kernel - Fix excessive call stack depth on stuck interrupt
[dragonfly.git] / sys / kern / subr_prf.c
blobc3cc6cfe5b993b549db745aeb1ec9d0388d50d79
1 /*-
2 * Copyright (c) 1986, 1988, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)subr_prf.c 8.3 (Berkeley) 1/21/94
35 * $FreeBSD: src/sys/kern/subr_prf.c,v 1.61.2.5 2002/08/31 18:22:08 dwmalone Exp $
38 #include "opt_ddb.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/msgbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/proc.h>
46 #include <sys/priv.h>
47 #include <sys/tty.h>
48 #include <sys/tprintf.h>
49 #include <sys/stdint.h>
50 #include <sys/syslog.h>
51 #include <sys/cons.h>
52 #include <sys/uio.h>
53 #include <sys/sysctl.h>
54 #include <sys/lock.h>
55 #include <sys/ctype.h>
56 #include <sys/eventhandler.h>
57 #include <sys/kthread.h>
58 #include <sys/cpu_topology.h>
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
68 * Note that stdarg.h and the ANSI style va_start macro is used for both
69 * ANSI and traditional C compilers. We use the __ machine version to stay
70 * within the kernel header file set.
72 #include <machine/stdarg.h>
74 #define TOCONS 0x01
75 #define TOTTY 0x02
76 #define TOLOG 0x04
77 #define TOWAKEUP 0x08
78 #define TONOSPIN 0x10 /* avoid serialization */
80 /* Max number conversion buffer length: a u_quad_t in base 2, plus NUL byte. */
81 #define MAXNBUF (sizeof(intmax_t) * NBBY + 1)
83 struct putchar_arg {
84 int flags;
85 int pri;
86 struct tty *tty;
89 struct snprintf_arg {
90 char *str;
91 size_t remain;
94 extern int log_open;
96 struct tty *constty; /* pointer to console "window" tty */
98 static void msglogchar(int c, int pri);
99 static void msgaddchar(int c, void *dummy);
100 static void kputchar (int ch, void *arg);
101 static char *ksprintn (char *nbuf, uintmax_t num, int base, int *lenp,
102 int upper);
103 static void snprintf_func (int ch, void *arg);
105 static int consintr = 1; /* Ok to handle console interrupts? */
106 static int msgbufmapped; /* Set when safe to use msgbuf */
107 static struct spinlock cons_spin = SPINLOCK_INITIALIZER(cons_spin, "cons_spin");
108 static thread_t constty_td = NULL;
110 int msgbuftrigger;
112 static int log_console_output = 1;
113 TUNABLE_INT("kern.log_console_output", &log_console_output);
114 SYSCTL_INT(_kern, OID_AUTO, log_console_output, CTLFLAG_RW,
115 &log_console_output, 0, "");
116 static int kprintf_logging = TOLOG | TOCONS;
117 SYSCTL_INT(_kern, OID_AUTO, kprintf_logging, CTLFLAG_RW,
118 &kprintf_logging, 0, "");
120 static int unprivileged_read_msgbuf = 1;
121 SYSCTL_INT(_security, OID_AUTO, unprivileged_read_msgbuf, CTLFLAG_RW,
122 &unprivileged_read_msgbuf, 0,
123 "Unprivileged processes may read the kernel message buffer");
126 * Warn that a system table is full.
128 void
129 tablefull(const char *tab)
132 log(LOG_ERR, "%s: table is full\n", tab);
136 * Uprintf prints to the controlling terminal for the current process.
139 uprintf(const char *fmt, ...)
141 struct proc *p = curproc;
142 __va_list ap;
143 struct putchar_arg pca;
144 int retval = 0;
146 if (p && (p->p_flags & P_CONTROLT) && p->p_session->s_ttyvp) {
147 __va_start(ap, fmt);
148 pca.tty = p->p_session->s_ttyp;
149 pca.flags = TOTTY;
151 retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
152 __va_end(ap);
154 return (retval);
157 tpr_t
158 tprintf_open(struct proc *p)
160 if ((p->p_flags & P_CONTROLT) && p->p_session->s_ttyvp) {
161 sess_hold(p->p_session);
162 return ((tpr_t) p->p_session);
164 return (NULL);
167 void
168 tprintf_close(tpr_t sess)
170 if (sess)
171 sess_rele((struct session *) sess);
175 * tprintf prints on the controlling terminal associated
176 * with the given session.
179 tprintf(tpr_t tpr, const char *fmt, ...)
