MFC rev 1.36:
[dragonfly.git] / sys / dev / netif / tl / if_tl.c
blob9a28f284569c3125ac11b0bdb645c1f17af6235e
1 /*
2 * Copyright (c) 1997, 1998
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
32 * $FreeBSD: src/sys/pci/if_tl.c,v 1.51.2.5 2001/12/16 15:46:08 luigi Exp $
33 * $DragonFly: src/sys/dev/netif/tl/if_tl.c,v 1.16.2.1 2006/07/14 19:03:46 corecode Exp $
37 * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
38 * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
39 * the National Semiconductor DP83840A physical interface and the
40 * Microchip Technology 24Cxx series serial EEPROM.
42 * Written using the following four documents:
44 * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
45 * National Semiconductor DP83840A data sheet (www.national.com)
46 * Microchip Technology 24C02C data sheet (www.microchip.com)
47 * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
49 * Written by Bill Paul <wpaul@ctr.columbia.edu>
50 * Electrical Engineering Department
51 * Columbia University, New York City
55 * Some notes about the ThunderLAN:
57 * The ThunderLAN controller is a single chip containing PCI controller
58 * logic, approximately 3K of on-board SRAM, a LAN controller, and media
59 * independent interface (MII) bus. The MII allows the ThunderLAN chip to
60 * control up to 32 different physical interfaces (PHYs). The ThunderLAN
61 * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
62 * to act as a complete ethernet interface.
64 * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
65 * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
66 * in full or half duplex. Some of the Compaq Deskpro machines use a
67 * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
68 * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
69 * concert with the ThunderLAN's internal PHY to provide full 10/100
70 * support. This is cheaper than using a standalone external PHY for both
71 * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
72 * A serial EEPROM is also attached to the ThunderLAN chip to provide
73 * power-up default register settings and for storing the adapter's
74 * station address. Although not supported by this driver, the ThunderLAN
75 * chip can also be connected to token ring PHYs.
77 * The ThunderLAN has a set of registers which can be used to issue
78 * commands, acknowledge interrupts, and to manipulate other internal
79 * registers on its DIO bus. The primary registers can be accessed
80 * using either programmed I/O (inb/outb) or via PCI memory mapping,
81 * depending on how the card is configured during the PCI probing
82 * phase. It is even possible to have both PIO and memory mapped
83 * access turned on at the same time.
85 * Frame reception and transmission with the ThunderLAN chip is done
86 * using frame 'lists.' A list structure looks more or less like this:
88 * struct tl_frag {
89 * u_int32_t fragment_address;
90 * u_int32_t fragment_size;
91 * };
92 * struct tl_list {
93 * u_int32_t forward_pointer;
94 * u_int16_t cstat;
95 * u_int16_t frame_size;
96 * struct tl_frag fragments[10];
97 * };
99 * The forward pointer in the list header can be either a 0 or the address
100 * of another list, which allows several lists to be linked together. Each
101 * list contains up to 10 fragment descriptors. This means the chip allows
102 * ethernet frames to be broken up into up to 10 chunks for transfer to
103 * and from the SRAM. Note that the forward pointer and fragment buffer
104 * addresses are physical memory addresses, not virtual. Note also that
105 * a single ethernet frame can not span lists: if the host wants to
106 * transmit a frame and the frame data is split up over more than 10
107 * buffers, the frame has to collapsed before it can be transmitted.
109 * To receive frames, the driver sets up a number of lists and populates
110 * the fragment descriptors, then it sends an RX GO command to the chip.
111 * When a frame is received, the chip will DMA it into the memory regions
112 * specified by the fragment descriptors and then trigger an RX 'end of
113 * frame interrupt' when done. The driver may choose to use only one
114 * fragment per list; this may result is slighltly less efficient use
115 * of memory in exchange for improving performance.
117 * To transmit frames, the driver again sets up lists and fragment
118 * descriptors, only this time the buffers contain frame data that
119 * is to be DMA'ed into the chip instead of out of it. Once the chip
120 * has transfered the data into its on-board SRAM, it will trigger a
121 * TX 'end of frame' interrupt. It will also generate an 'end of channel'
122 * interrupt when it reaches the end of the list.
126 * Some notes about this driver:
128 * The ThunderLAN chip provides a couple of different ways to organize
129 * reception, transmission and interrupt handling. The simplest approach
130 * is to use one list each for transmission and reception. In this mode,
131 * the ThunderLAN will generate two interrupts for every received frame
132 * (one RX EOF and one RX EOC) and two for each transmitted frame (one
133 * TX EOF and one TX EOC). This may make the driver simpler but it hurts
134 * performance to have to handle so many interrupts.
136 * Initially I wanted to create a circular list of receive buffers so
137 * that the ThunderLAN chip would think there was an infinitely long
138 * receive channel and never deliver an RXEOC interrupt. However this
139 * doesn't work correctly under heavy load: while the manual says the
140 * chip will trigger an RXEOF interrupt each time a frame is copied into
141 * memory, you can't count on the chip waiting around for you to acknowledge
142 * the interrupt before it starts trying to DMA the next frame. The result
143 * is that the chip might traverse the entire circular list and then wrap
144 * around before you have a chance to do anything about it. Consequently,
145 * the receive list is terminated (with a 0 in the forward pointer in the
146 * last element). Each time an RXEOF interrupt arrives, the used list
147 * is shifted to the end of the list. This gives the appearance of an
148 * infinitely large RX chain so long as the driver doesn't fall behind
149 * the chip and allow all of the lists to be filled up.
151 * If all the lists are filled, the adapter will deliver an RX 'end of
152 * channel' interrupt when it hits the 0 forward pointer at the end of
153 * the chain. The RXEOC handler then cleans out the RX chain and resets
154 * the list head pointer in the ch_parm register and restarts the receiver.
156 * For frame transmission, it is possible to program the ThunderLAN's
157 * transmit interrupt threshold so that the chip can acknowledge multiple
158 * lists with only a single TX EOF interrupt. This allows the driver to
159 * queue several frames in one shot, and only have to handle a total
160 * two interrupts (one TX EOF and one TX EOC) no matter how many frames
161 * are transmitted. Frame transmission is done directly out of the
162 * mbufs passed to the tl_start() routine via the interface send queue.
163 * The driver simply sets up the fragment descriptors in the transmit
164 * lists to point to the mbuf data regions and sends a TX GO command.
166 * Note that since the RX and TX lists themselves are always used
167 * only by the driver, the are malloc()ed once at driver initialization
168 * time and never free()ed.
170 * Also, in order to remain as platform independent as possible, this
171 * driver uses memory mapped register access to manipulate the card
172 * as opposed to programmed I/O. This avoids the use of the inb/outb
173 * (and related) instructions which are specific to the i386 platform.
175 * Using these techniques, this driver achieves very high performance
176 * by minimizing the amount of interrupts generated during large
177 * transfers and by completely avoiding buffer copies. Frame transfer
178 * to and from the ThunderLAN chip is performed entirely by the chip
179 * itself thereby reducing the load on the host CPU.
182 #include <sys/param.h>
183 #include <sys/systm.h>
184 #include <sys/sockio.h>
185 #include <sys/mbuf.h>
186 #include <sys/malloc.h>
187 #include <sys/kernel.h>
188 #include <sys/socket.h>
190 #include <net/if.h>
191 #include <net/ifq_var.h>
192 #include <net/if_arp.h>
193 #include <net/ethernet.h>
194 #include <net/if_dl.h>
195 #include <net/if_media.h>
197 #include <net/bpf.h>
199 #include <vm/vm.h> /* for vtophys */
200 #include <vm/pmap.h> /* for vtophys */
201 #include <machine/clock.h> /* for DELAY */
202 #include <machine/bus_memio.h>
203 #include <machine/bus_pio.h>
204 #include <machine/bus.h>
205 #include <machine/resource.h>
206 #include <sys/bus.h>
207 #include <sys/rman.h>
209 #include "../mii_layer/mii.h"
210 #include "../mii_layer/miivar.h"
212 #include <bus/pci/pcireg.h>
213 #include <bus/pci/pcivar.h>
216 * Default to using PIO register access mode to pacify certain
217 * laptop docking stations with built-in ThunderLAN chips that
218 * don't seem to handle memory mapped mode properly.
