kernel - Fix "cleaned vnode isn't" panic
[dragonfly.git] / sys / kern / vfs_subr.c
blobb70331d060b76057fb93a3f2a33ae84c205303a5
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40 * $DragonFly: src/sys/kern/vfs_subr.c,v 1.118 2008/09/17 21:44:18 dillon Exp $
44 * External virtual filesystem routines
46 #include "opt_ddb.h"
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/domain.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fcntl.h>
56 #include <sys/file.h>
57 #include <sys/kernel.h>
58 #include <sys/kthread.h>
59 #include <sys/malloc.h>
60 #include <sys/mbuf.h>
61 #include <sys/mount.h>
62 #include <sys/priv.h>
63 #include <sys/proc.h>
64 #include <sys/reboot.h>
65 #include <sys/socket.h>
66 #include <sys/stat.h>
67 #include <sys/sysctl.h>
68 #include <sys/syslog.h>
69 #include <sys/unistd.h>
70 #include <sys/vmmeter.h>
71 #include <sys/vnode.h>
73 #include <machine/limits.h>
75 #include <vm/vm.h>
76 #include <vm/vm_object.h>
77 #include <vm/vm_extern.h>
78 #include <vm/vm_kern.h>
79 #include <vm/pmap.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_page.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vnode_pager.h>
84 #include <vm/vm_zone.h>
86 #include <sys/buf2.h>
87 #include <sys/thread2.h>
88 #include <sys/sysref2.h>
89 #include <sys/mplock2.h>
91 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
93 int numvnodes;
94 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
95 int vfs_fastdev = 1;
96 SYSCTL_INT(_vfs, OID_AUTO, fastdev, CTLFLAG_RW, &vfs_fastdev, 0, "");
98 enum vtype iftovt_tab[16] = {
99 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
100 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
102 int vttoif_tab[9] = {
103 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
104 S_IFSOCK, S_IFIFO, S_IFMT,
107 static int reassignbufcalls;
108 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
109 &reassignbufcalls, 0, "");
110 static int reassignbufloops;
111 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
112 &reassignbufloops, 0, "");
113 static int reassignbufsortgood;
114 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
115 &reassignbufsortgood, 0, "");
116 static int reassignbufsortbad;
117 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
118 &reassignbufsortbad, 0, "");
119 static int reassignbufmethod = 1;
120 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
121 &reassignbufmethod, 0, "");
123 int nfs_mount_type = -1;
124 static struct lwkt_token spechash_token;
125 struct nfs_public nfs_pub; /* publicly exported FS */
127 int desiredvnodes;
128 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
129 &desiredvnodes, 0, "Maximum number of vnodes");
131 static void vfs_free_addrlist (struct netexport *nep);
132 static int vfs_free_netcred (struct radix_node *rn, void *w);
133 static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
134 const struct export_args *argp);
137 * Red black tree functions
139 static int rb_buf_compare(struct buf *b1, struct buf *b2);
140 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
141 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
143 static int
144 rb_buf_compare(struct buf *b1, struct buf *b2)
146 if (b1->b_loffset < b2->b_loffset)
147 return(-1);
148 if (b1->b_loffset > b2->b_loffset)
149 return(1);
150 return(0);
154 * Returns non-zero if the vnode is a candidate for lazy msyncing.
156 static __inline int
157 vshouldmsync(struct vnode *vp)
159 if (vp->v_auxrefs != 0 || vp->v_sysref.refcnt > 0)
160 return (0); /* other holders */
161 if (vp->v_object &&
162 (vp->v_object->ref_count || vp->v_object->resident_page_count)) {
163 return (0);
165 return (1);
169 * Initialize the vnode management data structures.
171 * Called from vfsinit()
173 void
174 vfs_subr_init(void)
176 int factor1;
177 int factor2;
180 * Desiredvnodes is kern.maxvnodes. We want to scale it
181 * according to available system memory but we may also have
182 * to limit it based on available KVM, which is capped on 32 bit
183 * systems.
185 * WARNING! For machines with 64-256M of ram we have to be sure
186 * that the default limit scales down well due to HAMMER
187 * taking up significantly more memory per-vnode vs UFS.
188 * We want around ~5800 on a 128M machine.
190 factor1 = 20 * (sizeof(struct vm_object) + sizeof(struct vnode));
191 factor2 = 22 * (sizeof(struct vm_object) + sizeof(struct vnode));
192 desiredvnodes =
193 imin((int64_t)vmstats.v_page_count * PAGE_SIZE / factor1,
194 KvaSize / factor2);
195 desiredvnodes = imax(desiredvnodes, maxproc * 8);
197 lwkt_token_init(&spechash_token);
201 * Knob to control the precision of file timestamps:
203 * 0 = seconds only; nanoseconds zeroed.
204 * 1 = seconds and nanoseconds, accurate within 1/HZ.
205 * 2 = seconds and nanoseconds, truncated to microseconds.
206 * >=3 = seconds and nanoseconds, maximum precision.
208 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
210 static int timestamp_precision = TSP_SEC;
211 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
212 &timestamp_precision, 0, "");
215 * Get a current timestamp.
217 * MPSAFE
219 void
220 vfs_timestamp(struct timespec *tsp)
222 struct timeval tv;
224 switch (timestamp_precision) {
225 case TSP_SEC:
226 tsp->tv_sec = time_second;
227 tsp->tv_nsec = 0;
228 break;
229 case TSP_HZ:
230 getnanotime(tsp);
231 break;
232 case TSP_USEC:
233 microtime(&tv);
234 TIMEVAL_TO_TIMESPEC(&tv, tsp);
235 break;
236 case TSP_NSEC:
237 default:
238 nanotime(tsp);
239 break;
244 * Set vnode attributes to VNOVAL
246 void
247 vattr_null(struct vattr *vap)
249 vap->va_type = VNON;
250 vap->va_size = VNOVAL;
251 vap->va_bytes = VNOVAL;
252 vap->va_mode = VNOVAL;
253 vap->va_nlink = VNOVAL;
254 vap->va_uid = VNOVAL;
255 vap->va_gid = VNOVAL;
256 vap->va_fsid = VNOVAL;
257 vap->va_fileid = VNOVAL;
258 vap->va_blocksize = VNOVAL;
259 vap->va_rmajor = VNOVAL;
260 vap->va_rminor = VNOVAL;
261 vap->va_atime.tv_sec = VNOVAL;
262 vap->va_atime.tv_nsec = VNOVAL;
263 vap->va_mtime.tv_sec = VNOVAL;
264 vap->va_mtime.tv_nsec = VNOVAL;
265 vap->va_ctime.tv_sec = VNOVAL;
266 vap->va_ctime.tv_nsec = VNOVAL;
267 vap->va_flags = VNOVAL;
268 vap->va_gen = VNOVAL;
269 vap->va_vaflags = 0;
270 /* va_*_uuid fields are only valid if related flags are set */
274 * Flush out and invalidate all buffers associated with a vnode.
276 * vp must be locked.
278 static int vinvalbuf_bp(struct buf *bp, void *data);
280 struct vinvalbuf_bp_info {
281 struct vnode *vp;
282 int slptimeo;
283 int lkflags;
284 int flags;
288 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
290 struct vinvalbuf_bp_info info;
291 vm_object_t object;
292 lwkt_tokref vlock;
293 int error;
295 lwkt_gettoken(&vlock, &vp->v_token);
298 * If we are being asked to save, call fsync to ensure that the inode
299 * is updated.
301 if (flags & V_SAVE) {
302 error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo);
303 if (error)
304 goto done;
305 if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
306 if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0)
307 goto done;
310 * Dirty bufs may be left or generated via races
311 * in circumstances where vinvalbuf() is called on
312 * a vnode not undergoing reclamation. Only
313 * panic if we are trying to reclaim the vnode.