181 struct session *sess = (struct session *)tpr;
182 struct tty *tp = NULL;
183 int flags = TOLOG;
184 __va_list ap;
185 struct putchar_arg pca;
186 int retval;
188 if (sess && sess->s_ttyvp && ttycheckoutq(sess->s_ttyp, 0)) {
189 flags |= TOTTY;
190 tp = sess->s_ttyp;
192 __va_start(ap, fmt);
193 pca.tty = tp;
194 pca.flags = flags;
195 pca.pri = LOG_INFO;
196 retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
197 __va_end(ap);
198 msgbuftrigger = 1;
199 return (retval);
203 * Ttyprintf displays a message on a tty; it should be used only by
204 * the tty driver, or anything that knows the underlying tty will not
205 * be revoke(2)'d away. Other callers should use tprintf.
208 ttyprintf(struct tty *tp, const char *fmt, ...)
210 __va_list ap;
211 struct putchar_arg pca;
212 int retval;
214 __va_start(ap, fmt);
215 pca.tty = tp;
216 pca.flags = TOTTY;
217 retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
218 __va_end(ap);
219 return (retval);
223 * Log writes to the log buffer, and guarantees not to sleep (so can be
224 * called by interrupt routines). If there is no process reading the
225 * log yet, it writes to the console also.
228 log(int level, const char *fmt, ...)
230 __va_list ap;
231 int retval;
232 struct putchar_arg pca;
234 pca.tty = NULL;
235 pca.pri = level;
236 if ((kprintf_logging & TOCONS) == 0 || log_open)
237 pca.flags = TOLOG;
238 else
239 pca.flags = TOCONS;
241 __va_start(ap, fmt);
242 retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
243 __va_end(ap);
245 msgbuftrigger = 1;
246 return (retval);
249 #define CONSCHUNK 128
251 void
252 log_console(struct uio *uio)
254 int c, i, error, iovlen, nl;
255 struct uio muio;
256 struct iovec *miov = NULL;
257 char *consbuffer;
258 int pri;
260 if (!log_console_output)
261 return;
263 pri = LOG_INFO | LOG_CONSOLE;
264 muio = *uio;
265 iovlen = uio->uio_iovcnt * sizeof (struct iovec);
266 miov = kmalloc(iovlen, M_TEMP, M_WAITOK);
267 consbuffer = kmalloc(CONSCHUNK, M_TEMP, M_WAITOK);
268 bcopy((caddr_t)muio.uio_iov, (caddr_t)miov, iovlen);
269 muio.uio_iov = miov;
270 uio = &muio;
272 nl = 0;
273 while (uio->uio_resid > 0) {
274 c = (int)szmin(uio->uio_resid, CONSCHUNK);
275 error = uiomove(consbuffer, (size_t)c, uio);
276 if (error != 0)
277 break;
278 for (i = 0; i < c; i++) {
279 msglogchar(consbuffer[i], pri);
280 if (consbuffer[i] == '\n')
281 nl = 1;
282 else
283 nl = 0;
286 if (!nl)
287 msglogchar('\n', pri);
288 msgbuftrigger = 1;
289 kfree(miov, M_TEMP);
290 kfree(consbuffer, M_TEMP);
291 return;
295 * Output to the console.
298 kprintf(const char *fmt, ...)
300 __va_list ap;
301 int savintr;
302 struct putchar_arg pca;
303 int retval;
305 savintr = consintr; /* disable interrupts */
306 consintr = 0;
307 __va_start(ap, fmt);
308 pca.tty = NULL;
309 pca.flags = kprintf_logging & ~TOTTY;
310 pca.pri = -1;
311 retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
312 __va_end(ap);
313 if (!panicstr)
314 msgbuftrigger = 1;
315 consintr = savintr; /* reenable interrupts */
316 return (retval);
320 kvprintf(const char *fmt, __va_list ap)
322 int savintr;
323 struct putchar_arg pca;
324 int retval;
326 savintr = consintr; /* disable interrupts */
327 consintr = 0;
328 pca.tty = NULL;
329 pca.flags = kprintf_logging & ~TOTTY;
330 pca.pri = -1;
331 retval = kvcprintf(fmt, kputchar, &pca, 10, ap);
332 if (!panicstr)
333 msgbuftrigger = 1;
334 consintr = savintr; /* reenable interrupts */
335 return (retval);
339 * Limited rate kprintf. The passed rate structure must be initialized
340 * with the desired reporting frequency. A frequency of 0 will result in
341 * no output.
343 * count may be initialized to a negative number to allow an initial
344 * burst.
346 void
347 krateprintf(struct krate *rate, const char *fmt, ...)
349 __va_list ap;
351 if (rate->ticks != (int)time_uptime) {
352 rate->ticks = (int)time_uptime;
353 if (rate->count > 0)
354 rate->count = 0;
356 if (rate->count < rate->freq) {
357 ++rate->count;
358 __va_start(ap, fmt);
359 kvprintf(fmt, ap);
360 __va_end(ap);
365 * Print a character to the dmesg log, the console, and/or the user's
366 * terminal.
