kernel - Fix excessive call stack depth on stuck interrupt
[dragonfly.git] / sys / kern / kern_exec.c
blob31a0552835e6e86ae3b4efcc0371b65ef4c0fec4
1 /*
2 * Copyright (c) 1993, David Greenman
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
26 * $FreeBSD: src/sys/kern/kern_exec.c,v 1.107.2.15 2002/07/30 15:40:46 nectar Exp $
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysproto.h>
32 #include <sys/kernel.h>
33 #include <sys/mount.h>
34 #include <sys/filedesc.h>
35 #include <sys/fcntl.h>
36 #include <sys/acct.h>
37 #include <sys/exec.h>
38 #include <sys/imgact.h>
39 #include <sys/imgact_elf.h>
40 #include <sys/kern_syscall.h>
41 #include <sys/wait.h>
42 #include <sys/malloc.h>
43 #include <sys/proc.h>
44 #include <sys/priv.h>
45 #include <sys/ktrace.h>
46 #include <sys/signalvar.h>
47 #include <sys/pioctl.h>
48 #include <sys/nlookup.h>
49 #include <sys/sysent.h>
50 #include <sys/shm.h>
51 #include <sys/sysctl.h>
52 #include <sys/vnode.h>
53 #include <sys/vmmeter.h>
54 #include <sys/libkern.h>
56 #include <cpu/lwbuf.h>
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <sys/lock.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vnode_pager.h>
68 #include <vm/vm_pager.h>
70 #include <sys/user.h>
71 #include <sys/reg.h>
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <vm/vm_page2.h>
77 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
78 MALLOC_DEFINE(M_EXECARGS, "exec-args", "Exec arguments");
80 static register_t *exec_copyout_strings (struct image_params *);
82 /* XXX This should be vm_size_t. */
83 static u_long ps_strings = PS_STRINGS;
84 SYSCTL_ULONG(_kern, KERN_PS_STRINGS, ps_strings, CTLFLAG_RD, &ps_strings, 0, "");
86 /* XXX This should be vm_size_t. */
87 static u_long usrstack = USRSTACK;
88 SYSCTL_ULONG(_kern, KERN_USRSTACK, usrstack, CTLFLAG_RD, &usrstack, 0, "");
90 u_long ps_arg_cache_limit = PAGE_SIZE / 16;
91 SYSCTL_LONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
92 &ps_arg_cache_limit, 0, "");
94 int ps_argsopen = 1;
95 SYSCTL_INT(_kern, OID_AUTO, ps_argsopen, CTLFLAG_RW, &ps_argsopen, 0, "");
97 static int ktrace_suid = 0;
98 SYSCTL_INT(_kern, OID_AUTO, ktrace_suid, CTLFLAG_RW, &ktrace_suid, 0, "");
100 void print_execve_args(struct image_args *args);
101 int debug_execve_args = 0;
102 SYSCTL_INT(_kern, OID_AUTO, debug_execve_args, CTLFLAG_RW, &debug_execve_args,
103 0, "");
106 * Exec arguments object cache
108 static struct objcache *exec_objcache;
110 static
111 void
112 exec_objcache_init(void *arg __unused)
114 int cluster_limit;
115 size_t limsize;
118 * Maximum number of concurrent execs. This can be limiting on
119 * systems with a lot of cpu cores but it also eats a significant
120 * amount of memory.
122 cluster_limit = (ncpus < 16) ? 16 : ncpus;
123 limsize = kmem_lim_size();
124 if (limsize > 7 * 1024)
125 cluster_limit *= 2;
126 if (limsize > 15 * 1024)
127 cluster_limit *= 2;
129 exec_objcache = objcache_create_mbacked(
130 M_EXECARGS, PATH_MAX + ARG_MAX,
131 cluster_limit, 8,
132 NULL, NULL, NULL);
134 SYSINIT(exec_objcache, SI_BOOT2_MACHDEP, SI_ORDER_ANY, exec_objcache_init, 0);
137 * stackgap_random specifies if the stackgap should have a random size added
138 * to it. It must be a power of 2. If non-zero, the stack gap will be
139 * calculated as: ALIGN(karc4random() & (stackgap_random - 1)).
