kernel - Fix excessive call stack depth on stuck interrupt
[dragonfly.git] / sys / kern / uipc_mbuf.c
blobe73260a195a68f09ffd86d03ad2800bb4d3a356f
1 /*
2 * (MPSAFE)
4 * Copyright (c) 2004 Jeffrey M. Hsu. All rights reserved.
5 * Copyright (c) 2004 The DragonFly Project. All rights reserved.
6 *
7 * This code is derived from software contributed to The DragonFly Project
8 * by Jeffrey M. Hsu.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific, prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
37 * Copyright (c) 1982, 1986, 1988, 1991, 1993
38 * The Regents of the University of California. All rights reserved.
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. Neither the name of the University nor the names of its contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
64 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94
65 * $FreeBSD: src/sys/kern/uipc_mbuf.c,v 1.51.2.24 2003/04/15 06:59:29 silby Exp $
68 #include "opt_param.h"
69 #include "opt_mbuf_stress_test.h"
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/file.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/domain.h>
78 #include <sys/objcache.h>
79 #include <sys/tree.h>
80 #include <sys/protosw.h>
81 #include <sys/uio.h>
82 #include <sys/thread.h>
83 #include <sys/globaldata.h>
85 #include <sys/thread2.h>
86 #include <sys/spinlock2.h>
88 #include <machine/atomic.h>
89 #include <machine/limits.h>
91 #include <vm/vm.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
95 #ifdef INVARIANTS
96 #include <machine/cpu.h>
97 #endif
100 * mbuf cluster meta-data
102 struct mbcluster {
103 int32_t mcl_refs;
104 void *mcl_data;
108 * mbuf tracking for debugging purposes
110 #ifdef MBUF_DEBUG
112 static MALLOC_DEFINE(M_MTRACK, "mtrack", "mtrack");
114 struct mbctrack;
115 RB_HEAD(mbuf_rb_tree, mbtrack);
116 RB_PROTOTYPE2(mbuf_rb_tree, mbtrack, rb_node, mbtrack_cmp, struct mbuf *);
118 struct mbtrack {
119 RB_ENTRY(mbtrack) rb_node;
120 int trackid;
121 struct mbuf *m;
124 static int
125 mbtrack_cmp(struct mbtrack *mb1, struct mbtrack *mb2)
127 if (mb1->m < mb2->m)
128 return(-1);
129 if (mb1->m > mb2->m)
130 return(1);
131 return(0);
134 RB_GENERATE2(mbuf_rb_tree, mbtrack, rb_node, mbtrack_cmp, struct mbuf *, m);
136 struct mbuf_rb_tree mbuf_track_root;
137 static struct spinlock mbuf_track_spin = SPINLOCK_INITIALIZER(mbuf_track_spin, "mbuf_track_spin");
139 static void
140 mbuftrack(struct mbuf *m)
142 struct mbtrack *mbt;
144 mbt = kmalloc(sizeof(*mbt), M_MTRACK, M_INTWAIT|M_ZERO);
145 spin_lock(&mbuf_track_spin);
146 mbt->m = m;
147 if (mbuf_rb_tree_RB_INSERT(&mbuf_track_root, mbt)) {
148 spin_unlock(&mbuf_track_spin);
149 panic("mbuftrack: mbuf %p already being tracked", m);
151 spin_unlock(&mbuf_track_spin);
154 static void
155 mbufuntrack(struct mbuf *m)
157 struct mbtrack *mbt;
159 spin_lock(&mbuf_track_spin);
160 mbt = mbuf_rb_tree_RB_LOOKUP(&mbuf_track_root, m);
161 if (mbt == NULL) {
162 spin_unlock(&mbuf_track_spin);
163 panic("mbufuntrack: mbuf %p was not tracked", m);
164 } else {
165 mbuf_rb_tree_RB_REMOVE(&mbuf_track_root, mbt);
166 spin_unlock(&mbuf_track_spin);
167 kfree(mbt, M_MTRACK);
171 void
172 mbuftrackid(struct mbuf *m, int trackid)
174 struct mbtrack *mbt;
175 struct mbuf *n;
177 spin_lock(&mbuf_track_spin);
178 while (m) {
179 n = m->m_nextpkt;
180 while (m) {
181 mbt = mbuf_rb_tree_RB_LOOKUP(&mbuf_track_root, m);
182 if (mbt == NULL) {
183 spin_unlock(&mbuf_track_spin);
184 panic("mbuftrackid: mbuf %p not tracked", m);
186 mbt->trackid = trackid;
187 m = m->m_next;
189 m = n;
191 spin_unlock(&mbuf_track_spin);
194 static int
195 mbuftrack_callback(struct mbtrack *mbt, void *arg)
197 struct sysctl_req *req = arg;
198 char buf[64];
199 int error;
201 ksnprintf(buf, sizeof(buf), "mbuf %p track %d\n", mbt->m, mbt->trackid);
203 spin_unlock(&mbuf_track_spin);
204 error = SYSCTL_OUT(req, buf, strlen(buf));
205 spin_lock(&mbuf_track_spin);
206 if (error)
207 return(-error);
208 return(0);
211 static int
212 mbuftrack_show(SYSCTL_HANDLER_ARGS)
214 int error;
216 spin_lock(&mbuf_track_spin);
217 error = mbuf_rb_tree_RB_SCAN(&mbuf_track_root, NULL,
218 mbuftrack_callback, req);
219 spin_unlock(&mbuf_track_spin);
220 return (-error);
222 SYSCTL_PROC(_kern_ipc, OID_AUTO, showmbufs, CTLFLAG_RD|CTLTYPE_STRING,
223 0, 0, mbuftrack_show, "A", "Show all in-use mbufs");
225 #else
227 #define mbuftrack(m)
228 #define mbufuntrack(m)
230 #endif
232 static void mbinit(void *);
233 SYSINIT(mbuf, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, mbinit, NULL);
235 struct mbtypes_stat {
236 u_long stats[MT_NTYPES];
237 } __cachealign;
239 static struct mbtypes_stat mbtypes[SMP_MAXCPU];
241 static struct mbstat mbstat[SMP_MAXCPU] __cachealign;
242 int max_linkhdr;
243 int max_protohdr;
244 int max_hdr;
245 int max_datalen;
246 int m_defragpackets;
247 int m_defragbytes;
248 int m_defraguseless;
249 int m_defragfailure;
250 #ifdef MBUF_STRESS_TEST
251 int m_defragrandomfailures;
252 #endif
254 struct objcache *mbuf_cache, *mbufphdr_cache;
255 struct objcache *mclmeta_cache, *mjclmeta_cache;
256 struct objcache *mbufcluster_cache, *mbufphdrcluster_cache;
257 struct objcache *mbufjcluster_cache, *mbufphdrjcluster_cache;
259 struct lock mbupdate_lk = LOCK_INITIALIZER("mbupdate", 0, LK_CANRECURSE);
261 int nmbclusters;
262 static int nmbjclusters;
263 int nmbufs;
265 static int mjclph_cachefrac;
266 static int mjcl_cachefrac;
267 static int mclph_cachefrac;
268 static int mcl_cachefrac;
270 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RW,
271 &max_linkhdr, 0, "Max size of a link-level header");
272 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RW,
273 &max_protohdr, 0, "Max size of a protocol header");
274 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RW, &max_hdr, 0,
275 "Max size of link+protocol headers");
276 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RW,
277 &max_datalen, 0, "Max data payload size without headers");
278 SYSCTL_INT(_kern_ipc, OID_AUTO, mbuf_wait, CTLFLAG_RW,
279 &mbuf_wait, 0, "Time in ticks to sleep after failed mbuf allocations");
280 static int do_mbstat(SYSCTL_HANDLER_ARGS);
282 SYSCTL_PROC(_kern_ipc, KIPC_MBSTAT, mbstat, CTLTYPE_STRUCT|CTLFLAG_RD,
283 0, 0, do_mbstat, "S,mbstat", "mbuf usage statistics");
285 static int do_mbtypes(SYSCTL_HANDLER_ARGS);
287 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbtypes, CTLTYPE_ULONG|CTLFLAG_RD,
288 0, 0, do_mbtypes, "LU", "");
290 static int
291 do_mbstat(SYSCTL_HANDLER_ARGS)
293 struct mbstat mbstat_total;
294 struct mbstat *mbstat_totalp;
295 int i;
297 bzero(&mbstat_total, sizeof(mbstat_total));
298 mbstat_totalp = &mbstat_total;
300 for (i = 0; i < ncpus; i++)
302 mbstat_total.m_mbufs += mbstat[i].m_mbufs;
303 mbstat_total.m_clusters += mbstat[i].m_clusters;
304 mbstat_total.m_jclusters += mbstat[i].m_jclusters;
305 mbstat_total.m_clfree += mbstat[i].m_clfree;
306 mbstat_total.m_drops += mbstat[i].m_drops;
307 mbstat_total.m_wait += mbstat[i].m_wait;
308 mbstat_total.m_drain += mbstat[i].m_drain;
309 mbstat_total.m_mcfail += mbstat[i].m_mcfail;
310 mbstat_total.m_mpfail += mbstat[i].m_mpfail;
314 * The following fields are not cumulative fields so just
315 * get their values once.
317 mbstat_total.m_msize = mbstat[0].m_msize;
318 mbstat_total.m_mclbytes = mbstat[0].m_mclbytes;
319 mbstat_total.m_minclsize = mbstat[0].m_minclsize;
320 mbstat_total.m_mlen = mbstat[0].m_mlen;
321 mbstat_total.m_mhlen = mbstat[0].m_mhlen;
323 return(sysctl_handle_opaque(oidp, mbstat_totalp, sizeof(mbstat_total), req));
326 static int
327 do_mbtypes(SYSCTL_HANDLER_ARGS)
329 u_long totals[MT_NTYPES];
330 int i, j;
332 for (i = 0; i < MT_NTYPES; i++)
333 totals[i] = 0;
335 for (i = 0; i < ncpus; i++)
337 for (j = 0; j < MT_NTYPES; j++)
338 totals[j] += mbtypes[i].stats[j];
341 return(sysctl_handle_opaque(oidp, totals, sizeof(totals), req));
345 * The variables may be set as boot-time tunables or live. Setting these
346 * values too low can deadlock your network. Network interfaces may also
347 * adjust nmbclusters and/or nmbjclusters to account for preloading the
348 * hardware rings.
