atkbdc - Do not attach PS2 controller via legacy ISA bus, if FADT says so.
[dragonfly.git] / sys / net / if.c
blob1d944f26543732231ded7053830027808997366f
1 /*
2 * Copyright (c) 1980, 1986, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)if.c 8.3 (Berkeley) 1/4/94
30 * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
33 #include "opt_inet6.h"
34 #include "opt_inet.h"
35 #include "opt_ifpoll.h"
37 #include <sys/param.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/priv.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/socketops.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/mutex.h>
50 #include <sys/sockio.h>
51 #include <sys/syslog.h>
52 #include <sys/sysctl.h>
53 #include <sys/domain.h>
54 #include <sys/thread.h>
55 #include <sys/serialize.h>
56 #include <sys/bus.h>
58 #include <sys/thread2.h>
59 #include <sys/msgport2.h>
60 #include <sys/mutex2.h>
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/if_dl.h>
65 #include <net/if_types.h>
66 #include <net/if_var.h>
67 #include <net/if_ringmap.h>
68 #include <net/ifq_var.h>
69 #include <net/radix.h>
70 #include <net/route.h>
71 #include <net/if_clone.h>
72 #include <net/netisr2.h>
73 #include <net/netmsg2.h>
75 #include <machine/atomic.h>
76 #include <machine/stdarg.h>
77 #include <machine/smp.h>
79 #if defined(INET) || defined(INET6)
80 /*XXX*/
81 #include <netinet/in.h>
82 #include <netinet/in_var.h>
83 #include <netinet/if_ether.h>
84 #ifdef INET6
85 #include <netinet6/in6_var.h>
86 #include <netinet6/in6_ifattach.h>
87 #endif
88 #endif
90 struct netmsg_ifaddr {
91 struct netmsg_base base;
92 struct ifaddr *ifa;
93 struct ifnet *ifp;
94 int tail;
97 struct ifsubq_stage_head {
98 TAILQ_HEAD(, ifsubq_stage) stg_head;
99 } __cachealign;
101 struct if_ringmap {
102 int rm_cnt;
103 int rm_grid;
104 int rm_cpumap[];
107 #define RINGMAP_FLAG_NONE 0x0
108 #define RINGMAP_FLAG_POWEROF2 0x1
111 * System initialization
113 static void if_attachdomain(void *);
114 static void if_attachdomain1(struct ifnet *);
115 static int ifconf(u_long, caddr_t, struct ucred *);
116 static void ifinit(void *);
117 static void ifnetinit(void *);
118 static void if_slowtimo(void *);
119 static void link_rtrequest(int, struct rtentry *);
120 static int if_rtdel(struct radix_node *, void *);
121 static void if_slowtimo_dispatch(netmsg_t);
123 /* Helper functions */
124 static void ifsq_watchdog_reset(struct ifsubq_watchdog *);
125 static int if_delmulti_serialized(struct ifnet *, struct sockaddr *);
126 static struct ifnet_array *ifnet_array_alloc(int);
127 static void ifnet_array_free(struct ifnet_array *);
128 static struct ifnet_array *ifnet_array_add(struct ifnet *,
129 const struct ifnet_array *);
130 static struct ifnet_array *ifnet_array_del(struct ifnet *,
131 const struct ifnet_array *);
133 #ifdef INET6
135 * XXX: declare here to avoid to include many inet6 related files..
136 * should be more generalized?