315 if ((vp->v_flag & VRECLAIMED) &&
316 (bio_track_active(&vp->v_track_write) ||
317 !RB_EMPTY(&vp->v_rbdirty_tree))) {
318 panic("vinvalbuf: dirty bufs");
322 info.slptimeo = slptimeo;
323 info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
324 if (slpflag & PCATCH)
325 info.lkflags |= LK_PCATCH;
326 info.flags = flags;
327 info.vp = vp;
330 * Flush the buffer cache until nothing is left.
332 while (!RB_EMPTY(&vp->v_rbclean_tree) ||
333 !RB_EMPTY(&vp->v_rbdirty_tree)) {
334 error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL,
335 vinvalbuf_bp, &info);
336 if (error == 0) {
337 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
338 vinvalbuf_bp, &info);
343 * Wait for I/O completion. We may block in the pip code so we have
344 * to re-check.
346 do {
347 bio_track_wait(&vp->v_track_write, 0, 0);
348 if ((object = vp->v_object) != NULL) {
349 while (object->paging_in_progress)
350 vm_object_pip_sleep(object, "vnvlbx");
352 } while (bio_track_active(&vp->v_track_write));
355 * Destroy the copy in the VM cache, too.
357 if ((object = vp->v_object) != NULL) {
358 vm_object_page_remove(object, 0, 0,
359 (flags & V_SAVE) ? TRUE : FALSE);
362 if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
363 panic("vinvalbuf: flush failed");
364 if (!RB_EMPTY(&vp->v_rbhash_tree))
365 panic("vinvalbuf: flush failed, buffers still present");
366 error = 0;
367 done:
368 lwkt_reltoken(&vlock);
369 return (error);
372 static int
373 vinvalbuf_bp(struct buf *bp, void *data)
375 struct vinvalbuf_bp_info *info = data;
376 int error;
378 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
379 error = BUF_TIMELOCK(bp, info->lkflags,
380 "vinvalbuf", info->slptimeo);
381 if (error == 0) {
382 BUF_UNLOCK(bp);
383 error = ENOLCK;
385 if (error == ENOLCK)
386 return(0);
387 return (-error);
390 KKASSERT(bp->b_vp == info->vp);
393 * XXX Since there are no node locks for NFS, I
394 * believe there is a slight chance that a delayed
395 * write will occur while sleeping just above, so
396 * check for it. Note that vfs_bio_awrite expects
397 * buffers to reside on a queue, while bwrite() and
398 * brelse() do not.
400 * NOTE: NO B_LOCKED CHECK. Also no buf_checkwrite()
401 * check. This code will write out the buffer, period.
403 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
404 (info->flags & V_SAVE)) {
405 if (bp->b_vp == info->vp) {
406 if (bp->b_flags & B_CLUSTEROK) {
407 vfs_bio_awrite(bp);
408 } else {
409 bremfree(bp);
410 bawrite(bp);
412 } else {
413 bremfree(bp);
414 bwrite(bp);
416 } else if (info->flags & V_SAVE) {
418 * Cannot set B_NOCACHE on a clean buffer as this will
419 * destroy the VM backing store which might actually
420 * be dirty (and unsynchronized).
422 bremfree(bp);
423 bp->b_flags |= (B_INVAL | B_RELBUF);
424 brelse(bp);
425 } else {
426 bremfree(bp);
427 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
428 brelse(bp);
430 return(0);
434 * Truncate a file's buffer and pages to a specified length. This
435 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
436 * sync activity.
438 * The vnode must be locked.
440 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
441 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
442 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
443 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
446 vtruncbuf(struct vnode *vp, off_t length, int blksize)
448 off_t truncloffset;
449 const char *filename;
450 lwkt_tokref vlock;
451 int count;
454 * Round up to the *next* block, then destroy the buffers in question.
455 * Since we are only removing some of the buffers we must rely on the
456 * scan count to determine whether a loop is necessary.
458 if ((count = (int)(length % blksize)) != 0)
459 truncloffset = length + (blksize - count);
460 else
461 truncloffset = length;
463 lwkt_gettoken(&vlock, &vp->v_token);
464 do {
465 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
466 vtruncbuf_bp_trunc_cmp,
467 vtruncbuf_bp_trunc, &truncloffset);
468 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
469 vtruncbuf_bp_trunc_cmp,
470 vtruncbuf_bp_trunc, &truncloffset);
471 } while(count);
474 * For safety, fsync any remaining metadata if the file is not being
475 * truncated to 0. Since the metadata does not represent the entire
476 * dirty list we have to rely on the hit count to ensure that we get
477 * all of it.
479 if (length > 0) {
480 do {
481 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
482 vtruncbuf_bp_metasync_cmp,
483 vtruncbuf_bp_metasync, vp);
484 } while (count);
488 * Clean out any left over VM backing store.
490 * It is possible to have in-progress I/O from buffers that were
491 * not part of the truncation. This should not happen if we
492 * are truncating to 0-length.
494 vnode_pager_setsize(vp, length);
495 bio_track_wait(&vp->v_track_write, 0, 0);
498 * Debugging only
500 spin_lock_wr(&vp->v_spinlock);
501 filename = TAILQ_FIRST(&vp->v_namecache) ?
502 TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
503 spin_unlock_wr(&vp->v_spinlock);
506 * Make sure no buffers were instantiated while we were trying
507 * to clean out the remaining VM pages. This could occur due
508 * to busy dirty VM pages being flushed out to disk.
510 do {
511 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
512 vtruncbuf_bp_trunc_cmp,
513 vtruncbuf_bp_trunc, &truncloffset);
514 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
515 vtruncbuf_bp_trunc_cmp,
516 vtruncbuf_bp_trunc, &truncloffset);
517 if (count) {
518 kprintf("Warning: vtruncbuf(): Had to re-clean %d "
519 "left over buffers in %s\n", count, filename);
521 } while(count);
523 lwkt_reltoken(&vlock);
525 return (0);
529 * The callback buffer is beyond the new file EOF and must be destroyed.
530 * Note that the compare function must conform to the RB_SCAN's requirements.
532 static
534 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
536 if (bp->b_loffset >= *(off_t *)data)
537 return(0);
538 return(-1);
541 static
542 int
543 vtruncbuf_bp_trunc(struct buf *bp, void *data)
546 * Do not try to use a buffer we cannot immediately lock, but sleep
547 * anyway to prevent a livelock. The code will loop until all buffers
548 * can be acted upon.
550 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
551 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
552 BUF_UNLOCK(bp);
553 } else {
554 bremfree(bp);
555 bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
556 brelse(bp);
558 return(1);
562 * Fsync all meta-data after truncating a file to be non-zero. Only metadata
563 * blocks (with a negative loffset) are scanned.
564 * Note that the compare function must conform to the RB_SCAN's requirements.
566 static int
567 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data)
569 if (bp->b_loffset < 0)
570 return(0);
571 return(1);
574 static int
575 vtruncbuf_bp_metasync(struct buf *bp, void *data)
577 struct vnode *vp = data;
579 if (bp->b_flags & B_DELWRI) {
581 * Do not try to use a buffer we cannot immediately lock,
582 * but sleep anyway to prevent a livelock. The code will
583 * loop until all buffers can be acted upon.
585 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
586 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
587 BUF_UNLOCK(bp);
588 } else {
589 bremfree(bp);
590 if (bp->b_vp == vp)
591 bawrite(bp);
592 else
593 bwrite(bp);
595 return(1);
596 } else {
597 return(0);
602 * vfsync - implements a multipass fsync on a file which understands
603 * dependancies and meta-data. The passed vnode must be locked. The
604 * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
606 * When fsyncing data asynchronously just do one consolidated pass starting
607 * with the most negative block number. This may not get all the data due
608 * to dependancies.
610 * When fsyncing data synchronously do a data pass, then a metadata pass,
611 * then do additional data+metadata passes to try to get all the data out.
