kernel - Fix excessive call stack depth on stuck interrupt
[dragonfly.git] / sys / kern / kern_clock.c
blob7bf2bc1c9907e92df8fb79c41a2c1454bceb2c60
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
67 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
68 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
71 #include "opt_ntp.h"
72 #include "opt_pctrack.h"
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/callout.h>
77 #include <sys/kernel.h>
78 #include <sys/kinfo.h>
79 #include <sys/proc.h>
80 #include <sys/malloc.h>
81 #include <sys/resource.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/priv.h>
85 #include <sys/timex.h>
86 #include <sys/timepps.h>
87 #include <sys/upmap.h>
88 #include <vm/vm.h>
89 #include <sys/lock.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_extern.h>
93 #include <sys/sysctl.h>
95 #include <sys/thread2.h>
96 #include <sys/spinlock2.h>
98 #include <machine/cpu.h>
99 #include <machine/limits.h>
100 #include <machine/smp.h>
101 #include <machine/cpufunc.h>
102 #include <machine/specialreg.h>
103 #include <machine/clock.h>
105 #ifdef GPROF
106 #include <sys/gmon.h>
107 #endif
109 #ifdef DEBUG_PCTRACK
110 static void do_pctrack(struct intrframe *frame, int which);
111 #endif
113 static void initclocks (void *dummy);
114 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
117 * Some of these don't belong here, but it's easiest to concentrate them.
118 * Note that cpu_time counts in microseconds, but most userland programs
119 * just compare relative times against the total by delta.
121 struct kinfo_cputime cputime_percpu[MAXCPU];
122 #ifdef DEBUG_PCTRACK
123 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
124 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
125 #endif
127 static int sniff_enable = 1;
128 static int sniff_target = -1;
129 SYSCTL_INT(_kern, OID_AUTO, sniff_enable, CTLFLAG_RW, &sniff_enable, 0 , "");
130 SYSCTL_INT(_kern, OID_AUTO, sniff_target, CTLFLAG_RW, &sniff_target, 0 , "");
132 static int
133 sysctl_cputime(SYSCTL_HANDLER_ARGS)
135 int cpu, error = 0;
136 int root_error;
137 size_t size = sizeof(struct kinfo_cputime);
138 struct kinfo_cputime tmp;
141 * NOTE: For security reasons, only root can sniff %rip
143 root_error = priv_check_cred(curthread->td_ucred, PRIV_ROOT, 0);
145 for (cpu = 0; cpu < ncpus; ++cpu) {
146 tmp = cputime_percpu[cpu];
147 if (root_error == 0) {
148 tmp.cp_sample_pc =
149 (int64_t)globaldata_find(cpu)->gd_sample_pc;
150 tmp.cp_sample_sp =
151 (int64_t)globaldata_find(cpu)->gd_sample_sp;
153 if ((error = SYSCTL_OUT(req, &tmp, size)) != 0)
154 break;
157 if (root_error == 0) {
158 if (sniff_enable) {
159 int n = sniff_target;
160 if (n < 0)
161 smp_sniff();
162 else if (n < ncpus)
163 cpu_sniff(n);
167 return (error);
169 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
170 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
172 static int
173 sysctl_cp_time(SYSCTL_HANDLER_ARGS)
175 long cpu_states[CPUSTATES] = {0};
176 int cpu, error = 0;
177 size_t size = sizeof(cpu_states);
179 for (cpu = 0; cpu < ncpus; ++cpu) {
180 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user;
181 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice;
182 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys;
183 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr;
184 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle;
187 error = SYSCTL_OUT(req, cpu_states, size);
189 return (error);
192 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0,
193 sysctl_cp_time, "LU", "CPU time statistics");
195 static int
196 sysctl_cp_times(SYSCTL_HANDLER_ARGS)
198 long cpu_states[CPUSTATES] = {0};
199 int cpu, error;
200 size_t size = sizeof(cpu_states);
202 for (error = 0, cpu = 0; error == 0 && cpu < ncpus; ++cpu) {
203 cpu_states[CP_USER] = cputime_percpu[cpu].cp_user;
204 cpu_states[CP_NICE] = cputime_percpu[cpu].cp_nice;
205 cpu_states[CP_SYS] = cputime_percpu[cpu].cp_sys;
206 cpu_states[CP_INTR] = cputime_percpu[cpu].cp_intr;
207 cpu_states[CP_IDLE] = cputime_percpu[cpu].cp_idle;
208 error = SYSCTL_OUT(req, cpu_states, size);
211 return (error);
214 SYSCTL_PROC(_kern, OID_AUTO, cp_times, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0,
215 sysctl_cp_times, "LU", "per-CPU time statistics");
218 * boottime is used to calculate the 'real' uptime. Do not confuse this with
219 * microuptime(). microtime() is not drift compensated. The real uptime
220 * with compensation is nanotime() - bootime. boottime is recalculated
221 * whenever the real time is set based on the compensated elapsed time
222 * in seconds (gd->gd_time_seconds).
224 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
225 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
226 * the real time.
228 * WARNING! time_second can backstep on time corrections. Also, unlike
229 * time_second, time_uptime is not a "real" time_t (seconds
230 * since the Epoch) but seconds since booting.
232 struct timespec boottime; /* boot time (realtime) for reference only */
233 time_t time_second; /* read-only 'passive' realtime in seconds */
234 time_t time_uptime; /* read-only 'passive' uptime in seconds */
237 * basetime is used to calculate the compensated real time of day. The
238 * basetime can be modified on a per-tick basis by the adjtime(),
239 * ntp_adjtime(), and sysctl-based time correction APIs.
241 * Note that frequency corrections can also be made by adjusting
242 * gd_cpuclock_base.
244 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
245 * used on both SMP and UP systems to avoid MP races between cpu's and
246 * interrupt races on UP systems.