220 #define TL_USEIOSPACE
222 #include "if_tlreg.h"
224 /* "controller miibus0" required. See GENERIC if you get errors here. */
225 #include "miibus_if.h"
228 * Various supported device vendors/types and their names.
231 static struct tl_type tl_devs[] = {
232 { TI_VENDORID, TI_DEVICEID_THUNDERLAN,
233 "Texas Instruments ThunderLAN" },
234 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
235 "Compaq Netelligent 10" },
236 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
237 "Compaq Netelligent 10/100" },
238 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
239 "Compaq Netelligent 10/100 Proliant" },
240 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
241 "Compaq Netelligent 10/100 Dual Port" },
242 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
243 "Compaq NetFlex-3/P Integrated" },
244 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
245 "Compaq NetFlex-3/P" },
246 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
247 "Compaq NetFlex 3/P w/ BNC" },
248 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
249 "Compaq Netelligent 10/100 TX Embedded UTP" },
250 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
251 "Compaq Netelligent 10 T/2 PCI UTP/Coax" },
252 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
253 "Compaq Netelligent 10/100 TX UTP" },
254 { OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
255 "Olicom OC-2183/2185" },
256 { OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
257 "Olicom OC-2325" },
258 { OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
259 "Olicom OC-2326 10/100 TX UTP" },
260 { 0, 0, NULL }
263 static int tl_probe (device_t);
264 static int tl_attach (device_t);
265 static int tl_detach (device_t);
266 static int tl_intvec_rxeoc (void *, u_int32_t);
267 static int tl_intvec_txeoc (void *, u_int32_t);
268 static int tl_intvec_txeof (void *, u_int32_t);
269 static int tl_intvec_rxeof (void *, u_int32_t);
270 static int tl_intvec_adchk (void *, u_int32_t);
271 static int tl_intvec_netsts (void *, u_int32_t);
273 static int tl_newbuf (struct tl_softc *,
274 struct tl_chain_onefrag *);
275 static void tl_stats_update (void *);
276 static int tl_encap (struct tl_softc *, struct tl_chain *,
277 struct mbuf *);
279 static void tl_intr (void *);
280 static void tl_start (struct ifnet *);
281 static int tl_ioctl (struct ifnet *, u_long, caddr_t,
282 struct ucred *);
283 static void tl_init (void *);
284 static void tl_stop (struct tl_softc *);
285 static void tl_watchdog (struct ifnet *);
286 static void tl_shutdown (device_t);
287 static int tl_ifmedia_upd (struct ifnet *);
288 static void tl_ifmedia_sts (struct ifnet *, struct ifmediareq *);
290 static u_int8_t tl_eeprom_putbyte (struct tl_softc *, int);
291 static u_int8_t tl_eeprom_getbyte (struct tl_softc *,
292 int, u_int8_t *);
293 static int tl_read_eeprom (struct tl_softc *, caddr_t, int, int);
295 static void tl_mii_sync (struct tl_softc *);
296 static void tl_mii_send (struct tl_softc *, u_int32_t, int);
297 static int tl_mii_readreg (struct tl_softc *, struct tl_mii_frame *);
298 static int tl_mii_writereg (struct tl_softc *, struct tl_mii_frame *);
299 static int tl_miibus_readreg (device_t, int, int);
300 static int tl_miibus_writereg (device_t, int, int, int);
301 static void tl_miibus_statchg (device_t);
303 static void tl_setmode (struct tl_softc *, int);
304 static int tl_calchash (caddr_t);
305 static void tl_setmulti (struct tl_softc *);
306 static void tl_setfilt (struct tl_softc *, caddr_t, int);
307 static void tl_softreset (struct tl_softc *, int);
308 static void tl_hardreset (device_t);
309 static int tl_list_rx_init (struct tl_softc *);
310 static int tl_list_tx_init (struct tl_softc *);
312 static u_int8_t tl_dio_read8 (struct tl_softc *, int);
313 static u_int16_t tl_dio_read16 (struct tl_softc *, int);
314 static u_int32_t tl_dio_read32 (struct tl_softc *, int);
315 static void tl_dio_write8 (struct tl_softc *, int, int);
316 static void tl_dio_write16 (struct tl_softc *, int, int);
317 static void tl_dio_write32 (struct tl_softc *, int, int);
318 static void tl_dio_setbit (struct tl_softc *, int, int);
319 static void tl_dio_clrbit (struct tl_softc *, int, int);
320 static void tl_dio_setbit16 (struct tl_softc *, int, int);
321 static void tl_dio_clrbit16 (struct tl_softc *, int, int);
323 #ifdef TL_USEIOSPACE
324 #define TL_RES SYS_RES_IOPORT
325 #define TL_RID TL_PCI_LOIO
326 #else
327 #define TL_RES SYS_RES_MEMORY
328 #define TL_RID TL_PCI_LOMEM
329 #endif
331 static device_method_t tl_methods[] = {
332 /* Device interface */
333 DEVMETHOD(device_probe, tl_probe),
334 DEVMETHOD(device_attach, tl_attach),
335 DEVMETHOD(device_detach, tl_detach),
336 DEVMETHOD(device_shutdown, tl_shutdown),
338 /* bus interface */
339 DEVMETHOD(bus_print_child, bus_generic_print_child),
340 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
342 /* MII interface */
343 DEVMETHOD(miibus_readreg, tl_miibus_readreg),
344 DEVMETHOD(miibus_writereg, tl_miibus_writereg),
345 DEVMETHOD(miibus_statchg, tl_miibus_statchg),
347 { 0, 0 }
350 static driver_t tl_driver = {
351 "tl",
352 tl_methods,
353 sizeof(struct tl_softc)
356 static devclass_t tl_devclass;
358 DECLARE_DUMMY_MODULE(if_tl);
359 DRIVER_MODULE(if_tl, pci, tl_driver, tl_devclass, 0, 0);
360 DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
362 static u_int8_t tl_dio_read8(sc, reg)
363 struct tl_softc *sc;
364 int reg;
366 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
367 return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
370 static u_int16_t tl_dio_read16(sc, reg)
371 struct tl_softc *sc;
372 int reg;
374 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
375 return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
378 static u_int32_t tl_dio_read32(sc, reg)
379 struct tl_softc *sc;
380 int reg;
382 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
383 return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
386 static void tl_dio_write8(sc, reg, val)
387 struct tl_softc *sc;
388 int reg;
389 int val;
391 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
392 CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
393 return;
396 static void tl_dio_write16(sc, reg, val)
397 struct tl_softc *sc;
398 int reg;
399 int val;
401 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
402 CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
403 return;
406 static void tl_dio_write32(sc, reg, val)
407 struct tl_softc *sc;
408 int reg;
409 int val;
411 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
412 CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
413 return;
416 static void tl_dio_setbit(sc, reg, bit)
417 struct tl_softc *sc;
418 int reg;
419 int bit;
421 u_int8_t f;
423 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
424 f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
425 f |= bit;
426 CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
428 return;
431 static void tl_dio_clrbit(sc, reg, bit)
432 struct tl_softc *sc;
433 int reg;
434 int bit;
436 u_int8_t f;
438 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
439 f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
440 f &= ~bit;
441 CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
443 return;
446 static void tl_dio_setbit16(sc, reg, bit)
447 struct tl_softc *sc;
448 int reg;
449 int bit;
451 u_int16_t f;
453 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
454 f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
455 f |= bit;
456 CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
458 return;
461 static void tl_dio_clrbit16(sc, reg, bit)
462 struct tl_softc *sc;
463 int reg;
464 int bit;
466 u_int16_t f;
468 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
469 f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
470 f &= ~bit;
471 CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
473 return;
477 * Send an instruction or address to the EEPROM, check for ACK.
479 static u_int8_t tl_eeprom_putbyte(sc, byte)
480 struct tl_softc *sc;
481 int byte;
483 int i, ack = 0;
486 * Make sure we're in TX mode.
488 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
491 * Feed in each bit and stobe the clock.