350 static int sysctl_nmbclusters(SYSCTL_HANDLER_ARGS);
351 static int sysctl_nmbjclusters(SYSCTL_HANDLER_ARGS);
352 static int sysctl_nmbufs(SYSCTL_HANDLER_ARGS);
353 SYSCTL_PROC(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLTYPE_INT | CTLFLAG_RW,
354 0, 0, sysctl_nmbclusters, "I",
355 "Maximum number of mbuf clusters available");
356 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjclusters, CTLTYPE_INT | CTLFLAG_RW,
357 0, 0, sysctl_nmbjclusters, "I",
358 "Maximum number of mbuf jclusters available");
359 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbufs, CTLTYPE_INT | CTLFLAG_RW,
360 0, 0, sysctl_nmbufs, "I",
361 "Maximum number of mbufs available");
363 SYSCTL_INT(_kern_ipc, OID_AUTO, mjclph_cachefrac, CTLFLAG_RD,
364 &mjclph_cachefrac, 0,
365 "Fraction of cacheable mbuf jclusters w/ pkthdr");
366 SYSCTL_INT(_kern_ipc, OID_AUTO, mjcl_cachefrac, CTLFLAG_RD,
367 &mjcl_cachefrac, 0,
368 "Fraction of cacheable mbuf jclusters");
369 SYSCTL_INT(_kern_ipc, OID_AUTO, mclph_cachefrac, CTLFLAG_RD,
370 &mclph_cachefrac, 0,
371 "Fraction of cacheable mbuf clusters w/ pkthdr");
372 SYSCTL_INT(_kern_ipc, OID_AUTO, mcl_cachefrac, CTLFLAG_RD,
373 &mcl_cachefrac, 0, "Fraction of cacheable mbuf clusters");
375 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
376 &m_defragpackets, 0, "Number of defragment packets");
377 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
378 &m_defragbytes, 0, "Number of defragment bytes");
379 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
380 &m_defraguseless, 0, "Number of useless defragment mbuf chain operations");
381 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
382 &m_defragfailure, 0, "Number of failed defragment mbuf chain operations");
383 #ifdef MBUF_STRESS_TEST
384 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
385 &m_defragrandomfailures, 0, "");
386 #endif
388 static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
389 static MALLOC_DEFINE(M_MBUFCL, "mbufcl", "mbufcl");
390 static MALLOC_DEFINE(M_MCLMETA, "mclmeta", "mclmeta");
392 static void m_reclaim (void);
393 static void m_mclref(void *arg);
394 static void m_mclfree(void *arg);
395 static void m_mjclfree(void *arg);
397 static void mbupdatelimits(void);
400 * NOTE: Default NMBUFS must take into account a possible DOS attack
401 * using fd passing on unix domain sockets.
403 #ifndef NMBCLUSTERS
404 #define NMBCLUSTERS (512 + maxusers * 16)
405 #endif
406 #ifndef MJCLPH_CACHEFRAC
407 #define MJCLPH_CACHEFRAC 16
408 #endif
409 #ifndef MJCL_CACHEFRAC
410 #define MJCL_CACHEFRAC 4
411 #endif
412 #ifndef MCLPH_CACHEFRAC
413 #define MCLPH_CACHEFRAC 16
414 #endif
415 #ifndef MCL_CACHEFRAC
416 #define MCL_CACHEFRAC 4
417 #endif
418 #ifndef NMBJCLUSTERS
419 #define NMBJCLUSTERS (NMBCLUSTERS / 2)
420 #endif
421 #ifndef NMBUFS
422 #define NMBUFS (nmbclusters * 2 + maxfiles)
423 #endif
425 #define NMBCLUSTERS_MIN (NMBCLUSTERS / 2)
426 #define NMBJCLUSTERS_MIN (NMBJCLUSTERS / 2)
427 #define NMBUFS_MIN ((NMBCLUSTERS * 2 + maxfiles) / 2)
430 * Perform sanity checks of tunables declared above.
432 static void
433 tunable_mbinit(void *dummy)
436 * This has to be done before VM init.
438 nmbclusters = NMBCLUSTERS;
439 TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters);
440 mjclph_cachefrac = MJCLPH_CACHEFRAC;
441 TUNABLE_INT_FETCH("kern.ipc.mjclph_cachefrac", &mjclph_cachefrac);
442 mjcl_cachefrac = MJCL_CACHEFRAC;
443 TUNABLE_INT_FETCH("kern.ipc.mjcl_cachefrac", &mjcl_cachefrac);
444 mclph_cachefrac = MCLPH_CACHEFRAC;
445 TUNABLE_INT_FETCH("kern.ipc.mclph_cachefrac", &mclph_cachefrac);
446 mcl_cachefrac = MCL_CACHEFRAC;
447 TUNABLE_INT_FETCH("kern.ipc.mcl_cachefrac", &mcl_cachefrac);
450 * WARNING! each mcl cache feeds two mbuf caches, so the minimum
451 * cachefrac is 2. For safety, use 3.
453 if (mjclph_cachefrac < 3)
454 mjclph_cachefrac = 3;
455 if (mjcl_cachefrac < 3)
456 mjcl_cachefrac = 3;
457 if (mclph_cachefrac < 3)
458 mclph_cachefrac = 3;
459 if (mcl_cachefrac < 3)
460 mcl_cachefrac = 3;
462 nmbjclusters = NMBJCLUSTERS;
463 TUNABLE_INT_FETCH("kern.ipc.nmbjclusters", &nmbjclusters);
465 nmbufs = NMBUFS;
466 TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs);
468 /* Sanity checks */
469 if (nmbufs < nmbclusters * 2)
470 nmbufs = nmbclusters * 2;
472 SYSINIT(tunable_mbinit, SI_BOOT1_TUNABLES, SI_ORDER_ANY,
473 tunable_mbinit, NULL);
475 static void
476 mbinclimit(int *limit, int inc, int minlim)
478 int new_limit;
480 lockmgr(&mbupdate_lk, LK_EXCLUSIVE);
482 new_limit = *limit + inc;
483 if (new_limit < minlim)
484 new_limit = minlim;
486 if (*limit != new_limit) {
487 *limit = new_limit;
488 mbupdatelimits();
491 lockmgr(&mbupdate_lk, LK_RELEASE);
494 static int
495 mbsetlimit(int *limit, int new_limit, int minlim)
497 if (new_limit < minlim)
498 return EINVAL;
500 lockmgr(&mbupdate_lk, LK_EXCLUSIVE);
501 mbinclimit(limit, new_limit - *limit, minlim);
502 lockmgr(&mbupdate_lk, LK_RELEASE);
503 return 0;
506 static int
507 sysctl_mblimit(SYSCTL_HANDLER_ARGS, int *limit, int minlim)
509 int error, value;
511 value = *limit;
512 error = sysctl_handle_int(oidp, &value, 0, req);
513 if (error || req->newptr == NULL)
514 return error;
516 return mbsetlimit(limit, value, minlim);
520 * Sysctl support to update nmbclusters, nmbjclusters, and nmbufs.
522 static int
523 sysctl_nmbclusters(SYSCTL_HANDLER_ARGS)
525 return sysctl_mblimit(oidp, arg1, arg2, req, &nmbclusters,
526 NMBCLUSTERS_MIN);
529 static int
530 sysctl_nmbjclusters(SYSCTL_HANDLER_ARGS)
532 return sysctl_mblimit(oidp, arg1, arg2, req, &nmbjclusters,
533 NMBJCLUSTERS_MIN);
536 static int
537 sysctl_nmbufs(SYSCTL_HANDLER_ARGS)
539 return sysctl_mblimit(oidp, arg1, arg2, req, &nmbufs, NMBUFS_MIN);
542 void
543 mcl_inclimit(int inc)
545 mbinclimit(&nmbclusters, inc, NMBCLUSTERS_MIN);
548 void
549 mjcl_inclimit(int inc)
551 mbinclimit(&nmbjclusters, inc, NMBJCLUSTERS_MIN);
554 void
555 mb_inclimit(int inc)
557 mbinclimit(&nmbufs, inc, NMBUFS_MIN);
560 /* "number of clusters of pages" */
561 #define NCL_INIT 1
563 #define NMB_INIT 16
566 * The mbuf object cache only guarantees that m_next and m_nextpkt are
567 * NULL and that m_data points to the beginning of the data area. In
568 * particular, m_len and m_pkthdr.len are uninitialized. It is the
569 * responsibility of the caller to initialize those fields before use.
571 static __inline boolean_t
572 mbuf_ctor(void *obj, void *private, int ocflags)
574 struct mbuf *m = obj;
576 m->m_next = NULL;
577 m->m_nextpkt = NULL;
578 m->m_data = m->m_dat;
579 m->m_flags = 0;
581 return (TRUE);
585 * Initialize the mbuf and the packet header fields.
587 static boolean_t
588 mbufphdr_ctor(void *obj, void *private, int ocflags)
590 struct mbuf *m = obj;
592 m->m_next = NULL;
593 m->m_nextpkt = NULL;
594 m->m_data = m->m_pktdat;
595 m->m_flags = M_PKTHDR | M_PHCACHE;
597 m->m_pkthdr.rcvif = NULL; /* eliminate XXX JH */
598 SLIST_INIT(&m->m_pkthdr.tags);
599 m->m_pkthdr.csum_flags = 0; /* eliminate XXX JH */
600 m->m_pkthdr.fw_flags = 0; /* eliminate XXX JH */
602 return (TRUE);
606 * A mbcluster object consists of 2K (MCLBYTES) cluster and a refcount.
608 static boolean_t
609 mclmeta_ctor(void *obj, void *private, int ocflags)
611 struct mbcluster *cl = obj;
612 void *buf;
614 if (ocflags & M_NOWAIT)
615 buf = kmalloc(MCLBYTES, M_MBUFCL, M_NOWAIT | M_ZERO);
616 else
617 buf = kmalloc(MCLBYTES, M_MBUFCL, M_INTWAIT | M_ZERO);
618 if (buf == NULL)
619 return (FALSE);
620 cl->mcl_refs = 0;
621 cl->mcl_data = buf;
622 return (TRUE);
625 static boolean_t
626 mjclmeta_ctor(void *obj, void *private, int ocflags)
628 struct mbcluster *cl = obj;
629 void *buf;
631 if (ocflags & M_NOWAIT)
632 buf = kmalloc(MJUMPAGESIZE, M_MBUFCL, M_NOWAIT | M_ZERO);
633 else
634 buf = kmalloc(MJUMPAGESIZE, M_MBUFCL, M_INTWAIT | M_ZERO);
635 if (buf == NULL)
636 return (FALSE);
637 cl->mcl_refs = 0;
638 cl->mcl_data = buf;
639 return (TRUE);
642 static void
643 mclmeta_dtor(void *obj, void *private)
645 struct mbcluster *mcl = obj;
647 KKASSERT(mcl->mcl_refs == 0);
648 kfree(mcl->mcl_data, M_MBUFCL);
651 static void
652 linkjcluster(struct mbuf *m, struct mbcluster *cl, uint size)
655 * Add the cluster to the mbuf. The caller will detect that the
656 * mbuf now has an attached cluster.
