kernel - Fix excessive call stack depth on stuck interrupt
[dragonfly.git] / sys / kern / kern_synch.c
blobb3379eda396828d6e4d2ae38a7d39ef2e6a7b64f
1 /*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
35 * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
38 #include "opt_ktrace.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/vmmeter.h>
47 #include <sys/sysctl.h>
48 #include <sys/lock.h>
49 #include <sys/uio.h>
50 #ifdef KTRACE
51 #include <sys/ktrace.h>
52 #endif
53 #include <sys/ktr.h>
54 #include <sys/serialize.h>
56 #include <sys/signal2.h>
57 #include <sys/thread2.h>
58 #include <sys/spinlock2.h>
59 #include <sys/mutex2.h>
61 #include <machine/cpu.h>
62 #include <machine/smp.h>
64 TAILQ_HEAD(tslpque, thread);
66 static void sched_setup (void *dummy);
67 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL);
69 int lbolt;
70 void *lbolt_syncer;
71 int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
72 int ncpus;
73 int ncpus2, ncpus2_shift, ncpus2_mask; /* note: mask not cpumask_t */
74 int ncpus_fit, ncpus_fit_mask; /* note: mask not cpumask_t */
75 int safepri;
76 int tsleep_now_works;
77 int tsleep_crypto_dump = 0;
79 static struct callout loadav_callout;
80 static struct callout schedcpu_callout;
81 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
83 #define __DEALL(ident) __DEQUALIFY(void *, ident)
85 #if !defined(KTR_TSLEEP)
86 #define KTR_TSLEEP KTR_ALL
87 #endif
88 KTR_INFO_MASTER(tsleep);
89 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", const volatile void *ident);
90 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit");
91 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", const volatile void *ident);
92 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit");
93 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail, 4, "interlock failed %p", const volatile void *ident);
95 #define logtsleep1(name) KTR_LOG(tsleep_ ## name)
96 #define logtsleep2(name, val) KTR_LOG(tsleep_ ## name, val)
98 struct loadavg averunnable =
99 { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */
101 * Constants for averages over 1, 5, and 15 minutes
102 * when sampling at 5 second intervals.
104 static fixpt_t cexp[3] = {
105 0.9200444146293232 * FSCALE, /* exp(-1/12) */
106 0.9834714538216174 * FSCALE, /* exp(-1/60) */
107 0.9944598480048967 * FSCALE, /* exp(-1/180) */
110 static void endtsleep (void *);
111 static void loadav (void *arg);
112 static void schedcpu (void *arg);
115 * Adjust the scheduler quantum. The quantum is specified in microseconds.
116 * Note that 'tick' is in microseconds per tick.
118 static int
119 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
121 int error, new_val;
123 new_val = sched_quantum * ustick;
124 error = sysctl_handle_int(oidp, &new_val, 0, req);
125 if (error != 0 || req->newptr == NULL)
126 return (error);
127 if (new_val < ustick)
128 return (EINVAL);
129 sched_quantum = new_val / ustick;
130 return (0);
133 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
134 0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
136 static int pctcpu_decay = 10;
137 SYSCTL_INT(_kern, OID_AUTO, pctcpu_decay, CTLFLAG_RW, &pctcpu_decay, 0, "");
140 * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
142 int fscale __unused = FSCALE; /* exported to systat */
143 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
146 * Recompute process priorities, once a second.
148 * Since the userland schedulers are typically event oriented, if the
149 * estcpu calculation at wakeup() time is not sufficient to make a
150 * process runnable relative to other processes in the system we have
151 * a 1-second recalc to help out.
153 * This code also allows us to store sysclock_t data in the process structure
154 * without fear of an overrun, since sysclock_t are guarenteed to hold
155 * several seconds worth of count.
157 * WARNING! callouts can preempt normal threads. However, they will not
158 * preempt a thread holding a spinlock so we *can* safely use spinlocks.
160 static int schedcpu_stats(struct proc *p, void *data __unused);
161 static int schedcpu_resource(struct proc *p, void *data __unused);
163 static void
164 schedcpu(void *arg)
166 allproc_scan(schedcpu_stats, NULL);
167 allproc_scan(schedcpu_resource, NULL);
168 wakeup((caddr_t)&lbolt);
169 wakeup(lbolt_syncer);
170 callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
174 * General process statistics once a second
176 static int
177 schedcpu_stats(struct proc *p, void *data __unused)
179 struct lwp *lp;
182 * Threads may not be completely set up if process in SIDL state.