493 for (i = 0x80; i; i >>= 1) {
494 if (byte & i) {
495 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
496 } else {
497 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
499 DELAY(1);
500 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
501 DELAY(1);
502 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
506 * Turn off TX mode.
508 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
511 * Check for ack.
513 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
514 ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
515 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
517 return(ack);
521 * Read a byte of data stored in the EEPROM at address 'addr.'
523 static u_int8_t tl_eeprom_getbyte(sc, addr, dest)
524 struct tl_softc *sc;
525 int addr;
526 u_int8_t *dest;
528 int i;
529 u_int8_t byte = 0;
531 tl_dio_write8(sc, TL_NETSIO, 0);
533 EEPROM_START;
536 * Send write control code to EEPROM.
538 if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
539 printf("tl%d: failed to send write command, status: %x\n",
540 sc->tl_unit, tl_dio_read8(sc, TL_NETSIO));
541 return(1);
545 * Send address of byte we want to read.
547 if (tl_eeprom_putbyte(sc, addr)) {
548 printf("tl%d: failed to send address, status: %x\n",
549 sc->tl_unit, tl_dio_read8(sc, TL_NETSIO));
550 return(1);
553 EEPROM_STOP;
554 EEPROM_START;
556 * Send read control code to EEPROM.
558 if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
559 printf("tl%d: failed to send write command, status: %x\n",
560 sc->tl_unit, tl_dio_read8(sc, TL_NETSIO));
561 return(1);
565 * Start reading bits from EEPROM.
567 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
568 for (i = 0x80; i; i >>= 1) {
569 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
570 DELAY(1);
571 if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
572 byte |= i;
573 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
574 DELAY(1);
577 EEPROM_STOP;
580 * No ACK generated for read, so just return byte.
583 *dest = byte;
585 return(0);
589 * Read a sequence of bytes from the EEPROM.
591 static int tl_read_eeprom(sc, dest, off, cnt)
592 struct tl_softc *sc;
593 caddr_t dest;
594 int off;
595 int cnt;
597 int err = 0, i;
598 u_int8_t byte = 0;
600 for (i = 0; i < cnt; i++) {
601 err = tl_eeprom_getbyte(sc, off + i, &byte);
602 if (err)
603 break;
604 *(dest + i) = byte;
607 return(err ? 1 : 0);
610 static void tl_mii_sync(sc)
611 struct tl_softc *sc;
613 int i;
615 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
617 for (i = 0; i < 32; i++) {
618 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
619 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
622 return;
625 static void tl_mii_send(sc, bits, cnt)
626 struct tl_softc *sc;
627 u_int32_t bits;
628 int cnt;
630 int i;
632 for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
633 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
634 if (bits & i) {
635 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
636 } else {
637 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
639 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
643 static int tl_mii_readreg(sc, frame)
644 struct tl_softc *sc;
645 struct tl_mii_frame *frame;
648 int i, ack, s;
649 int minten = 0;
651 s = splimp();
653 tl_mii_sync(sc);
656 * Set up frame for RX.
658 frame->mii_stdelim = TL_MII_STARTDELIM;
659 frame->mii_opcode = TL_MII_READOP;
660 frame->mii_turnaround = 0;
661 frame->mii_data = 0;
664 * Turn off MII interrupt by forcing MINTEN low.
666 minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
667 if (minten) {
668 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
672 * Turn on data xmit.
674 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
677 * Send command/address info.
679 tl_mii_send(sc, frame->mii_stdelim, 2);
680 tl_mii_send(sc, frame->mii_opcode, 2);
681 tl_mii_send(sc, frame->mii_phyaddr, 5);
682 tl_mii_send(sc, frame->mii_regaddr, 5);
685 * Turn off xmit.
687 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
689 /* Idle bit */
690 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
691 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
693 /* Check for ack */
694 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
695 ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
697 /* Complete the cycle */
698 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
701 * Now try reading data bits. If the ack failed, we still
702 * need to clock through 16 cycles to keep the PHYs in sync.
704 if (ack) {
705 for(i = 0; i < 16; i++) {
706 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
707 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
709 goto fail;
712 for (i = 0x8000; i; i >>= 1) {
713 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
714 if (!ack) {
715 if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
716 frame->mii_data |= i;
718 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
721 fail:
723 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
724 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
726 /* Reenable interrupts */
727 if (minten) {
728 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
731 splx(s);
733 if (ack)
734 return(1);
735 return(0);
738 static int tl_mii_writereg(sc, frame)
739 struct tl_softc *sc;
740 struct tl_mii_frame *frame;
743 int s;
744 int minten;
746 tl_mii_sync(sc);
748 s = splimp();
750 * Set up frame for TX.
753 frame->mii_stdelim = TL_MII_STARTDELIM;
754 frame->mii_opcode = TL_MII_WRITEOP;
755 frame->mii_turnaround = TL_MII_TURNAROUND;
758 * Turn off MII interrupt by forcing MINTEN low.
760 minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
761 if (minten) {
762 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
766 * Turn on data output.
768 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
770 tl_mii_send(sc, frame->mii_stdelim, 2);
771 tl_mii_send(sc, frame->mii_opcode, 2);
772 tl_mii_send(sc, frame->mii_phyaddr, 5);
773 tl_mii_send(sc, frame->mii_regaddr, 5);
774 tl_mii_send(sc, frame->mii_turnaround, 2);
775 tl_mii_send(sc, frame->mii_data, 16);
777 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
778 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
781 * Turn off xmit.
783 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
785 /* Reenable interrupts */
786 if (minten)
787 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
789 splx(s);
791 return(0);
794 static int tl_miibus_readreg(dev, phy, reg)
795 device_t dev;
796 int phy, reg;
798 struct tl_softc *sc;
799 struct tl_mii_frame frame;
801 sc = device_get_softc(dev);
802 bzero((char *)&frame, sizeof(frame));
804 frame.mii_phyaddr = phy;
805 frame.mii_regaddr = reg;
806 tl_mii_readreg(sc, &frame);
808 return(frame.mii_data);
811 static int tl_miibus_writereg(dev, phy, reg, data)
812 device_t dev;
813 int phy, reg, data;
815 struct tl_softc *sc;
816 struct tl_mii_frame frame;
818 sc = device_get_softc(dev);
819 bzero((char *)&frame, sizeof(frame));
821 frame.mii_phyaddr = phy;
822 frame.mii_regaddr = reg;
823 frame.mii_data = data;
825 tl_mii_writereg(sc, &frame);
827 return(0);
830 static void tl_miibus_statchg(dev)
831 device_t dev;
833 struct tl_softc *sc;
834 struct mii_data *mii;
836 sc = device_get_softc(dev);
837 mii = device_get_softc(sc->tl_miibus);
839 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
840 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
841 } else {
842 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
845 return;
849 * Set modes for bitrate devices.
851 static void tl_setmode(sc, media)
852 struct tl_softc *sc;
853 int media;
855 if (IFM_SUBTYPE(media) == IFM_10_5)
856 tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
857 if (IFM_SUBTYPE(media) == IFM_10_T) {
858 tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
859 if ((media & IFM_GMASK) == IFM_FDX) {
860 tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
861 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
862 } else {
863 tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
864 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
868 return;
872 * Calculate the hash of a MAC address for programming the multicast hash
873 * table. This hash is simply the address split into 6-bit chunks
874 * XOR'd, e.g.
875 * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
876 * bit: 765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
877 * Bytes 0-2 and 3-5 are symmetrical, so are folded together. Then
878 * the folded 24-bit value is split into 6-bit portions and XOR'd.
880 static int tl_calchash(addr)
881 caddr_t addr;
883 int t;
885 t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
886 (addr[2] ^ addr[5]);
887 return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
891 * The ThunderLAN has a perfect MAC address filter in addition to
892 * the multicast hash filter. The perfect filter can be programmed
893 * with up to four MAC addresses. The first one is always used to
894 * hold the station address, which leaves us free to use the other
895 * three for multicast addresses.
