i386 removal, part 54/x: Remove perfmon(4) remains.
[dragonfly.git] / sys / platform / vkernel64 / x86_64 / cpu_regs.c
blobf91c272d8b44821cd7f0fb301a8ab91bc66919b2
1 /*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (C) 1994, David Greenman
4 * Copyright (c) 1982, 1987, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
39 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
42 #include "opt_compat.h"
43 #include "opt_ddb.h"
44 #include "opt_directio.h"
45 #include "opt_inet.h"
46 #include "opt_msgbuf.h"
47 #include "opt_swap.h"
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysproto.h>
52 #include <sys/signalvar.h>
53 #include <sys/kernel.h>
54 #include <sys/linker.h>
55 #include <sys/malloc.h>
56 #include <sys/proc.h>
57 #include <sys/buf.h>
58 #include <sys/reboot.h>
59 #include <sys/mbuf.h>
60 #include <sys/msgbuf.h>
61 #include <sys/sysent.h>
62 #include <sys/sysctl.h>
63 #include <sys/vmmeter.h>
64 #include <sys/bus.h>
65 #include <sys/usched.h>
66 #include <sys/reg.h>
68 #include <vm/vm.h>
69 #include <vm/vm_param.h>
70 #include <sys/lock.h>
71 #include <vm/vm_kern.h>
72 #include <vm/vm_object.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_map.h>
75 #include <vm/vm_pager.h>
76 #include <vm/vm_extern.h>
78 #include <sys/thread2.h>
79 #include <sys/mplock2.h>
81 #include <sys/user.h>
82 #include <sys/exec.h>
83 #include <sys/cons.h>
85 #include <ddb/ddb.h>
87 #include <machine/cpu.h>
88 #include <machine/clock.h>
89 #include <machine/specialreg.h>
90 #include <machine/md_var.h>
91 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
92 #include <machine/globaldata.h> /* CPU_prvspace */
93 #include <machine/smp.h>
94 #include <machine/cputypes.h>
96 #include <bus/isa/rtc.h>
97 #include <sys/random.h>
98 #include <sys/ptrace.h>
99 #include <machine/sigframe.h>
100 #include <unistd.h> /* umtx_* functions */
101 #include <pthread.h> /* pthread_yield() */
103 extern void dblfault_handler (void);
105 static void set_fpregs_xmm (struct save87 *, struct savexmm *);
106 static void fill_fpregs_xmm (struct savexmm *, struct save87 *);
107 #ifdef DIRECTIO
108 extern void ffs_rawread_setup(void);
109 #endif /* DIRECTIO */
111 int64_t tsc_offsets[MAXCPU];
113 #if defined(SWTCH_OPTIM_STATS)
114 extern int swtch_optim_stats;
115 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
116 CTLFLAG_RD, &swtch_optim_stats, 0, "");
117 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
118 CTLFLAG_RD, &tlb_flush_count, 0, "");
119 #endif
121 static int
122 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
124 u_long pmem = ctob(physmem);
126 int error = sysctl_handle_long(oidp, &pmem, 0, req);
127 return (error);
130 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
131 0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
133 static int
134 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
136 /* JG */
137 int error = sysctl_handle_int(oidp, 0,
138 ctob((int)Maxmem - vmstats.v_wire_count), req);
139 return (error);
142 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
143 0, 0, sysctl_hw_usermem, "IU", "");
145 SYSCTL_ULONG(_hw, OID_AUTO, availpages, CTLFLAG_RD, &Maxmem, 0, "");
148 * Send an interrupt to process.
150 * Stack is set up to allow sigcode stored
151 * at top to call routine, followed by kcall
152 * to sigreturn routine below. After sigreturn
153 * resets the signal mask, the stack, and the
154 * frame pointer, it returns to the user
155 * specified pc, psl.
157 void
158 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
160 struct lwp *lp = curthread->td_lwp;
161 struct proc *p = lp->lwp_proc;
162 struct trapframe *regs;
163 struct sigacts *psp = p->p_sigacts;
164 struct sigframe sf, *sfp;
165 int oonstack;
166 char *sp;
168 regs = lp->lwp_md.md_regs;
169 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
171 /* Save user context */
172 bzero(&sf, sizeof(struct sigframe));
173 sf.sf_uc.uc_sigmask = *mask;
174 sf.sf_uc.uc_stack = lp->lwp_sigstk;
175 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
176 KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
177 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
179 /* Make the size of the saved context visible to userland */
180 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
182 /* Allocate and validate space for the signal handler context. */
183 if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
184 SIGISMEMBER(psp->ps_sigonstack, sig)) {
185 sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
186 sizeof(struct sigframe));
187 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
188 } else {
189 /* We take red zone into account */
190 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
193 /* Align to 16 bytes */
194 sfp = (struct sigframe *)((intptr_t)sp & ~0xFUL);
196 /* Translate the signal is appropriate */
197 if (p->p_sysent->sv_sigtbl) {
198 if (sig <= p->p_sysent->sv_sigsize)
199 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
203 * Build the argument list for the signal handler.