658 m->m_ext.ext_arg = cl;
659 m->m_ext.ext_buf = cl->mcl_data;
660 m->m_ext.ext_ref = m_mclref;
661 if (size != MCLBYTES)
662 m->m_ext.ext_free = m_mjclfree;
663 else
664 m->m_ext.ext_free = m_mclfree;
665 m->m_ext.ext_size = size;
666 atomic_add_int(&cl->mcl_refs, 1);
668 m->m_data = m->m_ext.ext_buf;
669 m->m_flags |= M_EXT | M_EXT_CLUSTER;
672 static void
673 linkcluster(struct mbuf *m, struct mbcluster *cl)
675 linkjcluster(m, cl, MCLBYTES);
678 static boolean_t
679 mbufphdrcluster_ctor(void *obj, void *private, int ocflags)
681 struct mbuf *m = obj;
682 struct mbcluster *cl;
684 mbufphdr_ctor(obj, private, ocflags);
685 cl = objcache_get(mclmeta_cache, ocflags);
686 if (cl == NULL) {
687 ++mbstat[mycpu->gd_cpuid].m_drops;
688 return (FALSE);
690 m->m_flags |= M_CLCACHE;
691 linkcluster(m, cl);
692 return (TRUE);
695 static boolean_t
696 mbufphdrjcluster_ctor(void *obj, void *private, int ocflags)
698 struct mbuf *m = obj;
699 struct mbcluster *cl;
701 mbufphdr_ctor(obj, private, ocflags);
702 cl = objcache_get(mjclmeta_cache, ocflags);
703 if (cl == NULL) {
704 ++mbstat[mycpu->gd_cpuid].m_drops;
705 return (FALSE);
707 m->m_flags |= M_CLCACHE;
708 linkjcluster(m, cl, MJUMPAGESIZE);
709 return (TRUE);
712 static boolean_t
713 mbufcluster_ctor(void *obj, void *private, int ocflags)
715 struct mbuf *m = obj;
716 struct mbcluster *cl;
718 mbuf_ctor(obj, private, ocflags);
719 cl = objcache_get(mclmeta_cache, ocflags);
720 if (cl == NULL) {
721 ++mbstat[mycpu->gd_cpuid].m_drops;
722 return (FALSE);
724 m->m_flags |= M_CLCACHE;
725 linkcluster(m, cl);
726 return (TRUE);
729 static boolean_t
730 mbufjcluster_ctor(void *obj, void *private, int ocflags)
732 struct mbuf *m = obj;
733 struct mbcluster *cl;
735 mbuf_ctor(obj, private, ocflags);
736 cl = objcache_get(mjclmeta_cache, ocflags);
737 if (cl == NULL) {
738 ++mbstat[mycpu->gd_cpuid].m_drops;
739 return (FALSE);
741 m->m_flags |= M_CLCACHE;
742 linkjcluster(m, cl, MJUMPAGESIZE);
743 return (TRUE);
747 * Used for both the cluster and cluster PHDR caches.
749 * The mbuf may have lost its cluster due to sharing, deal
750 * with the situation by checking M_EXT.
752 static void
753 mbufcluster_dtor(void *obj, void *private)
755 struct mbuf *m = obj;
756 struct mbcluster *mcl;
758 if (m->m_flags & M_EXT) {
759 KKASSERT((m->m_flags & M_EXT_CLUSTER) != 0);
760 mcl = m->m_ext.ext_arg;
761 KKASSERT(mcl->mcl_refs == 1);
762 mcl->mcl_refs = 0;
763 if (m->m_flags & M_EXT && m->m_ext.ext_size != MCLBYTES)
764 objcache_put(mjclmeta_cache, mcl);
765 else
766 objcache_put(mclmeta_cache, mcl);
770 struct objcache_malloc_args mbuf_malloc_args = { MSIZE, M_MBUF };
771 struct objcache_malloc_args mclmeta_malloc_args =
772 { sizeof(struct mbcluster), M_MCLMETA };
774 /* ARGSUSED*/
775 static void
776 mbinit(void *dummy)
778 int mb_limit, cl_limit, ncl_limit, jcl_limit;
779 int limit;
780 int i;
783 * Initialize statistics
785 for (i = 0; i < ncpus; i++) {
786 mbstat[i].m_msize = MSIZE;
787 mbstat[i].m_mclbytes = MCLBYTES;
788 mbstat[i].m_mjumpagesize = MJUMPAGESIZE;
789 mbstat[i].m_minclsize = MINCLSIZE;
790 mbstat[i].m_mlen = MLEN;
791 mbstat[i].m_mhlen = MHLEN;
795 * Create object caches and save cluster limits, which will
796 * be used to adjust backing kmalloc pools' limit later.
799 mb_limit = cl_limit = 0;
801 limit = nmbufs;
802 mbuf_cache = objcache_create("mbuf",
803 limit, nmbufs / 4,
804 mbuf_ctor, NULL, NULL,
805 objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
806 mb_limit += limit;
808 limit = nmbufs;
809 mbufphdr_cache = objcache_create("mbuf pkt hdr",
810 limit, nmbufs / 4,
811 mbufphdr_ctor, NULL, NULL,
812 objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
813 mb_limit += limit;
815 ncl_limit = nmbclusters;
816 mclmeta_cache = objcache_create("cluster mbuf",
817 ncl_limit, nmbclusters / 4,
818 mclmeta_ctor, mclmeta_dtor, NULL,
819 objcache_malloc_alloc, objcache_malloc_free, &mclmeta_malloc_args);
820 cl_limit += ncl_limit;
822 jcl_limit = nmbjclusters;
823 mjclmeta_cache = objcache_create("jcluster mbuf",
824 jcl_limit, nmbjclusters / 4,
825 mjclmeta_ctor, mclmeta_dtor, NULL,
826 objcache_malloc_alloc, objcache_malloc_free, &mclmeta_malloc_args);
827 cl_limit += jcl_limit;
829 limit = nmbclusters;
830 mbufcluster_cache = objcache_create("mbuf + cluster",
831 limit, nmbclusters / mcl_cachefrac,
832 mbufcluster_ctor, mbufcluster_dtor, NULL,
833 objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
834 mb_limit += limit;
836 limit = nmbclusters;
837 mbufphdrcluster_cache = objcache_create("mbuf pkt hdr + cluster",
838 limit, nmbclusters / mclph_cachefrac,
839 mbufphdrcluster_ctor, mbufcluster_dtor, NULL,
840 objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
841 mb_limit += limit;
843 limit = nmbjclusters;
844 mbufjcluster_cache = objcache_create("mbuf + jcluster",
845 limit, nmbjclusters / mjcl_cachefrac,
846 mbufjcluster_ctor, mbufcluster_dtor, NULL,
847 objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
848 mb_limit += limit;
850 limit = nmbjclusters;
851 mbufphdrjcluster_cache = objcache_create("mbuf pkt hdr + jcluster",
852 limit, nmbjclusters / mjclph_cachefrac,
853 mbufphdrjcluster_ctor, mbufcluster_dtor, NULL,
854 objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
855 mb_limit += limit;
858 * Adjust backing kmalloc pools' limit
860 * NOTE: We raise the limit by another 1/8 to take the effect
861 * of loosememuse into account.
863 cl_limit += cl_limit / 8;
864 kmalloc_raise_limit(mclmeta_malloc_args.mtype,
865 mclmeta_malloc_args.objsize * (size_t)cl_limit);
866 kmalloc_raise_limit(M_MBUFCL,
867 (MCLBYTES * (size_t)ncl_limit) +
868 (MJUMPAGESIZE * (size_t)jcl_limit));
870 mb_limit += mb_limit / 8;
871 kmalloc_raise_limit(mbuf_malloc_args.mtype,
872 mbuf_malloc_args.objsize * (size_t)mb_limit);
876 * Adjust mbuf limits after changes have been made
878 * Caller must hold mbupdate_lk
880 static void
881 mbupdatelimits(void)
883 int mb_limit, cl_limit, ncl_limit, jcl_limit;
884 int limit;
886 KASSERT(lockstatus(&mbupdate_lk, curthread) != 0,
887 ("mbupdate_lk is not held"));
890 * Figure out adjustments to object caches after nmbufs, nmbclusters,
891 * or nmbjclusters has been modified.
893 mb_limit = cl_limit = 0;
895 limit = nmbufs;
896 objcache_set_cluster_limit(mbuf_cache, limit);
897 mb_limit += limit;
899 limit = nmbufs;
900 objcache_set_cluster_limit(mbufphdr_cache, limit);
901 mb_limit += limit;
903 ncl_limit = nmbclusters;
904 objcache_set_cluster_limit(mclmeta_cache, ncl_limit);
905 cl_limit += ncl_limit;
907 jcl_limit = nmbjclusters;
908 objcache_set_cluster_limit(mjclmeta_cache, jcl_limit);
909 cl_limit += jcl_limit;
911 limit = nmbclusters;
912 objcache_set_cluster_limit(mbufcluster_cache, limit);
913 mb_limit += limit;
915 limit = nmbclusters;
916 objcache_set_cluster_limit(mbufphdrcluster_cache, limit);
917 mb_limit += limit;
919 limit = nmbjclusters;
920 objcache_set_cluster_limit(mbufjcluster_cache, limit);
921 mb_limit += limit;
923 limit = nmbjclusters;
924 objcache_set_cluster_limit(mbufphdrjcluster_cache, limit);
925 mb_limit += limit;
928 * Adjust backing kmalloc pools' limit
930 * NOTE: We raise the limit by another 1/8 to take the effect
931 * of loosememuse into account.
933 cl_limit += cl_limit / 8;
934 kmalloc_raise_limit(mclmeta_malloc_args.mtype,
935 mclmeta_malloc_args.objsize * (size_t)cl_limit);
936 kmalloc_raise_limit(M_MBUFCL,
937 (MCLBYTES * (size_t)ncl_limit) +
938 (MJUMPAGESIZE * (size_t)jcl_limit));
939 mb_limit += mb_limit / 8;
940 kmalloc_raise_limit(mbuf_malloc_args.mtype,
941 mbuf_malloc_args.objsize * (size_t)mb_limit);
945 * Return the number of references to this mbuf's data. 0 is returned
946 * if the mbuf is not M_EXT, a reference count is returned if it is
947 * M_EXT | M_EXT_CLUSTER, and 99 is returned if it is a special M_EXT.