897 static void tl_setfilt(sc, addr, slot)
898 struct tl_softc *sc;
899 caddr_t addr;
900 int slot;
902 int i;
903 u_int16_t regaddr;
905 regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
907 for (i = 0; i < ETHER_ADDR_LEN; i++)
908 tl_dio_write8(sc, regaddr + i, *(addr + i));
910 return;
914 * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
915 * linked list. This is fine, except addresses are added from the head
916 * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
917 * group to always be in the perfect filter, but as more groups are added,
918 * the 224.0.0.1 entry (which is always added first) gets pushed down
919 * the list and ends up at the tail. So after 3 or 4 multicast groups
920 * are added, the all-hosts entry gets pushed out of the perfect filter
921 * and into the hash table.
923 * Because the multicast list is a doubly-linked list as opposed to a
924 * circular queue, we don't have the ability to just grab the tail of
925 * the list and traverse it backwards. Instead, we have to traverse
926 * the list once to find the tail, then traverse it again backwards to
927 * update the multicast filter.
929 static void tl_setmulti(sc)
930 struct tl_softc *sc;
932 struct ifnet *ifp;
933 u_int32_t hashes[2] = { 0, 0 };
934 int h, i;
935 struct ifmultiaddr *ifma;
936 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
937 ifp = &sc->arpcom.ac_if;
939 /* First, zot all the existing filters. */
940 for (i = 1; i < 4; i++)
941 tl_setfilt(sc, (caddr_t)&dummy, i);
942 tl_dio_write32(sc, TL_HASH1, 0);
943 tl_dio_write32(sc, TL_HASH2, 0);
945 /* Now program new ones. */
946 if (ifp->if_flags & IFF_ALLMULTI) {
947 hashes[0] = 0xFFFFFFFF;
948 hashes[1] = 0xFFFFFFFF;
949 } else {
950 i = 1;
951 /* First find the tail of the list. */
952 for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
953 ifma = ifma->ifma_link.le_next) {
954 if (ifma->ifma_link.le_next == NULL)
955 break;
957 /* Now traverse the list backwards. */
958 for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
959 ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
960 if (ifma->ifma_addr->sa_family != AF_LINK)
961 continue;
963 * Program the first three multicast groups
964 * into the perfect filter. For all others,
965 * use the hash table.
967 if (i < 4) {
968 tl_setfilt(sc,
969 LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
970 i++;
971 continue;
974 h = tl_calchash(
975 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
976 if (h < 32)
977 hashes[0] |= (1 << h);
978 else
979 hashes[1] |= (1 << (h - 32));
983 tl_dio_write32(sc, TL_HASH1, hashes[0]);
984 tl_dio_write32(sc, TL_HASH2, hashes[1]);
986 return;
990 * This routine is recommended by the ThunderLAN manual to insure that
991 * the internal PHY is powered up correctly. It also recommends a one
992 * second pause at the end to 'wait for the clocks to start' but in my
993 * experience this isn't necessary.
995 static void tl_hardreset(dev)
996 device_t dev;
998 struct tl_softc *sc;
999 int i;
1000 u_int16_t flags;
1002 sc = device_get_softc(dev);
1004 tl_mii_sync(sc);
1006 flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
1008 for (i = 0; i < MII_NPHY; i++)
1009 tl_miibus_writereg(dev, i, MII_BMCR, flags);
1011 tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
1012 DELAY(50000);
1013 tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
1014 tl_mii_sync(sc);
1015 while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
1017 DELAY(50000);
1018 return;
1021 static void tl_softreset(sc, internal)
1022 struct tl_softc *sc;
1023 int internal;
1025 u_int32_t cmd, dummy, i;
1027 /* Assert the adapter reset bit. */
1028 CMD_SET(sc, TL_CMD_ADRST);
1030 /* Turn off interrupts */
1031 CMD_SET(sc, TL_CMD_INTSOFF);
1033 /* First, clear the stats registers. */
1034 for (i = 0; i < 5; i++)
1035 dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
1037 /* Clear Areg and Hash registers */
1038 for (i = 0; i < 8; i++)
1039 tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
1042 * Set up Netconfig register. Enable one channel and
1043 * one fragment mode.
1045 tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
1046 if (internal && !sc->tl_bitrate) {
1047 tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1048 } else {
1049 tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1052 /* Handle cards with bitrate devices. */
1053 if (sc->tl_bitrate)
1054 tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
1057 * Load adapter irq pacing timer and tx threshold.
1058 * We make the transmit threshold 1 initially but we may
1059 * change that later.
1061 cmd = CSR_READ_4(sc, TL_HOSTCMD);
1062 cmd |= TL_CMD_NES;
1063 cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
1064 CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
1065 CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
1067 /* Unreset the MII */
1068 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
1070 /* Take the adapter out of reset */
1071 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
1073 /* Wait for things to settle down a little. */
1074 DELAY(500);
1076 return;
1080 * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
1081 * against our list and return its name if we find a match.
1083 static int tl_probe(dev)
1084 device_t dev;
1086 struct tl_type *t;
1088 t = tl_devs;
1090 while(t->tl_name != NULL) {
1091 if ((pci_get_vendor(dev) == t->tl_vid) &&
1092 (pci_get_device(dev) == t->tl_did)) {
1093 device_set_desc(dev, t->tl_name);
1094 return(0);
1096 t++;
1099 return(ENXIO);
1102 static int tl_attach(dev)
1103 device_t dev;
1105 int s, i;
1106 u_int32_t command;
1107 u_int16_t did, vid;
1108 struct tl_type *t;
1109 struct ifnet *ifp;
1110 struct tl_softc *sc;
1111 int unit, error = 0, rid;
1113 s = splimp();
1115 vid = pci_get_vendor(dev);
1116 did = pci_get_device(dev);
1117 sc = device_get_softc(dev);
1118 unit = device_get_unit(dev);
1119 bzero(sc, sizeof(struct tl_softc));
1121 t = tl_devs;
1122 while(t->tl_name != NULL) {
1123 if (vid == t->tl_vid && did == t->tl_did)
1124 break;
1125 t++;
1128 if (t->tl_name == NULL) {
1129 printf("tl%d: unknown device!?\n", unit);
1130 goto fail;
1134 * Map control/status registers.
1136 command = pci_read_config(dev, PCIR_COMMAND, 4);
1137 command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1138 pci_write_config(dev, PCIR_COMMAND, command, 4);
1139 command = pci_read_config(dev, PCIR_COMMAND, 4);
1141 #ifdef TL_USEIOSPACE
1142 if (!(command & PCIM_CMD_PORTEN)) {
1143 printf("tl%d: failed to enable I/O ports!\n", unit);
1144 error = ENXIO;
1145 goto fail;
1148 rid = TL_PCI_LOIO;
1149 sc->tl_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
1150 0, ~0, 1, RF_ACTIVE);
1153 * Some cards have the I/O and memory mapped address registers
1154 * reversed. Try both combinations before giving up.
1156 if (sc->tl_res == NULL) {
1157 rid = TL_PCI_LOMEM;
1158 sc->tl_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
1159 0, ~0, 1, RF_ACTIVE);
1161 #else
1162 if (!(command & PCIM_CMD_MEMEN)) {
1163 printf("tl%d: failed to enable memory mapping!\n", unit);
1164 error = ENXIO;
1165 goto fail;
1168 rid = TL_PCI_LOMEM;
1169 sc->tl_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1170 0, ~0, 1, RF_ACTIVE);
1171 if (sc->tl_res == NULL) {
1172 rid = TL_PCI_LOIO;
1173 sc->tl_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1174 0, ~0, 1, RF_ACTIVE);
1176 #endif
1178 if (sc->tl_res == NULL) {
1179 printf("tl%d: couldn't map ports/memory\n", unit);
1180 error = ENXIO;
1181 goto fail;
1184 sc->tl_btag = rman_get_bustag(sc->tl_res);
1185 sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
1187 #ifdef notdef
1189 * The ThunderLAN manual suggests jacking the PCI latency
1190 * timer all the way up to its maximum value. I'm not sure
1191 * if this is really necessary, but what the manual wants,
1192 * the manual gets.
