kernel - Fix excessive call stack depth on stuck interrupt
[dragonfly.git] / sys / kern / uipc_socket2.c
blob7b95e021df9548943640f51944d1d51481c04a5b
1 /*
2 * Copyright (c) 2005 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 1982, 1986, 1988, 1990, 1993
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the University nor the names of its contributors
15 * may be used to endorse or promote products derived from this software
16 * without specific prior written permission.
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
30 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
31 * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.17 2002/08/31 19:04:55 dwmalone Exp $
34 #include "opt_param.h"
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/domain.h>
38 #include <sys/file.h> /* for maxfiles */
39 #include <sys/kernel.h>
40 #include <sys/ktr.h>
41 #include <sys/proc.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/protosw.h>
45 #include <sys/resourcevar.h>
46 #include <sys/stat.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/socketops.h>
50 #include <sys/signalvar.h>
51 #include <sys/sysctl.h>
52 #include <sys/event.h>
54 #include <sys/thread2.h>
55 #include <sys/msgport2.h>
56 #include <sys/socketvar2.h>
58 #include <net/netisr2.h>
60 #ifndef KTR_SOWAKEUP
61 #define KTR_SOWAKEUP KTR_ALL
62 #endif
63 KTR_INFO_MASTER(sowakeup);
64 KTR_INFO(KTR_SOWAKEUP, sowakeup, nconn_start, 0, "newconn sorwakeup start");
65 KTR_INFO(KTR_SOWAKEUP, sowakeup, nconn_end, 1, "newconn sorwakeup end");
66 KTR_INFO(KTR_SOWAKEUP, sowakeup, nconn_wakeupstart, 2, "newconn wakeup start");
67 KTR_INFO(KTR_SOWAKEUP, sowakeup, nconn_wakeupend, 3, "newconn wakeup end");
68 #define logsowakeup(name) KTR_LOG(sowakeup_ ## name)
70 int maxsockets;
73 * Primitive routines for operating on sockets and socket buffers
76 u_long sb_max = SB_MAX;
77 u_long sb_max_adj =
78 SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
80 static u_long sb_efficiency = 8; /* parameter for sbreserve() */
82 /************************************************************************
83 * signalsockbuf procedures *
84 ************************************************************************/
87 * Wait for data to arrive at/drain from a socket buffer.
89 * NOTE: Caller must generally hold the ssb_lock (client side lock) since
90 * WAIT/WAKEUP only works for one client at a time.
92 * NOTE: Caller always retries whatever operation it was waiting on.
94 int
95 ssb_wait(struct signalsockbuf *ssb)
97 uint32_t flags;
98 int pflags;
99 int error;
101 pflags = (ssb->ssb_flags & SSB_NOINTR) ? 0 : PCATCH;
103 for (;;) {
104 flags = ssb->ssb_flags;
105 cpu_ccfence();
108 * WAKEUP and WAIT interlock each other. We can catch the
109 * race by checking to see if WAKEUP has already been set,
110 * and only setting WAIT if WAKEUP is clear.
112 if (flags & SSB_WAKEUP) {
113 if (atomic_cmpset_int(&ssb->ssb_flags, flags,
114 flags & ~SSB_WAKEUP)) {
115 error = 0;
116 break;
118 continue;
122 * Only set WAIT if WAKEUP is clear.
124 tsleep_interlock(&ssb->ssb_cc, pflags);
125 if (atomic_cmpset_int(&ssb->ssb_flags, flags,
126 flags | SSB_WAIT)) {
127 error = tsleep(&ssb->ssb_cc, pflags | PINTERLOCKED,
128 "sbwait", ssb->ssb_timeo);
129 break;
132 return (error);
136 * Lock a sockbuf already known to be locked;
137 * return any error returned from sleep (EINTR).