248 struct hardtime {
249 __uint32_t time_second;
250 sysclock_t cpuclock_base;
253 #define BASETIME_ARYSIZE 16
254 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
255 static struct timespec basetime[BASETIME_ARYSIZE];
256 static struct hardtime hardtime[BASETIME_ARYSIZE];
257 static volatile int basetime_index;
259 static int
260 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
262 struct timespec *bt;
263 int error;
264 int index;
267 * Because basetime data and index may be updated by another cpu,
268 * a load fence is required to ensure that the data we read has
269 * not been speculatively read relative to a possibly updated index.
271 index = basetime_index;
272 cpu_lfence();
273 bt = &basetime[index];
274 error = SYSCTL_OUT(req, bt, sizeof(*bt));
275 return (error);
278 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
279 &boottime, timespec, "System boottime");
280 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
281 sysctl_get_basetime, "S,timespec", "System basetime");
283 static void hardclock(systimer_t info, int, struct intrframe *frame);
284 static void statclock(systimer_t info, int, struct intrframe *frame);
285 static void schedclock(systimer_t info, int, struct intrframe *frame);
286 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
288 int ticks; /* system master ticks at hz */
289 int clocks_running; /* tsleep/timeout clocks operational */
290 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
291 int64_t nsec_acc; /* accumulator */
292 int sched_ticks; /* global schedule clock ticks */
294 /* NTPD time correction fields */
295 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */
296 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */
297 int64_t ntp_delta; /* one-time correction in nsec */
298 int64_t ntp_big_delta = 1000000000;
299 int32_t ntp_tick_delta; /* current adjustment rate */
300 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */
301 time_t ntp_leap_second; /* time of next leap second */
302 int ntp_leap_insert; /* whether to insert or remove a second */
303 struct spinlock ntp_spin;
306 * Finish initializing clock frequencies and start all clocks running.
308 /* ARGSUSED*/
309 static void
310 initclocks(void *dummy)
312 /*psratio = profhz / stathz;*/
313 spin_init(&ntp_spin, "ntp");
314 initclocks_pcpu();
315 clocks_running = 1;
316 if (kpmap) {
317 kpmap->tsc_freq = (uint64_t)tsc_frequency;
318 kpmap->tick_freq = hz;
323 * Called on a per-cpu basis from the idle thread bootstrap on each cpu
324 * during SMP initialization.
326 * This routine is called concurrently during low-level SMP initialization
327 * and may not block in any way. Meaning, among other things, we can't
328 * acquire any tokens.
330 void
331 initclocks_pcpu(void)
333 struct globaldata *gd = mycpu;
335 crit_enter();
336 if (gd->gd_cpuid == 0) {
337 gd->gd_time_seconds = 1;
338 gd->gd_cpuclock_base = sys_cputimer->count();
339 hardtime[0].time_second = gd->gd_time_seconds;
340 hardtime[0].cpuclock_base = gd->gd_cpuclock_base;
341 } else {
342 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
343 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
346 systimer_intr_enable();
348 crit_exit();
352 * This routine is called on just the BSP, just after SMP initialization
353 * completes to * finish initializing any clocks that might contend/block
354 * (e.g. like on a token). We can't do this in initclocks_pcpu() because
355 * that function is called from the idle thread bootstrap for each cpu and
356 * not allowed to block at all.
358 static
359 void
360 initclocks_other(void *dummy)
362 struct globaldata *ogd = mycpu;
363 struct globaldata *gd;
364 int n;
366 for (n = 0; n < ncpus; ++n) {
367 lwkt_setcpu_self(globaldata_find(n));
368 gd = mycpu;
371 * Use a non-queued periodic systimer to prevent multiple
372 * ticks from building up if the sysclock jumps forward
373 * (8254 gets reset). The sysclock will never jump backwards.
374 * Our time sync is based on the actual sysclock, not the
375 * ticks count.
377 * Install statclock before hardclock to prevent statclock
378 * from misinterpreting gd_flags for tick assignment when
379 * they overlap.
381 systimer_init_periodic_nq(&gd->gd_statclock, statclock,
382 NULL, stathz);
383 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock,
384 NULL, hz);
385 /* XXX correct the frequency for scheduler / estcpu tests */
386 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
387 NULL, ESTCPUFREQ);
389 lwkt_setcpu_self(ogd);
391 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL);
394 * This sets the current real time of day. Timespecs are in seconds and
395 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
396 * instead we adjust basetime so basetime + gd_* results in the current
397 * time of day. This way the gd_* fields are guaranteed to represent
398 * a monotonically increasing 'uptime' value.
400 * When set_timeofday() is called from userland, the system call forces it
401 * onto cpu #0 since only cpu #0 can update basetime_index.
403 void
404 set_timeofday(struct timespec *ts)
406 struct timespec *nbt;
407 int ni;
410 * XXX SMP / non-atomic basetime updates
412 crit_enter();
413 ni = (basetime_index + 1) & BASETIME_ARYMASK;
414 cpu_lfence();
415 nbt = &basetime[ni];
416 nanouptime(nbt);
417 nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
418 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
419 if (nbt->tv_nsec < 0) {
420 nbt->tv_nsec += 1000000000;
421 --nbt->tv_sec;
425 * Note that basetime diverges from boottime as the clock drift is
426 * compensated for, so we cannot do away with boottime. When setting
427 * the absolute time of day the drift is 0 (for an instant) and we
428 * can simply assign boottime to basetime.
430 * Note that nanouptime() is based on gd_time_seconds which is drift
431 * compensated up to a point (it is guaranteed to remain monotonically
432 * increasing). gd_time_seconds is thus our best uptime guess and
433 * suitable for use in the boottime calculation. It is already taken
434 * into account in the basetime calculation above.
436 spin_lock(&ntp_spin);
437 boottime.tv_sec = nbt->tv_sec;
438 ntp_delta = 0;
441 * We now have a new basetime, make sure all other cpus have it,
442 * then update the index.