1194 command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
1195 command |= 0x0000FF00;
1196 pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
1197 #endif
1199 /* Allocate interrupt */
1200 rid = 0;
1201 sc->tl_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1202 RF_SHAREABLE | RF_ACTIVE);
1204 if (sc->tl_irq == NULL) {
1205 bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1206 printf("tl%d: couldn't map interrupt\n", unit);
1207 error = ENXIO;
1208 goto fail;
1211 error = bus_setup_intr(dev, sc->tl_irq, INTR_TYPE_NET,
1212 tl_intr, sc, &sc->tl_intrhand);
1214 if (error) {
1215 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1216 bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1217 printf("tl%d: couldn't set up irq\n", unit);
1218 goto fail;
1222 * Now allocate memory for the TX and RX lists.
1224 sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
1225 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1227 if (sc->tl_ldata == NULL) {
1228 bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1229 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1230 bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1231 printf("tl%d: no memory for list buffers!\n", unit);
1232 error = ENXIO;
1233 goto fail;
1236 bzero(sc->tl_ldata, sizeof(struct tl_list_data));
1238 sc->tl_unit = unit;
1239 sc->tl_dinfo = t;
1240 if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID)
1241 sc->tl_eeaddr = TL_EEPROM_EADDR;
1242 if (t->tl_vid == OLICOM_VENDORID)
1243 sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1245 /* Reset the adapter. */
1246 tl_softreset(sc, 1);
1247 tl_hardreset(dev);
1248 tl_softreset(sc, 1);
1251 * Get station address from the EEPROM.
1253 if (tl_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1254 sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1255 bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1256 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1257 bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1258 contigfree(sc->tl_ldata,
1259 sizeof(struct tl_list_data), M_DEVBUF);
1260 printf("tl%d: failed to read station address\n", unit);
1261 error = ENXIO;
1262 goto fail;
1266 * XXX Olicom, in its desire to be different from the
1267 * rest of the world, has done strange things with the
1268 * encoding of the station address in the EEPROM. First
1269 * of all, they store the address at offset 0xF8 rather
1270 * than at 0x83 like the ThunderLAN manual suggests.
1271 * Second, they store the address in three 16-bit words in
1272 * network byte order, as opposed to storing it sequentially
1273 * like all the other ThunderLAN cards. In order to get
1274 * the station address in a form that matches what the Olicom
1275 * diagnostic utility specifies, we have to byte-swap each
1276 * word. To make things even more confusing, neither 00:00:28
1277 * nor 00:00:24 appear in the IEEE OUI database.
1279 if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) {
1280 for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1281 u_int16_t *p;
1282 p = (u_int16_t *)&sc->arpcom.ac_enaddr[i];
1283 *p = ntohs(*p);
1287 ifp = &sc->arpcom.ac_if;
1288 ifp->if_softc = sc;
1289 if_initname(ifp, "tl", sc->tl_unit);
1290 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1291 ifp->if_ioctl = tl_ioctl;
1292 ifp->if_start = tl_start;
1293 ifp->if_watchdog = tl_watchdog;
1294 ifp->if_init = tl_init;
1295 ifp->if_mtu = ETHERMTU;
1296 ifq_set_maxlen(&ifp->if_snd, TL_TX_LIST_CNT - 1);
1297 ifq_set_ready(&ifp->if_snd);
1298 callout_init(&sc->tl_stat_timer);
1300 /* Reset the adapter again. */
1301 tl_softreset(sc, 1);
1302 tl_hardreset(dev);
1303 tl_softreset(sc, 1);
1306 * Do MII setup. If no PHYs are found, then this is a
1307 * bitrate ThunderLAN chip that only supports 10baseT
1308 * and AUI/BNC.
1310 if (mii_phy_probe(dev, &sc->tl_miibus,
1311 tl_ifmedia_upd, tl_ifmedia_sts)) {
1312 struct ifmedia *ifm;
1313 sc->tl_bitrate = 1;
1314 ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1315 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1316 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1317 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1318 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1319 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
1320 /* Reset again, this time setting bitrate mode. */
1321 tl_softreset(sc, 1);
1322 ifm = &sc->ifmedia;
1323 ifm->ifm_media = ifm->ifm_cur->ifm_media;
1324 tl_ifmedia_upd(ifp);
1328 * Call MI attach routine.
1330 ether_ifattach(ifp, sc->arpcom.ac_enaddr);
1332 fail:
1333 splx(s);
1334 return(error);
1337 static int tl_detach(dev)
1338 device_t dev;
1340 struct tl_softc *sc;
1341 struct ifnet *ifp;
1342 int s;
1344 s = splimp();
1346 sc = device_get_softc(dev);
1347 ifp = &sc->arpcom.ac_if;
1349 tl_stop(sc);
1350 ether_ifdetach(ifp);
1352 bus_generic_detach(dev);
1353 device_delete_child(dev, sc->tl_miibus);
1355 contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
1356 if (sc->tl_bitrate)
1357 ifmedia_removeall(&sc->ifmedia);
1359 bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1360 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1361 bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1363 splx(s);
1365 return(0);
1369 * Initialize the transmit lists.
1371 static int tl_list_tx_init(sc)
1372 struct tl_softc *sc;
1374 struct tl_chain_data *cd;
1375 struct tl_list_data *ld;
1376 int i;
1378 cd = &sc->tl_cdata;
1379 ld = sc->tl_ldata;
1380 for (i = 0; i < TL_TX_LIST_CNT; i++) {
1381 cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
1382 if (i == (TL_TX_LIST_CNT - 1))
1383 cd->tl_tx_chain[i].tl_next = NULL;
1384 else
1385 cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
1388 cd->tl_tx_free = &cd->tl_tx_chain[0];
1389 cd->tl_tx_tail = cd->tl_tx_head = NULL;
1390 sc->tl_txeoc = 1;
1392 return(0);
1396 * Initialize the RX lists and allocate mbufs for them.
1398 static int tl_list_rx_init(sc)
1399 struct tl_softc *sc;
1401 struct tl_chain_data *cd;
1402 struct tl_list_data *ld;
1403 int i;
1405 cd = &sc->tl_cdata;
1406 ld = sc->tl_ldata;
1408 for (i = 0; i < TL_RX_LIST_CNT; i++) {
1409 cd->tl_rx_chain[i].tl_ptr =
1410 (struct tl_list_onefrag *)&ld->tl_rx_list[i];
1411 if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
1412 return(ENOBUFS);
1413 if (i == (TL_RX_LIST_CNT - 1)) {
1414 cd->tl_rx_chain[i].tl_next = NULL;
1415 ld->tl_rx_list[i].tlist_fptr = 0;
1416 } else {
1417 cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
1418 ld->tl_rx_list[i].tlist_fptr =
1419 vtophys(&ld->tl_rx_list[i + 1]);
1423 cd->tl_rx_head = &cd->tl_rx_chain[0];
1424 cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1426 return(0);
1429 static int tl_newbuf(sc, c)
1430 struct tl_softc *sc;
1431 struct tl_chain_onefrag *c;
1433 struct mbuf *m_new = NULL;
1435 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1436 if (m_new == NULL)
1437 return(ENOBUFS);
1439 MCLGET(m_new, MB_DONTWAIT);
1440 if (!(m_new->m_flags & M_EXT)) {
1441 m_freem(m_new);
1442 return(ENOBUFS);
1445 #ifdef __alpha__
1446 m_new->m_data += 2;
1447 #endif
1449 c->tl_mbuf = m_new;
1450 c->tl_next = NULL;
1451 c->tl_ptr->tlist_frsize = MCLBYTES;
1452 c->tl_ptr->tlist_fptr = 0;
1453 c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
1454 c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1455 c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1457 return(0);
1460 * Interrupt handler for RX 'end of frame' condition (EOF). This
1461 * tells us that a full ethernet frame has been captured and we need
1462 * to handle it.
1464 * Reception is done using 'lists' which consist of a header and a
1465 * series of 10 data count/data address pairs that point to buffers.
1466 * Initially you're supposed to create a list, populate it with pointers
1467 * to buffers, then load the physical address of the list into the
1468 * ch_parm register. The adapter is then supposed to DMA the received
1469 * frame into the buffers for you.
1471 * To make things as fast as possible, we have the chip DMA directly
1472 * into mbufs. This saves us from having to do a buffer copy: we can
1473 * just hand the mbufs directly to ether_input(). Once the frame has
1474 * been sent on its way, the 'list' structure is assigned a new buffer
1475 * and moved to the end of the RX chain. As long we we stay ahead of
1476 * the chip, it will always think it has an endless receive channel.