613 static int vfsync_wait_output(struct vnode *vp,
614 int (*waitoutput)(struct vnode *, struct thread *));
615 static int vfsync_data_only_cmp(struct buf *bp, void *data);
616 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
617 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
618 static int vfsync_bp(struct buf *bp, void *data);
620 struct vfsync_info {
621 struct vnode *vp;
622 int synchronous;
623 int syncdeps;
624 int lazycount;
625 int lazylimit;
626 int skippedbufs;
627 int (*checkdef)(struct buf *);
631 vfsync(struct vnode *vp, int waitfor, int passes,
632 int (*checkdef)(struct buf *),
633 int (*waitoutput)(struct vnode *, struct thread *))
635 struct vfsync_info info;
636 lwkt_tokref vlock;
637 int error;
639 bzero(&info, sizeof(info));
640 info.vp = vp;
641 if ((info.checkdef = checkdef) == NULL)
642 info.syncdeps = 1;
644 lwkt_gettoken(&vlock, &vp->v_token);
646 switch(waitfor) {
647 case MNT_LAZY:
649 * Lazy (filesystem syncer typ) Asynchronous plus limit the
650 * number of data (not meta) pages we try to flush to 1MB.
651 * A non-zero return means that lazy limit was reached.
653 info.lazylimit = 1024 * 1024;
654 info.syncdeps = 1;
655 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
656 vfsync_lazy_range_cmp, vfsync_bp, &info);
657 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
658 vfsync_meta_only_cmp, vfsync_bp, &info);
659 if (error == 0)
660 vp->v_lazyw = 0;
661 else if (!RB_EMPTY(&vp->v_rbdirty_tree))
662 vn_syncer_add_to_worklist(vp, 1);
663 error = 0;
664 break;
665 case MNT_NOWAIT:
667 * Asynchronous. Do a data-only pass and a meta-only pass.
669 info.syncdeps = 1;
670 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
671 vfsync_bp, &info);
672 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
673 vfsync_bp, &info);
674 error = 0;
675 break;
676 default:
678 * Synchronous. Do a data-only pass, then a meta-data+data
679 * pass, then additional integrated passes to try to get
680 * all the dependancies flushed.
682 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
683 vfsync_bp, &info);
684 error = vfsync_wait_output(vp, waitoutput);
685 if (error == 0) {
686 info.skippedbufs = 0;
687 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
688 vfsync_bp, &info);
689 error = vfsync_wait_output(vp, waitoutput);
690 if (info.skippedbufs)
691 kprintf("Warning: vfsync skipped %d dirty bufs in pass2!\n", info.skippedbufs);
693 while (error == 0 && passes > 0 &&
694 !RB_EMPTY(&vp->v_rbdirty_tree)
696 if (--passes == 0) {
697 info.synchronous = 1;
698 info.syncdeps = 1;
700 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
701 vfsync_bp, &info);
702 if (error < 0)
703 error = -error;
704 info.syncdeps = 1;
705 if (error == 0)
706 error = vfsync_wait_output(vp, waitoutput);
708 break;
710 lwkt_reltoken(&vlock);
711 return(error);
714 static int
715 vfsync_wait_output(struct vnode *vp,
716 int (*waitoutput)(struct vnode *, struct thread *))
718 int error;
720 error = bio_track_wait(&vp->v_track_write, 0, 0);
721 if (waitoutput)
722 error = waitoutput(vp, curthread);
723 return(error);
726 static int
727 vfsync_data_only_cmp(struct buf *bp, void *data)
729 if (bp->b_loffset < 0)
730 return(-1);
731 return(0);
734 static int
735 vfsync_meta_only_cmp(struct buf *bp, void *data)
737 if (bp->b_loffset < 0)
738 return(0);
739 return(1);
742 static int
743 vfsync_lazy_range_cmp(struct buf *bp, void *data)
745 struct vfsync_info *info = data;
746 if (bp->b_loffset < info->vp->v_lazyw)
747 return(-1);
748 return(0);
751 static int
752 vfsync_bp(struct buf *bp, void *data)
754 struct vfsync_info *info = data;
755 struct vnode *vp = info->vp;
756 int error;
759 * if syncdeps is not set we do not try to write buffers which have
760 * dependancies.
762 if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp))
763 return(0);
766 * Ignore buffers that we cannot immediately lock. XXX
768 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
769 kprintf("Warning: vfsync_bp skipping dirty buffer %p\n", bp);
770 ++info->skippedbufs;
771 return(0);
773 if ((bp->b_flags & B_DELWRI) == 0)
774 panic("vfsync_bp: buffer not dirty");
775 if (vp != bp->b_vp)
776 panic("vfsync_bp: buffer vp mismatch");
779 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
780 * has been written but an additional handshake with the device
781 * is required before we can dispose of the buffer. We have no idea
782 * how to do this so we have to skip these buffers.
784 if (bp->b_flags & B_NEEDCOMMIT) {
785 BUF_UNLOCK(bp);
786 return(0);
790 * Ask bioops if it is ok to sync
792 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
793 bremfree(bp);
794 brelse(bp);
795 return(0);
798 if (info->synchronous) {
800 * Synchronous flushing. An error may be returned.
802 bremfree(bp);
803 error = bwrite(bp);
804 } else {
806 * Asynchronous flushing. A negative return value simply
807 * stops the scan and is not considered an error. We use
808 * this to support limited MNT_LAZY flushes.
810 vp->v_lazyw = bp->b_loffset;
811 if ((vp->v_flag & VOBJBUF) && (bp->b_flags & B_CLUSTEROK)) {
812 info->lazycount += vfs_bio_awrite(bp);
813 } else {
814 info->lazycount += bp->b_bufsize;
815 bremfree(bp);
816 bawrite(bp);
818 if (info->lazylimit && info->lazycount >= info->lazylimit)
819 error = 1;
820 else
821 error = 0;
823 return(-error);
827 * Associate a buffer with a vnode.
829 * MPSAFE
832 bgetvp(struct vnode *vp, struct buf *bp)
834 lwkt_tokref vlock;
836 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
837 KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
840 * Insert onto list for new vnode.
842 lwkt_gettoken(&vlock, &vp->v_token);
843 if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) {
844 lwkt_reltoken(&vlock);
845 return (EEXIST);
847 bp->b_vp = vp;
848 bp->b_flags |= B_HASHED;
849 bp->b_flags |= B_VNCLEAN;
850 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
851 panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
852 vhold(vp);
853 lwkt_reltoken(&vlock);
854 return(0);
858 * Disassociate a buffer from a vnode.
860 void
861 brelvp(struct buf *bp)
863 struct vnode *vp;
864 lwkt_tokref vlock;
866 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
869 * Delete from old vnode list, if on one.
871 vp = bp->b_vp;
872 lwkt_gettoken(&vlock, &vp->v_token);
873 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
874 if (bp->b_flags & B_VNDIRTY)
875 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
876 else
877 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
878 bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
880 if (bp->b_flags & B_HASHED) {
881 buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
882 bp->b_flags &= ~B_HASHED;
884 if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree)) {
885 vclrflags(vp, VONWORKLST);
886 LIST_REMOVE(vp, v_synclist);
888 bp->b_vp = NULL;
889 lwkt_reltoken(&vlock);
891 vdrop(vp);
895 * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
896 * This routine is called when the state of the B_DELWRI bit is changed.
898 * MPSAFE
900 void
901 reassignbuf(struct buf *bp)
903 struct vnode *vp = bp->b_vp;
904 lwkt_tokref vlock;
905 int delay;
907 KKASSERT(vp != NULL);
908 ++reassignbufcalls;
911 * B_PAGING flagged buffers cannot be reassigned because their vp
912 * is not fully linked in.