444 cpu_sfence();
445 basetime_index = ni;
446 spin_unlock(&ntp_spin);
448 crit_exit();
452 * Each cpu has its own hardclock, but we only increments ticks and softticks
453 * on cpu #0.
455 * NOTE! systimer! the MP lock might not be held here. We can only safely
456 * manipulate objects owned by the current cpu.
458 static void
459 hardclock(systimer_t info, int in_ipi, struct intrframe *frame)
461 sysclock_t cputicks;
462 struct proc *p;
463 struct globaldata *gd = mycpu;
465 if ((gd->gd_reqflags & RQF_IPIQ) == 0 && lwkt_need_ipiq_process(gd)) {
466 /* Defer to doreti on passive IPIQ processing */
467 need_ipiq();
471 * We update the compensation base to calculate fine-grained time
472 * from the sys_cputimer on a per-cpu basis in order to avoid
473 * having to mess around with locks. sys_cputimer is assumed to
474 * be consistent across all cpus. CPU N copies the base state from
475 * CPU 0 using the same FIFO trick that we use for basetime (so we
476 * don't catch a CPU 0 update in the middle).
478 * Note that we never allow info->time (aka gd->gd_hardclock.time)
479 * to reverse index gd_cpuclock_base, but that it is possible for
480 * it to temporarily get behind in the seconds if something in the
481 * system locks interrupts for a long period of time. Since periodic
482 * timers count events, though everything should resynch again
483 * immediately.
485 if (gd->gd_cpuid == 0) {
486 int ni;
488 cputicks = info->time - gd->gd_cpuclock_base;
489 if (cputicks >= sys_cputimer->freq) {
490 cputicks /= sys_cputimer->freq;
491 if (cputicks != 0 && cputicks != 1)
492 kprintf("Warning: hardclock missed > 1 sec\n");
493 gd->gd_time_seconds += cputicks;
494 gd->gd_cpuclock_base += sys_cputimer->freq * cputicks;
495 /* uncorrected monotonic 1-sec gran */
496 time_uptime += cputicks;
498 ni = (basetime_index + 1) & BASETIME_ARYMASK;
499 hardtime[ni].time_second = gd->gd_time_seconds;
500 hardtime[ni].cpuclock_base = gd->gd_cpuclock_base;
501 } else {
502 int ni;
504 ni = basetime_index;
505 cpu_lfence();
506 gd->gd_time_seconds = hardtime[ni].time_second;
507 gd->gd_cpuclock_base = hardtime[ni].cpuclock_base;
511 * The system-wide ticks counter and NTP related timedelta/tickdelta
512 * adjustments only occur on cpu #0. NTP adjustments are accomplished
513 * by updating basetime.
515 if (gd->gd_cpuid == 0) {
516 struct timespec *nbt;
517 struct timespec nts;
518 int leap;
519 int ni;
521 ++ticks;
523 #if 0
524 if (tco->tc_poll_pps)
525 tco->tc_poll_pps(tco);
526 #endif
529 * Calculate the new basetime index. We are in a critical section
530 * on cpu #0 and can safely play with basetime_index. Start
531 * with the current basetime and then make adjustments.
533 ni = (basetime_index + 1) & BASETIME_ARYMASK;
534 nbt = &basetime[ni];
535 *nbt = basetime[basetime_index];
538 * ntp adjustments only occur on cpu 0 and are protected by
539 * ntp_spin. This spinlock virtually never conflicts.
541 spin_lock(&ntp_spin);
544 * Apply adjtime corrections. (adjtime() API)
546 * adjtime() only runs on cpu #0 so our critical section is
547 * sufficient to access these variables.
549 if (ntp_delta != 0) {
550 nbt->tv_nsec += ntp_tick_delta;
551 ntp_delta -= ntp_tick_delta;
552 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
553 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
554 ntp_tick_delta = ntp_delta;
559 * Apply permanent frequency corrections. (sysctl API)
561 if (ntp_tick_permanent != 0) {
562 ntp_tick_acc += ntp_tick_permanent;
563 if (ntp_tick_acc >= (1LL << 32)) {
564 nbt->tv_nsec += ntp_tick_acc >> 32;
565 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
566 } else if (ntp_tick_acc <= -(1LL << 32)) {
567 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
568 nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
569 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
573 if (nbt->tv_nsec >= 1000000000) {
574 nbt->tv_sec++;
575 nbt->tv_nsec -= 1000000000;
576 } else if (nbt->tv_nsec < 0) {
577 nbt->tv_sec--;
578 nbt->tv_nsec += 1000000000;
582 * Another per-tick compensation. (for ntp_adjtime() API)
584 if (nsec_adj != 0) {
585 nsec_acc += nsec_adj;
586 if (nsec_acc >= 0x100000000LL) {
587 nbt->tv_nsec += nsec_acc >> 32;
588 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
589 } else if (nsec_acc <= -0x100000000LL) {
590 nbt->tv_nsec -= -nsec_acc >> 32;
591 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
593 if (nbt->tv_nsec >= 1000000000) {
594 nbt->tv_nsec -= 1000000000;
595 ++nbt->tv_sec;
596 } else if (nbt->tv_nsec < 0) {
597 nbt->tv_nsec += 1000000000;
598 --nbt->tv_sec;
601 spin_unlock(&ntp_spin);
603 /************************************************************
604 * LEAP SECOND CORRECTION *
605 ************************************************************
607 * Taking into account all the corrections made above, figure
608 * out the new real time. If the seconds field has changed
609 * then apply any pending leap-second corrections.
611 getnanotime_nbt(nbt, &nts);
613 if (time_second != nts.tv_sec) {
615 * Apply leap second (sysctl API). Adjust nts for changes
616 * so we do not have to call getnanotime_nbt again.
618 if (ntp_leap_second) {
619 if (ntp_leap_second == nts.tv_sec) {
620 if (ntp_leap_insert) {
621 nbt->tv_sec++;
622 nts.tv_sec++;
623 } else {
624 nbt->tv_sec--;
625 nts.tv_sec--;
627 ntp_leap_second--;
632 * Apply leap second (ntp_adjtime() API), calculate a new
633 * nsec_adj field. ntp_update_second() returns nsec_adj
634 * as a per-second value but we need it as a per-tick value.