141 static int stackgap_random = 1024;
142 static int
143 sysctl_kern_stackgap(SYSCTL_HANDLER_ARGS)
145 int error, new_val;
146 new_val = stackgap_random;
147 error = sysctl_handle_int(oidp, &new_val, 0, req);
148 if (error != 0 || req->newptr == NULL)
149 return (error);
150 if (new_val > 0 && ((new_val > 16 * PAGE_SIZE) || !powerof2(new_val)))
151 return (EINVAL);
152 stackgap_random = new_val;
154 return(0);
157 SYSCTL_PROC(_kern, OID_AUTO, stackgap_random, CTLFLAG_RW|CTLTYPE_INT,
158 0, 0, sysctl_kern_stackgap, "I",
159 "Max random stack gap (power of 2), static gap if negative");
161 void
162 print_execve_args(struct image_args *args)
164 char *cp;
165 int ndx;
167 cp = args->begin_argv;
168 for (ndx = 0; ndx < args->argc; ndx++) {
169 kprintf("\targv[%d]: %s\n", ndx, cp);
170 while (*cp++ != '\0');
172 for (ndx = 0; ndx < args->envc; ndx++) {
173 kprintf("\tenvv[%d]: %s\n", ndx, cp);
174 while (*cp++ != '\0');
179 * Each of the items is a pointer to a `const struct execsw', hence the
180 * double pointer here.
182 static const struct execsw **execsw;
185 * Replace current vmspace with a new binary.
186 * Returns 0 on success, > 0 on recoverable error (use as errno).
187 * Returns -1 on lethal error which demands killing of the current
188 * process!
191 kern_execve(struct nlookupdata *nd, struct image_args *args)
193 struct thread *td = curthread;
194 struct lwp *lp = td->td_lwp;
195 struct proc *p = td->td_proc;
196 struct vnode *ovp;
197 register_t *stack_base;
198 struct pargs *pa;
199 struct sigacts *ops;
200 struct sigacts *nps;
201 int error, len, i;
202 struct image_params image_params, *imgp;
203 struct vattr attr;
204 int (*img_first) (struct image_params *);
206 if (debug_execve_args) {
207 kprintf("%s()\n", __func__);
208 print_execve_args(args);
211 KKASSERT(p);
212 lwkt_gettoken(&p->p_token);
213 imgp = &image_params;
216 * NOTE: P_INEXEC is handled by exec_new_vmspace() now. We make
217 * no modifications to the process at all until we get there.
219 * Note that multiple threads may be trying to exec at the same
220 * time. exec_new_vmspace() handles that too.
224 * Initialize part of the common data
226 imgp->proc = p;
227 imgp->args = args;
228 imgp->attr = &attr;
229 imgp->entry_addr = 0;
230 imgp->resident = 0;
231 imgp->vmspace_destroyed = 0;
232 imgp->interpreted = 0;
233 imgp->interpreter_name[0] = 0;
234 imgp->auxargs = NULL;
235 imgp->vp = NULL;
236 imgp->firstpage = NULL;
237 imgp->ps_strings = 0;
238 imgp->execpath = imgp->freepath = NULL;
239 imgp->execpathp = 0;
240 imgp->image_header = NULL;
242 interpret:
245 * Translate the file name to a vnode. Unlock the cache entry to
246 * improve parallelism for programs exec'd in parallel.
248 nd->nl_flags |= NLC_SHAREDLOCK;
249 if ((error = nlookup(nd)) != 0)
250 goto exec_fail;
251 error = cache_vget(&nd->nl_nch, nd->nl_cred, LK_SHARED, &imgp->vp);
252 KKASSERT(nd->nl_flags & NLC_NCPISLOCKED);
253 nd->nl_flags &= ~NLC_NCPISLOCKED;
254 cache_unlock(&nd->nl_nch);
255 if (error)
256 goto exec_fail;
259 * Check file permissions (also 'opens' file).
260 * Include also the top level mount in the check.
262 error = exec_check_permissions(imgp, nd->nl_nch.mount);
263 if (error) {
264 vn_unlock(imgp->vp);
265 goto exec_fail_dealloc;
268 error = exec_map_first_page(imgp);
269 vn_unlock(imgp->vp);
270 if (error)
271 goto exec_fail_dealloc;
273 imgp->proc->p_osrel = 0;
275 if (debug_execve_args && imgp->interpreted) {
276 kprintf(" target is interpreted -- recursive pass\n");
277 kprintf(" interpreter: %s\n", imgp->interpreter_name);
278 print_execve_args(args);
282 * If the current process has a special image activator it
283 * wants to try first, call it. For example, emulating shell
284 * scripts differently.
286 error = -1;
287 if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
288 error = img_first(imgp);
291 * If the vnode has a registered vmspace, exec the vmspace
293 if (error == -1 && imgp->vp->v_resident) {
294 error = exec_resident_imgact(imgp);
298 * Loop through the list of image activators, calling each one.
299 * An activator returns -1 if there is no match, 0 on success,
300 * and an error otherwise.