205 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
207 regs->tf_rdi = sig; /* argument 1 */
208 regs->tf_rdx = (register_t)&sfp->sf_uc; /* argument 3 */
210 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
212 * Signal handler installed with SA_SIGINFO.
214 * action(signo, siginfo, ucontext)
216 regs->tf_rsi = (register_t)&sfp->sf_si; /* argument 2 */
217 regs->tf_rcx = (register_t)regs->tf_err; /* argument 4 */
218 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
220 /* fill siginfo structure */
221 sf.sf_si.si_signo = sig;
222 sf.sf_si.si_code = code;
223 sf.sf_si.si_addr = (void *)regs->tf_addr;
224 } else {
226 * Old FreeBSD-style arguments.
228 * handler (signo, code, [uc], addr)
230 regs->tf_rsi = (register_t)code; /* argument 2 */
231 regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
232 sf.sf_ahu.sf_handler = catcher;
235 #if 0
237 * If we're a vm86 process, we want to save the segment registers.
238 * We also change eflags to be our emulated eflags, not the actual
239 * eflags.
241 if (regs->tf_eflags & PSL_VM) {
242 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
243 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
245 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
246 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
247 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
248 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
250 if (vm86->vm86_has_vme == 0)
251 sf.sf_uc.uc_mcontext.mc_eflags =
252 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
253 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
256 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
257 * syscalls made by the signal handler. This just avoids
258 * wasting time for our lazy fixup of such faults. PSL_NT
259 * does nothing in vm86 mode, but vm86 programs can set it
260 * almost legitimately in probes for old cpu types.
262 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
264 #endif
267 * Save the FPU state and reinit the FP unit
269 npxpush(&sf.sf_uc.uc_mcontext);
272 * Copy the sigframe out to the user's stack.
274 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
276 * Something is wrong with the stack pointer.
277 * ...Kill the process.
279 sigexit(lp, SIGILL);
282 regs->tf_rsp = (register_t)sfp;
283 regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
286 * i386 abi specifies that the direction flag must be cleared
287 * on function entry
289 regs->tf_rflags &= ~(PSL_T|PSL_D);
292 * 64 bit mode has a code and stack selector but
293 * no data or extra selector. %fs and %gs are not
294 * stored in-context.
296 regs->tf_cs = _ucodesel;
297 regs->tf_ss = _udatasel;
301 * Sanitize the trapframe for a virtual kernel passing control to a custom
302 * VM context. Remove any items that would otherwise create a privilage
303 * issue.
305 * XXX at the moment we allow userland to set the resume flag. Is this a
306 * bad idea?
309 cpu_sanitize_frame(struct trapframe *frame)
311 frame->tf_cs = _ucodesel;
312 frame->tf_ss = _udatasel;
313 /* XXX VM (8086) mode not supported? */
314 frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
315 frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
317 return(0);
321 * Sanitize the tls so loading the descriptor does not blow up
322 * on us. For x86_64 we don't have to do anything.
325 cpu_sanitize_tls(struct savetls *tls)
327 return(0);
331 * sigreturn(ucontext_t *sigcntxp)
333 * System call to cleanup state after a signal
334 * has been taken. Reset signal mask and
335 * stack state from context left by sendsig (above).
336 * Return to previous pc and psl as specified by
337 * context left by sendsig. Check carefully to
338 * make sure that the user has not modified the
339 * state to gain improper privileges.
341 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
342 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
345 sys_sigreturn(struct sigreturn_args *uap)
347 struct lwp *lp = curthread->td_lwp;
348 struct trapframe *regs;
349 ucontext_t uc;
350 ucontext_t *ucp;
351 register_t rflags;
352 int cs;
353 int error;
356 * We have to copy the information into kernel space so userland
357 * can't modify it while we are sniffing it.
359 regs = lp->lwp_md.md_regs;
360 error = copyin(uap->sigcntxp, &uc, sizeof(uc));
361 if (error)
362 return (error);
363 ucp = &uc;
364 rflags = ucp->uc_mcontext.mc_rflags;
366 /* VM (8086) mode not supported */
367 rflags &= ~PSL_VM_UNSUPP;
369 #if 0
370 if (eflags & PSL_VM) {
371 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
372 struct vm86_kernel *vm86;
375 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
376 * set up the vm86 area, and we can't enter vm86 mode.