636 leap = ntp_update_second(time_second, &nsec_adj);
637 nsec_adj /= hz;
638 nbt->tv_sec += leap;
639 nts.tv_sec += leap;
642 * Update the time_second 'approximate time' global.
644 time_second = nts.tv_sec;
648 * Finally, our new basetime is ready to go live!
650 cpu_sfence();
651 basetime_index = ni;
654 * Update kpmap on each tick. TS updates are integrated with
655 * fences and upticks allowing userland to read the data
656 * deterministically.
658 if (kpmap) {
659 int w;
661 w = (kpmap->upticks + 1) & 1;
662 getnanouptime(&kpmap->ts_uptime[w]);
663 getnanotime(&kpmap->ts_realtime[w]);
664 cpu_sfence();
665 ++kpmap->upticks;
666 cpu_sfence();
671 * lwkt thread scheduler fair queueing
673 lwkt_schedulerclock(curthread);
676 * softticks are handled for all cpus
678 hardclock_softtick(gd);
681 * Rollup accumulated vmstats, copy-back for critical path checks.
683 vmstats_rollup_cpu(gd);
684 mycpu->gd_vmstats = vmstats;
687 * ITimer handling is per-tick, per-cpu.
689 * We must acquire the per-process token in order for ksignal()
690 * to be non-blocking. For the moment this requires an AST fault,
691 * the ksignal() cannot be safely issued from this hard interrupt.
693 * XXX Even the trytoken here isn't right, and itimer operation in
694 * a multi threaded environment is going to be weird at the
695 * very least.
697 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) {
698 crit_enter_hard();
699 if (p->p_upmap)
700 ++p->p_upmap->runticks;
702 if (frame && CLKF_USERMODE(frame) &&
703 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
704 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) {
705 p->p_flags |= P_SIGVTALRM;
706 need_user_resched();
708 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
709 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) {
710 p->p_flags |= P_SIGPROF;
711 need_user_resched();
713 crit_exit_hard();
714 lwkt_reltoken(&p->p_token);
716 setdelayed();
720 * The statistics clock typically runs at a 125Hz rate, and is intended
721 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
723 * NOTE! systimer! the MP lock might not be held here. We can only safely
724 * manipulate objects owned by the current cpu.
726 * The stats clock is responsible for grabbing a profiling sample.
727 * Most of the statistics are only used by user-level statistics programs.
728 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
729 * p->p_estcpu.
731 * Like the other clocks, the stat clock is called from what is effectively
732 * a fast interrupt, so the context should be the thread/process that got
733 * interrupted.
735 static void
736 statclock(systimer_t info, int in_ipi, struct intrframe *frame)
738 #ifdef GPROF
739 struct gmonparam *g;
740 int i;
741 #endif
742 globaldata_t gd = mycpu;
743 thread_t td;
744 struct proc *p;
745 int bump;
746 sysclock_t cv;
747 sysclock_t scv;
750 * How big was our timeslice relative to the last time? Calculate
751 * in microseconds.
753 * NOTE: Use of microuptime() is typically MPSAFE, but usually not
754 * during early boot. Just use the systimer count to be nice
755 * to e.g. qemu. The systimer has a better chance of being
756 * MPSAFE at early boot.
758 cv = sys_cputimer->count();
759 scv = gd->statint.gd_statcv;
760 if (scv == 0) {
761 bump = 1;
762 } else {
763 bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32;
764 if (bump < 0)
765 bump = 0;
766 if (bump > 1000000)
767 bump = 1000000;
769 gd->statint.gd_statcv = cv;
771 #if 0
772 stv = &gd->gd_stattv;
773 if (stv->tv_sec == 0) {
774 bump = 1;
775 } else {
776 bump = tv.tv_usec - stv->tv_usec +
777 (tv.tv_sec - stv->tv_sec) * 1000000;
778 if (bump < 0)
779 bump = 0;
780 if (bump > 1000000)
781 bump = 1000000;
783 *stv = tv;
784 #endif
786 td = curthread;
787 p = td->td_proc;
789 if (frame && CLKF_USERMODE(frame)) {
791 * Came from userland, handle user time and deal with
792 * possible process.
794 if (p && (p->p_flags & P_PROFIL))
795 addupc_intr(p, CLKF_PC(frame), 1);
796 td->td_uticks += bump;
799 * Charge the time as appropriate
801 if (p && p->p_nice > NZERO)
802 cpu_time.cp_nice += bump;
803 else
804 cpu_time.cp_user += bump;
805 } else {
806 int intr_nest = gd->gd_intr_nesting_level;
808 if (in_ipi) {
810 * IPI processing code will bump gd_intr_nesting_level
811 * up by one, which breaks following CLKF_INTR testing,
812 * so we subtract it by one here.
814 --intr_nest;
816 #ifdef GPROF
818 * Kernel statistics are just like addupc_intr, only easier.
820 g = &_gmonparam;
821 if (g->state == GMON_PROF_ON && frame) {
822 i = CLKF_PC(frame) - g->lowpc;
823 if (i < g->textsize) {
824 i /= HISTFRACTION * sizeof(*g->kcount);
825 g->kcount[i]++;
828 #endif
830 #define IS_INTR_RUNNING ((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td))
833 * Came from kernel mode, so we were:
834 * - handling an interrupt,
835 * - doing syscall or trap work on behalf of the current
836 * user process, or
837 * - spinning in the idle loop.
838 * Whichever it is, charge the time as appropriate.
839 * Note that we charge interrupts to the current process,
840 * regardless of whether they are ``for'' that process,
841 * so that we know how much of its real time was spent
842 * in ``non-process'' (i.e., interrupt) work.