950 m_sharecount(struct mbuf *m)
952 switch (m->m_flags & (M_EXT | M_EXT_CLUSTER)) {
953 case 0:
954 return (0);
955 case M_EXT:
956 return (99);
957 case M_EXT | M_EXT_CLUSTER:
958 return (((struct mbcluster *)m->m_ext.ext_arg)->mcl_refs);
960 /* NOTREACHED */
961 return (0); /* to shut up compiler */
965 * change mbuf to new type
967 void
968 m_chtype(struct mbuf *m, int type)
970 struct globaldata *gd = mycpu;
972 ++mbtypes[gd->gd_cpuid].stats[type];
973 --mbtypes[gd->gd_cpuid].stats[m->m_type];
974 m->m_type = type;
977 static void
978 m_reclaim(void)
980 struct domain *dp;
981 struct protosw *pr;
983 kprintf("Debug: m_reclaim() called\n");
985 SLIST_FOREACH(dp, &domains, dom_next) {
986 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
987 if (pr->pr_drain)
988 (*pr->pr_drain)();
991 ++mbstat[mycpu->gd_cpuid].m_drain;
994 static __inline void
995 updatestats(struct mbuf *m, int type)
997 struct globaldata *gd = mycpu;
999 m->m_type = type;
1000 mbuftrack(m);
1001 #ifdef MBUF_DEBUG
1002 KASSERT(m->m_next == NULL, ("mbuf %p: bad m_next in get", m));
1003 KASSERT(m->m_nextpkt == NULL, ("mbuf %p: bad m_nextpkt in get", m));
1004 #endif
1006 ++mbtypes[gd->gd_cpuid].stats[type];
1007 ++mbstat[gd->gd_cpuid].m_mbufs;
1012 * Allocate an mbuf.
1014 struct mbuf *
1015 m_get(int how, int type)
1017 struct mbuf *m;
1018 int ntries = 0;
1019 int ocf = MB_OCFLAG(how);
1021 retryonce:
1023 m = objcache_get(mbuf_cache, ocf);
1025 if (m == NULL) {
1026 if ((ocf & M_WAITOK) && ntries++ == 0) {
1027 struct objcache *reclaimlist[] = {
1028 mbufphdr_cache,
1029 mbufcluster_cache,
1030 mbufphdrcluster_cache,
1031 mbufjcluster_cache,
1032 mbufphdrjcluster_cache
1034 const int nreclaims = NELEM(reclaimlist);
1036 if (!objcache_reclaimlist(reclaimlist, nreclaims, ocf))
1037 m_reclaim();
1038 goto retryonce;
1040 ++mbstat[mycpu->gd_cpuid].m_drops;
1041 return (NULL);
1043 #ifdef MBUF_DEBUG
1044 KASSERT(m->m_data == m->m_dat, ("mbuf %p: bad m_data in get", m));
1045 #endif
1046 m->m_len = 0;
1048 updatestats(m, type);
1049 return (m);
1052 struct mbuf *
1053 m_gethdr(int how, int type)
1055 struct mbuf *m;
1056 int ocf = MB_OCFLAG(how);
1057 int ntries = 0;
1059 retryonce:
1061 m = objcache_get(mbufphdr_cache, ocf);
1063 if (m == NULL) {
1064 if ((ocf & M_WAITOK) && ntries++ == 0) {
1065 struct objcache *reclaimlist[] = {
1066 mbuf_cache,
1067 mbufcluster_cache, mbufphdrcluster_cache,
1068 mbufjcluster_cache, mbufphdrjcluster_cache
1070 const int nreclaims = NELEM(reclaimlist);
1072 if (!objcache_reclaimlist(reclaimlist, nreclaims, ocf))
1073 m_reclaim();
1074 goto retryonce;
1076 ++mbstat[mycpu->gd_cpuid].m_drops;
1077 return (NULL);
1079 #ifdef MBUF_DEBUG
1080 KASSERT(m->m_data == m->m_pktdat, ("mbuf %p: bad m_data in get", m));
1081 #endif
1082 m->m_len = 0;
1083 m->m_pkthdr.len = 0;
1085 updatestats(m, type);
1086 return (m);
1090 * Get a mbuf (not a mbuf cluster!) and zero it.
1091 * Deprecated.
1093 struct mbuf *
1094 m_getclr(int how, int type)
1096 struct mbuf *m;
1098 m = m_get(how, type);
1099 if (m != NULL)
1100 bzero(m->m_data, MLEN);
1101 return (m);
1104 static struct mbuf *
1105 m_getcl_cache(int how, short type, int flags, struct objcache *mbclc,
1106 struct objcache *mbphclc, u_long *cl_stats)
1108 struct mbuf *m = NULL;
1109 int ocflags = MB_OCFLAG(how);
1110 int ntries = 0;
1112 retryonce:
1114 if (flags & M_PKTHDR)
1115 m = objcache_get(mbphclc, ocflags);
1116 else
1117 m = objcache_get(mbclc, ocflags);
1119 if (m == NULL) {
1120 if ((ocflags & M_WAITOK) && ntries++ == 0) {
1121 struct objcache *reclaimlist[1];
1123 if (flags & M_PKTHDR)
1124 reclaimlist[0] = mbclc;
1125 else
1126 reclaimlist[0] = mbphclc;
1127 if (!objcache_reclaimlist(reclaimlist, 1, ocflags))
1128 m_reclaim();
1129 goto retryonce;
1131 ++mbstat[mycpu->gd_cpuid].m_drops;
1132 return (NULL);
1135 #ifdef MBUF_DEBUG
1136 KASSERT(m->m_data == m->m_ext.ext_buf,
1137 ("mbuf %p: bad m_data in get", m));
1138 #endif
1139 m->m_type = type;
1140 m->m_len = 0;
1141 m->m_pkthdr.len = 0; /* just do it unconditonally */
1143 mbuftrack(m);
1145 ++mbtypes[mycpu->gd_cpuid].stats[type];
1146 ++(*cl_stats);
1147 return (m);
1150 struct mbuf *
1151 m_getjcl(int how, short type, int flags, size_t size)
1153 struct objcache *mbclc, *mbphclc;
1154 u_long *cl_stats;
1156 switch (size) {
1157 case MCLBYTES:
1158 mbclc = mbufcluster_cache;
1159 mbphclc = mbufphdrcluster_cache;
1160 cl_stats = &mbstat[mycpu->gd_cpuid].m_clusters;
1161 break;
1163 default:
1164 mbclc = mbufjcluster_cache;
1165 mbphclc = mbufphdrjcluster_cache;
1166 cl_stats = &mbstat[mycpu->gd_cpuid].m_jclusters;
1167 break;
1169 return m_getcl_cache(how, type, flags, mbclc, mbphclc, cl_stats);
1173 * Returns an mbuf with an attached cluster.
1174 * Because many network drivers use this kind of buffers a lot, it is
1175 * convenient to keep a small pool of free buffers of this kind.
1176 * Even a small size such as 10 gives about 10% improvement in the
1177 * forwarding rate in a bridge or router.
1179 struct mbuf *
1180 m_getcl(int how, short type, int flags)
1182 return m_getcl_cache(how, type, flags,
1183 mbufcluster_cache, mbufphdrcluster_cache,
1184 &mbstat[mycpu->gd_cpuid].m_clusters);
1188 * Allocate chain of requested length.
1190 struct mbuf *
1191 m_getc(int len, int how, int type)
1193 struct mbuf *n, *nfirst = NULL, **ntail = &nfirst;
1194 int nsize;
1196 while (len > 0) {
1197 n = m_getl(len, how, type, 0, &nsize);
1198 if (n == NULL)
1199 goto failed;
1200 n->m_len = 0;
1201 *ntail = n;
1202 ntail = &n->m_next;
1203 len -= nsize;
1205 return (nfirst);
1207 failed:
1208 m_freem(nfirst);
1209 return (NULL);
1213 * Allocate len-worth of mbufs and/or mbuf clusters (whatever fits best)
1214 * and return a pointer to the head of the allocated chain. If m0 is
1215 * non-null, then we assume that it is a single mbuf or an mbuf chain to
1216 * which we want len bytes worth of mbufs and/or clusters attached, and so
1217 * if we succeed in allocating it, we will just return a pointer to m0.
1219 * If we happen to fail at any point during the allocation, we will free
1220 * up everything we have already allocated and return NULL.
1222 * Deprecated. Use m_getc() and m_cat() instead.
1224 struct mbuf *
1225 m_getm(struct mbuf *m0, int len, int type, int how)
1227 struct mbuf *nfirst;
1229 nfirst = m_getc(len, how, type);
1231 if (m0 != NULL) {
1232 m_last(m0)->m_next = nfirst;
1233 return (m0);
1236 return (nfirst);
1240 * Adds a cluster to a normal mbuf, M_EXT is set on success.
1241 * Deprecated. Use m_getcl() instead.
1243 void
1244 m_mclget(struct mbuf *m, int how)
1246 struct mbcluster *mcl;
1248 KKASSERT((m->m_flags & M_EXT) == 0);
1249 mcl = objcache_get(mclmeta_cache, MB_OCFLAG(how));
1250 if (mcl != NULL) {
1251 linkcluster(m, mcl);
1252 ++mbstat[mycpu->gd_cpuid].m_clusters;
1253 } else {
1254 ++mbstat[mycpu->gd_cpuid].m_drops;
1259 * Updates to mbcluster must be MPSAFE. Only an entity which already has
1260 * a reference to the cluster can ref it, so we are in no danger of
1261 * racing an add with a subtract. But the operation must still be atomic
1262 * since multiple entities may have a reference on the cluster.
1264 * m_mclfree() is almost the same but it must contend with two entities
1265 * freeing the cluster at the same time.
1267 static void
1268 m_mclref(void *arg)
1270 struct mbcluster *mcl = arg;
1272 atomic_add_int(&mcl->mcl_refs, 1);
1276 * When dereferencing a cluster we have to deal with a N->0 race, where
1277 * N entities free their references simultaniously. To do this we use
1278 * atomic_fetchadd_int().
1280 static void
1281 m_mclfree(void *arg)
1283 struct mbcluster *mcl = arg;
1285 if (atomic_fetchadd_int(&mcl->mcl_refs, -1) == 1) {
1286 --mbstat[mycpu->gd_cpuid].m_clusters;
1287 objcache_put(mclmeta_cache, mcl);
1291 static void
1292 m_mjclfree(void *arg)
1294 struct mbcluster *mcl = arg;
1296 if (atomic_fetchadd_int(&mcl->mcl_refs, -1) == 1) {
1297 --mbstat[mycpu->gd_cpuid].m_jclusters;
1298 objcache_put(mjclmeta_cache, mcl);
1303 * Free a single mbuf and any associated external storage. The successor,
1304 * if any, is returned.
1306 * We do need to check non-first mbuf for m_aux, since some of existing
1307 * code does not call M_PREPEND properly.