184 if (p->p_stat == SIDL)
185 return(0);
187 PHOLD(p);
188 if (lwkt_trytoken(&p->p_token) == FALSE) {
189 PRELE(p);
190 return(0);
193 p->p_swtime++;
194 FOREACH_LWP_IN_PROC(lp, p) {
195 if (lp->lwp_stat == LSSLEEP) {
196 ++lp->lwp_slptime;
197 if (lp->lwp_slptime == 1)
198 p->p_usched->uload_update(lp);
202 * Only recalculate processes that are active or have slept
203 * less then 2 seconds. The schedulers understand this.
204 * Otherwise decay by 50% per second.
206 if (lp->lwp_slptime <= 1) {
207 p->p_usched->recalculate(lp);
208 } else {
209 int decay;
211 decay = pctcpu_decay;
212 cpu_ccfence();
213 if (decay <= 1)
214 decay = 1;
215 if (decay > 100)
216 decay = 100;
217 lp->lwp_pctcpu = (lp->lwp_pctcpu * (decay - 1)) / decay;
220 lwkt_reltoken(&p->p_token);
221 lwkt_yield();
222 PRELE(p);
223 return(0);
227 * Resource checks. XXX break out since ksignal/killproc can block,
228 * limiting us to one process killed per second. There is probably
229 * a better way.
231 static int
232 schedcpu_resource(struct proc *p, void *data __unused)
234 u_int64_t ttime;
235 struct lwp *lp;
237 if (p->p_stat == SIDL)
238 return(0);
240 PHOLD(p);
241 if (lwkt_trytoken(&p->p_token) == FALSE) {
242 PRELE(p);
243 return(0);
246 if (p->p_stat == SZOMB || p->p_limit == NULL) {
247 lwkt_reltoken(&p->p_token);
248 PRELE(p);
249 return(0);
252 ttime = 0;
253 FOREACH_LWP_IN_PROC(lp, p) {
255 * We may have caught an lp in the middle of being
256 * created, lwp_thread can be NULL.
258 if (lp->lwp_thread) {
259 ttime += lp->lwp_thread->td_sticks;
260 ttime += lp->lwp_thread->td_uticks;
264 switch(plimit_testcpulimit(p->p_limit, ttime)) {
265 case PLIMIT_TESTCPU_KILL:
266 killproc(p, "exceeded maximum CPU limit");
267 break;
268 case PLIMIT_TESTCPU_XCPU:
269 if ((p->p_flags & P_XCPU) == 0) {
270 p->p_flags |= P_XCPU;
271 ksignal(p, SIGXCPU);
273 break;
274 default:
275 break;
277 lwkt_reltoken(&p->p_token);
278 lwkt_yield();
279 PRELE(p);
280 return(0);
284 * This is only used by ps. Generate a cpu percentage use over
285 * a period of one second.
287 void
288 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
290 fixpt_t acc;
291 int remticks;
293 acc = (cpticks << FSHIFT) / ttlticks;
294 if (ttlticks >= ESTCPUFREQ) {
295 lp->lwp_pctcpu = acc;
296 } else {
297 remticks = ESTCPUFREQ - ttlticks;
298 lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
299 ESTCPUFREQ;
304 * tsleep/wakeup hash table parameters. Try to find the sweet spot for
305 * like addresses being slept on.
307 #define TABLESIZE 4001
308 #define LOOKUP(x) (((u_int)(uintptr_t)(x)) % TABLESIZE)
310 static cpumask_t slpque_cpumasks[TABLESIZE];
313 * General scheduler initialization. We force a reschedule 25 times
314 * a second by default. Note that cpu0 is initialized in early boot and
315 * cannot make any high level calls.
317 * Each cpu has its own sleep queue.
319 void
320 sleep_gdinit(globaldata_t gd)
322 static struct tslpque slpque_cpu0[TABLESIZE];
323 int i;
325 if (gd->gd_cpuid == 0) {
326 sched_quantum = (hz + 24) / 25;
327 gd->gd_tsleep_hash = slpque_cpu0;
328 } else {
329 gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
330 M_TSLEEP, M_WAITOK | M_ZERO);
332 for (i = 0; i < TABLESIZE; ++i)
333 TAILQ_INIT(&gd->gd_tsleep_hash[i]);
337 * This is a dandy function that allows us to interlock tsleep/wakeup
338 * operations with unspecified upper level locks, such as lockmgr locks,
339 * simply by holding a critical section. The sequence is:
341 * (acquire upper level lock)
342 * tsleep_interlock(blah)
343 * (release upper level lock)
344 * tsleep(blah, ...)