844 * XXX assume system if frame is NULL. A NULL frame
845 * can occur if ipi processing is done from a crit_exit().
847 if (IS_INTR_RUNNING) {
849 * If we interrupted an interrupt thread, well,
850 * count it as interrupt time.
852 td->td_iticks += bump;
853 #ifdef DEBUG_PCTRACK
854 if (frame)
855 do_pctrack(frame, PCTRACK_INT);
856 #endif
857 cpu_time.cp_intr += bump;
858 } else if (gd->gd_flags & GDF_VIRTUSER) {
860 * The vkernel doesn't do a good job providing trap
861 * frames that we can test. If the GDF_VIRTUSER
862 * flag is set we probably interrupted user mode.
864 * We also use this flag on the host when entering
865 * VMM mode.
867 td->td_uticks += bump;
870 * Charge the time as appropriate
872 if (p && p->p_nice > NZERO)
873 cpu_time.cp_nice += bump;
874 else
875 cpu_time.cp_user += bump;
876 } else {
877 td->td_sticks += bump;
878 if (td == &gd->gd_idlethread) {
880 * Token contention can cause us to mis-count
881 * a contended as idle, but it doesn't work
882 * properly for VKERNELs so just test on a
883 * real kernel.
885 #ifdef _KERNEL_VIRTUAL
886 cpu_time.cp_idle += bump;
887 #else
888 if (mycpu->gd_reqflags & RQF_IDLECHECK_WK_MASK)
889 cpu_time.cp_sys += bump;
890 else
891 cpu_time.cp_idle += bump;
892 #endif
893 } else {
895 * System thread was running.
897 #ifdef DEBUG_PCTRACK
898 if (frame)
899 do_pctrack(frame, PCTRACK_SYS);
900 #endif
901 cpu_time.cp_sys += bump;
905 #undef IS_INTR_RUNNING
909 #ifdef DEBUG_PCTRACK
911 * Sample the PC when in the kernel or in an interrupt. User code can
912 * retrieve the information and generate a histogram or other output.
915 static void
916 do_pctrack(struct intrframe *frame, int which)
918 struct kinfo_pctrack *pctrack;
920 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
921 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
922 (void *)CLKF_PC(frame);
923 ++pctrack->pc_index;
926 static int
927 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
929 struct kinfo_pcheader head;
930 int error;
931 int cpu;
932 int ntrack;
934 head.pc_ntrack = PCTRACK_SIZE;
935 head.pc_arysize = PCTRACK_ARYSIZE;
937 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
938 return (error);
940 for (cpu = 0; cpu < ncpus; ++cpu) {
941 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
942 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
943 sizeof(struct kinfo_pctrack));
944 if (error)
945 break;
947 if (error)
948 break;
950 return (error);
952 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
953 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
955 #endif
958 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
959 * the MP lock might not be held. We can safely manipulate parts of curproc
960 * but that's about it.
962 * Each cpu has its own scheduler clock.
964 static void
965 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame)
967 struct lwp *lp;
968 struct rusage *ru;
969 struct vmspace *vm;
970 long rss;
972 if ((lp = lwkt_preempted_proc()) != NULL) {
974 * Account for cpu time used and hit the scheduler. Note
975 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
976 * HERE.
978 ++lp->lwp_cpticks;
979 usched_schedulerclock(lp, info->periodic, info->time);
980 } else {
981 usched_schedulerclock(NULL, info->periodic, info->time);
983 if ((lp = curthread->td_lwp) != NULL) {
985 * Update resource usage integrals and maximums.
987 if ((ru = &lp->lwp_proc->p_ru) &&
988 (vm = lp->lwp_proc->p_vmspace) != NULL) {
989 ru->ru_ixrss += pgtok(vm->vm_tsize);
990 ru->ru_idrss += pgtok(vm->vm_dsize);
991 ru->ru_isrss += pgtok(vm->vm_ssize);
992 if (lwkt_trytoken(&vm->vm_map.token)) {
993 rss = pgtok(vmspace_resident_count(vm));
994 if (ru->ru_maxrss < rss)
995 ru->ru_maxrss = rss;
996 lwkt_reltoken(&vm->vm_map.token);
1000 /* Increment the global sched_ticks */
1001 if (mycpu->gd_cpuid == 0)
1002 ++sched_ticks;
1006 * Compute number of ticks for the specified amount of time. The
1007 * return value is intended to be used in a clock interrupt timed
1008 * operation and guaranteed to meet or exceed the requested time.
1009 * If the representation overflows, return INT_MAX. The minimum return
1010 * value is 1 ticks and the function will average the calculation up.
1011 * If any value greater then 0 microseconds is supplied, a value
1012 * of at least 2 will be returned to ensure that a near-term clock
1013 * interrupt does not cause the timeout to occur (degenerately) early.
1015 * Note that limit checks must take into account microseconds, which is
1016 * done simply by using the smaller signed long maximum instead of
1017 * the unsigned long maximum.
1019 * If ints have 32 bits, then the maximum value for any timeout in
1020 * 10ms ticks is 248 days.