1308 * (example: call to bpf_mtap from drivers)
1311 #ifdef MBUF_DEBUG
1313 struct mbuf *
1314 _m_free(struct mbuf *m, const char *func)
1316 #else
1318 struct mbuf *
1319 m_free(struct mbuf *m)
1321 #endif
1323 struct mbuf *n;
1324 struct globaldata *gd = mycpu;
1326 KASSERT(m->m_type != MT_FREE, ("freeing free mbuf %p", m));
1327 KASSERT(M_TRAILINGSPACE(m) >= 0, ("overflowed mbuf %p", m));
1328 --mbtypes[gd->gd_cpuid].stats[m->m_type];
1330 n = m->m_next;
1333 * Make sure the mbuf is in constructed state before returning it
1334 * to the objcache.
1336 m->m_next = NULL;
1337 mbufuntrack(m);
1338 #ifdef MBUF_DEBUG
1339 m->m_hdr.mh_lastfunc = func;
1340 #endif
1341 #ifdef notyet
1342 KKASSERT(m->m_nextpkt == NULL);
1343 #else
1344 if (m->m_nextpkt != NULL) {
1345 static int afewtimes = 10;
1347 if (afewtimes-- > 0) {
1348 kprintf("mfree: m->m_nextpkt != NULL\n");
1349 print_backtrace(-1);
1351 m->m_nextpkt = NULL;
1353 #endif
1354 if (m->m_flags & M_PKTHDR) {
1355 m_tag_delete_chain(m); /* eliminate XXX JH */
1358 m->m_flags &= (M_EXT | M_EXT_CLUSTER | M_CLCACHE | M_PHCACHE);
1361 * Clean the M_PKTHDR state so we can return the mbuf to its original
1362 * cache. This is based on the PHCACHE flag which tells us whether
1363 * the mbuf was originally allocated out of a packet-header cache
1364 * or a non-packet-header cache.
1366 if (m->m_flags & M_PHCACHE) {
1367 m->m_flags |= M_PKTHDR;
1368 m->m_pkthdr.rcvif = NULL; /* eliminate XXX JH */
1369 m->m_pkthdr.csum_flags = 0; /* eliminate XXX JH */
1370 m->m_pkthdr.fw_flags = 0; /* eliminate XXX JH */
1371 SLIST_INIT(&m->m_pkthdr.tags);
1375 * Handle remaining flags combinations. M_CLCACHE tells us whether
1376 * the mbuf was originally allocated from a cluster cache or not,
1377 * and is totally separate from whether the mbuf is currently
1378 * associated with a cluster.
1380 switch(m->m_flags & (M_CLCACHE | M_EXT | M_EXT_CLUSTER)) {
1381 case M_CLCACHE | M_EXT | M_EXT_CLUSTER:
1383 * mbuf+cluster cache case. The mbuf was allocated from the
1384 * combined mbuf_cluster cache and can be returned to the
1385 * cache if the cluster hasn't been shared.
1387 if (m_sharecount(m) == 1) {
1389 * The cluster has not been shared, we can just
1390 * reset the data pointer and return the mbuf
1391 * to the cluster cache. Note that the reference
1392 * count is left intact (it is still associated with
1393 * an mbuf).
1395 m->m_data = m->m_ext.ext_buf;
1396 if (m->m_flags & M_EXT && m->m_ext.ext_size != MCLBYTES) {
1397 if (m->m_flags & M_PHCACHE)
1398 objcache_put(mbufphdrjcluster_cache, m);
1399 else
1400 objcache_put(mbufjcluster_cache, m);
1401 --mbstat[mycpu->gd_cpuid].m_jclusters;
1402 } else {
1403 if (m->m_flags & M_PHCACHE)
1404 objcache_put(mbufphdrcluster_cache, m);
1405 else
1406 objcache_put(mbufcluster_cache, m);
1407 --mbstat[mycpu->gd_cpuid].m_clusters;
1409 } else {
1411 * Hell. Someone else has a ref on this cluster,
1412 * we have to disconnect it which means we can't
1413 * put it back into the mbufcluster_cache, we
1414 * have to destroy the mbuf.
1416 * Other mbuf references to the cluster will typically
1417 * be M_EXT | M_EXT_CLUSTER but without M_CLCACHE.
1419 * XXX we could try to connect another cluster to
1420 * it.
1422 m->m_ext.ext_free(m->m_ext.ext_arg);
1423 m->m_flags &= ~(M_EXT | M_EXT_CLUSTER);
1424 if (m->m_ext.ext_size == MCLBYTES) {
1425 if (m->m_flags & M_PHCACHE)
1426 objcache_dtor(mbufphdrcluster_cache, m);
1427 else
1428 objcache_dtor(mbufcluster_cache, m);
1429 } else {
1430 if (m->m_flags & M_PHCACHE)
1431 objcache_dtor(mbufphdrjcluster_cache, m);
1432 else
1433 objcache_dtor(mbufjcluster_cache, m);
1436 break;
1437 case M_EXT | M_EXT_CLUSTER:
1438 case M_EXT:
1440 * Normal cluster association case, disconnect the cluster from
1441 * the mbuf. The cluster may or may not be custom.
1443 m->m_ext.ext_free(m->m_ext.ext_arg);
1444 m->m_flags &= ~(M_EXT | M_EXT_CLUSTER);
1445 /* fall through */
1446 case 0:
1448 * return the mbuf to the mbuf cache.
1450 if (m->m_flags & M_PHCACHE) {
1451 m->m_data = m->m_pktdat;
1452 objcache_put(mbufphdr_cache, m);
1453 } else {
1454 m->m_data = m->m_dat;
1455 objcache_put(mbuf_cache, m);
1457 --mbstat[mycpu->gd_cpuid].m_mbufs;
1458 break;
1459 default:
1460 if (!panicstr)
1461 panic("bad mbuf flags %p %08x", m, m->m_flags);
1462 break;
1464 return (n);
1467 #ifdef MBUF_DEBUG
1469 void
1470 _m_freem(struct mbuf *m, const char *func)
1472 while (m)
1473 m = _m_free(m, func);
1476 #else
1478 void
1479 m_freem(struct mbuf *m)
1481 while (m)
1482 m = m_free(m);
1485 #endif
1487 void
1488 m_extadd(struct mbuf *m, caddr_t buf, u_int size, void (*reff)(void *),
1489 void (*freef)(void *), void *arg)
1491 m->m_ext.ext_arg = arg;
1492 m->m_ext.ext_buf = buf;
1493 m->m_ext.ext_ref = reff;
1494 m->m_ext.ext_free = freef;
1495 m->m_ext.ext_size = size;
1496 reff(arg);
1497 m->m_data = buf;
1498 m->m_flags |= M_EXT;
1502 * mbuf utility routines
1506 * Lesser-used path for M_PREPEND: allocate new mbuf to prepend to chain and
1507 * copy junk along.
1509 struct mbuf *
1510 m_prepend(struct mbuf *m, int len, int how)
1512 struct mbuf *mn;
1514 if (m->m_flags & M_PKTHDR)
1515 mn = m_gethdr(how, m->m_type);
1516 else
1517 mn = m_get(how, m->m_type);
1518 if (mn == NULL) {
1519 m_freem(m);
1520 return (NULL);
1522 if (m->m_flags & M_PKTHDR)
1523 M_MOVE_PKTHDR(mn, m);
1524 mn->m_next = m;
1525 m = mn;
1526 if (len < MHLEN)
1527 MH_ALIGN(m, len);
1528 m->m_len = len;
1529 return (m);
1533 * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
1534 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf.
1535 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
1536 * Note that the copy is read-only, because clusters are not copied,
1537 * only their reference counts are incremented.
1539 struct mbuf *
1540 m_copym(const struct mbuf *m, int off0, int len, int wait)
1542 struct mbuf *n, **np;
1543 int off = off0;
1544 struct mbuf *top;
1545 int copyhdr = 0;
1547 KASSERT(off >= 0, ("m_copym, negative off %d", off));
1548 KASSERT(len >= 0, ("m_copym, negative len %d", len));
1549 if (off == 0 && (m->m_flags & M_PKTHDR))
1550 copyhdr = 1;
1551 while (off > 0) {
1552 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
1553 if (off < m->m_len)
1554 break;
1555 off -= m->m_len;
1556 m = m->m_next;
1558 np = &top;
1559 top = NULL;
1560 while (len > 0) {
1561 if (m == NULL) {
1562 KASSERT(len == M_COPYALL,
1563 ("m_copym, length > size of mbuf chain"));
1564 break;
1567 * Because we are sharing any cluster attachment below,
1568 * be sure to get an mbuf that does not have a cluster
1569 * associated with it.
1571 if (copyhdr)
1572 n = m_gethdr(wait, m->m_type);
1573 else
1574 n = m_get(wait, m->m_type);
1575 *np = n;
1576 if (n == NULL)
1577 goto nospace;
1578 if (copyhdr) {
1579 if (!m_dup_pkthdr(n, m, wait))
1580 goto nospace;
1581 if (len == M_COPYALL)
1582 n->m_pkthdr.len -= off0;
1583 else
1584 n->m_pkthdr.len = len;
1585 copyhdr = 0;
1587 n->m_len = min(len, m->m_len - off);
1588 if (m->m_flags & M_EXT) {
1589 KKASSERT((n->m_flags & M_EXT) == 0);
1590 n->m_data = m->m_data + off;
1591 m->m_ext.ext_ref(m->m_ext.ext_arg);
1592 n->m_ext = m->m_ext;
1593 n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1594 } else {
1595 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
1596 (unsigned)n->m_len);
1598 if (len != M_COPYALL)
1599 len -= n->m_len;
1600 off = 0;
1601 m = m->m_next;
1602 np = &n->m_next;
1604 if (top == NULL)
1605 ++mbstat[mycpu->gd_cpuid].m_mcfail;
1606 return (top);
1607 nospace:
1608 m_freem(top);
1609 ++mbstat[mycpu->gd_cpuid].m_mcfail;
1610 return (NULL);
1614 * Copy an entire packet, including header (which must be present).
1615 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
1616 * Note that the copy is read-only, because clusters are not copied,
1617 * only their reference counts are incremented.
1618 * Preserve alignment of the first mbuf so if the creator has left
1619 * some room at the beginning (e.g. for inserting protocol headers)
1620 * the copies also have the room available.