138 extern void nd6_setmtu(struct ifnet *);
139 #endif
141 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
142 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
143 SYSCTL_NODE(_net_link, OID_AUTO, ringmap, CTLFLAG_RW, 0, "link ringmap");
145 static int ifsq_stage_cntmax = 16;
146 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
147 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
148 &ifsq_stage_cntmax, 0, "ifq staging packet count max");
150 static int if_stats_compat = 0;
151 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
152 &if_stats_compat, 0, "Compat the old ifnet stats");
154 static int if_ringmap_dumprdr = 0;
155 SYSCTL_INT(_net_link_ringmap, OID_AUTO, dump_rdr, CTLFLAG_RW,
156 &if_ringmap_dumprdr, 0, "dump redirect table");
158 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL);
159 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, ifnetinit, NULL);
161 static if_com_alloc_t *if_com_alloc[256];
162 static if_com_free_t *if_com_free[256];
164 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
165 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
166 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
168 int ifqmaxlen = IFQ_MAXLEN;
169 struct ifnethead ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
171 static struct ifnet_array ifnet_array0;
172 static struct ifnet_array *ifnet_array = &ifnet_array0;
174 static struct callout if_slowtimo_timer;
175 static struct netmsg_base if_slowtimo_netmsg;
177 int if_index = 0;
178 struct ifnet **ifindex2ifnet = NULL;
179 static struct mtx ifnet_mtx = MTX_INITIALIZER("ifnet");
181 static struct ifsubq_stage_head ifsubq_stage_heads[MAXCPU];
183 #ifdef notyet
184 #define IFQ_KTR_STRING "ifq=%p"
185 #define IFQ_KTR_ARGS struct ifaltq *ifq
186 #ifndef KTR_IFQ
187 #define KTR_IFQ KTR_ALL
188 #endif
189 KTR_INFO_MASTER(ifq);
190 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
191 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
192 #define logifq(name, arg) KTR_LOG(ifq_ ## name, arg)
194 #define IF_START_KTR_STRING "ifp=%p"
195 #define IF_START_KTR_ARGS struct ifnet *ifp
196 #ifndef KTR_IF_START
197 #define KTR_IF_START KTR_ALL
198 #endif
199 KTR_INFO_MASTER(if_start);
200 KTR_INFO(KTR_IF_START, if_start, run, 0,
201 IF_START_KTR_STRING, IF_START_KTR_ARGS);
202 KTR_INFO(KTR_IF_START, if_start, sched, 1,
203 IF_START_KTR_STRING, IF_START_KTR_ARGS);
204 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
205 IF_START_KTR_STRING, IF_START_KTR_ARGS);
206 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
207 IF_START_KTR_STRING, IF_START_KTR_ARGS);
208 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
209 IF_START_KTR_STRING, IF_START_KTR_ARGS);
210 #define logifstart(name, arg) KTR_LOG(if_start_ ## name, arg)
211 #endif
213 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
216 * Network interface utility routines.
218 * Routines with ifa_ifwith* names take sockaddr *'s as
219 * parameters.
221 /* ARGSUSED*/
222 static void
223 ifinit(void *dummy)
226 callout_init_mp(&if_slowtimo_timer);
227 netmsg_init(&if_slowtimo_netmsg, NULL, &netisr_adone_rport,
228 MSGF_PRIORITY, if_slowtimo_dispatch);
230 /* Start if_slowtimo */
231 lwkt_sendmsg(netisr_cpuport(0), &if_slowtimo_netmsg.lmsg);
234 static void
235 ifsq_ifstart_ipifunc(void *arg)
237 struct ifaltq_subque *ifsq = arg;
238 struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
240 crit_enter();
241 if (lmsg->ms_flags & MSGF_DONE)
242 lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), lmsg);
243 crit_exit();
246 static __inline void
247 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
249 KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
250 TAILQ_REMOVE(&head->stg_head, stage, stg_link);
251 stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
252 stage->stg_cnt = 0;
253 stage->stg_len = 0;
256 static __inline void
257 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
259 KKASSERT((stage->stg_flags &
260 (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
261 stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
262 TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
266 * Schedule ifnet.if_start on the subqueue owner CPU
268 static void
269 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
271 int cpu;
273 if (!force && curthread->td_type == TD_TYPE_NETISR &&
274 ifsq_stage_cntmax > 0) {
275 struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
277 stage->stg_cnt = 0;
278 stage->stg_len = 0;
279 if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
280 ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
281 stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
282 return;
285 cpu = ifsq_get_cpuid(ifsq);
286 if (cpu != mycpuid)
287 lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
288 else
289 ifsq_ifstart_ipifunc(ifsq);
293 * NOTE:
294 * This function will release ifnet.if_start subqueue interlock,
295 * if ifnet.if_start for the subqueue does not need to be scheduled
297 static __inline int
298 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
300 if (!running || ifsq_is_empty(ifsq)
301 #ifdef ALTQ
302 || ifsq->ifsq_altq->altq_tbr != NULL
303 #endif
305 ALTQ_SQ_LOCK(ifsq);
307 * ifnet.if_start subqueue interlock is released, if:
308 * 1) Hardware can not take any packets, due to
309 * o interface is marked down
310 * o hardware queue is full (ifsq_is_oactive)
311 * Under the second situation, hardware interrupt
312 * or polling(4) will call/schedule ifnet.if_start
313 * on the subqueue when hardware queue is ready
314 * 2) There is no packet in the subqueue.