302 for (i = 0; error == -1 && execsw[i]; ++i) {
303 if (execsw[i]->ex_imgact == NULL ||
304 execsw[i]->ex_imgact == img_first) {
305 continue;
307 error = (*execsw[i]->ex_imgact)(imgp);
310 if (error) {
311 if (error == -1)
312 error = ENOEXEC;
313 goto exec_fail_dealloc;
317 * Special interpreter operation, cleanup and loop up to try to
318 * activate the interpreter.
320 if (imgp->interpreted) {
321 exec_unmap_first_page(imgp);
322 nlookup_done(nd);
323 vrele(imgp->vp);
324 imgp->vp = NULL;
325 error = nlookup_init(nd, imgp->interpreter_name, UIO_SYSSPACE,
326 NLC_FOLLOW);
327 if (error)
328 goto exec_fail;
329 goto interpret;
333 * Do the best to calculate the full path to the image file
335 if (imgp->auxargs != NULL &&
336 ((args->fname != NULL && args->fname[0] == '/') ||
337 vn_fullpath(imgp->proc,
338 imgp->vp,
339 &imgp->execpath,
340 &imgp->freepath,
341 0) != 0))
342 imgp->execpath = args->fname;
345 * Copy out strings (args and env) and initialize stack base
347 stack_base = exec_copyout_strings(imgp);
348 p->p_vmspace->vm_minsaddr = (char *)stack_base;
351 * If custom stack fixup routine present for this process
352 * let it do the stack setup. If we are running a resident
353 * image there is no auxinfo or other image activator context
354 * so don't try to add fixups to the stack.
356 * Else stuff argument count as first item on stack
358 if (p->p_sysent->sv_fixup && imgp->resident == 0)
359 (*p->p_sysent->sv_fixup)(&stack_base, imgp);
360 else
361 suword64(--stack_base, imgp->args->argc);
364 * For security and other reasons, the file descriptor table cannot
365 * be shared after an exec.
367 if (p->p_fd->fd_refcnt > 1) {
368 struct filedesc *tmp;
370 error = fdcopy(p, &tmp);
371 if (error != 0)
372 goto exec_fail;
373 fdfree(p, tmp);
377 * For security and other reasons, signal handlers cannot
378 * be shared after an exec. The new proces gets a copy of the old
379 * handlers. In execsigs(), the new process will have its signals
380 * reset.
382 ops = p->p_sigacts;
383 if (ops->ps_refcnt > 1) {
384 nps = kmalloc(sizeof(*nps), M_SUBPROC, M_WAITOK);
385 bcopy(ops, nps, sizeof(*nps));
386 refcount_init(&nps->ps_refcnt, 1);
387 p->p_sigacts = nps;
388 if (refcount_release(&ops->ps_refcnt)) {
389 kfree(ops, M_SUBPROC);
390 ops = NULL;
395 * For security and other reasons virtual kernels cannot be
396 * inherited by an exec. This also allows a virtual kernel
397 * to fork/exec unrelated applications.
399 if (p->p_vkernel)
400 vkernel_exit(p);
402 /* Stop profiling */
403 stopprofclock(p);
405 /* close files on exec */
406 fdcloseexec(p);
408 /* reset caught signals */
409 execsigs(p);
411 /* name this process - nameiexec(p, ndp) */
412 len = min(nd->nl_nch.ncp->nc_nlen, MAXCOMLEN);
413 bcopy(nd->nl_nch.ncp->nc_name, p->p_comm, len);
414 p->p_comm[len] = 0;
415 bcopy(p->p_comm, lp->lwp_thread->td_comm, MAXCOMLEN+1);
418 * mark as execed, wakeup the process that vforked (if any) and tell
419 * it that it now has its own resources back
421 * We are using the P_PPWAIT as an interlock so an atomic op is
422 * necessary to synchronize with the parent's cpu.
424 p->p_flags |= P_EXEC;
425 if (p->p_pptr && (p->p_flags & P_PPWAIT)) {
426 if (p->p_pptr->p_upmap)
427 atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
428 atomic_clear_int(&p->p_flags, P_PPWAIT);
429 wakeup(p->p_pptr);
433 * Implement image setuid/setgid.
435 * Don't honor setuid/setgid if the filesystem prohibits it or if
436 * the process is being traced.
438 if ((((attr.va_mode & VSUID) && p->p_ucred->cr_uid != attr.va_uid) ||
439 ((attr.va_mode & VSGID) && p->p_ucred->cr_gid != attr.va_gid)) &&
440 (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
441 (p->p_flags & P_TRACED) == 0) {
443 * Turn off syscall tracing for set-id programs, except for
444 * root. Record any set-id flags first to make sure that
445 * we do not regain any tracing during a possible block.