1622 struct mbuf *
1623 m_copypacket(struct mbuf *m, int how)
1625 struct mbuf *top, *n, *o;
1627 n = m_gethdr(how, m->m_type);
1628 top = n;
1629 if (!n)
1630 goto nospace;
1632 if (!m_dup_pkthdr(n, m, how))
1633 goto nospace;
1634 n->m_len = m->m_len;
1635 if (m->m_flags & M_EXT) {
1636 KKASSERT((n->m_flags & M_EXT) == 0);
1637 n->m_data = m->m_data;
1638 m->m_ext.ext_ref(m->m_ext.ext_arg);
1639 n->m_ext = m->m_ext;
1640 n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1641 } else {
1642 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
1643 bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
1646 m = m->m_next;
1647 while (m) {
1648 o = m_get(how, m->m_type);
1649 if (!o)
1650 goto nospace;
1652 n->m_next = o;
1653 n = n->m_next;
1655 n->m_len = m->m_len;
1656 if (m->m_flags & M_EXT) {
1657 KKASSERT((n->m_flags & M_EXT) == 0);
1658 n->m_data = m->m_data;
1659 m->m_ext.ext_ref(m->m_ext.ext_arg);
1660 n->m_ext = m->m_ext;
1661 n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1662 } else {
1663 bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
1666 m = m->m_next;
1668 return top;
1669 nospace:
1670 m_freem(top);
1671 ++mbstat[mycpu->gd_cpuid].m_mcfail;
1672 return (NULL);
1676 * Copy data from an mbuf chain starting "off" bytes from the beginning,
1677 * continuing for "len" bytes, into the indicated buffer.
1679 void
1680 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
1682 unsigned count;
1684 KASSERT(off >= 0, ("m_copydata, negative off %d", off));
1685 KASSERT(len >= 0, ("m_copydata, negative len %d", len));
1686 while (off > 0) {
1687 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
1688 if (off < m->m_len)
1689 break;
1690 off -= m->m_len;
1691 m = m->m_next;
1693 while (len > 0) {
1694 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
1695 count = min(m->m_len - off, len);
1696 bcopy(mtod(m, caddr_t) + off, cp, count);
1697 len -= count;
1698 cp += count;
1699 off = 0;
1700 m = m->m_next;
1705 * Copy a packet header mbuf chain into a completely new chain, including
1706 * copying any mbuf clusters. Use this instead of m_copypacket() when
1707 * you need a writable copy of an mbuf chain.
1709 struct mbuf *
1710 m_dup(struct mbuf *m, int how)
1712 struct mbuf **p, *top = NULL;
1713 int remain, moff, nsize;
1715 /* Sanity check */
1716 if (m == NULL)
1717 return (NULL);
1718 KASSERT((m->m_flags & M_PKTHDR) != 0, ("%s: !PKTHDR", __func__));
1720 /* While there's more data, get a new mbuf, tack it on, and fill it */
1721 remain = m->m_pkthdr.len;
1722 moff = 0;
1723 p = &top;
1724 while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */
1725 struct mbuf *n;
1727 /* Get the next new mbuf */
1728 n = m_getl(remain, how, m->m_type, top == NULL ? M_PKTHDR : 0,
1729 &nsize);
1730 if (n == NULL)
1731 goto nospace;
1732 if (top == NULL)
1733 if (!m_dup_pkthdr(n, m, how))
1734 goto nospace0;
1736 /* Link it into the new chain */
1737 *p = n;
1738 p = &n->m_next;
1740 /* Copy data from original mbuf(s) into new mbuf */
1741 n->m_len = 0;
1742 while (n->m_len < nsize && m != NULL) {
1743 int chunk = min(nsize - n->m_len, m->m_len - moff);
1745 bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
1746 moff += chunk;
1747 n->m_len += chunk;
1748 remain -= chunk;
1749 if (moff == m->m_len) {
1750 m = m->m_next;
1751 moff = 0;
1755 /* Check correct total mbuf length */
1756 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
1757 ("%s: bogus m_pkthdr.len", __func__));
1759 return (top);
1761 nospace:
1762 m_freem(top);
1763 nospace0:
1764 ++mbstat[mycpu->gd_cpuid].m_mcfail;
1765 return (NULL);
1769 * Copy the non-packet mbuf data chain into a new set of mbufs, including
1770 * copying any mbuf clusters. This is typically used to realign a data
1771 * chain by nfs_realign().
1773 * The original chain is left intact. how should be M_WAITOK or M_NOWAIT
1774 * and NULL can be returned if M_NOWAIT is passed.
1776 * Be careful to use cluster mbufs, a large mbuf chain converted to non
1777 * cluster mbufs can exhaust our supply of mbufs.
1779 struct mbuf *
1780 m_dup_data(struct mbuf *m, int how)
1782 struct mbuf **p, *n, *top = NULL;
1783 int mlen, moff, chunk, gsize, nsize;
1786 * Degenerate case
1788 if (m == NULL)
1789 return (NULL);
1792 * Optimize the mbuf allocation but do not get too carried away.
1794 if (m->m_next || m->m_len > MLEN)
1795 if (m->m_flags & M_EXT && m->m_ext.ext_size == MCLBYTES)
1796 gsize = MCLBYTES;
1797 else
1798 gsize = MJUMPAGESIZE;
1799 else
1800 gsize = MLEN;
1802 /* Chain control */
1803 p = &top;
1804 n = NULL;
1805 nsize = 0;
1808 * Scan the mbuf chain until nothing is left, the new mbuf chain
1809 * will be allocated on the fly as needed.
1811 while (m) {
1812 mlen = m->m_len;
1813 moff = 0;
1815 while (mlen) {
1816 KKASSERT(m->m_type == MT_DATA);
1817 if (n == NULL) {
1818 n = m_getl(gsize, how, MT_DATA, 0, &nsize);
1819 n->m_len = 0;
1820 if (n == NULL)
1821 goto nospace;
1822 *p = n;
1823 p = &n->m_next;
1825 chunk = imin(mlen, nsize);
1826 bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
1827 mlen -= chunk;
1828 moff += chunk;
1829 n->m_len += chunk;
1830 nsize -= chunk;
1831 if (nsize == 0)
1832 n = NULL;
1834 m = m->m_next;
1836 *p = NULL;
1837 return(top);
1838 nospace:
1839 *p = NULL;
1840 m_freem(top);
1841 ++mbstat[mycpu->gd_cpuid].m_mcfail;
1842 return (NULL);
1846 * Concatenate mbuf chain n to m.
1847 * Both chains must be of the same type (e.g. MT_DATA).
1848 * Any m_pkthdr is not updated.
1850 void
1851 m_cat(struct mbuf *m, struct mbuf *n)
1853 m = m_last(m);
1854 while (n) {
1855 if (m->m_flags & M_EXT ||
1856 m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) {
1857 /* just join the two chains */
1858 m->m_next = n;
1859 return;
1861 /* splat the data from one into the other */
1862 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1863 (u_int)n->m_len);
1864 m->m_len += n->m_len;
1865 n = m_free(n);
1869 void
1870 m_adj(struct mbuf *mp, int req_len)
1872 int len = req_len;
1873 struct mbuf *m;
1874 int count;
1876 if ((m = mp) == NULL)
1877 return;
1878 if (len >= 0) {
1880 * Trim from head.
1882 while (m != NULL && len > 0) {
1883 if (m->m_len <= len) {
1884 len -= m->m_len;
1885 m->m_len = 0;
1886 m = m->m_next;
1887 } else {
1888 m->m_len -= len;
1889 m->m_data += len;
1890 len = 0;
1893 m = mp;
1894 if (mp->m_flags & M_PKTHDR)
1895 m->m_pkthdr.len -= (req_len - len);
1896 } else {
1898 * Trim from tail. Scan the mbuf chain,
1899 * calculating its length and finding the last mbuf.
1900 * If the adjustment only affects this mbuf, then just
1901 * adjust and return. Otherwise, rescan and truncate
1902 * after the remaining size.
1904 len = -len;
1905 count = 0;
1906 for (;;) {
1907 count += m->m_len;
1908 if (m->m_next == NULL)
1909 break;
1910 m = m->m_next;
1912 if (m->m_len >= len) {
1913 m->m_len -= len;
1914 if (mp->m_flags & M_PKTHDR)
1915 mp->m_pkthdr.len -= len;
1916 return;
1918 count -= len;
1919 if (count < 0)
1920 count = 0;
1922 * Correct length for chain is "count".
1923 * Find the mbuf with last data, adjust its length,
1924 * and toss data from remaining mbufs on chain.
1926 m = mp;
1927 if (m->m_flags & M_PKTHDR)
1928 m->m_pkthdr.len = count;
1929 for (; m; m = m->m_next) {
1930 if (m->m_len >= count) {
1931 m->m_len = count;
1932 break;
1934 count -= m->m_len;
1936 while (m->m_next)
1937 (m = m->m_next) ->m_len = 0;
1942 * Set the m_data pointer of a newly-allocated mbuf
1943 * to place an object of the specified size at the
1944 * end of the mbuf, longword aligned.
1946 void
1947 m_align(struct mbuf *m, int len)
1949 int adjust;
1951 if (m->m_flags & M_EXT)
1952 adjust = m->m_ext.ext_size - len;
1953 else if (m->m_flags & M_PKTHDR)
1954 adjust = MHLEN - len;
1955 else
1956 adjust = MLEN - len;
1957 m->m_data += adjust &~ (sizeof(long)-1);
1961 * Create a writable copy of the mbuf chain. While doing this
1962 * we compact the chain with a goal of producing a chain with
1963 * at most two mbufs. The second mbuf in this chain is likely
1964 * to be a cluster. The primary purpose of this work is to create
1965 * a writable packet for encryption, compression, etc. The
1966 * secondary goal is to linearize the data so the data can be
1967 * passed to crypto hardware in the most efficient manner possible.
1969 struct mbuf *
1970 m_unshare(struct mbuf *m0, int how)
1972 struct mbuf *m, *mprev;
1973 struct mbuf *n, *mfirst, *mlast;
1974 int len, off;
1976 mprev = NULL;
1977 for (m = m0; m != NULL; m = mprev->m_next) {
1979 * Regular mbufs are ignored unless there's a cluster
1980 * in front of it that we can use to coalesce. We do
1981 * the latter mainly so later clusters can be coalesced
1982 * also w/o having to handle them specially (i.e. convert
1983 * mbuf+cluster -> cluster). This optimization is heavily
1984 * influenced by the assumption that we're running over
1985 * Ethernet where MCLBYTES is large enough that the max
1986 * packet size will permit lots of coalescing into a
1987 * single cluster. This in turn permits efficient
1988 * crypto operations, especially when using hardware.
1990 if ((m->m_flags & M_EXT) == 0) {
1991 if (mprev && (mprev->m_flags & M_EXT) &&
1992 m->m_len <= M_TRAILINGSPACE(mprev)) {
1993 /* XXX: this ignores mbuf types */
1994 memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1995 mtod(m, caddr_t), m->m_len);
1996 mprev->m_len += m->m_len;
1997 mprev->m_next = m->m_next; /* unlink from chain */
1998 m_free(m); /* reclaim mbuf */
1999 } else {
2000 mprev = m;
2002 continue;
2005 * Writable mbufs are left alone (for now).