1478 * If we happen to fall behind and the chip manages to fill up all of
1479 * the buffers, it will generate an end of channel interrupt and wait
1480 * for us to empty the chain and restart the receiver.
1482 static int tl_intvec_rxeof(xsc, type)
1483 void *xsc;
1484 u_int32_t type;
1486 struct tl_softc *sc;
1487 int r = 0, total_len = 0;
1488 struct ether_header *eh;
1489 struct mbuf *m;
1490 struct ifnet *ifp;
1491 struct tl_chain_onefrag *cur_rx;
1493 sc = xsc;
1494 ifp = &sc->arpcom.ac_if;
1496 while(sc->tl_cdata.tl_rx_head != NULL) {
1497 cur_rx = sc->tl_cdata.tl_rx_head;
1498 if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1499 break;
1500 r++;
1501 sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1502 m = cur_rx->tl_mbuf;
1503 total_len = cur_rx->tl_ptr->tlist_frsize;
1505 if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1506 ifp->if_ierrors++;
1507 cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1508 cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1509 cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1510 continue;
1513 sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1514 vtophys(cur_rx->tl_ptr);
1515 sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1516 sc->tl_cdata.tl_rx_tail = cur_rx;
1518 eh = mtod(m, struct ether_header *);
1519 m->m_pkthdr.rcvif = ifp;
1520 m->m_pkthdr.len = m->m_len = total_len;
1523 * Note: when the ThunderLAN chip is in 'capture all
1524 * frames' mode, it will receive its own transmissions.
1525 * We drop don't need to process our own transmissions,
1526 * so we drop them here and continue.
1528 /*if (ifp->if_flags & IFF_PROMISC && */
1529 if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
1530 ETHER_ADDR_LEN)) {
1531 m_freem(m);
1532 continue;
1535 (*ifp->if_input)(ifp, m);
1538 return(r);
1542 * The RX-EOC condition hits when the ch_parm address hasn't been
1543 * initialized or the adapter reached a list with a forward pointer
1544 * of 0 (which indicates the end of the chain). In our case, this means
1545 * the card has hit the end of the receive buffer chain and we need to
1546 * empty out the buffers and shift the pointer back to the beginning again.
1548 static int tl_intvec_rxeoc(xsc, type)
1549 void *xsc;
1550 u_int32_t type;
1552 struct tl_softc *sc;
1553 int r;
1554 struct tl_chain_data *cd;
1557 sc = xsc;
1558 cd = &sc->tl_cdata;
1560 /* Flush out the receive queue and ack RXEOF interrupts. */
1561 r = tl_intvec_rxeof(xsc, type);
1562 CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1563 r = 1;
1564 cd->tl_rx_head = &cd->tl_rx_chain[0];
1565 cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1566 CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
1567 r |= (TL_CMD_GO|TL_CMD_RT);
1568 return(r);
1571 static int tl_intvec_txeof(xsc, type)
1572 void *xsc;
1573 u_int32_t type;
1575 struct tl_softc *sc;
1576 int r = 0;
1577 struct tl_chain *cur_tx;
1579 sc = xsc;
1582 * Go through our tx list and free mbufs for those
1583 * frames that have been sent.
1585 while (sc->tl_cdata.tl_tx_head != NULL) {
1586 cur_tx = sc->tl_cdata.tl_tx_head;
1587 if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1588 break;
1589 sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1591 r++;
1592 m_freem(cur_tx->tl_mbuf);
1593 cur_tx->tl_mbuf = NULL;
1595 cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1596 sc->tl_cdata.tl_tx_free = cur_tx;
1597 if (!cur_tx->tl_ptr->tlist_fptr)
1598 break;
1601 return(r);
1605 * The transmit end of channel interrupt. The adapter triggers this
1606 * interrupt to tell us it hit the end of the current transmit list.
1608 * A note about this: it's possible for a condition to arise where
1609 * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1610 * You have to avoid this since the chip expects things to go in a
1611 * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1612 * When the TXEOF handler is called, it will free all of the transmitted
1613 * frames and reset the tx_head pointer to NULL. However, a TXEOC
1614 * interrupt should be received and acknowledged before any more frames
1615 * are queued for transmission. If tl_statrt() is called after TXEOF
1616 * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1617 * it could attempt to issue a transmit command prematurely.
1619 * To guard against this, tl_start() will only issue transmit commands
1620 * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1621 * can set this flag once tl_start() has cleared it.
1623 static int tl_intvec_txeoc(xsc, type)
1624 void *xsc;
1625 u_int32_t type;
1627 struct tl_softc *sc;
1628 struct ifnet *ifp;
1629 u_int32_t cmd;
1631 sc = xsc;
1632 ifp = &sc->arpcom.ac_if;
1634 /* Clear the timeout timer. */
1635 ifp->if_timer = 0;
1637 if (sc->tl_cdata.tl_tx_head == NULL) {
1638 ifp->if_flags &= ~IFF_OACTIVE;
1639 sc->tl_cdata.tl_tx_tail = NULL;
1640 sc->tl_txeoc = 1;
1641 } else {
1642 sc->tl_txeoc = 0;
1643 /* First we have to ack the EOC interrupt. */
1644 CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1645 /* Then load the address of the next TX list. */
1646 CSR_WRITE_4(sc, TL_CH_PARM,
1647 vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
1648 /* Restart TX channel. */
1649 cmd = CSR_READ_4(sc, TL_HOSTCMD);
1650 cmd &= ~TL_CMD_RT;
1651 cmd |= TL_CMD_GO|TL_CMD_INTSON;
1652 CMD_PUT(sc, cmd);
1653 return(0);
1656 return(1);
1659 static int tl_intvec_adchk(xsc, type)
1660 void *xsc;
1661 u_int32_t type;
1663 struct tl_softc *sc;
1665 sc = xsc;
1667 if (type)
1668 printf("tl%d: adapter check: %x\n", sc->tl_unit,
1669 (unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1671 tl_softreset(sc, 1);
1672 tl_stop(sc);
1673 tl_init(sc);
1674 CMD_SET(sc, TL_CMD_INTSON);
1676 return(0);
1679 static int tl_intvec_netsts(xsc, type)
1680 void *xsc;
1681 u_int32_t type;
1683 struct tl_softc *sc;
1684 u_int16_t netsts;
1686 sc = xsc;
1688 netsts = tl_dio_read16(sc, TL_NETSTS);
1689 tl_dio_write16(sc, TL_NETSTS, netsts);
1691 printf("tl%d: network status: %x\n", sc->tl_unit, netsts);
1693 return(1);
1696 static void tl_intr(xsc)
1697 void *xsc;
1699 struct tl_softc *sc;
1700 struct ifnet *ifp;
1701 int r = 0;
1702 u_int32_t type = 0;
1703 u_int16_t ints = 0;
1704 u_int8_t ivec = 0;
1706 sc = xsc;
1708 /* Disable interrupts */
1709 ints = CSR_READ_2(sc, TL_HOST_INT);
1710 CSR_WRITE_2(sc, TL_HOST_INT, ints);
1711 type = (ints << 16) & 0xFFFF0000;
1712 ivec = (ints & TL_VEC_MASK) >> 5;
1713 ints = (ints & TL_INT_MASK) >> 2;
1715 ifp = &sc->arpcom.ac_if;
1717 switch(ints) {
1718 case (TL_INTR_INVALID):
1719 #ifdef DIAGNOSTIC
1720 printf("tl%d: got an invalid interrupt!\n", sc->tl_unit);
1721 #endif
1722 /* Re-enable interrupts but don't ack this one. */
1723 CMD_PUT(sc, type);
1724 r = 0;
1725 break;
1726 case (TL_INTR_TXEOF):
1727 r = tl_intvec_txeof((void *)sc, type);
1728 break;
1729 case (TL_INTR_TXEOC):
1730 r = tl_intvec_txeoc((void *)sc, type);
1731 break;
1732 case (TL_INTR_STATOFLOW):
1733 tl_stats_update(sc);
1734 r = 1;
1735 break;
1736 case (TL_INTR_RXEOF):