140 _ssb_lock(struct signalsockbuf *ssb)
142 uint32_t flags;
143 int pflags;
144 int error;
146 pflags = (ssb->ssb_flags & SSB_NOINTR) ? 0 : PCATCH;
148 for (;;) {
149 flags = ssb->ssb_flags;
150 cpu_ccfence();
151 if (flags & SSB_LOCK) {
152 tsleep_interlock(&ssb->ssb_flags, pflags);
153 if (atomic_cmpset_int(&ssb->ssb_flags, flags,
154 flags | SSB_WANT)) {
155 error = tsleep(&ssb->ssb_flags,
156 pflags | PINTERLOCKED,
157 "sblock", 0);
158 if (error)
159 break;
161 } else {
162 if (atomic_cmpset_int(&ssb->ssb_flags, flags,
163 flags | SSB_LOCK)) {
164 lwkt_gettoken(&ssb->ssb_token);
165 error = 0;
166 break;
170 return (error);
174 * This does the same for sockbufs. Note that the xsockbuf structure,
175 * since it is always embedded in a socket, does not include a self
176 * pointer nor a length. We make this entry point public in case
177 * some other mechanism needs it.
179 void
180 ssbtoxsockbuf(struct signalsockbuf *ssb, struct xsockbuf *xsb)
182 xsb->sb_cc = ssb->ssb_cc;
183 xsb->sb_hiwat = ssb->ssb_hiwat;
184 xsb->sb_mbcnt = ssb->ssb_mbcnt;
185 xsb->sb_mbmax = ssb->ssb_mbmax;
186 xsb->sb_lowat = ssb->ssb_lowat;
187 xsb->sb_flags = ssb->ssb_flags;
188 xsb->sb_timeo = ssb->ssb_timeo;
192 /************************************************************************
193 * Procedures which manipulate socket state flags, wakeups, etc. *
194 ************************************************************************
196 * Normal sequence from the active (originating) side is that
197 * soisconnecting() is called during processing of connect() call, resulting
198 * in an eventual call to soisconnected() if/when the connection is
199 * established. When the connection is torn down soisdisconnecting() is
200 * called during processing of disconnect() call, and soisdisconnected() is
201 * called when the connection to the peer is totally severed.
203 * The semantics of these routines are such that connectionless protocols
204 * can call soisconnected() and soisdisconnected() only, bypassing the
205 * in-progress calls when setting up a ``connection'' takes no time.
207 * From the passive side, a socket is created with two queues of sockets:
208 * so_incomp for connections in progress and so_comp for connections
209 * already made and awaiting user acceptance. As a protocol is preparing
210 * incoming connections, it creates a socket structure queued on so_incomp
211 * by calling sonewconn(). When the connection is established,
212 * soisconnected() is called, and transfers the socket structure to so_comp,
213 * making it available to accept().
215 * If a socket is closed with sockets on either so_incomp or so_comp, these
216 * sockets are dropped.
218 * If higher level protocols are implemented in the kernel, the wakeups
219 * done here will sometimes cause software-interrupt process scheduling.
222 void
223 soisconnecting(struct socket *so)
225 soclrstate(so, SS_ISCONNECTED | SS_ISDISCONNECTING);
226 sosetstate(so, SS_ISCONNECTING);
229 void
230 soisconnected(struct socket *so)
232 struct socket *head;
234 while ((head = so->so_head) != NULL) {
235 lwkt_getpooltoken(head);
236 if (so->so_head == head)
237 break;
238 lwkt_relpooltoken(head);
241 soclrstate(so, SS_ISCONNECTING | SS_ISDISCONNECTING | SS_ISCONFIRMING);
242 sosetstate(so, SS_ISCONNECTED);
243 if (head && (so->so_state & SS_INCOMP)) {
244 if ((so->so_options & SO_ACCEPTFILTER) != 0) {
245 so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
246 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
247 atomic_set_int(&so->so_rcv.ssb_flags, SSB_UPCALL);
248 so->so_options &= ~SO_ACCEPTFILTER;
249 so->so_upcall(so, so->so_upcallarg, 0);
250 lwkt_relpooltoken(head);
251 return;
255 * Listen socket are not per-cpu.
257 KKASSERT((so->so_state & (SS_COMP | SS_INCOMP)) == SS_INCOMP);
258 TAILQ_REMOVE(&head->so_incomp, so, so_list);
259 head->so_incqlen--;
260 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
261 head->so_qlen++;
262 sosetstate(so, SS_COMP);
263 soclrstate(so, SS_INCOMP);
266 * XXX head may be on a different protocol thread.
267 * sorwakeup()->sowakeup() is hacked atm.