368 * NOTE: TOTTY does not require nonblocking operation, but TOCONS
369 * and TOLOG do. When we have a constty we still output to
370 * the real console but we have a monitoring thread which
371 * we wakeup which tracks the log.
373 static void
374 kputchar(int c, void *arg)
376 struct putchar_arg *ap = (struct putchar_arg*) arg;
377 int flags = ap->flags;
378 struct tty *tp = ap->tty;
380 if (panicstr)
381 constty = NULL;
382 if ((flags & TOCONS) && tp == NULL && constty)
383 flags |= TOLOG | TOWAKEUP;
384 if ((flags & TOTTY) && tputchar(c, tp) < 0)
385 ap->flags &= ~TOTTY;
386 if ((flags & TOLOG))
387 msglogchar(c, ap->pri);
388 if ((flags & TOCONS) && c)
389 cnputc(c);
390 if (flags & TOWAKEUP)
391 wakeup(constty_td);
395 * Scaled down version of sprintf(3).
398 ksprintf(char *buf, const char *cfmt, ...)
400 int retval;
401 __va_list ap;
403 __va_start(ap, cfmt);
404 retval = kvcprintf(cfmt, NULL, buf, 10, ap);
405 buf[retval] = '\0';
406 __va_end(ap);
407 return (retval);
411 * Scaled down version of vsprintf(3).
414 kvsprintf(char *buf, const char *cfmt, __va_list ap)
416 int retval;
418 retval = kvcprintf(cfmt, NULL, buf, 10, ap);
419 buf[retval] = '\0';
420 return (retval);
424 * Scaled down version of snprintf(3).
427 ksnprintf(char *str, size_t size, const char *format, ...)
429 int retval;
430 __va_list ap;
432 __va_start(ap, format);
433 retval = kvsnprintf(str, size, format, ap);
434 __va_end(ap);
435 return(retval);
439 * Scaled down version of vsnprintf(3).
442 kvsnprintf(char *str, size_t size, const char *format, __va_list ap)
444 struct snprintf_arg info;
445 int retval;
447 info.str = str;
448 info.remain = size;
449 retval = kvcprintf(format, snprintf_func, &info, 10, ap);
450 if (info.remain >= 1)
451 *info.str++ = '\0';
452 return (retval);
456 ksnrprintf(char *str, size_t size, int radix, const char *format, ...)
458 int retval;
459 __va_list ap;
461 __va_start(ap, format);
462 retval = kvsnrprintf(str, size, radix, format, ap);
463 __va_end(ap);
464 return(retval);
468 kvsnrprintf(char *str, size_t size, int radix, const char *format, __va_list ap)
470 struct snprintf_arg info;
471 int retval;
473 info.str = str;
474 info.remain = size;
475 retval = kvcprintf(format, snprintf_func, &info, radix, ap);
476 if (info.remain >= 1)
477 *info.str++ = '\0';
478 return (retval);
482 kvasnrprintf(char **strp, size_t size, int radix,
483 const char *format, __va_list ap)
485 struct snprintf_arg info;
486 int retval;
488 *strp = kmalloc(size, M_TEMP, M_WAITOK);
489 info.str = *strp;
490 info.remain = size;
491 retval = kvcprintf(format, snprintf_func, &info, radix, ap);
492 if (info.remain >= 1)
493 *info.str++ = '\0';
494 return (retval);
497 void
498 kvasfree(char **strp)
500 if (*strp) {
501 kfree(*strp, M_TEMP);
502 *strp = NULL;
506 static void
507 snprintf_func(int ch, void *arg)
509 struct snprintf_arg *const info = arg;
511 if (info->remain >= 2) {
512 *info->str++ = ch;
513 info->remain--;
518 * Put a NUL-terminated ASCII number (base <= 36) in a buffer in reverse
519 * order; return an optional length and a pointer to the last character
520 * written in the buffer (i.e., the first character of the string).
521 * The buffer pointed to by `nbuf' must have length >= MAXNBUF.
523 static char *
524 ksprintn(char *nbuf, uintmax_t num, int base, int *lenp, int upper)
526 char *p, c;
528 p = nbuf;
529 *p = '\0';
530 do {
531 c = hex2ascii(num % base);
532 *++p = upper ? toupper(c) : c;
533 } while (num /= base);
534 if (lenp)
535 *lenp = p - nbuf;
536 return (p);
540 * Scaled down version of printf(3).
542 * Two additional formats:
544 * The format %b is supported to decode error registers.
545 * Its usage is:
547 * kprintf("reg=%b\n", regval, "<base><arg>*");
549 * where <base> is the output base expressed as a control character, e.g.