2007 if (M_WRITABLE(m)) {
2008 mprev = m;
2009 continue;
2013 * Not writable, replace with a copy or coalesce with
2014 * the previous mbuf if possible (since we have to copy
2015 * it anyway, we try to reduce the number of mbufs and
2016 * clusters so that future work is easier).
2018 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
2019 /* NB: we only coalesce into a cluster or larger */
2020 if (mprev != NULL && (mprev->m_flags & M_EXT) &&
2021 m->m_len <= M_TRAILINGSPACE(mprev)) {
2022 /* XXX: this ignores mbuf types */
2023 memcpy(mtod(mprev, caddr_t) + mprev->m_len,
2024 mtod(m, caddr_t), m->m_len);
2025 mprev->m_len += m->m_len;
2026 mprev->m_next = m->m_next; /* unlink from chain */
2027 m_free(m); /* reclaim mbuf */
2028 continue;
2032 * Allocate new space to hold the copy...
2034 /* XXX why can M_PKTHDR be set past the first mbuf? */
2035 if (mprev == NULL && (m->m_flags & M_PKTHDR)) {
2037 * NB: if a packet header is present we must
2038 * allocate the mbuf separately from any cluster
2039 * because M_MOVE_PKTHDR will smash the data
2040 * pointer and drop the M_EXT marker.
2042 MGETHDR(n, how, m->m_type);
2043 if (n == NULL) {
2044 m_freem(m0);
2045 return (NULL);
2047 M_MOVE_PKTHDR(n, m);
2048 MCLGET(n, how);
2049 if ((n->m_flags & M_EXT) == 0) {
2050 m_free(n);
2051 m_freem(m0);
2052 return (NULL);
2054 } else {
2055 n = m_getcl(how, m->m_type, m->m_flags);
2056 if (n == NULL) {
2057 m_freem(m0);
2058 return (NULL);
2062 * ... and copy the data. We deal with jumbo mbufs
2063 * (i.e. m_len > MCLBYTES) by splitting them into
2064 * clusters. We could just malloc a buffer and make
2065 * it external but too many device drivers don't know
2066 * how to break up the non-contiguous memory when
2067 * doing DMA.
2069 len = m->m_len;
2070 off = 0;
2071 mfirst = n;
2072 mlast = NULL;
2073 for (;;) {
2074 int cc = min(len, MCLBYTES);
2075 memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
2076 n->m_len = cc;
2077 if (mlast != NULL)
2078 mlast->m_next = n;
2079 mlast = n;
2081 len -= cc;
2082 if (len <= 0)
2083 break;
2084 off += cc;
2086 n = m_getcl(how, m->m_type, m->m_flags);
2087 if (n == NULL) {
2088 m_freem(mfirst);
2089 m_freem(m0);
2090 return (NULL);
2093 n->m_next = m->m_next;
2094 if (mprev == NULL)
2095 m0 = mfirst; /* new head of chain */
2096 else
2097 mprev->m_next = mfirst; /* replace old mbuf */
2098 m_free(m); /* release old mbuf */
2099 mprev = mfirst;
2101 return (m0);
2105 * Rearrange an mbuf chain so that len bytes are contiguous
2106 * and in the data area of an mbuf (so that mtod will work for a structure
2107 * of size len). Returns the resulting mbuf chain on success, frees it and
2108 * returns null on failure. If there is room, it will add up to
2109 * max_protohdr-len extra bytes to the contiguous region in an attempt to
2110 * avoid being called next time.
2112 struct mbuf *
2113 m_pullup(struct mbuf *n, int len)
2115 struct mbuf *m;
2116 int count;
2117 int space;
2120 * If first mbuf has no cluster, and has room for len bytes
2121 * without shifting current data, pullup into it,
2122 * otherwise allocate a new mbuf to prepend to the chain.
2124 if (!(n->m_flags & M_EXT) &&
2125 n->m_data + len < &n->m_dat[MLEN] &&
2126 n->m_next) {
2127 if (n->m_len >= len)
2128 return (n);
2129 m = n;
2130 n = n->m_next;
2131 len -= m->m_len;
2132 } else {
2133 if (len > MHLEN)
2134 goto bad;
2135 if (n->m_flags & M_PKTHDR)
2136 m = m_gethdr(M_NOWAIT, n->m_type);
2137 else
2138 m = m_get(M_NOWAIT, n->m_type);
2139 if (m == NULL)
2140 goto bad;
2141 m->m_len = 0;
2142 if (n->m_flags & M_PKTHDR)
2143 M_MOVE_PKTHDR(m, n);
2145 space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
2146 do {
2147 count = min(min(max(len, max_protohdr), space), n->m_len);
2148 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
2149 (unsigned)count);
2150 len -= count;
2151 m->m_len += count;
2152 n->m_len -= count;
2153 space -= count;
2154 if (n->m_len)
2155 n->m_data += count;
2156 else
2157 n = m_free(n);
2158 } while (len > 0 && n);
2159 if (len > 0) {
2160 m_free(m);
2161 goto bad;
2163 m->m_next = n;
2164 return (m);
2165 bad:
2166 m_freem(n);
2167 ++mbstat[mycpu->gd_cpuid].m_mcfail;
2168 return (NULL);
2172 * Partition an mbuf chain in two pieces, returning the tail --
2173 * all but the first len0 bytes. In case of failure, it returns NULL and
2174 * attempts to restore the chain to its original state.
2176 * Note that the resulting mbufs might be read-only, because the new
2177 * mbuf can end up sharing an mbuf cluster with the original mbuf if
2178 * the "breaking point" happens to lie within a cluster mbuf. Use the
2179 * M_WRITABLE() macro to check for this case.
2181 struct mbuf *
2182 m_split(struct mbuf *m0, int len0, int wait)
2184 struct mbuf *m, *n;
2185 unsigned len = len0, remain;
2187 for (m = m0; m && len > m->m_len; m = m->m_next)
2188 len -= m->m_len;
2189 if (m == NULL)
2190 return (NULL);
2191 remain = m->m_len - len;
2192 if (m0->m_flags & M_PKTHDR) {
2193 n = m_gethdr(wait, m0->m_type);
2194 if (n == NULL)
2195 return (NULL);
2196 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
2197 n->m_pkthdr.len = m0->m_pkthdr.len - len0;
2198 m0->m_pkthdr.len = len0;
2199 if (m->m_flags & M_EXT)
2200 goto extpacket;
2201 if (remain > MHLEN) {
2202 /* m can't be the lead packet */
2203 MH_ALIGN(n, 0);
2204 n->m_next = m_split(m, len, wait);
2205 if (n->m_next == NULL) {
2206 m_free(n);
2207 return (NULL);
2208 } else {
2209 n->m_len = 0;
2210 return (n);
2212 } else
2213 MH_ALIGN(n, remain);
2214 } else if (remain == 0) {
2215 n = m->m_next;
2216 m->m_next = NULL;
2217 return (n);
2218 } else {
2219 n = m_get(wait, m->m_type);
2220 if (n == NULL)
2221 return (NULL);
2222 M_ALIGN(n, remain);
2224 extpacket:
2225 if (m->m_flags & M_EXT) {
2226 KKASSERT((n->m_flags & M_EXT) == 0);
2227 n->m_data = m->m_data + len;
2228 m->m_ext.ext_ref(m->m_ext.ext_arg);
2229 n->m_ext = m->m_ext;
2230 n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
2231 } else {
2232 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
2234 n->m_len = remain;
2235 m->m_len = len;
2236 n->m_next = m->m_next;
2237 m->m_next = NULL;
2238 return (n);
2242 * Routine to copy from device local memory into mbufs.
2243 * Note: "offset" is ill-defined and always called as 0, so ignore it.
2245 struct mbuf *
2246 m_devget(char *buf, int len, int offset, struct ifnet *ifp)
2248 struct mbuf *m, *mfirst = NULL, **mtail;
2249 int nsize, flags;
2251 mtail = &mfirst;
2252 flags = M_PKTHDR;
2254 while (len > 0) {
2255 m = m_getl(len, M_NOWAIT, MT_DATA, flags, &nsize);
2256 if (m == NULL) {
2257 m_freem(mfirst);
2258 return (NULL);
2260 m->m_len = min(len, nsize);
2262 if (flags & M_PKTHDR) {
2263 if (len + max_linkhdr <= nsize)
2264 m->m_data += max_linkhdr;
2265 m->m_pkthdr.rcvif = ifp;
2266 m->m_pkthdr.len = len;
2267 flags = 0;
2270 bcopy(buf, m->m_data, (unsigned)m->m_len);
2271 buf += m->m_len;
2272 len -= m->m_len;
2273 *mtail = m;
2274 mtail = &m->m_next;
2277 return (mfirst);
2281 * Routine to pad mbuf to the specified length 'padto'.
2284 m_devpad(struct mbuf *m, int padto)
2286 struct mbuf *last = NULL;
2287 int padlen;
2289 if (padto <= m->m_pkthdr.len)
2290 return 0;
2292 padlen = padto - m->m_pkthdr.len;
2294 /* if there's only the packet-header and we can pad there, use it. */
2295 if (m->m_pkthdr.len == m->m_len && M_TRAILINGSPACE(m) >= padlen) {
2296 last = m;
2297 } else {
2299 * Walk packet chain to find last mbuf. We will either
2300 * pad there, or append a new mbuf and pad it
2302 for (last = m; last->m_next != NULL; last = last->m_next)
2303 ; /* EMPTY */
2305 /* `last' now points to last in chain. */
2306 if (M_TRAILINGSPACE(last) < padlen) {
2307 struct mbuf *n;
2309 /* Allocate new empty mbuf, pad it. Compact later. */
2310 MGET(n, M_NOWAIT, MT_DATA);
2311 if (n == NULL)
2312 return ENOBUFS;
2313 n->m_len = 0;
2314 last->m_next = n;
2315 last = n;
2318 KKASSERT(M_TRAILINGSPACE(last) >= padlen);
2319 KKASSERT(M_WRITABLE(last));
2321 /* Now zero the pad area */
2322 bzero(mtod(last, char *) + last->m_len, padlen);
2323 last->m_len += padlen;
2324 m->m_pkthdr.len += padlen;
2325 return 0;
2329 * Copy data from a buffer back into the indicated mbuf chain,
2330 * starting "off" bytes from the beginning, extending the mbuf
2331 * chain if necessary.