346 * Basically this functions queues us on the tsleep queue without actually
347 * descheduling us. When tsleep() is later called with PINTERLOCK it
348 * assumes the thread was already queued, otherwise it queues it there.
350 * Thus it is possible to receive the wakeup prior to going to sleep and
351 * the race conditions are covered.
353 static __inline void
354 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
356 thread_t td = gd->gd_curthread;
357 int id;
359 crit_enter_quick(td);
360 if (td->td_flags & TDF_TSLEEPQ) {
361 id = LOOKUP(td->td_wchan);
362 TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
363 if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL) {
364 ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[id],
365 gd->gd_cpuid);
367 } else {
368 td->td_flags |= TDF_TSLEEPQ;
370 id = LOOKUP(ident);
371 TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_sleepq);
372 ATOMIC_CPUMASK_ORBIT(slpque_cpumasks[id], gd->gd_cpuid);
373 td->td_wchan = ident;
374 td->td_wdomain = flags & PDOMAIN_MASK;
375 crit_exit_quick(td);
378 void
379 tsleep_interlock(const volatile void *ident, int flags)
381 _tsleep_interlock(mycpu, ident, flags);
385 * Remove thread from sleepq. Must be called with a critical section held.
386 * The thread must not be migrating.
388 static __inline void
389 _tsleep_remove(thread_t td)
391 globaldata_t gd = mycpu;
392 int id;
394 KKASSERT(td->td_gd == gd && IN_CRITICAL_SECT(td));
395 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
396 if (td->td_flags & TDF_TSLEEPQ) {
397 td->td_flags &= ~TDF_TSLEEPQ;
398 id = LOOKUP(td->td_wchan);
399 TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
400 if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL) {
401 ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[id],
402 gd->gd_cpuid);
404 td->td_wchan = NULL;
405 td->td_wdomain = 0;
409 void
410 tsleep_remove(thread_t td)
412 _tsleep_remove(td);
416 * General sleep call. Suspends the current process until a wakeup is
417 * performed on the specified identifier. The process will then be made
418 * runnable with the specified priority. Sleeps at most timo/hz seconds
419 * (0 means no timeout). If flags includes PCATCH flag, signals are checked
420 * before and after sleeping, else signals are not checked. Returns 0 if
421 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
422 * signal needs to be delivered, ERESTART is returned if the current system
423 * call should be restarted if possible, and EINTR is returned if the system
424 * call should be interrupted by the signal (return EINTR).
426 * Note that if we are a process, we release_curproc() before messing with
427 * the LWKT scheduler.
429 * During autoconfiguration or after a panic, a sleep will simply
430 * lower the priority briefly to allow interrupts, then return.
432 * WARNING! This code can't block (short of switching away), or bad things
433 * will happen. No getting tokens, no blocking locks, etc.
436 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
438 struct thread *td = curthread;
439 struct lwp *lp = td->td_lwp;
440 struct proc *p = td->td_proc; /* may be NULL */
441 globaldata_t gd;
442 int sig;
443 int catch;
444 int error;
445 int oldpri;
446 struct callout thandle;
449 * Currently a severe hack. Make sure any delayed wakeups
450 * are flushed before we sleep or we might deadlock on whatever
451 * event we are sleeping on.
453 if (td->td_flags & TDF_DELAYED_WAKEUP)
454 wakeup_end_delayed();
457 * NOTE: removed KTRPOINT, it could cause races due to blocking
458 * even in stable. Just scrap it for now.
460 if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
462 * After a panic, or before we actually have an operational
463 * softclock, just give interrupts a chance, then just return;
465 * don't run any other procs or panic below,
466 * in case this is the idle process and already asleep.
468 splz();
469 oldpri = td->td_pri;
470 lwkt_setpri_self(safepri);
471 lwkt_switch();
472 lwkt_setpri_self(oldpri);
473 return (0);
475 logtsleep2(tsleep_beg, ident);
476 gd = td->td_gd;
477 KKASSERT(td != &gd->gd_idlethread); /* you must be kidding! */
478 td->td_wakefromcpu = -1; /* overwritten by _wakeup */
481 * NOTE: all of this occurs on the current cpu, including any
482 * callout-based wakeups, so a critical section is a sufficient
483 * interlock.