269 sorwakeup(head);
270 wakeup_one(&head->so_timeo);
271 } else {
272 wakeup(&so->so_timeo);
273 sorwakeup(so);
274 sowwakeup(so);
276 if (head)
277 lwkt_relpooltoken(head);
280 void
281 soisdisconnecting(struct socket *so)
283 soclrstate(so, SS_ISCONNECTING);
284 sosetstate(so, SS_ISDISCONNECTING | SS_CANTRCVMORE | SS_CANTSENDMORE);
285 wakeup((caddr_t)&so->so_timeo);
286 sowwakeup(so);
287 sorwakeup(so);
290 void
291 soisdisconnected(struct socket *so)
293 soclrstate(so, SS_ISCONNECTING | SS_ISCONNECTED | SS_ISDISCONNECTING);
294 sosetstate(so, SS_CANTRCVMORE | SS_CANTSENDMORE | SS_ISDISCONNECTED);
295 wakeup((caddr_t)&so->so_timeo);
296 sbdrop(&so->so_snd.sb, so->so_snd.ssb_cc);
297 sowwakeup(so);
298 sorwakeup(so);
301 void
302 soisreconnecting(struct socket *so)
304 soclrstate(so, SS_ISDISCONNECTING | SS_ISDISCONNECTED |
305 SS_CANTRCVMORE | SS_CANTSENDMORE);
306 sosetstate(so, SS_ISCONNECTING);
309 void
310 soisreconnected(struct socket *so)
312 soclrstate(so, SS_ISDISCONNECTED | SS_CANTRCVMORE | SS_CANTSENDMORE);
313 soisconnected(so);
317 * Set or change the message port a socket receives commands on.
319 * XXX
321 void
322 sosetport(struct socket *so, lwkt_port_t port)
324 so->so_port = port;
328 * When an attempt at a new connection is noted on a socket
329 * which accepts connections, sonewconn is called. If the
330 * connection is possible (subject to space constraints, etc.)
331 * then we allocate a new structure, propoerly linked into the
332 * data structure of the original socket, and return this.
333 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
335 * The new socket is returned with one ref and so_pcb assigned.
336 * The reference is implied by so_pcb.
338 struct socket *
339 sonewconn_faddr(struct socket *head, int connstatus,
340 const struct sockaddr *faddr, boolean_t keep_ref)
342 struct socket *so;
343 struct socket *sp;
344 struct pru_attach_info ai;
346 if (head->so_qlen > 3 * head->so_qlimit / 2)
347 return (NULL);
348 so = soalloc(1, head->so_proto);
349 if (so == NULL)
350 return (NULL);
353 * Set the port prior to attaching the inpcb to the current
354 * cpu's protocol thread (which should be the current thread
355 * but might not be in all cases). This serializes any pcb ops
356 * which occur to our cpu allowing us to complete the attachment
357 * without racing anything.
359 if (head->so_proto->pr_flags & PR_SYNC_PORT)
360 sosetport(so, &netisr_sync_port);
361 else
362 sosetport(so, netisr_cpuport(mycpuid));
363 if ((head->so_options & SO_ACCEPTFILTER) != 0)
364 connstatus = 0;
365 so->so_head = head;
366 so->so_type = head->so_type;
367 so->so_options = head->so_options &~ SO_ACCEPTCONN;
368 so->so_linger = head->so_linger;
371 * NOTE: Clearing NOFDREF implies referencing the so with
372 * soreference().
374 so->so_state = head->so_state | SS_NOFDREF | SS_ASSERTINPROG;
375 so->so_cred = crhold(head->so_cred);
376 ai.sb_rlimit = NULL;
377 ai.p_ucred = NULL;
378 ai.fd_rdir = NULL; /* jail code cruft XXX JH */
381 * Reserve space and call pru_attach. We can direct-call the
382 * function since we're already in the protocol thread.