914 if (bp->b_flags & B_PAGING)
915 panic("cannot reassign paging buffer");
917 lwkt_gettoken(&vlock, &vp->v_token);
918 if (bp->b_flags & B_DELWRI) {
920 * Move to the dirty list, add the vnode to the worklist
922 if (bp->b_flags & B_VNCLEAN) {
923 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
924 bp->b_flags &= ~B_VNCLEAN;
926 if ((bp->b_flags & B_VNDIRTY) == 0) {
927 if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
928 panic("reassignbuf: dup lblk vp %p bp %p",
929 vp, bp);
931 bp->b_flags |= B_VNDIRTY;
933 if ((vp->v_flag & VONWORKLST) == 0) {
934 switch (vp->v_type) {
935 case VDIR:
936 delay = dirdelay;
937 break;
938 case VCHR:
939 case VBLK:
940 if (vp->v_rdev &&
941 vp->v_rdev->si_mountpoint != NULL) {
942 delay = metadelay;
943 break;
945 /* fall through */
946 default:
947 delay = filedelay;
949 vn_syncer_add_to_worklist(vp, delay);
951 } else {
953 * Move to the clean list, remove the vnode from the worklist
954 * if no dirty blocks remain.
956 if (bp->b_flags & B_VNDIRTY) {
957 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
958 bp->b_flags &= ~B_VNDIRTY;
960 if ((bp->b_flags & B_VNCLEAN) == 0) {
961 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
962 panic("reassignbuf: dup lblk vp %p bp %p",
963 vp, bp);
965 bp->b_flags |= B_VNCLEAN;
967 if ((vp->v_flag & VONWORKLST) &&
968 RB_EMPTY(&vp->v_rbdirty_tree)) {
969 vclrflags(vp, VONWORKLST);
970 LIST_REMOVE(vp, v_synclist);
973 lwkt_reltoken(&vlock);
977 * Create a vnode for a block device.
978 * Used for mounting the root file system.
980 extern struct vop_ops *devfs_vnode_dev_vops_p;
982 bdevvp(cdev_t dev, struct vnode **vpp)
984 struct vnode *vp;
985 struct vnode *nvp;
986 int error;
988 if (dev == NULL) {
989 *vpp = NULLVP;
990 return (ENXIO);
992 error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p,
993 &nvp, 0, 0);
994 if (error) {
995 *vpp = NULLVP;
996 return (error);
998 vp = nvp;
999 vp->v_type = VCHR;
1000 #if 0
1001 vp->v_rdev = dev;
1002 #endif
1003 v_associate_rdev(vp, dev);
1004 vp->v_umajor = dev->si_umajor;
1005 vp->v_uminor = dev->si_uminor;
1006 vx_unlock(vp);
1007 *vpp = vp;
1008 return (0);
1012 v_associate_rdev(struct vnode *vp, cdev_t dev)
1014 lwkt_tokref ilock;
1016 if (dev == NULL)
1017 return(ENXIO);
1018 if (dev_is_good(dev) == 0)
1019 return(ENXIO);
1020 KKASSERT(vp->v_rdev == NULL);
1021 vp->v_rdev = reference_dev(dev);
1022 lwkt_gettoken(&ilock, &spechash_token);
1023 SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1024 lwkt_reltoken(&ilock);
1025 return(0);
1028 void
1029 v_release_rdev(struct vnode *vp)
1031 lwkt_tokref ilock;
1032 cdev_t dev;
1034 if ((dev = vp->v_rdev) != NULL) {
1035 lwkt_gettoken(&ilock, &spechash_token);
1036 SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1037 vp->v_rdev = NULL;
1038 release_dev(dev);
1039 lwkt_reltoken(&ilock);
1044 * Add a vnode to the alias list hung off the cdev_t. We only associate
1045 * the device number with the vnode. The actual device is not associated
1046 * until the vnode is opened (usually in spec_open()), and will be
1047 * disassociated on last close.
1049 void
1050 addaliasu(struct vnode *nvp, int x, int y)
1052 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1053 panic("addaliasu on non-special vnode");
1054 nvp->v_umajor = x;
1055 nvp->v_uminor = y;
1059 * Simple call that a filesystem can make to try to get rid of a
1060 * vnode. It will fail if anyone is referencing the vnode (including
1061 * the caller).
1063 * The filesystem can check whether its in-memory inode structure still
1064 * references the vp on return.
1066 void
1067 vclean_unlocked(struct vnode *vp)
1069 vx_get(vp);
1070 if (sysref_isactive(&vp->v_sysref) == 0)
1071 vgone_vxlocked(vp);
1072 vx_put(vp);
1076 * Disassociate a vnode from its underlying filesystem.
1078 * The vnode must be VX locked and referenced. In all normal situations
1079 * there are no active references. If vclean_vxlocked() is called while
1080 * there are active references, the vnode is being ripped out and we have
1081 * to call VOP_CLOSE() as appropriate before we can reclaim it.
1083 void
1084 vclean_vxlocked(struct vnode *vp, int flags)
1086 int active;
1087 int n;
1088 vm_object_t object;
1091 * If the vnode has already been reclaimed we have nothing to do.
1093 if (vp->v_flag & VRECLAIMED)
1094 return;
1095 vsetflags(vp, VRECLAIMED);
1098 * Scrap the vfs cache
1100 while (cache_inval_vp(vp, 0) != 0) {
1101 kprintf("Warning: vnode %p clean/cache_resolution race detected\n", vp);
1102 tsleep(vp, 0, "vclninv", 2);
1106 * Check to see if the vnode is in use. If so we have to reference it
1107 * before we clean it out so that its count cannot fall to zero and
1108 * generate a race against ourselves to recycle it.
1110 active = sysref_isactive(&vp->v_sysref);
1113 * Clean out any buffers associated with the vnode and destroy its
1114 * object, if it has one.
1116 vinvalbuf(vp, V_SAVE, 0, 0);
1119 * If purging an active vnode (typically during a forced unmount
1120 * or reboot), it must be closed and deactivated before being
1121 * reclaimed. This isn't really all that safe, but what can
1122 * we do? XXX.
1124 * Note that neither of these routines unlocks the vnode.
1126 if (active && (flags & DOCLOSE)) {
1127 while ((n = vp->v_opencount) != 0) {
1128 if (vp->v_writecount)
1129 VOP_CLOSE(vp, FWRITE|FNONBLOCK);
1130 else
1131 VOP_CLOSE(vp, FNONBLOCK);
1132 if (vp->v_opencount == n) {
1133 kprintf("Warning: unable to force-close"
1134 " vnode %p\n", vp);
1135 break;
1141 * If the vnode has not been deactivated, deactivated it. Deactivation
1142 * can create new buffers and VM pages so we have to call vinvalbuf()
1143 * again to make sure they all get flushed.
1145 * This can occur if a file with a link count of 0 needs to be
1146 * truncated.
1148 * If the vnode is already dead don't try to deactivate it.
1150 if ((vp->v_flag & VINACTIVE) == 0) {
1151 vsetflags(vp, VINACTIVE);
1152 if (vp->v_mount)
1153 VOP_INACTIVE(vp);
1154 vinvalbuf(vp, V_SAVE, 0, 0);
1158 * If the vnode has an object, destroy it.
1160 if ((object = vp->v_object) != NULL) {
1161 if (object->ref_count == 0) {
1162 if ((object->flags & OBJ_DEAD) == 0)
1163 vm_object_terminate(object);
1164 } else {
1165 vm_pager_deallocate(object);
1167 vclrflags(vp, VOBJBUF);
1169 KKASSERT((vp->v_flag & VOBJBUF) == 0);
1172 * Reclaim the vnode if not already dead.
1174 if (vp->v_mount && VOP_RECLAIM(vp))
1175 panic("vclean: cannot reclaim");
1178 * Done with purge, notify sleepers of the grim news.
1180 vp->v_ops = &dead_vnode_vops_p;
1181 vn_pollgone(vp);
1182 vp->v_tag = VT_NON;
1185 * If we are destroying an active vnode, reactivate it now that
1186 * we have reassociated it with deadfs. This prevents the system
1187 * from crashing on the vnode due to it being unexpectedly marked
1188 * as inactive or reclaimed.