447 setsugid();
448 if (p->p_tracenode && ktrace_suid == 0 &&
449 priv_check(td, PRIV_ROOT) != 0) {
450 ktrdestroy(&p->p_tracenode);
451 p->p_traceflag = 0;
453 /* Close any file descriptors 0..2 that reference procfs */
454 setugidsafety(p);
455 /* Make sure file descriptors 0..2 are in use. */
456 error = fdcheckstd(lp);
457 if (error != 0)
458 goto exec_fail_dealloc;
460 * Set the new credentials.
462 cratom_proc(p);
463 if (attr.va_mode & VSUID)
464 change_euid(attr.va_uid);
465 if (attr.va_mode & VSGID)
466 p->p_ucred->cr_gid = attr.va_gid;
469 * Clear local varsym variables
471 varsymset_clean(&p->p_varsymset);
472 } else {
473 if (p->p_ucred->cr_uid == p->p_ucred->cr_ruid &&
474 p->p_ucred->cr_gid == p->p_ucred->cr_rgid)
475 p->p_flags &= ~P_SUGID;
479 * Implement correct POSIX saved-id behavior.
481 if (p->p_ucred->cr_svuid != p->p_ucred->cr_uid ||
482 p->p_ucred->cr_svgid != p->p_ucred->cr_gid) {
483 cratom_proc(p);
484 p->p_ucred->cr_svuid = p->p_ucred->cr_uid;
485 p->p_ucred->cr_svgid = p->p_ucred->cr_gid;
489 * Store the vp for use in procfs. Be sure to keep p_textvp
490 * consistent if we block during the switch-over.
492 ovp = p->p_textvp;
493 vref(imgp->vp); /* ref new vp */
494 p->p_textvp = imgp->vp;
495 if (ovp) /* release old vp */
496 vrele(ovp);
498 /* Release old namecache handle to text file */
499 if (p->p_textnch.ncp)
500 cache_drop(&p->p_textnch);
502 if (nd->nl_nch.mount)
503 cache_copy(&nd->nl_nch, &p->p_textnch);
506 * Notify others that we exec'd, and clear the P_INEXEC flag
507 * as we're now a bona fide freshly-execed process.
509 KNOTE(&p->p_klist, NOTE_EXEC);
510 p->p_flags &= ~P_INEXEC;
511 if (p->p_stops)
512 wakeup(&p->p_stype);
515 * If tracing the process, trap to debugger so breakpoints
516 * can be set before the program executes.
518 STOPEVENT(p, S_EXEC, 0);
520 if (p->p_flags & P_TRACED)
521 ksignal(p, SIGTRAP);
523 /* clear "fork but no exec" flag, as we _are_ execing */
524 p->p_acflag &= ~AFORK;
526 /* Set values passed into the program in registers. */
527 exec_setregs(imgp->entry_addr, (u_long)(uintptr_t)stack_base,
528 imgp->ps_strings);
530 /* Set the access time on the vnode */
531 vn_mark_atime(imgp->vp, td);
534 * Free any previous argument cache
536 pa = p->p_args;
537 p->p_args = NULL;
538 if (pa && refcount_release(&pa->ar_ref)) {
539 kfree(pa, M_PARGS);
540 pa = NULL;
544 * Cache arguments if they fit inside our allowance
546 i = imgp->args->begin_envv - imgp->args->begin_argv;
547 if (sizeof(struct pargs) + i <= ps_arg_cache_limit) {
548 pa = kmalloc(sizeof(struct pargs) + i, M_PARGS, M_WAITOK);
549 refcount_init(&pa->ar_ref, 1);
550 pa->ar_length = i;
551 bcopy(imgp->args->begin_argv, pa->ar_args, i);
552 KKASSERT(p->p_args == NULL);
553 p->p_args = pa;
556 exec_fail_dealloc:
559 * free various allocated resources
561 if (imgp->firstpage)
562 exec_unmap_first_page(imgp);
564 if (imgp->vp) {
565 vrele(imgp->vp);
566 imgp->vp = NULL;
569 if (imgp->freepath)
570 kfree(imgp->freepath, M_TEMP);
572 if (error == 0) {
573 ++mycpu->gd_cnt.v_exec;
574 lwkt_reltoken(&p->p_token);
575 return (0);
578 exec_fail:
580 * we're done here, clear P_INEXEC if we were the ones that
581 * set it. Otherwise if vmspace_destroyed is still set we
582 * raced another thread and that thread is responsible for
583 * clearing it.
585 if (imgp->vmspace_destroyed & 2) {
586 p->p_flags &= ~P_INEXEC;
587 if (p->p_stops)
588 wakeup(&p->p_stype);
590 lwkt_reltoken(&p->p_token);
591 if (imgp->vmspace_destroyed) {
593 * Sorry, no more process anymore. exit gracefully.