485 * The entire sequence through to where we actually sleep must
486 * run without breaking the critical section.
488 catch = flags & PCATCH;
489 error = 0;
490 sig = 0;
492 crit_enter_quick(td);
494 KASSERT(ident != NULL, ("tsleep: no ident"));
495 KASSERT(lp == NULL ||
496 lp->lwp_stat == LSRUN || /* Obvious */
497 lp->lwp_stat == LSSTOP, /* Set in tstop */
498 ("tsleep %p %s %d",
499 ident, wmesg, lp->lwp_stat));
502 * We interlock the sleep queue if the caller has not already done
503 * it for us. This must be done before we potentially acquire any
504 * tokens or we can loose the wakeup.
506 if ((flags & PINTERLOCKED) == 0) {
507 _tsleep_interlock(gd, ident, flags);
511 * Setup for the current process (if this is a process). We must
512 * interlock with lwp_token to avoid remote wakeup races via
513 * setrunnable()
515 if (lp) {
516 lwkt_gettoken(&lp->lwp_token);
519 * If the umbrella process is in the SCORE state then
520 * make sure that the thread is flagged going into a
521 * normal sleep to allow the core dump to proceed, otherwise
522 * the coredump can end up waiting forever. If the normal
523 * sleep is woken up, the thread will enter a stopped state
524 * upon return to userland.
526 * We do not want to interrupt or cause a thread exist at
527 * this juncture because that will mess-up the state the
528 * coredump is trying to save.
530 if (p->p_stat == SCORE &&
531 (lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
532 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
533 ++p->p_nstopped;
537 * PCATCH requested.
539 if (catch) {
541 * Early termination if PCATCH was set and a
542 * signal is pending, interlocked with the
543 * critical section.
545 * Early termination only occurs when tsleep() is
546 * entered while in a normal LSRUN state.
548 if ((sig = CURSIG(lp)) != 0)
549 goto resume;
552 * Causes ksignal to wake us up if a signal is
553 * received (interlocked with lp->lwp_token).
555 lp->lwp_flags |= LWP_SINTR;
557 } else {
558 KKASSERT(p == NULL);
562 * Make sure the current process has been untangled from
563 * the userland scheduler and initialize slptime to start
564 * counting.
566 * NOTE: td->td_wakefromcpu is pre-set by the release function
567 * for the dfly scheduler, and then adjusted by _wakeup()
569 if (lp) {
570 p->p_usched->release_curproc(lp);
571 lp->lwp_slptime = 0;
575 * If the interlocked flag is set but our cpu bit in the slpqueue
576 * is no longer set, then a wakeup was processed inbetween the
577 * tsleep_interlock() (ours or the callers), and here. This can
578 * occur under numerous circumstances including when we release the
579 * current process.
581 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
582 * to process incoming IPIs, thus draining incoming wakeups.
584 if ((td->td_flags & TDF_TSLEEPQ) == 0) {
585 logtsleep2(ilockfail, ident);
586 goto resume;
590 * scheduling is blocked while in a critical section. Coincide
591 * the descheduled-by-tsleep flag with the descheduling of the
592 * lwkt.
594 * The timer callout is localized on our cpu and interlocked by
595 * our critical section.
597 lwkt_deschedule_self(td);
598 td->td_flags |= TDF_TSLEEP_DESCHEDULED;
599 td->td_wmesg = wmesg;
602 * Setup the timeout, if any. The timeout is only operable while
603 * the thread is flagged descheduled.
605 KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
606 if (timo) {
607 callout_init_mp(&thandle);
608 callout_reset(&thandle, timo, endtsleep, td);
612 * Beddy bye bye.
614 if (lp) {
616 * Ok, we are sleeping. Place us in the SSLEEP state.
618 KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
621 * tstop() sets LSSTOP, so don't fiddle with that.
623 if (lp->lwp_stat != LSSTOP)
624 lp->lwp_stat = LSSLEEP;
625 lp->lwp_ru.ru_nvcsw++;
626 p->p_usched->uload_update(lp);
627 lwkt_switch();
630 * And when we are woken up, put us back in LSRUN. If we
631 * slept for over a second, recalculate our estcpu.
633 lp->lwp_stat = LSRUN;
634 if (lp->lwp_slptime) {
635 p->p_usched->uload_update(lp);
636 p->p_usched->recalculate(lp);
638 lp->lwp_slptime = 0;
639 } else {
640 lwkt_switch();
644 * Make sure we haven't switched cpus while we were asleep. It's
645 * not supposed to happen. Cleanup our temporary flags.