315 * Further ifq_dispatch or ifq_handoff will call/
316 * schedule ifnet.if_start on the subqueue.
317 * 3) TBR is used and it does not allow further
318 * dequeueing.
319 * TBR callout will call ifnet.if_start on the
320 * subqueue.
322 if (!running || !ifsq_data_ready(ifsq)) {
323 ifsq_clr_started(ifsq);
324 ALTQ_SQ_UNLOCK(ifsq);
325 return 0;
327 ALTQ_SQ_UNLOCK(ifsq);
329 return 1;
332 static void
333 ifsq_ifstart_dispatch(netmsg_t msg)
335 struct lwkt_msg *lmsg = &msg->base.lmsg;
336 struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
337 struct ifnet *ifp = ifsq_get_ifp(ifsq);
338 struct globaldata *gd = mycpu;
339 int running = 0, need_sched;
341 crit_enter_gd(gd);
343 lwkt_replymsg(lmsg, 0); /* reply ASAP */
345 if (gd->gd_cpuid != ifsq_get_cpuid(ifsq)) {
347 * We need to chase the subqueue owner CPU change.
349 ifsq_ifstart_schedule(ifsq, 1);
350 crit_exit_gd(gd);
351 return;
354 ifsq_serialize_hw(ifsq);
355 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
356 ifp->if_start(ifp, ifsq);
357 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
358 running = 1;
360 need_sched = ifsq_ifstart_need_schedule(ifsq, running);
361 ifsq_deserialize_hw(ifsq);
363 if (need_sched) {
365 * More data need to be transmitted, ifnet.if_start is
366 * scheduled on the subqueue owner CPU, and we keep going.
367 * NOTE: ifnet.if_start subqueue interlock is not released.
369 ifsq_ifstart_schedule(ifsq, 0);
372 crit_exit_gd(gd);
375 /* Device driver ifnet.if_start helper function */
376 void
377 ifsq_devstart(struct ifaltq_subque *ifsq)
379 struct ifnet *ifp = ifsq_get_ifp(ifsq);
380 int running = 0;
382 ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
384 ALTQ_SQ_LOCK(ifsq);
385 if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
386 ALTQ_SQ_UNLOCK(ifsq);
387 return;
389 ifsq_set_started(ifsq);
390 ALTQ_SQ_UNLOCK(ifsq);
392 ifp->if_start(ifp, ifsq);
394 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
395 running = 1;
397 if (ifsq_ifstart_need_schedule(ifsq, running)) {
399 * More data need to be transmitted, ifnet.if_start is
400 * scheduled on ifnet's CPU, and we keep going.
401 * NOTE: ifnet.if_start interlock is not released.
403 ifsq_ifstart_schedule(ifsq, 0);
407 void
408 if_devstart(struct ifnet *ifp)
410 ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
413 /* Device driver ifnet.if_start schedule helper function */
414 void
415 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
417 ifsq_ifstart_schedule(ifsq, 1);
420 void
421 if_devstart_sched(struct ifnet *ifp)
423 ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
426 static void
427 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
429 lwkt_serialize_enter(ifp->if_serializer);
432 static void
433 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
435 lwkt_serialize_exit(ifp->if_serializer);
438 static int
439 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
441 return lwkt_serialize_try(ifp->if_serializer);
444 #ifdef INVARIANTS
445 static void
446 if_default_serialize_assert(struct ifnet *ifp,
447 enum ifnet_serialize slz __unused,
448 boolean_t serialized)
450 if (serialized)
451 ASSERT_SERIALIZED(ifp->if_serializer);
452 else
453 ASSERT_NOT_SERIALIZED(ifp->if_serializer);
455 #endif
458 * Attach an interface to the list of "active" interfaces.