550 * \10 gives octal; \20 gives hex. Each arg is a sequence of characters,
551 * the first of which gives the bit number to be inspected (origin 1), and
552 * the next characters (up to a control character, i.e. a character <= 32),
553 * give the name of the register. Thus:
555 * kvcprintf("reg=%b\n", 3, "\10\2BITTWO\1BITONE\n");
557 * would produce output:
559 * reg=3<BITTWO,BITONE>
562 #define PCHAR(c) {int cc=(c); if(func) (*func)(cc,arg); else *d++=cc; retval++;}
565 kvcprintf(char const *fmt, void (*func)(int, void*), void *arg,
566 int radix, __va_list ap)
568 char nbuf[MAXNBUF];
569 char *d;
570 const char *p, *percent, *q;
571 int ch, n;
572 uintmax_t num;
573 int base, tmp, width, ladjust, sharpflag, spaceflag, neg, sign, dot;
574 int cflag, hflag, jflag, lflag, qflag, tflag, zflag;
575 int dwidth, upper;
576 char padc;
577 int retval = 0, stop = 0;
578 int usespin;
581 * Make a supreme effort to avoid reentrant panics or deadlocks.
583 * NOTE! Do nothing that would access mycpu/gd/fs unless the
584 * function is the normal kputchar(), which allows us to
585 * use this function for very early debugging with a special
586 * function.
588 if (func == kputchar) {
589 if (mycpu->gd_flags & GDF_KPRINTF)
590 return(0);
591 atomic_set_long(&mycpu->gd_flags, GDF_KPRINTF);
594 num = 0;
595 if (!func)
596 d = (char *) arg;
597 else
598 d = NULL;
600 if (fmt == NULL)
601 fmt = "(fmt null)\n";
603 if (radix < 2 || radix > 36)
604 radix = 10;
606 usespin = (func == kputchar &&
607 (kprintf_logging & TONOSPIN) == 0 &&
608 panic_cpu_gd != mycpu &&
609 (((struct putchar_arg *)arg)->flags & TOTTY) == 0);
610 if (usespin) {
611 crit_enter_hard();
612 spin_lock(&cons_spin);
615 for (;;) {
616 padc = ' ';
617 width = 0;
618 while ((ch = (u_char)*fmt++) != '%' || stop) {
619 if (ch == '\0')
620 goto done;
621 PCHAR(ch);
623 percent = fmt - 1;
624 dot = dwidth = ladjust = neg = sharpflag = sign = upper = 0;
625 spaceflag = 0;
626 cflag = hflag = jflag = lflag = qflag = tflag = zflag = 0;
628 reswitch:
629 switch (ch = (u_char)*fmt++) {
630 case ' ':
631 spaceflag = 1;
632 goto reswitch;
633 case '.':
634 dot = 1;
635 goto reswitch;
636 case '#':
637 sharpflag = 1;
638 goto reswitch;
639 case '+':
640 sign = 1;
641 goto reswitch;
642 case '-':
643 ladjust = 1;
644 goto reswitch;
645 case '%':
646 PCHAR(ch);
647 break;
648 case '*':
649 if (!dot) {
650 width = __va_arg(ap, int);
651 if (width < 0) {
652 ladjust = !ladjust;
653 width = -width;
655 } else {
656 dwidth = __va_arg(ap, int);
658 goto reswitch;
659 case '0':
660 if (!dot) {
661 padc = '0';
662 goto reswitch;
664 case '1': case '2': case '3': case '4':
665 case '5': case '6': case '7': case '8': case '9':
666 for (n = 0;; ++fmt) {
667 n = n * 10 + ch - '0';
668 ch = *fmt;
669 if (ch < '0' || ch > '9')
670 break;
672 if (dot)
673 dwidth = n;
674 else
675 width = n;
676 goto reswitch;
677 case 'b':
678 num = (u_int)__va_arg(ap, int);
679 p = __va_arg(ap, char *);
680 for (q = ksprintn(nbuf, num, *p++, NULL, 0); *q;)
681 PCHAR(*q--);
683 if (num == 0)
684 break;
686 for (tmp = 0; *p;) {
687 n = *p++;
688 if (num & (1 << (n - 1))) {
689 PCHAR(tmp ? ',' : '<');
690 for (; (n = *p) > ' '; ++p)
691 PCHAR(n);
692 tmp = 1;
693 } else
694 for (; *p > ' '; ++p)
695 continue;
697 if (tmp)
698 PCHAR('>');
699 break;
700 case 'c':
701 PCHAR(__va_arg(ap, int));
702 break;
703 case 'd':
704 case 'i':
705 base = 10;
706 sign = 1;
707 goto handle_sign;
708 case 'h':
709 if (hflag) {
710 hflag = 0;