1023 tvtohz_high(struct timeval *tv)
1025 int ticks;
1026 long sec, usec;
1028 sec = tv->tv_sec;
1029 usec = tv->tv_usec;
1030 if (usec < 0) {
1031 sec--;
1032 usec += 1000000;
1034 if (sec < 0) {
1035 #ifdef DIAGNOSTIC
1036 if (usec > 0) {
1037 sec++;
1038 usec -= 1000000;
1040 kprintf("tvtohz_high: negative time difference "
1041 "%ld sec %ld usec\n",
1042 sec, usec);
1043 #endif
1044 ticks = 1;
1045 } else if (sec <= INT_MAX / hz) {
1046 ticks = (int)(sec * hz +
1047 ((u_long)usec + (ustick - 1)) / ustick) + 1;
1048 } else {
1049 ticks = INT_MAX;
1051 return (ticks);
1055 tstohz_high(struct timespec *ts)
1057 int ticks;
1058 long sec, nsec;
1060 sec = ts->tv_sec;
1061 nsec = ts->tv_nsec;
1062 if (nsec < 0) {
1063 sec--;
1064 nsec += 1000000000;
1066 if (sec < 0) {
1067 #ifdef DIAGNOSTIC
1068 if (nsec > 0) {
1069 sec++;
1070 nsec -= 1000000000;
1072 kprintf("tstohz_high: negative time difference "
1073 "%ld sec %ld nsec\n",
1074 sec, nsec);
1075 #endif
1076 ticks = 1;
1077 } else if (sec <= INT_MAX / hz) {
1078 ticks = (int)(sec * hz +
1079 ((u_long)nsec + (nstick - 1)) / nstick) + 1;
1080 } else {
1081 ticks = INT_MAX;
1083 return (ticks);
1088 * Compute number of ticks for the specified amount of time, erroring on
1089 * the side of it being too low to ensure that sleeping the returned number
1090 * of ticks will not result in a late return.
1092 * The supplied timeval may not be negative and should be normalized. A
1093 * return value of 0 is possible if the timeval converts to less then
1094 * 1 tick.
1096 * If ints have 32 bits, then the maximum value for any timeout in
1097 * 10ms ticks is 248 days.
1100 tvtohz_low(struct timeval *tv)
1102 int ticks;
1103 long sec;
1105 sec = tv->tv_sec;
1106 if (sec <= INT_MAX / hz)
1107 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick);
1108 else
1109 ticks = INT_MAX;
1110 return (ticks);
1114 tstohz_low(struct timespec *ts)
1116 int ticks;
1117 long sec;
1119 sec = ts->tv_sec;
1120 if (sec <= INT_MAX / hz)
1121 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick);
1122 else
1123 ticks = INT_MAX;
1124 return (ticks);
1128 * Start profiling on a process.
1130 * Caller must hold p->p_token();
1132 * Kernel profiling passes proc0 which never exits and hence
1133 * keeps the profile clock running constantly.
1135 void
1136 startprofclock(struct proc *p)
1138 if ((p->p_flags & P_PROFIL) == 0) {
1139 p->p_flags |= P_PROFIL;
1140 #if 0 /* XXX */
1141 if (++profprocs == 1 && stathz != 0) {
1142 crit_enter();
1143 psdiv = psratio;
1144 setstatclockrate(profhz);
1145 crit_exit();
1147 #endif
1152 * Stop profiling on a process.
1154 * caller must hold p->p_token
1156 void
1157 stopprofclock(struct proc *p)
1159 if (p->p_flags & P_PROFIL) {
1160 p->p_flags &= ~P_PROFIL;
1161 #if 0 /* XXX */
1162 if (--profprocs == 0 && stathz != 0) {
1163 crit_enter();
1164 psdiv = 1;
1165 setstatclockrate(stathz);
1166 crit_exit();
1168 #endif
1173 * Return information about system clocks.
1175 static int
1176 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
1178 struct kinfo_clockinfo clkinfo;
1180 * Construct clockinfo structure.
1182 clkinfo.ci_hz = hz;
1183 clkinfo.ci_tick = ustick;
1184 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
1185 clkinfo.ci_profhz = profhz;
1186 clkinfo.ci_stathz = stathz ? stathz : hz;
1187 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
1190 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
1191 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
1194 * We have eight functions for looking at the clock, four for
1195 * microseconds and four for nanoseconds. For each there is fast
1196 * but less precise version "get{nano|micro}[up]time" which will
1197 * return a time which is up to 1/HZ previous to the call, whereas
1198 * the raw version "{nano|micro}[up]time" will return a timestamp
1199 * which is as precise as possible. The "up" variants return the
1200 * time relative to system boot, these are well suited for time
1201 * interval measurements.
1203 * Each cpu independently maintains the current time of day, so all
1204 * we need to do to protect ourselves from changes is to do a loop
1205 * check on the seconds field changing out from under us.
1207 * The system timer maintains a 32 bit count and due to various issues
1208 * it is possible for the calculated delta to occasionally exceed
1209 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
1210 * multiplication can easily overflow, so we deal with the case. For
1211 * uniformity we deal with the case in the usec case too.
1213 * All the [get][micro,nano][time,uptime]() routines are MPSAFE.