2333 void
2334 m_copyback(struct mbuf *m0, int off, int len, caddr_t cp)
2336 int mlen;
2337 struct mbuf *m = m0, *n;
2338 int totlen = 0;
2340 if (m0 == NULL)
2341 return;
2342 while (off > (mlen = m->m_len)) {
2343 off -= mlen;
2344 totlen += mlen;
2345 if (m->m_next == NULL) {
2346 n = m_getclr(M_NOWAIT, m->m_type);
2347 if (n == NULL)
2348 goto out;
2349 n->m_len = min(MLEN, len + off);
2350 m->m_next = n;
2352 m = m->m_next;
2354 while (len > 0) {
2355 mlen = min (m->m_len - off, len);
2356 bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen);
2357 cp += mlen;
2358 len -= mlen;
2359 mlen += off;
2360 off = 0;
2361 totlen += mlen;
2362 if (len == 0)
2363 break;
2364 if (m->m_next == NULL) {
2365 n = m_get(M_NOWAIT, m->m_type);
2366 if (n == NULL)
2367 break;
2368 n->m_len = min(MLEN, len);
2369 m->m_next = n;
2371 m = m->m_next;
2373 out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
2374 m->m_pkthdr.len = totlen;
2378 * Append the specified data to the indicated mbuf chain,
2379 * Extend the mbuf chain if the new data does not fit in
2380 * existing space.
2382 * Return 1 if able to complete the job; otherwise 0.
2385 m_append(struct mbuf *m0, int len, c_caddr_t cp)
2387 struct mbuf *m, *n;
2388 int remainder, space;
2390 for (m = m0; m->m_next != NULL; m = m->m_next)
2392 remainder = len;
2393 space = M_TRAILINGSPACE(m);
2394 if (space > 0) {
2396 * Copy into available space.
2398 if (space > remainder)
2399 space = remainder;
2400 bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
2401 m->m_len += space;
2402 cp += space, remainder -= space;
2404 while (remainder > 0) {
2406 * Allocate a new mbuf; could check space
2407 * and allocate a cluster instead.
2409 n = m_get(M_NOWAIT, m->m_type);
2410 if (n == NULL)
2411 break;
2412 n->m_len = min(MLEN, remainder);
2413 bcopy(cp, mtod(n, caddr_t), n->m_len);
2414 cp += n->m_len, remainder -= n->m_len;
2415 m->m_next = n;
2416 m = n;
2418 if (m0->m_flags & M_PKTHDR)
2419 m0->m_pkthdr.len += len - remainder;
2420 return (remainder == 0);
2424 * Apply function f to the data in an mbuf chain starting "off" bytes from
2425 * the beginning, continuing for "len" bytes.
2428 m_apply(struct mbuf *m, int off, int len,
2429 int (*f)(void *, void *, u_int), void *arg)
2431 u_int count;
2432 int rval;
2434 KASSERT(off >= 0, ("m_apply, negative off %d", off));
2435 KASSERT(len >= 0, ("m_apply, negative len %d", len));
2436 while (off > 0) {
2437 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
2438 if (off < m->m_len)
2439 break;
2440 off -= m->m_len;
2441 m = m->m_next;
2443 while (len > 0) {
2444 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
2445 count = min(m->m_len - off, len);
2446 rval = (*f)(arg, mtod(m, caddr_t) + off, count);
2447 if (rval)
2448 return (rval);
2449 len -= count;
2450 off = 0;
2451 m = m->m_next;
2453 return (0);
2457 * Return a pointer to mbuf/offset of location in mbuf chain.
2459 struct mbuf *
2460 m_getptr(struct mbuf *m, int loc, int *off)
2463 while (loc >= 0) {
2464 /* Normal end of search. */
2465 if (m->m_len > loc) {
2466 *off = loc;
2467 return (m);
2468 } else {
2469 loc -= m->m_len;
2470 if (m->m_next == NULL) {
2471 if (loc == 0) {
2472 /* Point at the end of valid data. */
2473 *off = m->m_len;
2474 return (m);
2476 return (NULL);
2478 m = m->m_next;
2481 return (NULL);
2484 void
2485 m_print(const struct mbuf *m)
2487 int len;
2488 const struct mbuf *m2;
2489 char *hexstr;
2491 len = m->m_pkthdr.len;
2492 m2 = m;
2493 hexstr = kmalloc(HEX_NCPYLEN(len), M_TEMP, M_ZERO | M_WAITOK);
2494 while (len) {
2495 kprintf("%p %s\n", m2, hexncpy(m2->m_data, m2->m_len, hexstr,
2496 HEX_NCPYLEN(m2->m_len), "-"));
2497 len -= m2->m_len;
2498 m2 = m2->m_next;
2500 kfree(hexstr, M_TEMP);
2501 return;
2505 * "Move" mbuf pkthdr from "from" to "to".
2506 * "from" must have M_PKTHDR set, and "to" must be empty.
2508 void
2509 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
2511 KASSERT((to->m_flags & M_PKTHDR), ("m_move_pkthdr: not packet header"));
2513 to->m_flags |= from->m_flags & M_COPYFLAGS;
2514 to->m_pkthdr = from->m_pkthdr; /* especially tags */
2515 SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */
2519 * Duplicate "from"'s mbuf pkthdr in "to".
2520 * "from" must have M_PKTHDR set, and "to" must be empty.
2521 * In particular, this does a deep copy of the packet tags.
2524 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
2526 KASSERT((to->m_flags & M_PKTHDR), ("m_dup_pkthdr: not packet header"));
2528 to->m_flags = (from->m_flags & M_COPYFLAGS) |
2529 (to->m_flags & ~M_COPYFLAGS);
2530 to->m_pkthdr = from->m_pkthdr;
2531 SLIST_INIT(&to->m_pkthdr.tags);
2532 return (m_tag_copy_chain(to, from, how));
2536 * Defragment a mbuf chain, returning the shortest possible
2537 * chain of mbufs and clusters. If allocation fails and
2538 * this cannot be completed, NULL will be returned, but
2539 * the passed in chain will be unchanged. Upon success,
2540 * the original chain will be freed, and the new chain
2541 * will be returned.
2543 * If a non-packet header is passed in, the original
2544 * mbuf (chain?) will be returned unharmed.
2546 * m_defrag_nofree doesn't free the passed in mbuf.
2548 struct mbuf *
2549 m_defrag(struct mbuf *m0, int how)
2551 struct mbuf *m_new;
2553 if ((m_new = m_defrag_nofree(m0, how)) == NULL)
2554 return (NULL);
2555 if (m_new != m0)
2556 m_freem(m0);
2557 return (m_new);
2560 struct mbuf *
2561 m_defrag_nofree(struct mbuf *m0, int how)
2563 struct mbuf *m_new = NULL, *m_final = NULL;
2564 int progress = 0, length, nsize;
2566 if (!(m0->m_flags & M_PKTHDR))
2567 return (m0);
2569 #ifdef MBUF_STRESS_TEST
2570 if (m_defragrandomfailures) {
2571 int temp = karc4random() & 0xff;
2572 if (temp == 0xba)
2573 goto nospace;
2575 #endif
2577 m_final = m_getl(m0->m_pkthdr.len, how, MT_DATA, M_PKTHDR, &nsize);
2578 if (m_final == NULL)
2579 goto nospace;
2580 m_final->m_len = 0; /* in case m0->m_pkthdr.len is zero */
2582 if (m_dup_pkthdr(m_final, m0, how) == 0)
2583 goto nospace;
2585 m_new = m_final;
2587 while (progress < m0->m_pkthdr.len) {
2588 length = m0->m_pkthdr.len - progress;
2589 if (length > MCLBYTES)
2590 length = MCLBYTES;
2592 if (m_new == NULL) {
2593 m_new = m_getl(length, how, MT_DATA, 0, &nsize);
2594 if (m_new == NULL)
2595 goto nospace;
2598 m_copydata(m0, progress, length, mtod(m_new, caddr_t));
2599 progress += length;
2600 m_new->m_len = length;
2601 if (m_new != m_final)
2602 m_cat(m_final, m_new);
2603 m_new = NULL;
2605 if (m0->m_next == NULL)
2606 m_defraguseless++;
2607 m_defragpackets++;
2608 m_defragbytes += m_final->m_pkthdr.len;
2609 return (m_final);
2610 nospace:
2611 m_defragfailure++;
2612 if (m_new)
2613 m_free(m_new);
2614 m_freem(m_final);
2615 return (NULL);
2619 * Move data from uio into mbufs.
2621 struct mbuf *
2622 m_uiomove(struct uio *uio)
2624 struct mbuf *m; /* current working mbuf */
2625 struct mbuf *head = NULL; /* result mbuf chain */
2626 struct mbuf **mp = &head;
2627 int flags = M_PKTHDR;
2628 int nsize;
2629 int error;
2630 int resid;
2632 do {
2633 if (uio->uio_resid > INT_MAX)
2634 resid = INT_MAX;
2635 else
2636 resid = (int)uio->uio_resid;
2637 m = m_getl(resid, M_WAITOK, MT_DATA, flags, &nsize);
2638 if (flags) {
2639 m->m_pkthdr.len = 0;
2640 /* Leave room for protocol headers. */
2641 if (resid < MHLEN)
2642 MH_ALIGN(m, resid);
2643 flags = 0;
2645 m->m_len = imin(nsize, resid);
2646 error = uiomove(mtod(m, caddr_t), m->m_len, uio);
2647 if (error) {
2648 m_free(m);
2649 goto failed;
2651 *mp = m;
2652 mp = &m->m_next;
2653 head->m_pkthdr.len += m->m_len;
2654 } while (uio->uio_resid > 0);
2656 return (head);
2658 failed:
2659 m_freem(head);
2660 return (NULL);
2663 struct mbuf *
2664 m_last(struct mbuf *m)
2666 while (m->m_next)
2667 m = m->m_next;
2668 return (m);
2672 * Return the number of bytes in an mbuf chain.
2673 * If lastm is not NULL, also return the last mbuf.
2675 u_int
2676 m_lengthm(struct mbuf *m, struct mbuf **lastm)
2678 u_int len = 0;
2679 struct mbuf *prev = m;
2681 while (m) {
2682 len += m->m_len;
2683 prev = m;
2684 m = m->m_next;
2686 if (lastm != NULL)
2687 *lastm = prev;
2688 return (len);
2692 * Like m_lengthm(), except also keep track of mbuf usage.
2694 u_int
2695 m_countm(struct mbuf *m, struct mbuf **lastm, u_int *pmbcnt)
2697 u_int len = 0, mbcnt = 0;
2698 struct mbuf *prev = m;
2700 while (m) {
2701 len += m->m_len;
2702 mbcnt += MSIZE;
2703 if (m->m_flags & M_EXT)
2704 mbcnt += m->m_ext.ext_size;
2705 prev = m;
2706 m = m->m_next;
2708 if (lastm != NULL)
2709 *lastm = prev;
2710 *pmbcnt = mbcnt;
2711 return (len);