711 cflag = 1;
712 } else
713 hflag = 1;
714 goto reswitch;
715 case 'j':
716 jflag = 1;
717 goto reswitch;
718 case 'l':
719 if (lflag) {
720 lflag = 0;
721 qflag = 1;
722 } else
723 lflag = 1;
724 goto reswitch;
725 case 'n':
726 if (cflag)
727 *(__va_arg(ap, char *)) = retval;
728 else if (hflag)
729 *(__va_arg(ap, short *)) = retval;
730 else if (jflag)
731 *(__va_arg(ap, intmax_t *)) = retval;
732 else if (lflag)
733 *(__va_arg(ap, long *)) = retval;
734 else if (qflag)
735 *(__va_arg(ap, quad_t *)) = retval;
736 else
737 *(__va_arg(ap, int *)) = retval;
738 break;
739 case 'o':
740 base = 8;
741 goto handle_nosign;
742 case 'p':
743 base = 16;
744 sharpflag = (width == 0);
745 sign = 0;
746 num = (uintptr_t)__va_arg(ap, void *);
747 goto number;
748 case 'q':
749 qflag = 1;
750 goto reswitch;
751 case 'r':
752 base = radix;
753 if (sign)
754 goto handle_sign;
755 goto handle_nosign;
756 case 's':
757 p = __va_arg(ap, char *);
758 if (p == NULL)
759 p = "(null)";
760 if (!dot)
761 n = strlen (p);
762 else
763 for (n = 0; n < dwidth && p[n]; n++)
764 continue;
766 width -= n;
768 if (!ladjust && width > 0)
769 while (width--)
770 PCHAR(padc);
771 while (n--)
772 PCHAR(*p++);
773 if (ladjust && width > 0)
774 while (width--)
775 PCHAR(padc);
776 break;
777 case 't':
778 tflag = 1;
779 goto reswitch;
780 case 'u':
781 base = 10;
782 goto handle_nosign;
783 case 'X':
784 upper = 1;
785 /* FALLTHROUGH */
786 case 'x':
787 base = 16;
788 goto handle_nosign;
789 case 'z':
790 zflag = 1;
791 goto reswitch;
792 handle_nosign:
793 sign = 0;
794 if (cflag)
795 num = (u_char)__va_arg(ap, int);
796 else if (hflag)
797 num = (u_short)__va_arg(ap, int);
798 else if (jflag)
799 num = __va_arg(ap, uintmax_t);
800 else if (lflag)
801 num = __va_arg(ap, u_long);
802 else if (qflag)
803 num = __va_arg(ap, u_quad_t);
804 else if (tflag)
805 num = __va_arg(ap, ptrdiff_t);
806 else if (zflag)
807 num = __va_arg(ap, size_t);
808 else
809 num = __va_arg(ap, u_int);
810 goto number;
811 handle_sign:
812 if (cflag)
813 num = (char)__va_arg(ap, int);
814 else if (hflag)
815 num = (short)__va_arg(ap, int);
816 else if (jflag)
817 num = __va_arg(ap, intmax_t);
818 else if (lflag)
819 num = __va_arg(ap, long);
820 else if (qflag)
821 num = __va_arg(ap, quad_t);
822 else if (tflag)
823 num = __va_arg(ap, ptrdiff_t);
824 else if (zflag)
825 num = __va_arg(ap, ssize_t);
826 else
827 num = __va_arg(ap, int);
828 number:
829 if (sign && (intmax_t)num < 0) {
830 neg = 1;
831 num = -(intmax_t)num;
833 p = ksprintn(nbuf, num, base, &n, upper);
834 tmp = 0;
835 if (sharpflag && num != 0) {
836 if (base == 8)
837 tmp++;
838 else if (base == 16)
839 tmp += 2;
841 if (neg || (sign && spaceflag))
842 tmp++;
844 if (!ladjust && padc == '0')
845 dwidth = width - tmp;
846 width -= tmp + imax(dwidth, n);
847 dwidth -= n;
848 if (!ladjust)
849 while (width-- > 0)
850 PCHAR(' ');
851 if (neg) {
852 PCHAR('-');
853 } else if (sign && spaceflag) {
854 PCHAR(' ');
856 if (sharpflag && num != 0) {
857 if (base == 8) {
858 PCHAR('0');
859 } else if (base == 16) {
860 PCHAR('0');
861 PCHAR('x');
864 while (dwidth-- > 0)
865 PCHAR('0');
867 while (*p)
868 PCHAR(*p--);
870 if (ladjust)
871 while (width-- > 0)
872 PCHAR(' ');
874 break;
875 default:
876 while (percent < fmt)
877 PCHAR(*percent++);
879 * Since we ignore an formatting argument it is no
880 * longer safe to obey the remaining formatting
881 * arguments as the arguments will no longer match
882 * the format specs.