1190 if (active && (flags & DOCLOSE)) {
1191 vclrflags(vp, VINACTIVE | VRECLAIMED);
1196 * Eliminate all activity associated with the requested vnode
1197 * and with all vnodes aliased to the requested vnode.
1199 * The vnode must be referenced but should not be locked.
1202 vrevoke(struct vnode *vp, struct ucred *cred)
1204 struct vnode *vq;
1205 struct vnode *vqn;
1206 lwkt_tokref ilock;
1207 cdev_t dev;
1208 int error;
1211 * If the vnode has a device association, scrap all vnodes associated
1212 * with the device. Don't let the device disappear on us while we
1213 * are scrapping the vnodes.
1215 * The passed vp will probably show up in the list, do not VX lock
1216 * it twice!
1218 * Releasing the vnode's rdev here can mess up specfs's call to
1219 * device close, so don't do it. The vnode has been disassociated
1220 * and the device will be closed after the last ref on the related
1221 * fp goes away (if not still open by e.g. the kernel).
1223 if (vp->v_type != VCHR) {
1224 error = fdrevoke(vp, DTYPE_VNODE, cred);
1225 return (error);
1227 if ((dev = vp->v_rdev) == NULL) {
1228 return(0);
1230 reference_dev(dev);
1231 lwkt_gettoken(&ilock, &spechash_token);
1233 vqn = SLIST_FIRST(&dev->si_hlist);
1234 if (vqn)
1235 vref(vqn);
1236 while ((vq = vqn) != NULL) {
1237 vqn = SLIST_NEXT(vqn, v_cdevnext);
1238 if (vqn)
1239 vref(vqn);
1240 fdrevoke(vq, DTYPE_VNODE, cred);
1241 /*v_release_rdev(vq);*/
1242 vrele(vq);
1244 lwkt_reltoken(&ilock);
1245 dev_drevoke(dev);
1246 release_dev(dev);
1247 return (0);
1251 * This is called when the object underlying a vnode is being destroyed,
1252 * such as in a remove(). Try to recycle the vnode immediately if the
1253 * only active reference is our reference.
1255 * Directory vnodes in the namecache with children cannot be immediately
1256 * recycled because numerous VOP_N*() ops require them to be stable.
1258 * To avoid recursive recycling from VOP_INACTIVE implemenetations this
1259 * function is a NOP if VRECLAIMED is already set.
1262 vrecycle(struct vnode *vp)
1264 if (vp->v_sysref.refcnt <= 1 && (vp->v_flag & VRECLAIMED) == 0) {
1265 if (cache_inval_vp_nonblock(vp))
1266 return(0);
1267 vgone_vxlocked(vp);
1268 return (1);
1270 return (0);
1274 * Return the maximum I/O size allowed for strategy calls on VP.
1276 * If vp is VCHR or VBLK we dive the device, otherwise we use
1277 * the vp's mount info.
1280 vmaxiosize(struct vnode *vp)
1282 if (vp->v_type == VBLK || vp->v_type == VCHR) {
1283 return(vp->v_rdev->si_iosize_max);
1284 } else {
1285 return(vp->v_mount->mnt_iosize_max);
1290 * Eliminate all activity associated with a vnode in preparation for reuse.
1292 * The vnode must be VX locked and refd and will remain VX locked and refd
1293 * on return. This routine may be called with the vnode in any state, as
1294 * long as it is VX locked. The vnode will be cleaned out and marked
1295 * VRECLAIMED but will not actually be reused until all existing refs and
1296 * holds go away.
1298 * NOTE: This routine may be called on a vnode which has not yet been
1299 * already been deactivated (VOP_INACTIVE), or on a vnode which has
1300 * already been reclaimed.
1302 * This routine is not responsible for placing us back on the freelist.
1303 * Instead, it happens automatically when the caller releases the VX lock
1304 * (assuming there aren't any other references).
1306 void
1307 vgone_vxlocked(struct vnode *vp)
1310 * assert that the VX lock is held. This is an absolute requirement
1311 * now for vgone_vxlocked() to be called.
1313 KKASSERT(vp->v_lock.lk_exclusivecount == 1);
1315 get_mplock();
1318 * Clean out the filesystem specific data and set the VRECLAIMED
1319 * bit. Also deactivate the vnode if necessary.
1321 vclean_vxlocked(vp, DOCLOSE);
1324 * Delete from old mount point vnode list, if on one.
1326 if (vp->v_mount != NULL) {
1327 KKASSERT(vp->v_data == NULL);
1328 insmntque(vp, NULL);
1332 * If special device, remove it from special device alias list
1333 * if it is on one. This should normally only occur if a vnode is
1334 * being revoked as the device should otherwise have been released
1335 * naturally.
1337 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1338 v_release_rdev(vp);
1342 * Set us to VBAD
1344 vp->v_type = VBAD;
1345 rel_mplock();
1349 * Lookup a vnode by device number.
1351 * Returns non-zero and *vpp set to a vref'd vnode on success.
1352 * Returns zero on failure.
1355 vfinddev(cdev_t dev, enum vtype type, struct vnode **vpp)
1357 lwkt_tokref ilock;
1358 struct vnode *vp;
1360 lwkt_gettoken(&ilock, &spechash_token);
1361 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1362 if (type == vp->v_type) {
1363 *vpp = vp;
1364 vref(vp);
1365 lwkt_reltoken(&ilock);
1366 return (1);
1369 lwkt_reltoken(&ilock);
1370 return (0);
1374 * Calculate the total number of references to a special device. This
1375 * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1376 * an overloaded field. Since udev2dev can now return NULL, we have
1377 * to check for a NULL v_rdev.
1380 count_dev(cdev_t dev)
1382 lwkt_tokref ilock;
1383 struct vnode *vp;
1384 int count = 0;
1386 if (SLIST_FIRST(&dev->si_hlist)) {
1387 lwkt_gettoken(&ilock, &spechash_token);
1388 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1389 count += vp->v_opencount;
1391 lwkt_reltoken(&ilock);
1393 return(count);
1397 vcount(struct vnode *vp)
1399 if (vp->v_rdev == NULL)
1400 return(0);
1401 return(count_dev(vp->v_rdev));
1405 * Initialize VMIO for a vnode. This routine MUST be called before a
1406 * VFS can issue buffer cache ops on a vnode. It is typically called
1407 * when a vnode is initialized from its inode.
1410 vinitvmio(struct vnode *vp, off_t filesize)
1412 vm_object_t object;
1413 int error = 0;
1415 retry:
1416 if ((object = vp->v_object) == NULL) {
1417 object = vnode_pager_alloc(vp, filesize, 0, 0);
1419 * Dereference the reference we just created. This assumes
1420 * that the object is associated with the vp.
1422 object->ref_count--;
1423 vrele(vp);
1424 } else {
1425 if (object->flags & OBJ_DEAD) {
1426 vn_unlock(vp);
1427 vm_object_dead_sleep(object, "vodead");
1428 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1429 goto retry;
1432 KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1433 vsetflags(vp, VOBJBUF);
1434 return (error);
1439 * Print out a description of a vnode.