594 * However we can't die right here, because our
595 * caller might have to clean up, so indicate a
596 * lethal error by returning -1.
598 return(-1);
599 } else {
600 return(error);
605 * execve() system call.
608 sys_execve(struct execve_args *uap)
610 struct nlookupdata nd;
611 struct image_args args;
612 int error;
614 bzero(&args, sizeof(args));
616 error = nlookup_init(&nd, uap->fname, UIO_USERSPACE, NLC_FOLLOW);
617 if (error == 0) {
618 error = exec_copyin_args(&args, uap->fname, PATH_USERSPACE,
619 uap->argv, uap->envv);
621 if (error == 0)
622 error = kern_execve(&nd, &args);
623 nlookup_done(&nd);
624 exec_free_args(&args);
626 if (error < 0) {
627 /* We hit a lethal error condition. Let's die now. */
628 exit1(W_EXITCODE(0, SIGABRT));
629 /* NOTREACHED */
633 * The syscall result is returned in registers to the new program.
634 * Linux will register %edx as an atexit function and we must be
635 * sure to set it to 0. XXX
637 if (error == 0)
638 uap->sysmsg_result64 = 0;
640 return (error);
644 exec_map_page(struct image_params *imgp, vm_pindex_t pageno,
645 struct lwbuf **plwb, const char **pdata)
647 int rv;
648 vm_page_t ma;
649 vm_page_t m;
650 vm_object_t object;
653 * The file has to be mappable.
655 if ((object = imgp->vp->v_object) == NULL)
656 return (EIO);
658 if (pageno >= object->size)
659 return (EIO);
662 * Shortcut using shared locks, improve concurrent execs.
664 vm_object_hold_shared(object);
665 m = vm_page_lookup(object, pageno);
666 if (m) {
667 if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) {
668 vm_page_hold(m);
669 vm_page_sleep_busy(m, FALSE, "execpg");
670 if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
671 m->object == object && m->pindex == pageno) {
672 vm_object_drop(object);
673 goto done;
675 vm_page_unhold(m);
678 vm_object_drop(object);
681 * Do it the hard way
683 vm_object_hold(object);
684 m = vm_page_grab(object, pageno, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
685 while ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
686 ma = m;
689 * get_pages unbusies all the requested pages except the
690 * primary page (at index 0 in this case). The primary
691 * page may have been wired during the pagein (e.g. by
692 * the buffer cache) so vnode_pager_freepage() must be
693 * used to properly release it.
695 rv = vm_pager_get_page(object, &ma, 1);
696 m = vm_page_lookup(object, pageno);
698 if (rv != VM_PAGER_OK || m == NULL || m->valid == 0) {
699 if (m) {
700 vm_page_protect(m, VM_PROT_NONE);
701 vnode_pager_freepage(m);
703 vm_object_drop(object);
704 return EIO;
707 vm_page_hold(m);
708 vm_page_wakeup(m); /* unbusy the page */
709 vm_object_drop(object);
711 done:
712 *plwb = lwbuf_alloc(m, *plwb);
713 *pdata = (void *)lwbuf_kva(*plwb);
715 return (0);
719 * Map the first page of an executable image.
721 * NOTE: If the mapping fails we have to NULL-out firstpage which may
722 * still be pointing to our supplied lwp structure.
725 exec_map_first_page(struct image_params *imgp)
727 int err;
729 if (imgp->firstpage)
730 exec_unmap_first_page(imgp);
732 imgp->firstpage = &imgp->firstpage_cache;
733 err = exec_map_page(imgp, 0, &imgp->firstpage, &imgp->image_header);
735 if (err) {
736 imgp->firstpage = NULL;
737 return err;
740 return 0;
743 void
744 exec_unmap_page(struct lwbuf *lwb)
746 vm_page_t m;
748 crit_enter();
749 if (lwb != NULL) {
750 m = lwbuf_page(lwb);
751 lwbuf_free(lwb);
752 vm_page_unhold(m);
754 crit_exit();
757 void
758 exec_unmap_first_page(struct image_params *imgp)
760 exec_unmap_page(imgp->firstpage);
761 imgp->firstpage = NULL;
762 imgp->image_header = NULL;
766 * Destroy old address space, and allocate a new stack
767 * The new stack is only SGROWSIZ large because it is grown
768 * automatically in trap.c.
770 * This is the point of no return.