884 stop = 1;
885 break;
888 done:
890 * Cleanup reentrancy issues.
892 if (func == kputchar)
893 atomic_clear_long(&mycpu->gd_flags, GDF_KPRINTF);
894 if (usespin) {
895 spin_unlock(&cons_spin);
896 crit_exit_hard();
898 return (retval);
901 #undef PCHAR
904 * Called from the panic code to try to get the console working
905 * again in case we paniced inside a kprintf().
907 void
908 kvcreinitspin(void)
910 spin_init(&cons_spin, "kvcre");
911 atomic_clear_long(&mycpu->gd_flags, GDF_KPRINTF);
915 * Console support thread for constty intercepts. This is needed because
916 * console tty intercepts can block. Instead of having kputchar() attempt
917 * to directly write to the console intercept we just force it to log
918 * and wakeup this baby to track and dump the log to constty.
920 static void
921 constty_daemon(void)
923 u_int rindex;
924 u_int xindex;
925 u_int n;
926 struct msgbuf *mbp;
927 struct tty *tp;
929 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
930 constty_td, SHUTDOWN_PRI_FIRST);
931 constty_td->td_flags |= TDF_SYSTHREAD;
933 mbp = msgbufp;
934 rindex = mbp->msg_bufr; /* persistent loop variable */
935 xindex = mbp->msg_bufx - 1; /* anything different than bufx */
936 cpu_ccfence();
938 for (;;) {
939 kproc_suspend_loop();
941 crit_enter();
942 if (mbp != msgbufp)
943 mbp = msgbufp;
944 if (xindex == mbp->msg_bufx ||
945 mbp == NULL ||
946 msgbufmapped == 0) {
947 tsleep(constty_td, 0, "waiting", hz*60);
948 crit_exit();
949 continue;
951 crit_exit();
954 * Get message buf FIFO indices. rindex is tracking.
956 xindex = mbp->msg_bufx;
957 cpu_ccfence();
958 if ((tp = constty) == NULL) {
959 rindex = xindex;
960 continue;
964 * Check if the calculated bytes has rolled the whole
965 * message buffer.
967 n = xindex - rindex;
968 if (n > mbp->msg_size - 1024) {
969 rindex = xindex - mbp->msg_size + 2048;
970 n = xindex - rindex;
974 * And dump it. If constty gets stuck will give up.
976 while (rindex != xindex) {
977 u_int ri = rindex % mbp->msg_size;
978 if (tputchar((uint8_t)mbp->msg_ptr[ri], tp) < 0) {
979 constty = NULL;
980 rindex = xindex;
981 break;
983 if (tp->t_outq.c_cc >= tp->t_ohiwat) {
984 tsleep(constty_daemon, 0, "blocked", hz / 10);
985 if (tp->t_outq.c_cc >= tp->t_ohiwat) {
986 rindex = xindex;
987 break;
990 ++rindex;
995 static struct kproc_desc constty_kp = {
996 "consttyd",
997 constty_daemon,
998 &constty_td
1000 SYSINIT(bufdaemon, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY,
1001 kproc_start, &constty_kp);
1004 * Put character in log buffer with a particular priority.
1006 * MPSAFE
1008 static void
1009 msglogchar(int c, int pri)
1011 static int lastpri = -1;
1012 static int dangling;
1013 char nbuf[MAXNBUF];
1014 char *p;
1016 if (!msgbufmapped)
1017 return;
1018 if (c == '\0' || c == '\r')
1019 return;
1020 if (pri != -1 && pri != lastpri) {
1021 if (dangling) {
1022 msgaddchar('\n', NULL);
1023 dangling = 0;
1025 msgaddchar('<', NULL);
1026 for (p = ksprintn(nbuf, (uintmax_t)pri, 10, NULL, 0); *p;)
1027 msgaddchar(*p--, NULL);
1028 msgaddchar('>', NULL);
1029 lastpri = pri;
1031 msgaddchar(c, NULL);
1032 if (c == '\n') {
1033 dangling = 0;
1034 lastpri = -1;
1035 } else {
1036 dangling = 1;
1041 * Put char in log buffer. Make sure nothing blows up beyond repair if
1042 * we have an MP race.
1044 * MPSAFE.