1441 static char *typename[] =
1442 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1444 void
1445 vprint(char *label, struct vnode *vp)
1447 char buf[96];
1449 if (label != NULL)
1450 kprintf("%s: %p: ", label, (void *)vp);
1451 else
1452 kprintf("%p: ", (void *)vp);
1453 kprintf("type %s, sysrefs %d, writecount %d, holdcnt %d,",
1454 typename[vp->v_type],
1455 vp->v_sysref.refcnt, vp->v_writecount, vp->v_auxrefs);
1456 buf[0] = '\0';
1457 if (vp->v_flag & VROOT)
1458 strcat(buf, "|VROOT");
1459 if (vp->v_flag & VPFSROOT)
1460 strcat(buf, "|VPFSROOT");
1461 if (vp->v_flag & VTEXT)
1462 strcat(buf, "|VTEXT");
1463 if (vp->v_flag & VSYSTEM)
1464 strcat(buf, "|VSYSTEM");
1465 if (vp->v_flag & VFREE)
1466 strcat(buf, "|VFREE");
1467 if (vp->v_flag & VOBJBUF)
1468 strcat(buf, "|VOBJBUF");
1469 if (buf[0] != '\0')
1470 kprintf(" flags (%s)", &buf[1]);
1471 if (vp->v_data == NULL) {
1472 kprintf("\n");
1473 } else {
1474 kprintf("\n\t");
1475 VOP_PRINT(vp);
1480 * Do the usual access checking.
1481 * file_mode, uid and gid are from the vnode in question,
1482 * while acc_mode and cred are from the VOP_ACCESS parameter list
1485 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
1486 mode_t acc_mode, struct ucred *cred)
1488 mode_t mask;
1489 int ismember;
1492 * Super-user always gets read/write access, but execute access depends
1493 * on at least one execute bit being set.
1495 if (priv_check_cred(cred, PRIV_ROOT, 0) == 0) {
1496 if ((acc_mode & VEXEC) && type != VDIR &&
1497 (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
1498 return (EACCES);
1499 return (0);
1502 mask = 0;
1504 /* Otherwise, check the owner. */
1505 if (cred->cr_uid == uid) {
1506 if (acc_mode & VEXEC)
1507 mask |= S_IXUSR;
1508 if (acc_mode & VREAD)
1509 mask |= S_IRUSR;
1510 if (acc_mode & VWRITE)
1511 mask |= S_IWUSR;
1512 return ((file_mode & mask) == mask ? 0 : EACCES);
1515 /* Otherwise, check the groups. */
1516 ismember = groupmember(gid, cred);
1517 if (cred->cr_svgid == gid || ismember) {
1518 if (acc_mode & VEXEC)
1519 mask |= S_IXGRP;
1520 if (acc_mode & VREAD)
1521 mask |= S_IRGRP;
1522 if (acc_mode & VWRITE)
1523 mask |= S_IWGRP;
1524 return ((file_mode & mask) == mask ? 0 : EACCES);
1527 /* Otherwise, check everyone else. */
1528 if (acc_mode & VEXEC)
1529 mask |= S_IXOTH;
1530 if (acc_mode & VREAD)
1531 mask |= S_IROTH;
1532 if (acc_mode & VWRITE)
1533 mask |= S_IWOTH;
1534 return ((file_mode & mask) == mask ? 0 : EACCES);
1537 #ifdef DDB
1538 #include <ddb/ddb.h>
1540 static int db_show_locked_vnodes(struct mount *mp, void *data);
1543 * List all of the locked vnodes in the system.
1544 * Called when debugging the kernel.
1546 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1548 kprintf("Locked vnodes\n");
1549 mountlist_scan(db_show_locked_vnodes, NULL,
1550 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1553 static int
1554 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1556 struct vnode *vp;
1558 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1559 if (vn_islocked(vp))
1560 vprint(NULL, vp);
1562 return(0);
1564 #endif
1567 * Top level filesystem related information gathering.
1569 static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1571 static int
1572 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1574 int *name = (int *)arg1 - 1; /* XXX */
1575 u_int namelen = arg2 + 1; /* XXX */
1576 struct vfsconf *vfsp;
1577 int maxtypenum;
1579 #if 1 || defined(COMPAT_PRELITE2)
1580 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1581 if (namelen == 1)
1582 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1583 #endif
1585 #ifdef notyet
1586 /* all sysctl names at this level are at least name and field */
1587 if (namelen < 2)
1588 return (ENOTDIR); /* overloaded */
1589 if (name[0] != VFS_GENERIC) {
1590 vfsp = vfsconf_find_by_typenum(name[0]);
1591 if (vfsp == NULL)
1592 return (EOPNOTSUPP);
1593 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1594 oldp, oldlenp, newp, newlen, p));
1596 #endif
1597 switch (name[1]) {
1598 case VFS_MAXTYPENUM:
1599 if (namelen != 2)
1600 return (ENOTDIR);
1601 maxtypenum = vfsconf_get_maxtypenum();
1602 return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
1603 case VFS_CONF:
1604 if (namelen != 3)
1605 return (ENOTDIR); /* overloaded */
1606 vfsp = vfsconf_find_by_typenum(name[2]);
1607 if (vfsp == NULL)
1608 return (EOPNOTSUPP);
1609 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1611 return (EOPNOTSUPP);
1614 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1615 "Generic filesystem");
1617 #if 1 || defined(COMPAT_PRELITE2)
1619 static int
1620 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
1622 int error;
1623 struct ovfsconf ovfs;
1624 struct sysctl_req *req = (struct sysctl_req*) data;
1626 bzero(&ovfs, sizeof(ovfs));
1627 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
1628 strcpy(ovfs.vfc_name, vfsp->vfc_name);
1629 ovfs.vfc_index = vfsp->vfc_typenum;
1630 ovfs.vfc_refcount = vfsp->vfc_refcount;
1631 ovfs.vfc_flags = vfsp->vfc_flags;
1632 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1633 if (error)
1634 return error; /* abort iteration with error code */
1635 else
1636 return 0; /* continue iterating with next element */
1639 static int
1640 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1642 return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
1645 #endif /* 1 || COMPAT_PRELITE2 */
1648 * Check to see if a filesystem is mounted on a block device.
1651 vfs_mountedon(struct vnode *vp)
1653 cdev_t dev;
1655 if ((dev = vp->v_rdev) == NULL) {
1656 /* if (vp->v_type != VBLK)
1657 dev = get_dev(vp->v_uminor, vp->v_umajor); */
1659 if (dev != NULL && dev->si_mountpoint)
1660 return (EBUSY);
1661 return (0);
1665 * Unmount all filesystems. The list is traversed in reverse order
1666 * of mounting to avoid dependencies.
1669 static int vfs_umountall_callback(struct mount *mp, void *data);
1671 void
1672 vfs_unmountall(void)
1674 int count;
1676 do {
1677 count = mountlist_scan(vfs_umountall_callback,
1678 NULL, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1679 } while (count);
1682 static
1684 vfs_umountall_callback(struct mount *mp, void *data)
1686 int error;
1688 error = dounmount(mp, MNT_FORCE);
1689 if (error) {
1690 mountlist_remove(mp);
1691 kprintf("unmount of filesystem mounted from %s failed (",
1692 mp->mnt_stat.f_mntfromname);
1693 if (error == EBUSY)
1694 kprintf("BUSY)\n");
1695 else
1696 kprintf("%d)\n", error);
1698 return(1);
1702 * Checks the mount flags for parameter mp and put the names comma-separated
1703 * into a string buffer buf with a size limit specified by len.
1705 * It returns the number of bytes written into buf, and (*errorp) will be
1706 * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1707 * not large enough). The buffer will be 0-terminated if len was not 0.
1709 size_t
1710 vfs_flagstostr(int flags, const struct mountctl_opt *optp,
1711 char *buf, size_t len, int *errorp)
1713 static const struct mountctl_opt optnames[] = {
1714 { MNT_ASYNC, "asynchronous" },
1715 { MNT_EXPORTED, "NFS exported" },
1716 { MNT_LOCAL, "local" },
1717 { MNT_NOATIME, "noatime" },
1718 { MNT_NODEV, "nodev" },
1719 { MNT_NOEXEC, "noexec" },
1720 { MNT_NOSUID, "nosuid" },
1721 { MNT_NOSYMFOLLOW, "nosymfollow" },
1722 { MNT_QUOTA, "with-quotas" },
1723 { MNT_RDONLY, "read-only" },
1724 { MNT_SYNCHRONOUS, "synchronous" },
1725 { MNT_UNION, "union" },
1726 { MNT_NOCLUSTERR, "noclusterr" },
1727 { MNT_NOCLUSTERW, "noclusterw" },
1728 { MNT_SUIDDIR, "suiddir" },
1729 { MNT_SOFTDEP, "soft-updates" },
1730 { MNT_IGNORE, "ignore" },
1731 { 0, NULL}
1733 int bwritten;
1734 int bleft;
1735 int optlen;
1736 int actsize;
1738 *errorp = 0;
1739 bwritten = 0;
1740 bleft = len - 1; /* leave room for trailing \0 */
1743 * Checks the size of the string. If it contains
1744 * any data, then we will append the new flags to
1745 * it.