460 * The serializer is optional.
462 void
463 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
465 unsigned socksize;
466 int namelen, masklen;
467 struct sockaddr_dl *sdl, *sdl_addr;
468 struct ifaddr *ifa;
469 struct ifaltq *ifq;
470 struct ifnet **old_ifindex2ifnet = NULL;
471 struct ifnet_array *old_ifnet_array;
472 int i, q, qlen;
473 char qlenname[64];
475 static int if_indexlim = 8;
477 if (ifp->if_serialize != NULL) {
478 KASSERT(ifp->if_deserialize != NULL &&
479 ifp->if_tryserialize != NULL &&
480 ifp->if_serialize_assert != NULL,
481 ("serialize functions are partially setup"));
484 * If the device supplies serialize functions,
485 * then clear if_serializer to catch any invalid
486 * usage of this field.
488 KASSERT(serializer == NULL,
489 ("both serialize functions and default serializer "
490 "are supplied"));
491 ifp->if_serializer = NULL;
492 } else {
493 KASSERT(ifp->if_deserialize == NULL &&
494 ifp->if_tryserialize == NULL &&
495 ifp->if_serialize_assert == NULL,
496 ("serialize functions are partially setup"));
497 ifp->if_serialize = if_default_serialize;
498 ifp->if_deserialize = if_default_deserialize;
499 ifp->if_tryserialize = if_default_tryserialize;
500 #ifdef INVARIANTS
501 ifp->if_serialize_assert = if_default_serialize_assert;
502 #endif
505 * The serializer can be passed in from the device,
506 * allowing the same serializer to be used for both
507 * the interrupt interlock and the device queue.
508 * If not specified, the netif structure will use an
509 * embedded serializer.
511 if (serializer == NULL) {
512 serializer = &ifp->if_default_serializer;
513 lwkt_serialize_init(serializer);
515 ifp->if_serializer = serializer;
519 * Make if_addrhead available on all CPUs, since they
520 * could be accessed by any threads.
522 ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
523 M_IFADDR, M_WAITOK | M_ZERO);
524 for (i = 0; i < ncpus; ++i)
525 TAILQ_INIT(&ifp->if_addrheads[i]);
527 TAILQ_INIT(&ifp->if_multiaddrs);
528 TAILQ_INIT(&ifp->if_groups);
529 getmicrotime(&ifp->if_lastchange);
532 * create a Link Level name for this device
534 namelen = strlen(ifp->if_xname);
535 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
536 socksize = masklen + ifp->if_addrlen;
537 if (socksize < sizeof(*sdl))
538 socksize = sizeof(*sdl);
539 socksize = RT_ROUNDUP(socksize);
540 ifa = ifa_create(sizeof(struct ifaddr) + 2 * socksize);
541 sdl = sdl_addr = (struct sockaddr_dl *)(ifa + 1);
542 sdl->sdl_len = socksize;
543 sdl->sdl_family = AF_LINK;
544 bcopy(ifp->if_xname, sdl->sdl_data, namelen);
545 sdl->sdl_nlen = namelen;
546 sdl->sdl_type = ifp->if_type;
547 ifp->if_lladdr = ifa;
548 ifa->ifa_ifp = ifp;
549 ifa->ifa_rtrequest = link_rtrequest;
550 ifa->ifa_addr = (struct sockaddr *)sdl;
551 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
552 ifa->ifa_netmask = (struct sockaddr *)sdl;
553 sdl->sdl_len = masklen;
554 while (namelen != 0)
555 sdl->sdl_data[--namelen] = 0xff;
556 ifa_iflink(ifa, ifp, 0 /* Insert head */);
559 * Make if_data available on all CPUs, since they could
560 * be updated by hardware interrupt routing, which could
561 * be bound to any CPU.