647 KKASSERT(gd == td->td_gd);
650 * Cleanup the timeout. If the timeout has already occured thandle
651 * has already been stopped, otherwise stop thandle. If the timeout
652 * is running (the callout thread must be blocked trying to get
653 * lwp_token) then wait for us to get scheduled.
655 if (timo) {
656 while (td->td_flags & TDF_TIMEOUT_RUNNING) {
657 /* else we won't get rescheduled! */
658 if (lp->lwp_stat != LSSTOP)
659 lp->lwp_stat = LSSLEEP;
660 lwkt_deschedule_self(td);
661 td->td_wmesg = "tsrace";
662 lwkt_switch();
663 kprintf("td %p %s: timeout race\n", td, td->td_comm);
665 if (td->td_flags & TDF_TIMEOUT) {
666 td->td_flags &= ~TDF_TIMEOUT;
667 error = EWOULDBLOCK;
668 } else {
669 /* does not block when on same cpu */
670 callout_stop(&thandle);
673 td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
676 * Make sure we have been removed from the sleepq. In most
677 * cases this will have been done for us already but it is
678 * possible for a scheduling IPI to be in-flight from a
679 * previous tsleep/tsleep_interlock() or due to a straight-out
680 * call to lwkt_schedule() (in the case of an interrupt thread),
681 * causing a spurious wakeup.
683 _tsleep_remove(td);
684 td->td_wmesg = NULL;
687 * Figure out the correct error return. If interrupted by a
688 * signal we want to return EINTR or ERESTART.
690 resume:
691 if (lp) {
692 if (catch && error == 0) {
693 if (sig != 0 || (sig = CURSIG(lp))) {
694 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
695 error = EINTR;
696 else
697 error = ERESTART;
701 lp->lwp_flags &= ~LWP_SINTR;
704 * Unconditionally set us to LSRUN on resume. lwp_stat could
705 * be in a weird state due to the goto resume, particularly
706 * when tsleep() is called from tstop().
708 lp->lwp_stat = LSRUN;
709 lwkt_reltoken(&lp->lwp_token);
711 logtsleep1(tsleep_end);
712 crit_exit_quick(td);
713 return (error);
717 * Interlocked spinlock sleep. An exclusively held spinlock must
718 * be passed to ssleep(). The function will atomically release the
719 * spinlock and tsleep on the ident, then reacquire the spinlock and
720 * return.
722 * This routine is fairly important along the critical path, so optimize it
723 * heavily.
726 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
727 const char *wmesg, int timo)
729 globaldata_t gd = mycpu;
730 int error;
732 _tsleep_interlock(gd, ident, flags);
733 spin_unlock_quick(gd, spin);
734 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
735 _spin_lock_quick(gd, spin, wmesg);
737 return (error);
741 lksleep(const volatile void *ident, struct lock *lock, int flags,
742 const char *wmesg, int timo)
744 globaldata_t gd = mycpu;
745 int error;
747 _tsleep_interlock(gd, ident, flags);
748 lockmgr(lock, LK_RELEASE);
749 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
750 lockmgr(lock, LK_EXCLUSIVE);
752 return (error);
756 * Interlocked mutex sleep. An exclusively held mutex must be passed
757 * to mtxsleep(). The function will atomically release the mutex
758 * and tsleep on the ident, then reacquire the mutex and return.
761 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
762 const char *wmesg, int timo)
764 globaldata_t gd = mycpu;
765 int error;
767 _tsleep_interlock(gd, ident, flags);
768 mtx_unlock(mtx);
769 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
770 mtx_lock_ex_quick(mtx);
772 return (error);
776 * Interlocked serializer sleep. An exclusively held serializer must
777 * be passed to zsleep(). The function will atomically release
778 * the serializer and tsleep on the ident, then reacquire the serializer
779 * and return.
782 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
783 const char *wmesg, int timo)
785 globaldata_t gd = mycpu;
786 int ret;
788 ASSERT_SERIALIZED(slz);
790 _tsleep_interlock(gd, ident, flags);
791 lwkt_serialize_exit(slz);
792 ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
793 lwkt_serialize_enter(slz);
795 return ret;
799 * Directly block on the LWKT thread by descheduling it. This
800 * is much faster then tsleep(), but the only legal way to wake
801 * us up is to directly schedule the thread.