378 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
379 return (EINVAL);
380 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
381 if (vm86->vm86_inited == 0)
382 return (EINVAL);
384 /* go back to user mode if both flags are set */
385 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
386 trapsignal(lp->lwp_proc, SIGBUS, 0);
388 if (vm86->vm86_has_vme) {
389 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
390 (eflags & VME_USERCHANGE) | PSL_VM;
391 } else {
392 vm86->vm86_eflags = eflags; /* save VIF, VIP */
393 eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM;
395 bcopy(&ucp.uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
396 tf->tf_eflags = eflags;
397 tf->tf_vm86_ds = tf->tf_ds;
398 tf->tf_vm86_es = tf->tf_es;
399 tf->tf_vm86_fs = tf->tf_fs;
400 tf->tf_vm86_gs = tf->tf_gs;
401 tf->tf_ds = _udatasel;
402 tf->tf_es = _udatasel;
403 #if 0
404 tf->tf_fs = _udatasel;
405 tf->tf_gs = _udatasel;
406 #endif
407 } else
408 #endif
411 * Don't allow users to change privileged or reserved flags.
414 * XXX do allow users to change the privileged flag PSL_RF.
415 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
416 * should sometimes set it there too. tf_eflags is kept in
417 * the signal context during signal handling and there is no
418 * other place to remember it, so the PSL_RF bit may be
419 * corrupted by the signal handler without us knowing.
420 * Corruption of the PSL_RF bit at worst causes one more or
421 * one less debugger trap, so allowing it is fairly harmless.
423 if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
424 kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
425 return(EINVAL);
429 * Don't allow users to load a valid privileged %cs. Let the
430 * hardware check for invalid selectors, excess privilege in
431 * other selectors, invalid %eip's and invalid %esp's.
433 cs = ucp->uc_mcontext.mc_cs;
434 if (!CS_SECURE(cs)) {
435 kprintf("sigreturn: cs = 0x%x\n", cs);
436 trapsignal(lp, SIGBUS, T_PROTFLT);
437 return(EINVAL);
439 bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
443 * Restore the FPU state from the frame
445 npxpop(&ucp->uc_mcontext);
447 if (ucp->uc_mcontext.mc_onstack & 1)
448 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
449 else
450 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
452 lp->lwp_sigmask = ucp->uc_sigmask;
453 SIG_CANTMASK(lp->lwp_sigmask);
454 return(EJUSTRETURN);
458 * cpu_idle() represents the idle LWKT. You cannot return from this function
459 * (unless you want to blow things up!). Instead we look for runnable threads
460 * and loop or halt as appropriate. Giant is not held on entry to the thread.
462 * The main loop is entered with a critical section held, we must release
463 * the critical section before doing anything else. lwkt_switch() will
464 * check for pending interrupts due to entering and exiting its own
465 * critical section.
467 * Note on cpu_idle_hlt: On an SMP system we rely on a scheduler IPI
468 * to wake a HLTed cpu up.
470 static int cpu_idle_hlt = 1;
471 static int cpu_idle_hltcnt;
472 static int cpu_idle_spincnt;
473 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
474 &cpu_idle_hlt, 0, "Idle loop HLT enable");
475 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
476 &cpu_idle_hltcnt, 0, "Idle loop entry halts");
477 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
478 &cpu_idle_spincnt, 0, "Idle loop entry spins");
480 void
481 cpu_idle(void)
483 struct thread *td = curthread;
484 struct mdglobaldata *gd = mdcpu;
485 int reqflags;
487 crit_exit();
488 KKASSERT(td->td_critcount == 0);
489 cpu_enable_intr();
491 for (;;) {
493 * See if there are any LWKTs ready to go.
495 lwkt_switch();
498 * The idle loop halts only if no threads are scheduleable
499 * and no signals have occured.