1046 static void
1047 msgaddchar(int c, void *dummy)
1049 struct msgbuf *mbp;
1050 u_int lindex;
1051 u_int rindex;
1052 u_int xindex;
1053 u_int n;
1055 if (!msgbufmapped)
1056 return;
1057 mbp = msgbufp;
1058 lindex = mbp->msg_bufl;
1059 rindex = mbp->msg_bufr;
1060 xindex = mbp->msg_bufx++; /* Allow SMP race */
1061 cpu_ccfence();
1063 mbp->msg_ptr[xindex % mbp->msg_size] = c;
1064 n = xindex - lindex;
1065 if (n > mbp->msg_size - 1024) {
1066 lindex = xindex - mbp->msg_size + 2048;
1067 cpu_ccfence();
1068 mbp->msg_bufl = lindex;
1070 n = xindex - rindex;
1071 if (n > mbp->msg_size - 1024) {
1072 rindex = xindex - mbp->msg_size + 2048;
1073 cpu_ccfence();
1074 mbp->msg_bufr = rindex;
1078 static void
1079 msgbufcopy(struct msgbuf *oldp)
1081 u_int rindex;
1082 u_int xindex;
1083 u_int n;
1085 rindex = oldp->msg_bufr;
1086 xindex = oldp->msg_bufx;
1087 cpu_ccfence();
1089 n = xindex - rindex;
1090 if (n > oldp->msg_size - 1024)
1091 rindex = xindex - oldp->msg_size + 2048;
1092 while (rindex != xindex) {
1093 msglogchar(oldp->msg_ptr[rindex % oldp->msg_size], -1);
1094 ++rindex;
1098 void
1099 msgbufinit(void *ptr, size_t size)
1101 char *cp;
1102 static struct msgbuf *oldp = NULL;
1104 size -= sizeof(*msgbufp);
1105 cp = (char *)ptr;
1106 msgbufp = (struct msgbuf *) (cp + size);
1107 if (msgbufp->msg_magic != MSG_MAGIC || msgbufp->msg_size != size) {
1108 bzero(cp, size);
1109 bzero(msgbufp, sizeof(*msgbufp));
1110 msgbufp->msg_magic = MSG_MAGIC;
1111 msgbufp->msg_size = (char *)msgbufp - cp;
1113 msgbufp->msg_ptr = cp;
1114 if (msgbufmapped && oldp != msgbufp)
1115 msgbufcopy(oldp);
1116 cpu_mfence();
1117 msgbufmapped = 1;
1118 oldp = msgbufp;
1121 /* Sysctls for accessing/clearing the msgbuf */
1123 static int
1124 sysctl_kern_msgbuf(SYSCTL_HANDLER_ARGS)
1126 struct msgbuf *mbp;
1127 struct ucred *cred;
1128 int error;
1129 u_int rindex_modulo;
1130 u_int xindex_modulo;
1131 u_int rindex;
1132 u_int xindex;
1133 u_int n;
1136 * Only wheel or root can access the message log.
1138 if (unprivileged_read_msgbuf == 0) {
1139 KKASSERT(req->td->td_proc);
1140 cred = req->td->td_proc->p_ucred;
1142 if ((cred->cr_prison || groupmember(0, cred) == 0) &&
1143 priv_check(req->td, PRIV_ROOT) != 0
1145 return (EPERM);
1150 * Unwind the buffer, so that it's linear (possibly starting with
1151 * some initial nulls).
1153 * We don't push the entire buffer like we did before because
1154 * bufr (and bufl) now advance in chunks when the fifo is full,
1155 * rather than one character.
1157 mbp = msgbufp;
1158 rindex = mbp->msg_bufr;
1159 xindex = mbp->msg_bufx;
1160 n = xindex - rindex;
1161 if (n > mbp->msg_size - 1024) {
1162 rindex = xindex - mbp->msg_size + 2048;
1163 n = xindex - rindex;
1165 rindex_modulo = rindex % mbp->msg_size;
1166 xindex_modulo = xindex % mbp->msg_size;
1168 if (rindex_modulo < xindex_modulo) {
1170 * Can handle in one linear section.
1172 error = sysctl_handle_opaque(oidp,
1173 mbp->msg_ptr + rindex_modulo,
1174 xindex_modulo - rindex_modulo,
1175 req);
1176 } else if (rindex_modulo == xindex_modulo) {
1178 * Empty buffer, just return a single newline
1180 error = sysctl_handle_opaque(oidp, "\n", 1, req);
1181 } else if (n <= mbp->msg_size - rindex_modulo) {
1183 * Can handle in one linear section.
1185 error = sysctl_handle_opaque(oidp,
1186 mbp->msg_ptr + rindex_modulo,
1187 n - rindex_modulo,
1188 req);
1189 } else {
1191 * Glue together two linear sections into one contiguous
1192 * output.