1215 void
1216 getmicrouptime(struct timeval *tvp)
1218 struct globaldata *gd = mycpu;
1219 sysclock_t delta;
1221 do {
1222 tvp->tv_sec = gd->gd_time_seconds;
1223 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1224 } while (tvp->tv_sec != gd->gd_time_seconds);
1226 if (delta >= sys_cputimer->freq) {
1227 tvp->tv_sec += delta / sys_cputimer->freq;
1228 delta %= sys_cputimer->freq;
1230 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1231 if (tvp->tv_usec >= 1000000) {
1232 tvp->tv_usec -= 1000000;
1233 ++tvp->tv_sec;
1237 void
1238 getnanouptime(struct timespec *tsp)
1240 struct globaldata *gd = mycpu;
1241 sysclock_t delta;
1243 do {
1244 tsp->tv_sec = gd->gd_time_seconds;
1245 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1246 } while (tsp->tv_sec != gd->gd_time_seconds);
1248 if (delta >= sys_cputimer->freq) {
1249 tsp->tv_sec += delta / sys_cputimer->freq;
1250 delta %= sys_cputimer->freq;
1252 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1255 void
1256 microuptime(struct timeval *tvp)
1258 struct globaldata *gd = mycpu;
1259 sysclock_t delta;
1261 do {
1262 tvp->tv_sec = gd->gd_time_seconds;
1263 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1264 } while (tvp->tv_sec != gd->gd_time_seconds);
1266 if (delta >= sys_cputimer->freq) {
1267 tvp->tv_sec += delta / sys_cputimer->freq;
1268 delta %= sys_cputimer->freq;
1270 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1273 void
1274 nanouptime(struct timespec *tsp)
1276 struct globaldata *gd = mycpu;
1277 sysclock_t delta;
1279 do {
1280 tsp->tv_sec = gd->gd_time_seconds;
1281 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1282 } while (tsp->tv_sec != gd->gd_time_seconds);
1284 if (delta >= sys_cputimer->freq) {
1285 tsp->tv_sec += delta / sys_cputimer->freq;
1286 delta %= sys_cputimer->freq;
1288 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1292 * realtime routines
1294 void
1295 getmicrotime(struct timeval *tvp)
1297 struct globaldata *gd = mycpu;
1298 struct timespec *bt;
1299 sysclock_t delta;
1301 do {
1302 tvp->tv_sec = gd->gd_time_seconds;
1303 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1304 } while (tvp->tv_sec != gd->gd_time_seconds);
1306 if (delta >= sys_cputimer->freq) {
1307 tvp->tv_sec += delta / sys_cputimer->freq;
1308 delta %= sys_cputimer->freq;
1310 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1312 bt = &basetime[basetime_index];
1313 cpu_lfence();
1314 tvp->tv_sec += bt->tv_sec;
1315 tvp->tv_usec += bt->tv_nsec / 1000;
1316 while (tvp->tv_usec >= 1000000) {
1317 tvp->tv_usec -= 1000000;
1318 ++tvp->tv_sec;
1322 void
1323 getnanotime(struct timespec *tsp)
1325 struct globaldata *gd = mycpu;
1326 struct timespec *bt;
1327 sysclock_t delta;
1329 do {
1330 tsp->tv_sec = gd->gd_time_seconds;
1331 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1332 } while (tsp->tv_sec != gd->gd_time_seconds);
1334 if (delta >= sys_cputimer->freq) {
1335 tsp->tv_sec += delta / sys_cputimer->freq;
1336 delta %= sys_cputimer->freq;
1338 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1340 bt = &basetime[basetime_index];
1341 cpu_lfence();
1342 tsp->tv_sec += bt->tv_sec;
1343 tsp->tv_nsec += bt->tv_nsec;
1344 while (tsp->tv_nsec >= 1000000000) {
1345 tsp->tv_nsec -= 1000000000;
1346 ++tsp->tv_sec;
1350 static void
1351 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1353 struct globaldata *gd = mycpu;
1354 sysclock_t delta;
1356 do {
1357 tsp->tv_sec = gd->gd_time_seconds;
1358 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1359 } while (tsp->tv_sec != gd->gd_time_seconds);
1361 if (delta >= sys_cputimer->freq) {
1362 tsp->tv_sec += delta / sys_cputimer->freq;
1363 delta %= sys_cputimer->freq;
1365 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1367 tsp->tv_sec += nbt->tv_sec;
1368 tsp->tv_nsec += nbt->tv_nsec;
1369 while (tsp->tv_nsec >= 1000000000) {
1370 tsp->tv_nsec -= 1000000000;
1371 ++tsp->tv_sec;
1376 void
1377 microtime(struct timeval *tvp)
1379 struct globaldata *gd = mycpu;
1380 struct timespec *bt;
1381 sysclock_t delta;
1383 do {
1384 tvp->tv_sec = gd->gd_time_seconds;
1385 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1386 } while (tvp->tv_sec != gd->gd_time_seconds);
1388 if (delta >= sys_cputimer->freq) {
1389 tvp->tv_sec += delta / sys_cputimer->freq;
1390 delta %= sys_cputimer->freq;
1392 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1394 bt = &basetime[basetime_index];
1395 cpu_lfence();
1396 tvp->tv_sec += bt->tv_sec;
1397 tvp->tv_usec += bt->tv_nsec / 1000;
1398 while (tvp->tv_usec >= 1000000) {
1399 tvp->tv_usec -= 1000000;
1400 ++tvp->tv_sec;
1404 void
1405 nanotime(struct timespec *tsp)
1407 struct globaldata *gd = mycpu;
1408 struct timespec *bt;
1409 sysclock_t delta;
1411 do {
1412 tsp->tv_sec = gd->gd_time_seconds;
1413 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1414 } while (tsp->tv_sec != gd->gd_time_seconds);
1416 if (delta >= sys_cputimer->freq) {
1417 tsp->tv_sec += delta / sys_cputimer->freq;
1418 delta %= sys_cputimer->freq;
1420 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1422 bt = &basetime[basetime_index];
1423 cpu_lfence();
1424 tsp->tv_sec += bt->tv_sec;
1425 tsp->tv_nsec += bt->tv_nsec;
1426 while (tsp->tv_nsec >= 1000000000) {
1427 tsp->tv_nsec -= 1000000000;
1428 ++tsp->tv_sec;
1433 * Get an approximate time_t. It does not have to be accurate. This
1434 * function is called only from KTR and can be called with the system in
1435 * any state so do not use a critical section or other complex operation
1436 * here.
1438 * NOTE: This is not exactly synchronized with real time. To do that we
1439 * would have to do what microtime does and check for a nanoseconds
1440 * overflow.