501 if (cpu_idle_hlt &&
502 (td->td_gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
503 splz();
504 if ((td->td_gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
505 #ifdef DEBUGIDLE
506 struct timeval tv1, tv2;
507 gettimeofday(&tv1, NULL);
508 #endif
509 reqflags = gd->mi.gd_reqflags &
510 ~RQF_IDLECHECK_WK_MASK;
511 KKASSERT(gd->mi.gd_processing_ipiq == 0);
512 umtx_sleep(&gd->mi.gd_reqflags, reqflags,
513 1000000);
514 #ifdef DEBUGIDLE
515 gettimeofday(&tv2, NULL);
516 if (tv2.tv_usec - tv1.tv_usec +
517 (tv2.tv_sec - tv1.tv_sec) * 1000000
518 > 500000) {
519 kprintf("cpu %d idlelock %08x %08x\n",
520 gd->mi.gd_cpuid,
521 gd->mi.gd_reqflags,
522 gd->gd_fpending);
524 #endif
526 ++cpu_idle_hltcnt;
527 } else {
528 splz();
529 __asm __volatile("pause");
530 ++cpu_idle_spincnt;
536 * Called by the spinlock code with or without a critical section held
537 * when a spinlock is found to be seriously constested.
539 * We need to enter a critical section to prevent signals from recursing
540 * into pthreads.
542 void
543 cpu_spinlock_contested(void)
545 cpu_pause();
549 * Clear registers on exec
551 void
552 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
554 struct thread *td = curthread;
555 struct lwp *lp = td->td_lwp;
556 struct pcb *pcb = td->td_pcb;
557 struct trapframe *regs = lp->lwp_md.md_regs;
559 /* was i386_user_cleanup() in NetBSD */
560 user_ldt_free(pcb);
562 bzero((char *)regs, sizeof(struct trapframe));
563 regs->tf_rip = entry;
564 regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
565 regs->tf_rdi = stack; /* argv */
566 regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
567 regs->tf_ss = _udatasel;
568 regs->tf_cs = _ucodesel;
569 regs->tf_rbx = ps_strings;
572 * Reset the hardware debug registers if they were in use.
573 * They won't have any meaning for the newly exec'd process.
575 if (pcb->pcb_flags & PCB_DBREGS) {
576 pcb->pcb_dr0 = 0;
577 pcb->pcb_dr1 = 0;
578 pcb->pcb_dr2 = 0;
579 pcb->pcb_dr3 = 0;
580 pcb->pcb_dr6 = 0;
581 pcb->pcb_dr7 = 0; /* JG set bit 10? */
582 if (pcb == td->td_pcb) {
584 * Clear the debug registers on the running
585 * CPU, otherwise they will end up affecting
586 * the next process we switch to.
588 reset_dbregs();
590 pcb->pcb_flags &= ~PCB_DBREGS;
594 * Initialize the math emulator (if any) for the current process.
595 * Actually, just clear the bit that says that the emulator has
596 * been initialized. Initialization is delayed until the process
597 * traps to the emulator (if it is done at all) mainly because
598 * emulators don't provide an entry point for initialization.
600 pcb->pcb_flags &= ~FP_SOFTFP;
603 * NOTE: do not set CR0_TS here. npxinit() must do it after clearing
604 * gd_npxthread. Otherwise a preemptive interrupt thread
605 * may panic in npxdna().
607 crit_enter();
608 #if 0
609 load_cr0(rcr0() | CR0_MP);
610 #endif
613 * NOTE: The MSR values must be correct so we can return to
614 * userland. gd_user_fs/gs must be correct so the switch
615 * code knows what the current MSR values are.
617 pcb->pcb_fsbase = 0; /* Values loaded from PCB on switch */
618 pcb->pcb_gsbase = 0;
619 /* Initialize the npx (if any) for the current process. */
620 npxinit();
621 crit_exit();
624 * note: linux emulator needs edx to be 0x0 on entry, which is
625 * handled in execve simply by setting the 64 bit syscall
626 * return value to 0.