773 exec_new_vmspace(struct image_params *imgp, struct vmspace *vmcopy)
775 struct vmspace *vmspace = imgp->proc->p_vmspace;
776 vm_offset_t stack_addr = USRSTACK - maxssiz;
777 struct proc *p;
778 vm_map_t map;
779 int error;
782 * Indicate that we cannot gracefully error out any more, kill
783 * any other threads present, and set P_INEXEC to indicate that
784 * we are now messing with the process structure proper.
786 * If killalllwps() races return an error which coupled with
787 * vmspace_destroyed will cause us to exit. This is what we
788 * want since another thread is patiently waiting for us to exit
789 * in that case.
791 p = curproc;
792 imgp->vmspace_destroyed = 1;
794 if (curthread->td_proc->p_nthreads > 1) {
795 error = killalllwps(1);
796 if (error)
797 return (error);
799 imgp->vmspace_destroyed |= 2; /* we are responsible for P_INEXEC */
800 p->p_flags |= P_INEXEC;
803 * Tell procfs to release its hold on the process. It
804 * will return EAGAIN.
806 if (p->p_stops)
807 wakeup(&p->p_stype);
810 * After setting P_INEXEC wait for any remaining references to
811 * the process (p) to go away.
813 * In particular, a vfork/exec sequence will replace p->p_vmspace
814 * and we must interlock anyone trying to access the space (aka
815 * procfs or sys_process.c calling procfs_domem()).
817 * If P_PPWAIT is set the parent vfork()'d and has a PHOLD() on us.
819 PSTALL(p, "exec1", ((p->p_flags & P_PPWAIT) ? 1 : 0));
822 * Blow away entire process VM, if address space not shared,
823 * otherwise, create a new VM space so that other threads are
824 * not disrupted. If we are execing a resident vmspace we
825 * create a duplicate of it and remap the stack.
827 map = &vmspace->vm_map;
828 if (vmcopy) {
829 vmspace_exec(imgp->proc, vmcopy);
830 vmspace = imgp->proc->p_vmspace;
831 pmap_remove_pages(vmspace_pmap(vmspace), stack_addr, USRSTACK);
832 map = &vmspace->vm_map;
833 } else if (vmspace_getrefs(vmspace) == 1) {
834 shmexit(vmspace);
835 pmap_remove_pages(vmspace_pmap(vmspace),
836 0, VM_MAX_USER_ADDRESS);
837 vm_map_remove(map, 0, VM_MAX_USER_ADDRESS);
838 } else {
839 vmspace_exec(imgp->proc, NULL);
840 vmspace = imgp->proc->p_vmspace;
841 map = &vmspace->vm_map;
845 * Allocate a new stack, generally make the stack non-executable
846 * but allow the program to adjust that (the program may desire to
847 * use areas of the stack for executable code).
849 error = vm_map_stack(&vmspace->vm_map, stack_addr, (vm_size_t)maxssiz,
851 VM_PROT_READ|VM_PROT_WRITE,
852 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
854 if (error)
855 return (error);
857 /* vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the
858 * VM_STACK case, but they are still used to monitor the size of the
859 * process stack so we can check the stack rlimit.
861 vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
862 vmspace->vm_maxsaddr = (char *)USRSTACK - maxssiz;
864 return(0);
868 * Copy out argument and environment strings from the old process
869 * address space into the temporary string buffer.
872 exec_copyin_args(struct image_args *args, char *fname,
873 enum exec_path_segflg segflg, char **argv, char **envv)
875 char *argp, *envp;
876 int error = 0;
877 size_t length;
879 args->buf = objcache_get(exec_objcache, M_WAITOK);
880 if (args->buf == NULL)
881 return (ENOMEM);
882 args->begin_argv = args->buf;
883 args->endp = args->begin_argv;
884 args->space = ARG_MAX;
886 args->fname = args->buf + ARG_MAX;
889 * Copy the file name.
891 if (segflg == PATH_SYSSPACE) {
892 error = copystr(fname, args->fname, PATH_MAX, &length);
893 } else if (segflg == PATH_USERSPACE) {
894 error = copyinstr(fname, args->fname, PATH_MAX, &length);
898 * Extract argument strings. argv may not be NULL. The argv
899 * array is terminated by a NULL entry. We special-case the
900 * situation where argv[0] is NULL by passing { filename, NULL }
901 * to the new program to guarentee that the interpreter knows what
902 * file to open in case we exec an interpreted file. Note that
903 * a NULL argv[0] terminates the argv[] array.
905 * XXX the special-casing of argv[0] is historical and needs to be
906 * revisited.