384 if (soreserve(so, head->so_snd.ssb_hiwat,
385 head->so_rcv.ssb_hiwat, NULL) ||
386 so_pru_attach_direct(so, 0, &ai)) {
387 so->so_head = NULL;
388 soclrstate(so, SS_ASSERTINPROG);
389 sofree(so); /* remove implied pcb ref */
390 return (NULL);
392 KKASSERT(((so->so_proto->pr_flags & PR_ASYNC_RCVD) == 0 &&
393 so->so_refs == 2) || /* attach + our base ref */
394 ((so->so_proto->pr_flags & PR_ASYNC_RCVD) &&
395 so->so_refs == 3)); /* + async rcvd ref */
396 if (keep_ref) {
398 * Keep the reference; caller will free it.
400 } else {
401 sofree(so);
403 KKASSERT(so->so_port != NULL);
404 so->so_rcv.ssb_lowat = head->so_rcv.ssb_lowat;
405 so->so_snd.ssb_lowat = head->so_snd.ssb_lowat;
406 so->so_rcv.ssb_timeo = head->so_rcv.ssb_timeo;
407 so->so_snd.ssb_timeo = head->so_snd.ssb_timeo;
409 if (head->so_rcv.ssb_flags & SSB_AUTOLOWAT)
410 so->so_rcv.ssb_flags |= SSB_AUTOLOWAT;
411 else
412 so->so_rcv.ssb_flags &= ~SSB_AUTOLOWAT;
414 if (head->so_snd.ssb_flags & SSB_AUTOLOWAT)
415 so->so_snd.ssb_flags |= SSB_AUTOLOWAT;
416 else
417 so->so_snd.ssb_flags &= ~SSB_AUTOLOWAT;
419 if (head->so_rcv.ssb_flags & SSB_AUTOSIZE)
420 so->so_rcv.ssb_flags |= SSB_AUTOSIZE;
421 else
422 so->so_rcv.ssb_flags &= ~SSB_AUTOSIZE;
424 if (head->so_snd.ssb_flags & SSB_AUTOSIZE)
425 so->so_snd.ssb_flags |= SSB_AUTOSIZE;
426 else
427 so->so_snd.ssb_flags &= ~SSB_AUTOSIZE;
430 * Save the faddr, if the information is provided and
431 * the protocol can perform the saving opertation.
433 if (faddr != NULL && so->so_proto->pr_usrreqs->pru_savefaddr != NULL)
434 so->so_proto->pr_usrreqs->pru_savefaddr(so, faddr);
436 lwkt_getpooltoken(head);
437 if (connstatus) {
438 KKASSERT((so->so_state & (SS_INCOMP | SS_COMP)) == 0);
439 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
440 head->so_qlen++;
442 * Set connstatus within head token, so that the accepted
443 * socket will have connstatus (SS_ISCONNECTED) set.
445 sosetstate(so, SS_COMP | connstatus);
446 } else {
447 if (head->so_incqlen > head->so_qlimit) {
448 sp = TAILQ_FIRST(&head->so_incomp);
449 KKASSERT((sp->so_state & (SS_INCOMP | SS_COMP)) ==
450 SS_INCOMP);
451 TAILQ_REMOVE(&head->so_incomp, sp, so_list);
452 head->so_incqlen--;
453 soclrstate(sp, SS_INCOMP);
454 soabort_async(sp, TRUE);
456 KKASSERT((so->so_state & (SS_INCOMP | SS_COMP)) == 0);
457 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
458 head->so_incqlen++;
459 sosetstate(so, SS_INCOMP);
462 * Clear SS_ASSERTINPROG within head token, so that it will not
463 * race against accept-close or abort for "synchronous" sockets,
464 * e.g. unix socket, on other CPUs.
466 soclrstate(so, SS_ASSERTINPROG);
467 lwkt_relpooltoken(head);
469 if (connstatus) {
471 * XXX head may be on a different protocol thread.
472 * sorwakeup()->sowakeup() is hacked atm.
474 logsowakeup(nconn_start);
475 sorwakeup(head);
476 logsowakeup(nconn_end);
478 logsowakeup(nconn_wakeupstart);
479 wakeup((caddr_t)&head->so_timeo);
480 logsowakeup(nconn_wakeupend);
482 return (so);
485 struct socket *
486 sonewconn(struct socket *head, int connstatus)
488 return sonewconn_faddr(head, connstatus, NULL, FALSE /* don't ref */);
492 * Socantsendmore indicates that no more data will be sent on the
493 * socket; it would normally be applied to a socket when the user
494 * informs the system that no more data is to be sent, by the protocol
495 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
496 * will be received, and will normally be applied to the socket by a
497 * protocol when it detects that the peer will send no more data.