803 * Setting TDF_SINTR will cause new signals to directly schedule us.
805 * This routine must be called while in a critical section.
808 lwkt_sleep(const char *wmesg, int flags)
810 thread_t td = curthread;
811 int sig;
813 if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
814 td->td_flags |= TDF_BLOCKED;
815 td->td_wmesg = wmesg;
816 lwkt_deschedule_self(td);
817 lwkt_switch();
818 td->td_wmesg = NULL;
819 td->td_flags &= ~TDF_BLOCKED;
820 return(0);
822 if ((sig = CURSIG(td->td_lwp)) != 0) {
823 if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
824 return(EINTR);
825 else
826 return(ERESTART);
829 td->td_flags |= TDF_BLOCKED | TDF_SINTR;
830 td->td_wmesg = wmesg;
831 lwkt_deschedule_self(td);
832 lwkt_switch();
833 td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
834 td->td_wmesg = NULL;
835 return(0);
839 * Implement the timeout for tsleep.
841 * This type of callout timeout is scheduled on the same cpu the process
842 * is sleeping on. Also, at the moment, the MP lock is held.
844 static void
845 endtsleep(void *arg)
847 thread_t td = arg;
848 struct lwp *lp;
851 * We are going to have to get the lwp_token, which means we might
852 * block. This can race a tsleep getting woken up by other means
853 * so set TDF_TIMEOUT_RUNNING to force the tsleep to wait for our
854 * processing to complete (sorry tsleep!).
856 * We can safely set td_flags because td MUST be on the same cpu
857 * as we are.
859 KKASSERT(td->td_gd == mycpu);
860 crit_enter();
861 td->td_flags |= TDF_TIMEOUT_RUNNING | TDF_TIMEOUT;
864 * This can block but TDF_TIMEOUT_RUNNING will prevent the thread
865 * from exiting the tsleep on us. The flag is interlocked by virtue
866 * of lp being on the same cpu as we are.
868 if ((lp = td->td_lwp) != NULL)
869 lwkt_gettoken(&lp->lwp_token);
871 KKASSERT(td->td_flags & TDF_TSLEEP_DESCHEDULED);
873 if (lp) {
875 * callout timer should normally never be set in tstop()
876 * because it passes a timeout of 0. However, there is a
877 * case during thread exit (which SSTOP's all the threads)
878 * for which tstop() must break out and can (properly) leave
879 * the thread in LSSTOP.
881 KKASSERT(lp->lwp_stat != LSSTOP ||
882 (lp->lwp_mpflags & LWP_MP_WEXIT));
883 setrunnable(lp);
884 lwkt_reltoken(&lp->lwp_token);
885 } else {
886 _tsleep_remove(td);
887 lwkt_schedule(td);
889 KKASSERT(td->td_gd == mycpu);
890 td->td_flags &= ~TDF_TIMEOUT_RUNNING;
891 crit_exit();
895 * Make all processes sleeping on the specified identifier runnable.
896 * count may be zero or one only.
898 * The domain encodes the sleep/wakeup domain, flags, plus the originating
899 * cpu.
901 * This call may run without the MP lock held. We can only manipulate thread
902 * state on the cpu owning the thread. We CANNOT manipulate process state
903 * at all.
905 * _wakeup() can be passed to an IPI so we can't use (const volatile
906 * void *ident).
908 static void
909 _wakeup(void *ident, int domain)
911 struct tslpque *qp;
912 struct thread *td;
913 struct thread *ntd;
914 globaldata_t gd;
915 cpumask_t mask;
916 int id;
918 crit_enter();
919 logtsleep2(wakeup_beg, ident);
920 gd = mycpu;
921 id = LOOKUP(ident);
922 qp = &gd->gd_tsleep_hash[id];
923 restart:
924 for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
925 ntd = TAILQ_NEXT(td, td_sleepq);
926 if (td->td_wchan == ident &&
927 td->td_wdomain == (domain & PDOMAIN_MASK)
929 KKASSERT(td->td_gd == gd);
930 _tsleep_remove(td);
931 td->td_wakefromcpu = PWAKEUP_DECODE(domain);
932 if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
933 lwkt_schedule(td);
934 if (domain & PWAKEUP_ONE)
935 goto done;
937 goto restart;
942 * We finished checking the current cpu but there still may be
943 * more work to do. Either wakeup_one was requested and no matching
944 * thread was found, or a normal wakeup was requested and we have
945 * to continue checking cpus.