908 if (argv == NULL)
909 error = EFAULT;
910 if (error == 0) {
911 while ((argp = (caddr_t)(intptr_t)
912 fuword64((uintptr_t *)argv++)) != NULL) {
913 if (argp == (caddr_t)-1) {
914 error = EFAULT;
915 break;
917 error = copyinstr(argp, args->endp,
918 args->space, &length);
919 if (error) {
920 if (error == ENAMETOOLONG)
921 error = E2BIG;
922 break;
924 args->space -= length;
925 args->endp += length;
926 args->argc++;
928 if (args->argc == 0 && error == 0) {
929 length = strlen(args->fname) + 1;
930 if (length > args->space) {
931 error = E2BIG;
932 } else {
933 bcopy(args->fname, args->endp, length);
934 args->space -= length;
935 args->endp += length;
936 args->argc++;
941 args->begin_envv = args->endp;
944 * extract environment strings. envv may be NULL.
946 if (envv && error == 0) {
947 while ((envp = (caddr_t)(intptr_t)
948 fuword64((uintptr_t *)envv++))) {
949 if (envp == (caddr_t) -1) {
950 error = EFAULT;
951 break;
953 error = copyinstr(envp, args->endp,
954 args->space, &length);
955 if (error) {
956 if (error == ENAMETOOLONG)
957 error = E2BIG;
958 break;
960 args->space -= length;
961 args->endp += length;
962 args->envc++;
965 return (error);
968 void
969 exec_free_args(struct image_args *args)
971 if (args->buf) {
972 objcache_put(exec_objcache, args->buf);
973 args->buf = NULL;
978 * Copy strings out to the new process address space, constructing
979 * new arg and env vector tables. Return a pointer to the base
980 * so that it can be used as the initial stack pointer.
982 * The format is, roughly:
984 * [argv[]] <-- vectp
985 * [envp[]]
986 * [ELF_Auxargs]
988 * [args & env] <-- destp
989 * [sgap]
990 * [SPARE_USRSPACE]
991 * [execpath]
992 * [szsigcode] RO|NX
993 * [ps_strings] RO|NX Top of user stack
996 static register_t *
997 exec_copyout_strings(struct image_params *imgp)
999 int argc, envc, sgap;
1000 int gap;
1001 int argsenvspace;
1002 char **vectp;
1003 char *stringp, *destp, *szsigbase;
1004 register_t *stack_base;
1005 struct ps_strings *arginfo;
1006 size_t execpath_len;
1007 int szsigcode;
1010 * Calculate string base and vector table pointers.
1011 * Also deal with signal trampoline code for this exec type.
1013 if (imgp->execpath != NULL && imgp->auxargs != NULL)
1014 execpath_len = strlen(imgp->execpath) + 1;
1015 else
1016 execpath_len = 0;
1017 arginfo = (struct ps_strings *)PS_STRINGS;
1018 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
1020 argsenvspace = roundup((ARG_MAX - imgp->args->space), sizeof(char *));
1021 gap = stackgap_random;
1022 cpu_ccfence();
1023 if (gap != 0) {
1024 if (gap < 0)
1025 sgap = ALIGN(-gap);
1026 else
1027 sgap = ALIGN(karc4random() & (gap - 1));
1028 } else {
1029 sgap = 0;
1033 * Calculate destp, which points to [args & env] and above.
1035 szsigbase = (char *)(intptr_t)trunc_page64(
1036 (intptr_t)arginfo - szsigcode);
1037 destp = szsigbase -
1038 roundup(execpath_len, sizeof(char *)) -
1039 SPARE_USRSPACE -
1040 sgap -
1041 argsenvspace;
1044 * install sigcode
1046 if (szsigcode)
1047 copyout(imgp->proc->p_sysent->sv_sigcode, szsigbase, szsigcode);
1050 * Copy the image path for the rtld
1052 if (execpath_len) {
1053 imgp->execpathp = (uintptr_t)szsigbase -
1054 roundup(execpath_len, sizeof(char *));
1055 copyout(imgp->execpath, (void *)imgp->execpathp, execpath_len);
1059 * Calculate base for argv[], envp[], and ELF_Auxargs.
1061 vectp = (char **)destp - (AT_COUNT * 2);
1062 vectp -= imgp->args->argc + imgp->args->envc + 2;
1064 stack_base = (register_t *)vectp;
1066 stringp = imgp->args->begin_argv;
1067 argc = imgp->args->argc;
1068 envc = imgp->args->envc;
1071 * Copy out strings - arguments and environment (at destp)
1073 copyout(stringp, destp, ARG_MAX - imgp->args->space);
1076 * Fill in "ps_strings" struct for ps, w, etc.
1078 suword64((void *)&arginfo->ps_argvstr, (uint64_t)(intptr_t)vectp);
1079 suword32((void *)&arginfo->ps_nargvstr, argc);
1082 * Fill in argument portion of vector table.