1442 time_t
1443 get_approximate_time_t(void)
1445 struct globaldata *gd = mycpu;
1446 struct timespec *bt;
1448 bt = &basetime[basetime_index];
1449 return(gd->gd_time_seconds + bt->tv_sec);
1453 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1455 pps_params_t *app;
1456 struct pps_fetch_args *fapi;
1457 #ifdef PPS_SYNC
1458 struct pps_kcbind_args *kapi;
1459 #endif
1461 switch (cmd) {
1462 case PPS_IOC_CREATE:
1463 return (0);
1464 case PPS_IOC_DESTROY:
1465 return (0);
1466 case PPS_IOC_SETPARAMS:
1467 app = (pps_params_t *)data;
1468 if (app->mode & ~pps->ppscap)
1469 return (EINVAL);
1470 pps->ppsparam = *app;
1471 return (0);
1472 case PPS_IOC_GETPARAMS:
1473 app = (pps_params_t *)data;
1474 *app = pps->ppsparam;
1475 app->api_version = PPS_API_VERS_1;
1476 return (0);
1477 case PPS_IOC_GETCAP:
1478 *(int*)data = pps->ppscap;
1479 return (0);
1480 case PPS_IOC_FETCH:
1481 fapi = (struct pps_fetch_args *)data;
1482 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1483 return (EINVAL);
1484 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1485 return (EOPNOTSUPP);
1486 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1487 fapi->pps_info_buf = pps->ppsinfo;
1488 return (0);
1489 case PPS_IOC_KCBIND:
1490 #ifdef PPS_SYNC
1491 kapi = (struct pps_kcbind_args *)data;
1492 /* XXX Only root should be able to do this */
1493 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1494 return (EINVAL);
1495 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1496 return (EINVAL);
1497 if (kapi->edge & ~pps->ppscap)
1498 return (EINVAL);
1499 pps->kcmode = kapi->edge;
1500 return (0);
1501 #else
1502 return (EOPNOTSUPP);
1503 #endif
1504 default:
1505 return (ENOTTY);
1509 void
1510 pps_init(struct pps_state *pps)
1512 pps->ppscap |= PPS_TSFMT_TSPEC;
1513 if (pps->ppscap & PPS_CAPTUREASSERT)
1514 pps->ppscap |= PPS_OFFSETASSERT;
1515 if (pps->ppscap & PPS_CAPTURECLEAR)
1516 pps->ppscap |= PPS_OFFSETCLEAR;
1519 void
1520 pps_event(struct pps_state *pps, sysclock_t count, int event)
1522 struct globaldata *gd;
1523 struct timespec *tsp;
1524 struct timespec *osp;
1525 struct timespec *bt;
1526 struct timespec ts;
1527 sysclock_t *pcount;
1528 #ifdef PPS_SYNC
1529 sysclock_t tcount;
1530 #endif
1531 sysclock_t delta;
1532 pps_seq_t *pseq;
1533 int foff;
1534 #ifdef PPS_SYNC
1535 int fhard;
1536 #endif
1537 int ni;
1539 gd = mycpu;
1541 /* Things would be easier with arrays... */
1542 if (event == PPS_CAPTUREASSERT) {
1543 tsp = &pps->ppsinfo.assert_timestamp;
1544 osp = &pps->ppsparam.assert_offset;
1545 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1546 #ifdef PPS_SYNC
1547 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1548 #endif
1549 pcount = &pps->ppscount[0];
1550 pseq = &pps->ppsinfo.assert_sequence;
1551 } else {
1552 tsp = &pps->ppsinfo.clear_timestamp;
1553 osp = &pps->ppsparam.clear_offset;
1554 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1555 #ifdef PPS_SYNC
1556 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1557 #endif
1558 pcount = &pps->ppscount[1];
1559 pseq = &pps->ppsinfo.clear_sequence;
1562 /* Nothing really happened */
1563 if (*pcount == count)
1564 return;
1566 *pcount = count;
1568 do {
1569 ts.tv_sec = gd->gd_time_seconds;
1570 delta = count - gd->gd_cpuclock_base;
1571 } while (ts.tv_sec != gd->gd_time_seconds);
1573 if (delta >= sys_cputimer->freq) {
1574 ts.tv_sec += delta / sys_cputimer->freq;
1575 delta %= sys_cputimer->freq;
1577 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1578 ni = basetime_index;
1579 cpu_lfence();
1580 bt = &basetime[ni];
1581 ts.tv_sec += bt->tv_sec;
1582 ts.tv_nsec += bt->tv_nsec;
1583 while (ts.tv_nsec >= 1000000000) {
1584 ts.tv_nsec -= 1000000000;
1585 ++ts.tv_sec;
1588 (*pseq)++;
1589 *tsp = ts;
1591 if (foff) {
1592 timespecadd(tsp, osp);
1593 if (tsp->tv_nsec < 0) {
1594 tsp->tv_nsec += 1000000000;
1595 tsp->tv_sec -= 1;
1598 #ifdef PPS_SYNC
1599 if (fhard) {
1600 /* magic, at its best... */
1601 tcount = count - pps->ppscount[2];
1602 pps->ppscount[2] = count;
1603 if (tcount >= sys_cputimer->freq) {
1604 delta = (1000000000 * (tcount / sys_cputimer->freq) +
1605 sys_cputimer->freq64_nsec *
1606 (tcount % sys_cputimer->freq)) >> 32;
1607 } else {
1608 delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1610 hardpps(tsp, delta);
1612 #endif
1616 * Return the tsc target value for a delay of (ns).
1618 * Returns -1 if the TSC is not supported.
1620 int64_t
1621 tsc_get_target(int ns)
1623 #if defined(_RDTSC_SUPPORTED_)
1624 if (cpu_feature & CPUID_TSC) {
1625 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000);
1627 #endif
1628 return(-1);
1632 * Compare the tsc against the passed target
1634 * Returns +1 if the target has been reached
1635 * Returns 0 if the target has not yet been reached
1636 * Returns -1 if the TSC is not supported.
1638 * Typical use: while (tsc_test_target(target) == 0) { ...poll... }
1641 tsc_test_target(int64_t target)
1643 #if defined(_RDTSC_SUPPORTED_)
1644 if (cpu_feature & CPUID_TSC) {
1645 if ((int64_t)(target - rdtsc()) <= 0)
1646 return(1);
1647 return(0);
1649 #endif
1650 return(-1);
1654 * Delay the specified number of nanoseconds using the tsc. This function
1655 * returns immediately if the TSC is not supported. At least one cpu_pause()
1656 * will be issued.
1658 void
1659 tsc_delay(int ns)
1661 int64_t clk;
1663 clk = tsc_get_target(ns);
1664 cpu_pause();
1665 while (tsc_test_target(clk) == 0)
1666 cpu_pause();