1747 actsize = strlen(buf);
1748 if (actsize > 0)
1749 buf += actsize;
1751 /* Default flags if no flags passed */
1752 if (optp == NULL)
1753 optp = optnames;
1755 if (bleft < 0) { /* degenerate case, 0-length buffer */
1756 *errorp = EINVAL;
1757 return(0);
1760 for (; flags && optp->o_opt; ++optp) {
1761 if ((flags & optp->o_opt) == 0)
1762 continue;
1763 optlen = strlen(optp->o_name);
1764 if (bwritten || actsize > 0) {
1765 if (bleft < 2) {
1766 *errorp = ENOSPC;
1767 break;
1769 buf[bwritten++] = ',';
1770 buf[bwritten++] = ' ';
1771 bleft -= 2;
1773 if (bleft < optlen) {
1774 *errorp = ENOSPC;
1775 break;
1777 bcopy(optp->o_name, buf + bwritten, optlen);
1778 bwritten += optlen;
1779 bleft -= optlen;
1780 flags &= ~optp->o_opt;
1784 * Space already reserved for trailing \0
1786 buf[bwritten] = 0;
1787 return (bwritten);
1791 * Build hash lists of net addresses and hang them off the mount point.
1792 * Called by ufs_mount() to set up the lists of export addresses.
1794 static int
1795 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1796 const struct export_args *argp)
1798 struct netcred *np;
1799 struct radix_node_head *rnh;
1800 int i;
1801 struct radix_node *rn;
1802 struct sockaddr *saddr, *smask = 0;
1803 struct domain *dom;
1804 int error;
1806 if (argp->ex_addrlen == 0) {
1807 if (mp->mnt_flag & MNT_DEFEXPORTED)
1808 return (EPERM);
1809 np = &nep->ne_defexported;
1810 np->netc_exflags = argp->ex_flags;
1811 np->netc_anon = argp->ex_anon;
1812 np->netc_anon.cr_ref = 1;
1813 mp->mnt_flag |= MNT_DEFEXPORTED;
1814 return (0);
1817 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1818 return (EINVAL);
1819 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1820 return (EINVAL);
1822 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1823 np = (struct netcred *) kmalloc(i, M_NETADDR, M_WAITOK | M_ZERO);
1824 saddr = (struct sockaddr *) (np + 1);
1825 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1826 goto out;
1827 if (saddr->sa_len > argp->ex_addrlen)
1828 saddr->sa_len = argp->ex_addrlen;
1829 if (argp->ex_masklen) {
1830 smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1831 error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1832 if (error)
1833 goto out;
1834 if (smask->sa_len > argp->ex_masklen)
1835 smask->sa_len = argp->ex_masklen;
1837 i = saddr->sa_family;
1838 if ((rnh = nep->ne_rtable[i]) == 0) {
1840 * Seems silly to initialize every AF when most are not used,
1841 * do so on demand here
1843 SLIST_FOREACH(dom, &domains, dom_next)
1844 if (dom->dom_family == i && dom->dom_rtattach) {
1845 dom->dom_rtattach((void **) &nep->ne_rtable[i],
1846 dom->dom_rtoffset);
1847 break;
1849 if ((rnh = nep->ne_rtable[i]) == 0) {
1850 error = ENOBUFS;
1851 goto out;
1854 rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1855 np->netc_rnodes);
1856 if (rn == 0 || np != (struct netcred *) rn) { /* already exists */
1857 error = EPERM;
1858 goto out;
1860 np->netc_exflags = argp->ex_flags;
1861 np->netc_anon = argp->ex_anon;
1862 np->netc_anon.cr_ref = 1;
1863 return (0);
1864 out:
1865 kfree(np, M_NETADDR);
1866 return (error);
1869 /* ARGSUSED */
1870 static int
1871 vfs_free_netcred(struct radix_node *rn, void *w)
1873 struct radix_node_head *rnh = (struct radix_node_head *) w;
1875 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1876 kfree((caddr_t) rn, M_NETADDR);
1877 return (0);
1881 * Free the net address hash lists that are hanging off the mount points.
1883 static void
1884 vfs_free_addrlist(struct netexport *nep)
1886 int i;
1887 struct radix_node_head *rnh;
1889 for (i = 0; i <= AF_MAX; i++)
1890 if ((rnh = nep->ne_rtable[i])) {
1891 (*rnh->rnh_walktree) (rnh, vfs_free_netcred,
1892 (caddr_t) rnh);
1893 kfree((caddr_t) rnh, M_RTABLE);
1894 nep->ne_rtable[i] = 0;
1899 vfs_export(struct mount *mp, struct netexport *nep,
1900 const struct export_args *argp)
1902 int error;
1904 if (argp->ex_flags & MNT_DELEXPORT) {
1905 if (mp->mnt_flag & MNT_EXPUBLIC) {
1906 vfs_setpublicfs(NULL, NULL, NULL);
1907 mp->mnt_flag &= ~MNT_EXPUBLIC;
1909 vfs_free_addrlist(nep);
1910 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
1912 if (argp->ex_flags & MNT_EXPORTED) {
1913 if (argp->ex_flags & MNT_EXPUBLIC) {
1914 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
1915 return (error);
1916 mp->mnt_flag |= MNT_EXPUBLIC;
1918 if ((error = vfs_hang_addrlist(mp, nep, argp)))
1919 return (error);
1920 mp->mnt_flag |= MNT_EXPORTED;
1922 return (0);
1927 * Set the publicly exported filesystem (WebNFS). Currently, only
1928 * one public filesystem is possible in the spec (RFC 2054 and 2055)
1931 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
1932 const struct export_args *argp)
1934 int error;
1935 struct vnode *rvp;
1936 char *cp;
1939 * mp == NULL -> invalidate the current info, the FS is
1940 * no longer exported. May be called from either vfs_export
1941 * or unmount, so check if it hasn't already been done.
1943 if (mp == NULL) {
1944 if (nfs_pub.np_valid) {
1945 nfs_pub.np_valid = 0;
1946 if (nfs_pub.np_index != NULL) {
1947 FREE(nfs_pub.np_index, M_TEMP);
1948 nfs_pub.np_index = NULL;
1951 return (0);
1955 * Only one allowed at a time.
1957 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
1958 return (EBUSY);
1961 * Get real filehandle for root of exported FS.
1963 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
1964 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
1966 if ((error = VFS_ROOT(mp, &rvp)))
1967 return (error);
1969 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
1970 return (error);
1972 vput(rvp);
1975 * If an indexfile was specified, pull it in.
1977 if (argp->ex_indexfile != NULL) {
1978 int namelen;
1980 error = vn_get_namelen(rvp, &namelen);
1981 if (error)
1982 return (error);
1983 MALLOC(nfs_pub.np_index, char *, namelen, M_TEMP,
1984 M_WAITOK);
1985 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
1986 namelen, NULL);
1987 if (!error) {
1989 * Check for illegal filenames.
