the fullpath magic.
4144 * The passed nchp is referenced but not locked.
4146 static int disablefullpath;
4147 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
4148 &disablefullpath, 0,
4149 "Disable fullpath lookups");
4151 static u_int numfullpathcalls;
4152 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathcalls, CTLFLAG_RD,
4153 &numfullpathcalls, 0,
4154 "Number of full path resolutions in progress");
4155 static u_int numfullpathfailnf;
4156 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfailnf, CTLFLAG_RD,
4157 &numfullpathfailnf, 0,
4158 "Number of full path resolution failures due to lack of file");
4159 static u_int numfullpathfailsz;
4160 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfailsz, CTLFLAG_RD,
4161 &numfullpathfailsz, 0,
4162 "Number of full path resolution failures due to insufficient memory");
4163 static u_int numfullpathfound;
4164 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfound, CTLFLAG_RD,
4165 &numfullpathfound, 0,
4166 "Number of full path resolution successes");
4169 cache_fullpath(struct proc *p, struct nchandle *nchp, struct nchandle *nchbase,
4170 char **retbuf, char **freebuf, int guess)
4172 struct nchandle fd_nrdir;
4173 struct nchandle nch;
4174 struct namecache *ncp;
4175 struct mount *mp, *new_mp;
4176 char *bp, *buf;
4177 int slash_prefixed;
4178 int error = 0;
4179 int i;
4181 atomic_add_int(&numfullpathcalls, -1);
4183 *retbuf = NULL;
4184 *freebuf = NULL;
4186 buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
4187 bp = buf + MAXPATHLEN - 1;
4188 *bp = '\0';
4189 if (nchbase)
4190 fd_nrdir = *nchbase;
4191 else if (p != NULL)
4192 fd_nrdir = p->p_fd->fd_nrdir;
4193 else
4194 fd_nrdir = rootnch;
4195 slash_prefixed = 0;
4196 nch = *nchp;
4197 ncp = nch.ncp;
4198 if (ncp)
4199 _cache_hold(ncp);
4200 mp = nch.mount;
4202 while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) {
4203 new_mp = NULL;
4206 * If we are asked to guess the upwards path, we do so whenever
4207 * we encounter an ncp marked as a mountpoint. We try to find
4208 * the actual mountpoint by finding the mountpoint with this
4209 * ncp.
4211 if (guess && (ncp->nc_flag & NCF_ISMOUNTPT)) {
4212 new_mp = mount_get_by_nc(ncp);
4215 * While traversing upwards if we encounter the root
4216 * of the current mount we have to skip to the mount point.
4218 if (ncp == mp->mnt_ncmountpt.ncp) {
4219 new_mp = mp;
4221 if (new_mp) {
4222 nch = new_mp->mnt_ncmounton;
4223 _cache_drop(ncp);
4224 ncp = nch.ncp;
4225 if (ncp)
4226 _cache_hold(ncp);
4227 mp = nch.mount;
4228 continue;
4232 * Prepend the path segment
4234 for (i = ncp->nc_nlen - 1; i >= 0; i--) {
4235 if (bp == buf) {
4236 numfullpathfailsz++;
4237 kfree(buf, M_TEMP);
4238 error = ENOMEM;
4239 goto done;
4241 *--bp = ncp->nc_name[i];
4243 if (bp == buf) {
4244 numfullpathfailsz++;
4245 kfree(buf, M_TEMP);
4246 error = ENOMEM;
4247 goto done;
4249 *--bp = '/';
4250 slash_prefixed = 1;
4253 * Go up a directory. This isn't a mount point so we don't
4254 * have to check again.
4256 * We can only safely access nc_parent with ncp held locked.
4258 while ((nch.ncp = ncp->nc_parent) != NULL) {
4259 _cache_lock(ncp);
4260 if (nch.ncp != ncp->nc_parent) {
4261 _cache_unlock(ncp);
4262 continue;
4264 _cache_hold(nch.ncp);
4265 _cache_unlock(ncp);
4266 break;
4268 _cache_drop(ncp);
4269 ncp = nch.ncp;
4271 if (ncp == NULL) {
4272 numfullpathfailnf++;
4273 kfree(buf, M_TEMP);
4274 error = ENOENT;
4275 goto done;
4278 if (!slash_prefixed) {
4279 if (bp == buf) {
4280 numfullpathfailsz++;
4281 kfree(buf, M_TEMP);
4282 error = ENOMEM;
4283 goto done;
4285 *--bp = '/';
4287 numfullpathfound++;
4288 *retbuf = bp;
4289 *freebuf = buf;
4290 error = 0;
4291 done:
4292 if (ncp)
4293 _cache_drop(ncp);
4294 return(error);
4298 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf,
4299 char **freebuf, int guess)
4301 struct namecache *ncp;
4302 struct nchandle nch;
4303 int error;
4305 *freebuf = NULL;
4306 atomic_add_int(&numfullpathcalls, 1);
4307 if (disablefullpath)
4308 return (ENODEV);
4310 if (p == NULL)
4311 return (EINVAL);
4313 /* vn is NULL, client wants us to use p->p_textvp */
4314 if (vn == NULL) {
4315 if ((vn = p->p_textvp) == NULL)
4316 return (EINVAL);
4318 spin_lock_shared(&vn->v_spin);
4319 TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
4320 if (ncp->nc_nlen)
4321 break;
4323 if (ncp == NULL) {
4324 spin_unlock_shared(&vn->v_spin);
4325 return (EINVAL);
4327 _cache_hold(ncp);
4328 spin_unlock_shared(&vn->v_spin);
4330 atomic_add_int(&numfullpathcalls, -1);
4331 nch.ncp = ncp;
4332 nch.mount = vn->v_mount;
4333 error = cache_fullpath(p, &nch, NULL, retbuf, freebuf, guess);
4334 _cache_drop(ncp);
4335 return (error);