498 * Data queued for reading in the socket may yet be read.
500 void
501 socantsendmore(struct socket *so)
503 sosetstate(so, SS_CANTSENDMORE);
504 sowwakeup(so);
507 void
508 socantrcvmore(struct socket *so)
510 sosetstate(so, SS_CANTRCVMORE);
511 sorwakeup(so);
515 * Wakeup processes waiting on a socket buffer. Do asynchronous notification
516 * via SIGIO if the socket has the SS_ASYNC flag set.
518 * For users waiting on send/recv try to avoid unnecessary context switch
519 * thrashing. Particularly for senders of large buffers (needs to be
520 * extended to sel and aio? XXX)
522 * WARNING! Can be called on a foreign socket from the wrong protocol
523 * thread. aka is called on the 'head' listen socket when
524 * a new connection comes in.
527 void
528 sowakeup(struct socket *so, struct signalsockbuf *ssb)
530 uint32_t flags;
533 * Atomically check the flags. When no special features are being
534 * used, WAIT is clear, and WAKEUP is already set, we can simply
535 * return. The upcoming synchronous waiter will not block.
537 flags = atomic_fetchadd_int(&ssb->ssb_flags, 0);
538 if ((flags & SSB_NOTIFY_MASK) == 0) {
539 if (flags & SSB_WAKEUP)
540 return;
544 * Check conditions, set the WAKEUP flag, and clear and signal if
545 * the WAIT flag is found to be set. This interlocks against the
546 * client side.
548 for (;;) {
549 long space;
551 flags = ssb->ssb_flags;
552 cpu_ccfence();
553 if (ssb->ssb_flags & SSB_PREALLOC)
554 space = ssb_space_prealloc(ssb);
555 else
556 space = ssb_space(ssb);
558 if ((ssb == &so->so_snd && space >= ssb->ssb_lowat) ||
559 (ssb == &so->so_rcv && ssb->ssb_cc >= ssb->ssb_lowat) ||
560 (ssb == &so->so_snd && (so->so_state & SS_CANTSENDMORE)) ||
561 (ssb == &so->so_rcv && (so->so_state & SS_CANTRCVMORE))
563 if (atomic_cmpset_int(&ssb->ssb_flags, flags,
564 (flags | SSB_WAKEUP) & ~SSB_WAIT)) {
565 if (flags & SSB_WAIT)
566 wakeup(&ssb->ssb_cc);
567 break;
569 } else {
570 break;
575 * Misc other events
577 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
578 pgsigio(so->so_sigio, SIGIO, 0);
579 if (ssb->ssb_flags & SSB_UPCALL)
580 (*so->so_upcall)(so, so->so_upcallarg, M_NOWAIT);
581 KNOTE(&ssb->ssb_kq.ki_note, 0);
584 * This is a bit of a hack. Multiple threads can wind up scanning
585 * ssb_mlist concurrently due to the fact that this function can be
586 * called on a foreign socket, so we can't afford to block here.
588 * We need the pool token for (so) (likely the listne socket if
589 * SSB_MEVENT is set) because the predicate function may have
590 * to access the accept queue.
592 if (ssb->ssb_flags & SSB_MEVENT) {
593 struct netmsg_so_notify *msg, *nmsg;
595 lwkt_getpooltoken(so);
596 TAILQ_FOREACH_MUTABLE(msg, &ssb->ssb_mlist, nm_list, nmsg) {
597 if (msg->nm_predicate(msg)) {
598 TAILQ_REMOVE(&ssb->ssb_mlist, msg, nm_list);
599 lwkt_replymsg(&msg->base.lmsg,
600 msg->base.lmsg.ms_error);
603 if (TAILQ_EMPTY(&ssb->ssb_mlist))
604 atomic_clear_int(&ssb->ssb_flags, SSB_MEVENT);
605 lwkt_relpooltoken(so);
610 * Socket buffer (struct signalsockbuf) utility routines.
612 * Each socket contains two socket buffers: one for sending data and
613 * one for receiving data. Each buffer contains a queue of mbufs,
614 * information about the number of mbufs and amount of data in the
615 * queue, and other fields allowing kevent()/select()/poll() statements
616 * and notification on data availability to be implemented.