630 void
631 cpu_setregs(void)
633 #if 0
634 unsigned int cr0;
636 cr0 = rcr0();
637 cr0 |= CR0_NE; /* Done by npxinit() */
638 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
639 cr0 |= CR0_WP | CR0_AM;
640 load_cr0(cr0);
641 load_gs(_udatasel);
642 #endif
645 static int
646 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
648 int error;
649 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
650 req);
651 if (!error && req->newptr)
652 resettodr();
653 return (error);
656 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
657 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
659 extern u_long bootdev; /* not a cdev_t - encoding is different */
660 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
661 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
664 * Initialize 386 and configure to run kernel
668 * Initialize segments & interrupt table
671 extern struct user *proc0paddr;
673 #if 0
675 extern inthand_t
676 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
677 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
678 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
679 IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
680 IDTVEC(xmm), IDTVEC(dblfault),
681 IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
682 #endif
685 ptrace_set_pc(struct lwp *lp, unsigned long addr)
687 lp->lwp_md.md_regs->tf_rip = addr;
688 return (0);
692 ptrace_single_step(struct lwp *lp)
694 lp->lwp_md.md_regs->tf_rflags |= PSL_T;
695 return (0);
699 fill_regs(struct lwp *lp, struct reg *regs)
701 struct trapframe *tp;
703 if ((tp = lp->lwp_md.md_regs) == NULL)
704 return EINVAL;
705 bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
706 return (0);
710 set_regs(struct lwp *lp, struct reg *regs)
712 struct trapframe *tp;
714 tp = lp->lwp_md.md_regs;
715 if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
716 !CS_SECURE(regs->r_cs))
717 return (EINVAL);
718 bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
719 return (0);
722 static void
723 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
725 struct env87 *penv_87 = &sv_87->sv_env;
726 struct envxmm *penv_xmm = &sv_xmm->sv_env;
727 int i;
729 /* FPU control/status */
730 penv_87->en_cw = penv_xmm->en_cw;
731 penv_87->en_sw = penv_xmm->en_sw;
732 penv_87->en_tw = penv_xmm->en_tw;
733 penv_87->en_fip = penv_xmm->en_fip;
734 penv_87->en_fcs = penv_xmm->en_fcs;
735 penv_87->en_opcode = penv_xmm->en_opcode;
736 penv_87->en_foo = penv_xmm->en_foo;
737 penv_87->en_fos = penv_xmm->en_fos;
739 /* FPU registers */
740 for (i = 0; i < 8; ++i)
741 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
744 static void
745 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
747 struct env87 *penv_87 = &sv_87->sv_env;
748 struct envxmm *penv_xmm = &sv_xmm->sv_env;
749 int i;
751 /* FPU control/status */
752 penv_xmm->en_cw = penv_87->en_cw;
753 penv_xmm->en_sw = penv_87->en_sw;
754 penv_xmm->en_tw = penv_87->en_tw;
755 penv_xmm->en_fip = penv_87->en_fip;
756 penv_xmm->en_fcs = penv_87->en_fcs;
757 penv_xmm->en_opcode = penv_87->en_opcode;
758 penv_xmm->en_foo = penv_87->en_foo;
759 penv_xmm->en_fos = penv_87->en_fos;
761 /* FPU registers */
762 for (i = 0; i < 8; ++i)
763 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
767 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
769 if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
770 return EINVAL;
771 if (cpu_fxsr) {
772 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
773 (struct save87 *)fpregs);
774 return (0);
776 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
777 return (0);
781 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
783 if (cpu_fxsr) {
784 set_fpregs_xmm((struct save87 *)fpregs,
785 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
786 return (0);
788 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
789 return (0);
793 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
795 return (ENOSYS);
799 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
801 return (ENOSYS);
804 #if 0
806 * Return > 0 if a hardware breakpoint has been hit, and the
807 * breakpoint was in user space. Return 0, otherwise.
810 user_dbreg_trap(void)
812 u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
813 u_int32_t bp; /* breakpoint bits extracted from dr6 */
814 int nbp; /* number of breakpoints that triggered */
815 caddr_t addr[4]; /* breakpoint addresses */
816 int i;
818 dr7 = rdr7();
819 if ((dr7 & 0x000000ff) == 0) {
821 * all GE and LE bits in the dr7 register are zero,
822 * thus the trap couldn't have been caused by the
823 * hardware debug registers
825 return 0;
828 nbp = 0;
829 dr6 = rdr6();
830 bp = dr6 & 0x0000000f;
832 if (!bp) {
834 * None of the breakpoint bits are set meaning this
835 * trap was not caused by any of the debug registers
837 return 0;
841 * at least one of the breakpoints were hit, check to see
842 * which ones and if any of them are user space addresses
845 if (bp & 0x01) {
846 addr[nbp++] = (caddr_t)rdr0();
848 if (bp & 0x02) {
849 addr[nbp++] = (caddr_t)rdr1();
851 if (bp & 0x04) {
852 addr[nbp++] = (caddr_t)rdr2();
854 if (bp & 0x08) {
855 addr[nbp++] = (caddr_t)rdr3();
858 for (i=0; i<nbp; i++) {
859 if (addr[i] <
860 (caddr_t)VM_MAX_USER_ADDRESS) {
862 * addr[i] is in user space
864 return nbp;
869 * None of the breakpoints are in user space.
871 return 0;
874 #endif
876 void
877 identcpu(void)
879 int regs[4];
881 do_cpuid(1, regs);
882 cpu_feature = regs[3];
886 #ifndef DDB
887 void
888 Debugger(const char *msg)
890 kprintf("Debugger(\"%s\") called.\n", msg);
892 #endif /* no DDB */