1991 for (cp = nfs_pub.np_index; *cp; cp++) {
1992 if (*cp == '/') {
1993 error = EINVAL;
1994 break;
1998 if (error) {
1999 FREE(nfs_pub.np_index, M_TEMP);
2000 return (error);
2004 nfs_pub.np_mount = mp;
2005 nfs_pub.np_valid = 1;
2006 return (0);
2009 struct netcred *
2010 vfs_export_lookup(struct mount *mp, struct netexport *nep,
2011 struct sockaddr *nam)
2013 struct netcred *np;
2014 struct radix_node_head *rnh;
2015 struct sockaddr *saddr;
2017 np = NULL;
2018 if (mp->mnt_flag & MNT_EXPORTED) {
2020 * Lookup in the export list first.
2022 if (nam != NULL) {
2023 saddr = nam;
2024 rnh = nep->ne_rtable[saddr->sa_family];
2025 if (rnh != NULL) {
2026 np = (struct netcred *)
2027 (*rnh->rnh_matchaddr)((char *)saddr,
2028 rnh);
2029 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2030 np = NULL;
2034 * If no address match, use the default if it exists.
2036 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2037 np = &nep->ne_defexported;
2039 return (np);
2043 * perform msync on all vnodes under a mount point. The mount point must
2044 * be locked. This code is also responsible for lazy-freeing unreferenced
2045 * vnodes whos VM objects no longer contain pages.
2047 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2049 * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
2050 * but vnode_pager_putpages() doesn't lock the vnode. We have to do it
2051 * way up in this high level function.
2053 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2054 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
2056 void
2057 vfs_msync(struct mount *mp, int flags)
2059 int vmsc_flags;
2061 vmsc_flags = VMSC_GETVP;
2062 if (flags != MNT_WAIT)
2063 vmsc_flags |= VMSC_NOWAIT;
2064 vmntvnodescan(mp, vmsc_flags, vfs_msync_scan1, vfs_msync_scan2,
2065 (void *)(intptr_t)flags);
2069 * scan1 is a fast pre-check. There could be hundreds of thousands of
2070 * vnodes, we cannot afford to do anything heavy weight until we have a
2071 * fairly good indication that there is work to do.
2073 static
2075 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2077 int flags = (int)(intptr_t)data;
2079 if ((vp->v_flag & VRECLAIMED) == 0) {
2080 if (vshouldmsync(vp))
2081 return(0); /* call scan2 */
2082 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2083 (vp->v_flag & VOBJDIRTY) &&
2084 (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
2085 return(0); /* call scan2 */
2090 * do not call scan2, continue the loop
2092 return(-1);
2096 * This callback is handed a locked vnode.
2098 static
2100 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
2102 vm_object_t obj;
2103 int flags = (int)(intptr_t)data;
2105 if (vp->v_flag & VRECLAIMED)
2106 return(0);
2108 if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
2109 if ((obj = vp->v_object) != NULL) {
2110 vm_object_page_clean(obj, 0, 0,
2111 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2114 return(0);
2118 * Record a process's interest in events which might happen to
2119 * a vnode. Because poll uses the historic select-style interface
2120 * internally, this routine serves as both the ``check for any
2121 * pending events'' and the ``record my interest in future events''
2122 * functions. (These are done together, while the lock is held,
2123 * to avoid race conditions.)
2126 vn_pollrecord(struct vnode *vp, int events)
2128 lwkt_tokref vlock;
2130 KKASSERT(curthread->td_proc != NULL);
2132 lwkt_gettoken(&vlock, &vp->v_token);
2133 if (vp->v_pollinfo.vpi_revents & events) {
2135 * This leaves events we are not interested
2136 * in available for the other process which
2137 * which presumably had requested them
2138 * (otherwise they would never have been
2139 * recorded).
2141 events &= vp->v_pollinfo.vpi_revents;
2142 vp->v_pollinfo.vpi_revents &= ~events;
2144 lwkt_reltoken(&vlock);
2145 return events;
2147 vp->v_pollinfo.vpi_events |= events;
2148 selrecord(curthread, &vp->v_pollinfo.vpi_selinfo);
2149 lwkt_reltoken(&vlock);
2150 return 0;
2154 * Note the occurrence of an event. If the VN_POLLEVENT macro is used,
2155 * it is possible for us to miss an event due to race conditions, but
2156 * that condition is expected to be rare, so for the moment it is the
2157 * preferred interface.
2159 void
2160 vn_pollevent(struct vnode *vp, int events)
2162 lwkt_tokref vlock;
2164 lwkt_gettoken(&vlock, &vp->v_token);
2165 if (vp->v_pollinfo.vpi_events & events) {
2167 * We clear vpi_events so that we don't
2168 * call selwakeup() twice if two events are
2169 * posted before the polling process(es) is
2170 * awakened. This also ensures that we take at
2171 * most one selwakeup() if the polling process
2172 * is no longer interested. However, it does
2173 * mean that only one event can be noticed at
2174 * a time. (Perhaps we should only clear those
2175 * event bits which we note?) XXX
2177 vp->v_pollinfo.vpi_events = 0; /* &= ~events ??? */
2178 vp->v_pollinfo.vpi_revents |= events;
2179 selwakeup(&vp->v_pollinfo.vpi_selinfo);
2181 lwkt_reltoken(&vlock);
2185 * Wake up anyone polling on vp because it is being revoked.
2186 * This depends on dead_poll() returning POLLHUP for correct
2187 * behavior.
2189 void
2190 vn_pollgone(struct vnode *vp)
2192 lwkt_tokref vlock;
2194 lwkt_gettoken(&vlock, &vp->v_token);
2195 if (vp->v_pollinfo.vpi_events) {
2196 vp->v_pollinfo.vpi_events = 0;
2197 selwakeup(&vp->v_pollinfo.vpi_selinfo);
2199 lwkt_reltoken(&vlock);
2203 * extract the cdev_t from a VBLK or VCHR. The vnode must have been opened
2204 * (or v_rdev might be NULL).
2206 cdev_t
2207 vn_todev(struct vnode *vp)
2209 if (vp->v_type != VBLK && vp->v_type != VCHR)
2210 return (NULL);
2211 KKASSERT(vp->v_rdev != NULL);
2212 return (vp->v_rdev);
2216 * Check if vnode represents a disk device. The vnode does not need to be
2217 * opened.
2219 * MPALMOSTSAFE
2222 vn_isdisk(struct vnode *vp, int *errp)
2224 cdev_t dev;
2226 if (vp->v_type != VCHR) {
2227 if (errp != NULL)
2228 *errp = ENOTBLK;
2229 return (0);
2232 dev = vp->v_rdev;
2234 if (dev == NULL) {
2235 if (errp != NULL)
2236 *errp = ENXIO;
2237 return (0);
2239 if (dev_is_good(dev) == 0) {
2240 if (errp != NULL)
2241 *errp = ENXIO;
2242 return (0);
2244 if ((dev_dflags(dev) & D_DISK) == 0) {
2245 if (errp != NULL)
2246 *errp = ENOTBLK;
2247 return (0);
2249 if (errp != NULL)
2250 *errp = 0;
2251 return (1);
2255 vn_get_namelen(struct vnode *vp, int *namelen)
2257 int error;
2258 register_t retval[2];
2260 error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2261 if (error)
2262 return (error);
2263 *namelen = (int)retval[0];
2264 return (0);
2268 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2269 uint16_t d_namlen, const char *d_name)
2271 struct dirent *dp;
2272 size_t len;
2274 len = _DIRENT_RECLEN(d_namlen);
2275 if (len > uio->uio_resid)
2276 return(1);
2278 dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2280 dp->d_ino = d_ino;
2281 dp->d_namlen = d_namlen;
2282 dp->d_type = d_type;
2283 bcopy(d_name, dp->d_name, d_namlen);
2285 *error = uiomove((caddr_t)dp, len, uio);
2287 kfree(dp, M_TEMP);
2289 return(0);
2292 void
2293 vn_mark_atime(struct vnode *vp, struct thread *td)
2295 struct proc *p = td->td_proc;
2296 struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2298 if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2299 VOP_MARKATIME(vp, cred);