947 * It should be noted that this scheme is actually less expensive then
948 * the old scheme when waking up multiple threads, since we send
949 * only one IPI message per target candidate which may then schedule
950 * multiple threads. Before we could have wound up sending an IPI
951 * message for each thread on the target cpu (!= current cpu) that
952 * needed to be woken up.
954 * NOTE: Wakeups occuring on remote cpus are asynchronous. This
955 * should be ok since we are passing idents in the IPI rather then
956 * thread pointers.
958 if ((domain & PWAKEUP_MYCPU) == 0) {
959 mask = slpque_cpumasks[id];
960 CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
961 if (CPUMASK_TESTNZERO(mask)) {
962 lwkt_send_ipiq2_mask(mask, _wakeup, ident,
963 domain | PWAKEUP_MYCPU);
966 done:
967 logtsleep1(wakeup_end);
968 crit_exit();
972 * Wakeup all threads tsleep()ing on the specified ident, on all cpus
974 void
975 wakeup(const volatile void *ident)
977 globaldata_t gd = mycpu;
978 thread_t td = gd->gd_curthread;
980 if (td && (td->td_flags & TDF_DELAYED_WAKEUP)) {
982 * If we are in a delayed wakeup section, record up to two wakeups in
983 * a per-CPU queue and issue them when we block or exit the delayed
984 * wakeup section.
986 if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[0], NULL, ident))
987 return;
988 if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[1], NULL, ident))
989 return;
991 ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[1]),
992 __DEALL(ident));
993 ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[0]),
994 __DEALL(ident));
997 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, gd->gd_cpuid));
1001 * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
1003 void
1004 wakeup_one(const volatile void *ident)
1006 /* XXX potentially round-robin the first responding cpu */
1007 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1008 PWAKEUP_ONE);
1012 * Wakeup threads tsleep()ing on the specified ident on the current cpu
1013 * only.
1015 void
1016 wakeup_mycpu(const volatile void *ident)
1018 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1019 PWAKEUP_MYCPU);
1023 * Wakeup one thread tsleep()ing on the specified ident on the current cpu
1024 * only.
1026 void
1027 wakeup_mycpu_one(const volatile void *ident)
1029 /* XXX potentially round-robin the first responding cpu */
1030 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1031 PWAKEUP_MYCPU | PWAKEUP_ONE);
1035 * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
1036 * only.
1038 void
1039 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
1041 globaldata_t mygd = mycpu;
1042 if (gd == mycpu) {
1043 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1044 PWAKEUP_MYCPU);
1045 } else {
1046 lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1047 PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1048 PWAKEUP_MYCPU);
1053 * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1054 * only.
1056 void
1057 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1059 globaldata_t mygd = mycpu;
1060 if (gd == mygd) {
1061 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1062 PWAKEUP_MYCPU | PWAKEUP_ONE);
1063 } else {
1064 lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1065 PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1066 PWAKEUP_MYCPU | PWAKEUP_ONE);
1071 * Wakeup all threads waiting on the specified ident that slept using
1072 * the specified domain, on all cpus.
1074 void
1075 wakeup_domain(const volatile void *ident, int domain)
1077 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1081 * Wakeup one thread waiting on the specified ident that slept using
1082 * the specified domain, on any cpu.
1084 void
1085 wakeup_domain_one(const volatile void *ident, int domain)
1087 /* XXX potentially round-robin the first responding cpu */
1088 _wakeup(__DEALL(ident),
1089 PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1092 void
1093 wakeup_start_delayed(void)
1095 globaldata_t gd = mycpu;
1097 crit_enter();
1098 gd->gd_curthread->td_flags |= TDF_DELAYED_WAKEUP;
1099 crit_exit();
1102 void
1103 wakeup_end_delayed(void)
1105 globaldata_t gd = mycpu;
1107 if (gd->gd_curthread->td_flags & TDF_DELAYED_WAKEUP) {
1108 crit_enter();
1109 gd->gd_curthread->td_flags &= ~TDF_DELAYED_WAKEUP;
1110 if (gd->gd_delayed_wakeup[0] || gd->gd_delayed_wakeup[1]) {
1111 if (gd->gd_delayed_wakeup[0]) {
1112 wakeup(gd->gd_delayed_wakeup[0]);
1113 gd->gd_delayed_wakeup[0] = NULL;
1115 if (gd->gd_delayed_wakeup[1]) {
1116 wakeup(gd->gd_delayed_wakeup[1]);
1117 gd->gd_delayed_wakeup[1] = NULL;
1120 crit_exit();
1125 * setrunnable()
1127 * Make a process runnable. lp->lwp_token must be held on call and this
1128 * function must be called from the cpu owning lp.