1737 r = tl_intvec_rxeof((void *)sc, type);
1738 break;
1739 case (TL_INTR_DUMMY):
1740 printf("tl%d: got a dummy interrupt\n", sc->tl_unit);
1741 r = 1;
1742 break;
1743 case (TL_INTR_ADCHK):
1744 if (ivec)
1745 r = tl_intvec_adchk((void *)sc, type);
1746 else
1747 r = tl_intvec_netsts((void *)sc, type);
1748 break;
1749 case (TL_INTR_RXEOC):
1750 r = tl_intvec_rxeoc((void *)sc, type);
1751 break;
1752 default:
1753 printf("%s: bogus interrupt type\n", ifp->if_xname);
1754 break;
1757 /* Re-enable interrupts */
1758 if (r) {
1759 CMD_PUT(sc, TL_CMD_ACK | r | type);
1762 if (!ifq_is_empty(&ifp->if_snd))
1763 tl_start(ifp);
1765 return;
1768 static void tl_stats_update(xsc)
1769 void *xsc;
1771 struct tl_softc *sc;
1772 struct ifnet *ifp;
1773 struct tl_stats tl_stats;
1774 struct mii_data *mii;
1775 u_int32_t *p;
1776 int s;
1778 s = splimp();
1780 bzero((char *)&tl_stats, sizeof(struct tl_stats));
1782 sc = xsc;
1783 ifp = &sc->arpcom.ac_if;
1785 p = (u_int32_t *)&tl_stats;
1787 CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1788 *p++ = CSR_READ_4(sc, TL_DIO_DATA);
1789 *p++ = CSR_READ_4(sc, TL_DIO_DATA);
1790 *p++ = CSR_READ_4(sc, TL_DIO_DATA);
1791 *p++ = CSR_READ_4(sc, TL_DIO_DATA);
1792 *p++ = CSR_READ_4(sc, TL_DIO_DATA);
1794 ifp->if_opackets += tl_tx_goodframes(tl_stats);
1795 ifp->if_collisions += tl_stats.tl_tx_single_collision +
1796 tl_stats.tl_tx_multi_collision;
1797 ifp->if_ipackets += tl_rx_goodframes(tl_stats);
1798 ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
1799 tl_rx_overrun(tl_stats);
1800 ifp->if_oerrors += tl_tx_underrun(tl_stats);
1802 if (tl_tx_underrun(tl_stats)) {
1803 u_int8_t tx_thresh;
1804 tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1805 if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1806 tx_thresh >>= 4;
1807 tx_thresh++;
1808 printf("tl%d: tx underrun -- increasing "
1809 "tx threshold to %d bytes\n", sc->tl_unit,
1810 (64 * (tx_thresh * 4)));
1811 tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1812 tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1816 callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
1818 if (!sc->tl_bitrate) {
1819 mii = device_get_softc(sc->tl_miibus);
1820 mii_tick(mii);
1823 splx(s);
1825 return;
1829 * Encapsulate an mbuf chain in a list by coupling the mbuf data
1830 * pointers to the fragment pointers.
1832 static int tl_encap(sc, c, m_head)
1833 struct tl_softc *sc;
1834 struct tl_chain *c;
1835 struct mbuf *m_head;
1837 int frag = 0;
1838 struct tl_frag *f = NULL;
1839 int total_len;
1840 struct mbuf *m;
1843 * Start packing the mbufs in this chain into
1844 * the fragment pointers. Stop when we run out
1845 * of fragments or hit the end of the mbuf chain.
1847 m = m_head;
1848 total_len = 0;
1850 for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1851 if (m->m_len != 0) {
1852 if (frag == TL_MAXFRAGS)
1853 break;
1854 total_len+= m->m_len;
1855 c->tl_ptr->tl_frag[frag].tlist_dadr =
1856 vtophys(mtod(m, vm_offset_t));
1857 c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1858 frag++;
1863 * Handle special cases.
1864 * Special case #1: we used up all 10 fragments, but
1865 * we have more mbufs left in the chain. Copy the
1866 * data into an mbuf cluster. Note that we don't
1867 * bother clearing the values in the other fragment
1868 * pointers/counters; it wouldn't gain us anything,
1869 * and would waste cycles.
1871 if (m != NULL) {
1872 struct mbuf *m_new = NULL;
1874 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1875 if (m_new == NULL) {
1876 printf("tl%d: no memory for tx list\n", sc->tl_unit);
1877 return(1);
1879 if (m_head->m_pkthdr.len > MHLEN) {
1880 MCLGET(m_new, MB_DONTWAIT);
1881 if (!(m_new->m_flags & M_EXT)) {
1882 m_freem(m_new);
1883 printf("tl%d: no memory for tx list\n",
1884 sc->tl_unit);
1885 return(1);
1888 m_copydata(m_head, 0, m_head->m_pkthdr.len,
1889 mtod(m_new, caddr_t));
1890 m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1891 m_freem(m_head);
1892 m_head = m_new;
1893 f = &c->tl_ptr->tl_frag[0];
1894 f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
1895 f->tlist_dcnt = total_len = m_new->m_len;
1896 frag = 1;
1900 * Special case #2: the frame is smaller than the minimum
1901 * frame size. We have to pad it to make the chip happy.
1903 if (total_len < TL_MIN_FRAMELEN) {
1904 if (frag == TL_MAXFRAGS)
1905 printf("tl%d: all frags filled but "
1906 "frame still to small!\n", sc->tl_unit);
1907 f = &c->tl_ptr->tl_frag[frag];
1908 f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1909 f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
1910 total_len += f->tlist_dcnt;
1911 frag++;
1914 c->tl_mbuf = m_head;
1915 c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1916 c->tl_ptr->tlist_frsize = total_len;
1917 c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1918 c->tl_ptr->tlist_fptr = 0;
1920 return(0);
1924 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1925 * to the mbuf data regions directly in the transmit lists. We also save a
1926 * copy of the pointers since the transmit list fragment pointers are
1927 * physical addresses.
1929 static void tl_start(ifp)
1930 struct ifnet *ifp;
1932 struct tl_softc *sc;
1933 struct mbuf *m_head = NULL;
1934 u_int32_t cmd;
1935 struct tl_chain *prev = NULL, *cur_tx = NULL, *start_tx;
1937 sc = ifp->if_softc;
1940 * Check for an available queue slot. If there are none,
1941 * punt.
1943 if (sc->tl_cdata.tl_tx_free == NULL) {
1944 ifp->if_flags |= IFF_OACTIVE;
1945 return;
1948 start_tx = sc->tl_cdata.tl_tx_free;
1950 while(sc->tl_cdata.tl_tx_free != NULL) {
1951 m_head = ifq_dequeue(&ifp->if_snd);
1952 if (m_head == NULL)
1953 break;
1955 /* Pick a chain member off the free list. */
1956 cur_tx = sc->tl_cdata.tl_tx_free;
1957 sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1959 cur_tx->tl_next = NULL;
1961 /* Pack the data into the list. */
1962 tl_encap(sc, cur_tx, m_head);
1964 /* Chain it together */
1965 if (prev != NULL) {
1966 prev->tl_next = cur_tx;
1967 prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
1969 prev = cur_tx;
1971 BPF_MTAP(ifp, cur_tx->tl_mbuf);
1975 * If there are no packets queued, bail.
1977 if (cur_tx == NULL)
1978 return;
1981 * That's all we can stands, we can't stands no more.
1982 * If there are no other transfers pending, then issue the
1983 * TX GO command to the adapter to start things moving.
1984 * Otherwise, just leave the data in the queue and let
1985 * the EOF/EOC interrupt handler send.
1987 if (sc->tl_cdata.tl_tx_head == NULL) {
1988 sc->tl_cdata.tl_tx_head = start_tx;
1989 sc->tl_cdata.tl_tx_tail = cur_tx;
1991 if (sc->tl_txeoc) {
1992 sc->tl_txeoc = 0;
1993 CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
1994 cmd = CSR_READ_4(sc, TL_HOSTCMD);
1995 cmd &= ~TL_CMD_RT;
1996 cmd |= TL_CMD_GO|TL_CMD_INTSON;
1997 CMD_PUT(sc, cmd);
1999 } else {
2000 sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
2001 sc->tl_cdata.tl_tx_tail = cur_tx;
2005 * Set a timeout in case the chip goes out to lunch.