1084 for (; argc > 0; --argc) {
1085 suword64((void *)vectp++, (uintptr_t)destp);
1086 while (*stringp++ != 0)
1087 destp++;
1088 destp++;
1091 /* a null vector table pointer separates the argp's from the envp's */
1092 suword64((void *)vectp++, 0);
1094 suword64((void *)&arginfo->ps_envstr, (uintptr_t)vectp);
1095 suword32((void *)&arginfo->ps_nenvstr, envc);
1098 * Fill in environment portion of vector table.
1100 for (; envc > 0; --envc) {
1101 suword64((void *)vectp++, (uintptr_t)destp);
1102 while (*stringp++ != 0)
1103 destp++;
1104 destp++;
1107 /* end of vector table is a null pointer */
1108 suword64((void *)vectp, 0);
1111 * Make the signal trampoline executable. This also makes ps_strings
1112 * executable but generally speaking there should be no direct access
1113 * to ps_strings after the program has gotten to _main().
1115 * At the moment the space is writable because ps_strings needs to be
1116 * writable. XXX future give sigtramp its own page (maybe put it in
1117 * the kpmap).
1119 vm_map_protect(&imgp->proc->p_vmspace->vm_map,
1120 (vm_offset_t)szsigbase,
1121 (vm_offset_t)szsigbase + PAGE_SIZE,
1122 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, FALSE);
1124 return (stack_base);
1128 * Check permissions of file to execute.
1129 * Return 0 for success or error code on failure.
1132 exec_check_permissions(struct image_params *imgp, struct mount *topmnt)
1134 struct proc *p = imgp->proc;
1135 struct vnode *vp = imgp->vp;
1136 struct vattr *attr = imgp->attr;
1137 int error;
1139 /* Get file attributes */
1140 error = VOP_GETATTR(vp, attr);
1141 if (error)
1142 return (error);
1145 * 1) Check if file execution is disabled for the filesystem that this
1146 * file resides on.
1147 * 2) Insure that at least one execute bit is on - otherwise root
1148 * will always succeed, and we don't want to happen unless the
1149 * file really is executable.
1150 * 3) Insure that the file is a regular file.
1152 if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1153 ((topmnt != NULL) && (topmnt->mnt_flag & MNT_NOEXEC)) ||
1154 ((attr->va_mode & 0111) == 0) ||
1155 (attr->va_type != VREG)) {
1156 return (EACCES);
1160 * Zero length files can't be exec'd
1162 if (attr->va_size == 0)
1163 return (ENOEXEC);
1166 * Check for execute permission to file based on current credentials.
1168 error = VOP_EACCESS(vp, VEXEC, p->p_ucred);
1169 if (error)
1170 return (error);
1173 * Check number of open-for-writes on the file and deny execution
1174 * if there are any.
1176 if (vp->v_writecount)
1177 return (ETXTBSY);
1180 * Call filesystem specific open routine, which allows us to read,
1181 * write, and mmap the file. Without the VOP_OPEN we can only
1182 * stat the file.
1184 error = VOP_OPEN(vp, FREAD, p->p_ucred, NULL);
1185 if (error)
1186 return (error);
1188 return (0);
1192 * Exec handler registration
1195 exec_register(const struct execsw *execsw_arg)
1197 const struct execsw **es, **xs, **newexecsw;
1198 int count = 2; /* New slot and trailing NULL */
1200 if (execsw)
1201 for (es = execsw; *es; es++)
1202 count++;
1203 newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1204 xs = newexecsw;
1205 if (execsw)
1206 for (es = execsw; *es; es++)
1207 *xs++ = *es;
1208 *xs++ = execsw_arg;
1209 *xs = NULL;
1210 if (execsw)
1211 kfree(execsw, M_TEMP);
1212 execsw = newexecsw;
1213 return 0;
1217 exec_unregister(const struct execsw *execsw_arg)
1219 const struct execsw **es, **xs, **newexecsw;
1220 int count = 1;
1222 if (execsw == NULL)
1223 panic("unregister with no handlers left?");
1225 for (es = execsw; *es; es++) {
1226 if (*es == execsw_arg)
1227 break;
1229 if (*es == NULL)
1230 return ENOENT;
1231 for (es = execsw; *es; es++)
1232 if (*es != execsw_arg)
1233 count++;
1234 newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1235 xs = newexecsw;
1236 for (es = execsw; *es; es++)
1237 if (*es != execsw_arg)
1238 *xs++ = *es;
1239 *xs = NULL;
1240 if (execsw)
1241 kfree(execsw, M_TEMP);
1242 execsw = newexecsw;
1243 return 0;