1130 * This only has an effect if we are in LSSTOP or LSSLEEP.
1132 void
1133 setrunnable(struct lwp *lp)
1135 thread_t td = lp->lwp_thread;
1137 ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1138 KKASSERT(td->td_gd == mycpu);
1139 crit_enter();
1140 if (lp->lwp_stat == LSSTOP)
1141 lp->lwp_stat = LSSLEEP;
1142 if (lp->lwp_stat == LSSLEEP) {
1143 _tsleep_remove(td);
1144 lwkt_schedule(td);
1145 } else if (td->td_flags & TDF_SINTR) {
1146 lwkt_schedule(td);
1148 crit_exit();
1152 * The process is stopped due to some condition, usually because p_stat is
1153 * set to SSTOP, but also possibly due to being traced.
1155 * Caller must hold p->p_token
1157 * NOTE! If the caller sets SSTOP, the caller must also clear P_WAITED
1158 * because the parent may check the child's status before the child actually
1159 * gets to this routine.
1161 * This routine is called with the current lwp only, typically just
1162 * before returning to userland if the process state is detected as
1163 * possibly being in a stopped state.
1165 void
1166 tstop(void)
1168 struct lwp *lp = curthread->td_lwp;
1169 struct proc *p = lp->lwp_proc;
1170 struct proc *q;
1172 lwkt_gettoken(&lp->lwp_token);
1173 crit_enter();
1176 * If LWP_MP_WSTOP is set, we were sleeping
1177 * while our process was stopped. At this point
1178 * we were already counted as stopped.
1180 if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1182 * If we're the last thread to stop, signal
1183 * our parent.
1185 p->p_nstopped++;
1186 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1187 wakeup(&p->p_nstopped);
1188 if (p->p_nstopped == p->p_nthreads) {
1190 * Token required to interlock kern_wait()
1192 q = p->p_pptr;
1193 PHOLD(q);
1194 lwkt_gettoken(&q->p_token);
1195 p->p_flags &= ~P_WAITED;
1196 wakeup(p->p_pptr);
1197 if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1198 ksignal(q, SIGCHLD);
1199 lwkt_reltoken(&q->p_token);
1200 PRELE(q);
1205 * Wait here while in a stopped state, interlocked with lwp_token.
1206 * We must break-out if the whole process is trying to exit.
1208 while (STOPLWP(p, lp)) {
1209 lp->lwp_stat = LSSTOP;
1210 tsleep(p, 0, "stop", 0);
1212 p->p_nstopped--;
1213 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1214 crit_exit();
1215 lwkt_reltoken(&lp->lwp_token);
1219 * Compute a tenex style load average of a quantity on
1220 * 1, 5 and 15 minute intervals.
1222 static int loadav_count_runnable(struct lwp *p, void *data);
1224 static void
1225 loadav(void *arg)
1227 struct loadavg *avg;
1228 int i, nrun;
1230 nrun = 0;
1231 alllwp_scan(loadav_count_runnable, &nrun);
1232 avg = &averunnable;
1233 for (i = 0; i < 3; i++) {
1234 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1235 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1239 * Schedule the next update to occur after 5 seconds, but add a
1240 * random variation to avoid synchronisation with processes that
1241 * run at regular intervals.
1243 callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1244 loadav, NULL);
1247 static int
1248 loadav_count_runnable(struct lwp *lp, void *data)
1250 int *nrunp = data;
1251 thread_t td;
1253 switch (lp->lwp_stat) {
1254 case LSRUN:
1255 if ((td = lp->lwp_thread) == NULL)
1256 break;
1257 if (td->td_flags & TDF_BLOCKED)
1258 break;
1259 ++*nrunp;
1260 break;
1261 default:
1262 break;
1264 lwkt_yield();
1265 return(0);
1268 /* ARGSUSED */
1269 static void
1270 sched_setup(void *dummy)
1272 callout_init_mp(&loadav_callout);
1273 callout_init_mp(&schedcpu_callout);
1275 /* Kick off timeout driven events by calling first time. */
1276 schedcpu(NULL);
1277 loadav(NULL);