618 * Data stored in a socket buffer is maintained as a list of records.
619 * Each record is a list of mbufs chained together with the m_next
620 * field. Records are chained together with the m_nextpkt field. The upper
621 * level routine soreceive() expects the following conventions to be
622 * observed when placing information in the receive buffer:
624 * 1. If the protocol requires each message be preceded by the sender's
625 * name, then a record containing that name must be present before
626 * any associated data (mbuf's must be of type MT_SONAME).
627 * 2. If the protocol supports the exchange of ``access rights'' (really
628 * just additional data associated with the message), and there are
629 * ``rights'' to be received, then a record containing this data
630 * should be present (mbuf's must be of type MT_RIGHTS).
631 * 3. If a name or rights record exists, then it must be followed by
632 * a data record, perhaps of zero length.
634 * Before using a new socket structure it is first necessary to reserve
635 * buffer space to the socket, by calling sbreserve(). This should commit
636 * some of the available buffer space in the system buffer pool for the
637 * socket (currently, it does nothing but enforce limits). The space
638 * should be released by calling ssb_release() when the socket is destroyed.
641 soreserve(struct socket *so, u_long sndcc, u_long rcvcc, struct rlimit *rl)
643 if (so->so_snd.ssb_lowat == 0)
644 atomic_set_int(&so->so_snd.ssb_flags, SSB_AUTOLOWAT);
645 if (ssb_reserve(&so->so_snd, sndcc, so, rl) == 0)
646 goto bad;
647 if (ssb_reserve(&so->so_rcv, rcvcc, so, rl) == 0)
648 goto bad2;
649 if (so->so_rcv.ssb_lowat == 0)
650 so->so_rcv.ssb_lowat = 1;
651 if (so->so_snd.ssb_lowat == 0)
652 so->so_snd.ssb_lowat = MCLBYTES;
653 if (so->so_snd.ssb_lowat > so->so_snd.ssb_hiwat)
654 so->so_snd.ssb_lowat = so->so_snd.ssb_hiwat;
655 return (0);
656 bad2:
657 ssb_release(&so->so_snd, so);
658 bad:
659 return (ENOBUFS);
662 static int
663 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
665 int error = 0;
666 u_long old_sb_max = sb_max;
668 error = SYSCTL_OUT(req, arg1, sizeof(int));
669 if (error || !req->newptr)
670 return (error);
671 error = SYSCTL_IN(req, arg1, sizeof(int));
672 if (error)
673 return (error);
674 if (sb_max < MSIZE + MCLBYTES) {
675 sb_max = old_sb_max;
676 return (EINVAL);
678 sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
679 return (0);
683 * Allot mbufs to a signalsockbuf.
685 * Attempt to scale mbmax so that mbcnt doesn't become limiting
686 * if buffering efficiency is near the normal case.
688 * sb_max only applies to user-sockets (where rl != NULL). It does
689 * not apply to kernel sockets or kernel-controlled sockets. Note
690 * that NFS overrides the sockbuf limits created when nfsd creates
691 * a socket.
694 ssb_reserve(struct signalsockbuf *ssb, u_long cc, struct socket *so,
695 struct rlimit *rl)
698 * rl will only be NULL when we're in an interrupt (eg, in tcp_input)
699 * or when called from netgraph (ie, ngd_attach)
701 if (rl && cc > sb_max_adj)
702 cc = sb_max_adj;
703 if (!chgsbsize(so->so_cred->cr_uidinfo, &ssb->ssb_hiwat, cc,
704 rl ? rl->rlim_cur : RLIM_INFINITY)) {
705 return (0);
707 if (rl)
708 ssb->ssb_mbmax = min(cc * sb_efficiency, sb_max);
709 else
710 ssb->ssb_mbmax = cc * sb_efficiency;
713 * AUTOLOWAT is set on send buffers and prevents large writes
714 * from generating a huge number of context switches.