1194 error = sysctl_handle_opaque(oidp,
1195 mbp->msg_ptr + rindex_modulo,
1196 mbp->msg_size - rindex_modulo,
1197 req);
1198 n -= mbp->msg_size - rindex_modulo;
1199 if (error == 0)
1200 error = sysctl_handle_opaque(oidp, mbp->msg_ptr,
1201 n, req);
1203 return (error);
1206 SYSCTL_PROC(_kern, OID_AUTO, msgbuf, CTLTYPE_STRING | CTLFLAG_RD,
1207 0, 0, sysctl_kern_msgbuf, "A", "Contents of kernel message buffer");
1209 static int msgbuf_clear;
1211 static int
1212 sysctl_kern_msgbuf_clear(SYSCTL_HANDLER_ARGS)
1214 int error;
1215 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
1216 if (!error && req->newptr) {
1217 /* Clear the buffer and reset write pointer */
1218 msgbufp->msg_bufr = msgbufp->msg_bufx;
1219 msgbufp->msg_bufl = msgbufp->msg_bufx;
1220 bzero(msgbufp->msg_ptr, msgbufp->msg_size);
1221 msgbuf_clear = 0;
1223 return (error);
1226 SYSCTL_PROC(_kern, OID_AUTO, msgbuf_clear,
1227 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE, &msgbuf_clear, 0,
1228 sysctl_kern_msgbuf_clear, "I", "Clear kernel message buffer");
1230 #ifdef DDB
1232 DB_SHOW_COMMAND(msgbuf, db_show_msgbuf)
1234 u_int rindex;
1235 u_int i;
1236 u_int j;
1238 if (!msgbufmapped) {
1239 db_printf("msgbuf not mapped yet\n");
1240 return;
1242 db_printf("msgbufp = %p\n", msgbufp);
1243 db_printf("magic = %x, size = %d, r= %d, w = %d, ptr = %p\n",
1244 msgbufp->msg_magic, msgbufp->msg_size,
1245 msgbufp->msg_bufr % msgbufp->msg_size,
1246 msgbufp->msg_bufx % msgbufp->msg_size,
1247 msgbufp->msg_ptr);
1249 rindex = msgbufp->msg_bufr;
1250 for (i = 0; i < msgbufp->msg_size; i++) {
1251 j = (i + rindex) % msgbufp->msg_size;
1252 db_printf("%c", msgbufp->msg_ptr[j]);
1254 db_printf("\n");
1257 #endif /* DDB */
1260 void
1261 hexdump(const void *ptr, int length, const char *hdr, int flags)
1263 int i, j, k;
1264 int cols;
1265 const unsigned char *cp;
1266 char delim;
1268 if ((flags & HD_DELIM_MASK) != 0)
1269 delim = (flags & HD_DELIM_MASK) >> 8;
1270 else
1271 delim = ' ';
1273 if ((flags & HD_COLUMN_MASK) != 0)
1274 cols = flags & HD_COLUMN_MASK;
1275 else
1276 cols = 16;
1278 cp = ptr;
1279 for (i = 0; i < length; i+= cols) {
1280 if (hdr != NULL)
1281 kprintf("%s", hdr);
1283 if ((flags & HD_OMIT_COUNT) == 0)
1284 kprintf("%04x ", i);
1286 if ((flags & HD_OMIT_HEX) == 0) {
1287 for (j = 0; j < cols; j++) {
1288 k = i + j;
1289 if (k < length)
1290 kprintf("%c%02x", delim, cp[k]);
1291 else
1292 kprintf(" ");
1296 if ((flags & HD_OMIT_CHARS) == 0) {
1297 kprintf(" |");
1298 for (j = 0; j < cols; j++) {
1299 k = i + j;
1300 if (k >= length)
1301 kprintf(" ");
1302 else if (cp[k] >= ' ' && cp[k] <= '~')
1303 kprintf("%c", cp[k]);
1304 else
1305 kprintf(".");
1307 kprintf("|");
1309 kprintf("\n");
1313 void
1314 kprint_cpuset(cpumask_t *mask)
1316 int i;
1317 int b = -1;
1318 int e = -1;
1319 int more = 0;
1321 kprintf("cpus(");
1322 CPUSET_FOREACH(i, *mask) {
1323 if (b < 0) {
1324 b = i;
1325 e = b + 1;
1326 continue;
1328 if (e == i) {
1329 ++e;
1330 continue;
1332 if (more)
1333 kprintf(", ");
1334 if (b == e - 1) {
1335 kprintf("%d", b);
1336 } else {
1337 kprintf("%d-%d", b, e - 1);
1339 more = 1;
1340 b = i;
1341 e = b + 1;
1343 if (more)
1344 kprintf(", ");
1345 if (b >= 0) {
1346 if (b == e - 1) {
1347 kprintf("%d", b);
1348 } else {
1349 kprintf("%d-%d", b, e - 1);
1352 kprintf(") ");