2007 ifp->if_timer = 5;
2009 return;
2012 static void tl_init(xsc)
2013 void *xsc;
2015 struct tl_softc *sc = xsc;
2016 struct ifnet *ifp = &sc->arpcom.ac_if;
2017 int s;
2018 struct mii_data *mii;
2020 s = splimp();
2022 ifp = &sc->arpcom.ac_if;
2025 * Cancel pending I/O.
2027 tl_stop(sc);
2029 /* Initialize TX FIFO threshold */
2030 tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
2031 tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
2033 /* Set PCI burst size */
2034 tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
2037 * Set 'capture all frames' bit for promiscuous mode.
2039 if (ifp->if_flags & IFF_PROMISC)
2040 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2041 else
2042 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2045 * Set capture broadcast bit to capture broadcast frames.
2047 if (ifp->if_flags & IFF_BROADCAST)
2048 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2049 else
2050 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2052 tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
2054 /* Init our MAC address */
2055 tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
2057 /* Init multicast filter, if needed. */
2058 tl_setmulti(sc);
2060 /* Init circular RX list. */
2061 if (tl_list_rx_init(sc) == ENOBUFS) {
2062 printf("tl%d: initialization failed: no "
2063 "memory for rx buffers\n", sc->tl_unit);
2064 tl_stop(sc);
2065 return;
2068 /* Init TX pointers. */
2069 tl_list_tx_init(sc);
2071 /* Enable PCI interrupts. */
2072 CMD_SET(sc, TL_CMD_INTSON);
2074 /* Load the address of the rx list */
2075 CMD_SET(sc, TL_CMD_RT);
2076 CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
2078 if (!sc->tl_bitrate) {
2079 if (sc->tl_miibus != NULL) {
2080 mii = device_get_softc(sc->tl_miibus);
2081 mii_mediachg(mii);
2085 /* Send the RX go command */
2086 CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
2088 ifp->if_flags |= IFF_RUNNING;
2089 ifp->if_flags &= ~IFF_OACTIVE;
2091 (void)splx(s);
2093 /* Start the stats update counter */
2094 callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
2098 * Set media options.
2100 static int tl_ifmedia_upd(ifp)
2101 struct ifnet *ifp;
2103 struct tl_softc *sc;
2104 struct mii_data *mii = NULL;
2106 sc = ifp->if_softc;
2108 if (sc->tl_bitrate)
2109 tl_setmode(sc, sc->ifmedia.ifm_media);
2110 else {
2111 mii = device_get_softc(sc->tl_miibus);
2112 mii_mediachg(mii);
2115 return(0);
2119 * Report current media status.
2121 static void tl_ifmedia_sts(ifp, ifmr)
2122 struct ifnet *ifp;
2123 struct ifmediareq *ifmr;
2125 struct tl_softc *sc;
2126 struct mii_data *mii;
2128 sc = ifp->if_softc;
2130 ifmr->ifm_active = IFM_ETHER;
2132 if (sc->tl_bitrate) {
2133 if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
2134 ifmr->ifm_active = IFM_ETHER|IFM_10_5;
2135 else
2136 ifmr->ifm_active = IFM_ETHER|IFM_10_T;
2137 if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
2138 ifmr->ifm_active |= IFM_HDX;
2139 else
2140 ifmr->ifm_active |= IFM_FDX;
2141 return;
2142 } else {
2143 mii = device_get_softc(sc->tl_miibus);
2144 mii_pollstat(mii);
2145 ifmr->ifm_active = mii->mii_media_active;
2146 ifmr->ifm_status = mii->mii_media_status;
2149 return;
2152 static int tl_ioctl(ifp, command, data, cr)
2153 struct ifnet *ifp;
2154 u_long command;
2155 caddr_t data;
2156 struct ucred *cr;
2158 struct tl_softc *sc = ifp->if_softc;
2159 struct ifreq *ifr = (struct ifreq *) data;
2160 int s, error = 0;
2162 s = splimp();
2164 switch(command) {
2165 case SIOCSIFADDR:
2166 case SIOCGIFADDR:
2167 case SIOCSIFMTU:
2168 error = ether_ioctl(ifp, command, data);
2169 break;
2170 case SIOCSIFFLAGS:
2171 if (ifp->if_flags & IFF_UP) {
2172 if (ifp->if_flags & IFF_RUNNING &&
2173 ifp->if_flags & IFF_PROMISC &&
2174 !(sc->tl_if_flags & IFF_PROMISC)) {
2175 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2176 tl_setmulti(sc);
2177 } else if (ifp->if_flags & IFF_RUNNING &&
2178 !(ifp->if_flags & IFF_PROMISC) &&
2179 sc->tl_if_flags & IFF_PROMISC) {
2180 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2181 tl_setmulti(sc);
2182 } else
2183 tl_init(sc);
2184 } else {
2185 if (ifp->if_flags & IFF_RUNNING) {
2186 tl_stop(sc);
2189 sc->tl_if_flags = ifp->if_flags;
2190 error = 0;
2191 break;
2192 case SIOCADDMULTI:
2193 case SIOCDELMULTI:
2194 tl_setmulti(sc);
2195 error = 0;
2196 break;
2197 case SIOCSIFMEDIA:
2198 case SIOCGIFMEDIA:
2199 if (sc->tl_bitrate)
2200 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2201 else {
2202 struct mii_data *mii;
2203 mii = device_get_softc(sc->tl_miibus);
2204 error = ifmedia_ioctl(ifp, ifr,
2205 &mii->mii_media, command);
2207 break;
2208 default:
2209 error = EINVAL;
2210 break;
2213 (void)splx(s);
2215 return(error);
2218 static void tl_watchdog(ifp)
2219 struct ifnet *ifp;
2221 struct tl_softc *sc;
2223 sc = ifp->if_softc;
2225 printf("tl%d: device timeout\n", sc->tl_unit);
2227 ifp->if_oerrors++;
2229 tl_softreset(sc, 1);
2230 tl_init(sc);
2232 return;
2236 * Stop the adapter and free any mbufs allocated to the
2237 * RX and TX lists.
2239 static void tl_stop(sc)
2240 struct tl_softc *sc;
2242 int i;
2243 struct ifnet *ifp;
2245 ifp = &sc->arpcom.ac_if;
2247 /* Stop the stats updater. */
2248 callout_stop(&sc->tl_stat_timer);
2250 /* Stop the transmitter */
2251 CMD_CLR(sc, TL_CMD_RT);
2252 CMD_SET(sc, TL_CMD_STOP);
2253 CSR_WRITE_4(sc, TL_CH_PARM, 0);
2255 /* Stop the receiver */
2256 CMD_SET(sc, TL_CMD_RT);
2257 CMD_SET(sc, TL_CMD_STOP);
2258 CSR_WRITE_4(sc, TL_CH_PARM, 0);
2261 * Disable host interrupts.
2263 CMD_SET(sc, TL_CMD_INTSOFF);
2266 * Clear list pointer.
2268 CSR_WRITE_4(sc, TL_CH_PARM, 0);
2271 * Free the RX lists.
2273 for (i = 0; i < TL_RX_LIST_CNT; i++) {
2274 if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
2275 m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
2276 sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
2279 bzero((char *)&sc->tl_ldata->tl_rx_list,
2280 sizeof(sc->tl_ldata->tl_rx_list));
2283 * Free the TX list buffers.
2285 for (i = 0; i < TL_TX_LIST_CNT; i++) {
2286 if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
2287 m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
2288 sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
2291 bzero((char *)&sc->tl_ldata->tl_tx_list,
2292 sizeof(sc->tl_ldata->tl_tx_list));
2294 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2296 return;
2300 * Stop all chip I/O so that the kernel's probe routines don't
2301 * get confused by errant DMAs when rebooting.
2303 static void tl_shutdown(dev)
2304 device_t dev;
2306 struct tl_softc *sc;
2308 sc = device_get_softc(dev);
2310 tl_stop(sc);
2312 return;