716 if (ssb->ssb_flags & SSB_AUTOLOWAT) {
717 ssb->ssb_lowat = ssb->ssb_hiwat / 4;
718 if (ssb->ssb_lowat < MCLBYTES)
719 ssb->ssb_lowat = MCLBYTES;
721 if (ssb->ssb_lowat > ssb->ssb_hiwat)
722 ssb->ssb_lowat = ssb->ssb_hiwat;
723 return (1);
727 * Free mbufs held by a socket, and reserved mbuf space.
729 void
730 ssb_release(struct signalsockbuf *ssb, struct socket *so)
732 sbflush(&ssb->sb);
733 (void)chgsbsize(so->so_cred->cr_uidinfo, &ssb->ssb_hiwat, 0,
734 RLIM_INFINITY);
735 ssb->ssb_mbmax = 0;
739 * Some routines that return EOPNOTSUPP for entry points that are not
740 * supported by a protocol. Fill in as needed.
742 void
743 pr_generic_notsupp(netmsg_t msg)
745 lwkt_replymsg(&msg->lmsg, EOPNOTSUPP);
749 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
750 struct mbuf *top, struct mbuf *control, int flags,
751 struct thread *td)
753 if (top)
754 m_freem(top);
755 if (control)
756 m_freem(control);
757 return (EOPNOTSUPP);
761 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
762 struct uio *uio, struct sockbuf *sio,
763 struct mbuf **controlp, int *flagsp)
765 return (EOPNOTSUPP);
769 * This isn't really a ``null'' operation, but it's the default one
770 * and doesn't do anything destructive.
772 void
773 pru_sense_null(netmsg_t msg)
775 msg->sense.nm_stat->st_blksize = msg->base.nm_so->so_snd.ssb_hiwat;
776 lwkt_replymsg(&msg->lmsg, 0);
780 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. Callers
781 * of this routine assume that it always succeeds, so we have to use a
782 * blockable allocation even though we might be called from a critical thread.
784 struct sockaddr *
785 dup_sockaddr(const struct sockaddr *sa)
787 struct sockaddr *sa2;
789 sa2 = kmalloc(sa->sa_len, M_SONAME, M_INTWAIT);
790 bcopy(sa, sa2, sa->sa_len);
791 return (sa2);
795 * Create an external-format (``xsocket'') structure using the information
796 * in the kernel-format socket structure pointed to by so. This is done
797 * to reduce the spew of irrelevant information over this interface,
798 * to isolate user code from changes in the kernel structure, and
799 * potentially to provide information-hiding if we decide that
800 * some of this information should be hidden from users.
802 void
803 sotoxsocket(struct socket *so, struct xsocket *xso)
805 xso->xso_len = sizeof *xso;
806 xso->xso_so = so;
807 xso->so_type = so->so_type;
808 xso->so_options = so->so_options;
809 xso->so_linger = so->so_linger;
810 xso->so_state = so->so_state;
811 xso->so_pcb = so->so_pcb;
812 xso->xso_protocol = so->so_proto->pr_protocol;
813 xso->xso_family = so->so_proto->pr_domain->dom_family;
814 xso->so_qlen = so->so_qlen;
815 xso->so_incqlen = so->so_incqlen;
816 xso->so_qlimit = so->so_qlimit;
817 xso->so_timeo = so->so_timeo;
818 xso->so_error = so->so_error;
819 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
820 xso->so_oobmark = so->so_oobmark;
821 ssbtoxsockbuf(&so->so_snd, &xso->so_snd);
822 ssbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
823 xso->so_uid = so->so_cred->cr_uid;
827 * Here is the definition of some of the basic objects in the kern.ipc
828 * branch of the MIB.
830 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
833 * This takes the place of kern.maxsockbuf, which moved to kern.ipc.
835 * NOTE! sb_max only applies to user-created socket buffers.
837 static int dummy;
838 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
839 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_INT|CTLFLAG_RW,
840 &sb_max, 0, sysctl_handle_sb_max, "I", "Maximum socket buffer size");
841 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
842 &maxsockets, 0, "Maximum number of sockets available");
843 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
844 &sb_efficiency, 0,
845 "Socket buffer limit scaler");
848 * Initialize maxsockets
850 static void
851 init_maxsockets(void *ignored)
853 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
854 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
856 SYSINIT(param, SI_BOOT1_TUNABLES, SI_ORDER_ANY,
857 init_maxsockets, NULL);