563 ifp->if_data_pcpu = kmalloc_cachealign(
564 ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO);
566 if (ifp->if_mapsubq == NULL)
567 ifp->if_mapsubq = ifq_mapsubq_default;
569 ifq = &ifp->if_snd;
570 ifq->altq_type = 0;
571 ifq->altq_disc = NULL;
572 ifq->altq_flags &= ALTQF_CANTCHANGE;
573 ifq->altq_tbr = NULL;
574 ifq->altq_ifp = ifp;
576 if (ifq->altq_subq_cnt <= 0)
577 ifq->altq_subq_cnt = 1;
578 ifq->altq_subq = kmalloc_cachealign(
579 ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
580 M_DEVBUF, M_WAITOK | M_ZERO);
582 if (ifq->altq_maxlen == 0) {
583 if_printf(ifp, "driver didn't set altq_maxlen\n");
584 ifq_set_maxlen(ifq, ifqmaxlen);
587 /* Allow user to override driver's setting. */
588 ksnprintf(qlenname, sizeof(qlenname), "net.%s.qlenmax", ifp->if_xname);
589 qlen = -1;
590 TUNABLE_INT_FETCH(qlenname, &qlen);
591 if (qlen > 0) {
592 if_printf(ifp, "qlenmax -> %d\n", qlen);
593 ifq_set_maxlen(ifq, qlen);
596 for (q = 0; q < ifq->altq_subq_cnt; ++q) {
597 struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
599 ALTQ_SQ_LOCK_INIT(ifsq);
600 ifsq->ifsq_index = q;
602 ifsq->ifsq_altq = ifq;
603 ifsq->ifsq_ifp = ifp;
605 ifsq->ifsq_maxlen = ifq->altq_maxlen;
606 ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES;
607 ifsq->ifsq_prepended = NULL;
608 ifsq->ifsq_started = 0;
609 ifsq->ifsq_hw_oactive = 0;
610 ifsq_set_cpuid(ifsq, 0);
611 if (ifp->if_serializer != NULL)
612 ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
614 /* XXX: netisr_ncpus */
615 ifsq->ifsq_stage =
616 kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage),
617 M_DEVBUF, M_WAITOK | M_ZERO);
618 for (i = 0; i < ncpus; ++i)
619 ifsq->ifsq_stage[i].stg_subq = ifsq;
622 * Allocate one if_start message for each CPU, since
623 * the hardware TX ring could be assigned to any CPU.
625 * NOTE:
626 * If the hardware TX ring polling CPU and the hardware
627 * TX ring interrupt CPU are same, one if_start message
628 * should be enough.
630 ifsq->ifsq_ifstart_nmsg =
631 kmalloc(ncpus * sizeof(struct netmsg_base),
632 M_LWKTMSG, M_WAITOK);
633 for (i = 0; i < ncpus; ++i) {
634 netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
635 &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
636 ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
639 ifq_set_classic(ifq);
642 * Increase mbuf cluster/jcluster limits for the mbufs that
643 * could sit on the device queues for quite some time.
645 if (ifp->if_nmbclusters > 0)
646 mcl_inclimit(ifp->if_nmbclusters);
647 if (ifp->if_nmbjclusters > 0)
648 mjcl_inclimit(ifp->if_nmbjclusters);
651 * Install this ifp into ifindex2inet, ifnet queue and ifnet
652 * array after it is setup.
654 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
655 * by ifnet lock, so that non-netisr threads could get a
656 * consistent view.
658 ifnet_lock();
660 /* Don't update if_index until ifindex2ifnet is setup */
661 ifp->if_index = if_index + 1;
662 sdl_addr->sdl_index = ifp->if_index;
665 * Install this ifp into ifindex2ifnet
667 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
668 unsigned int n;
669 struct ifnet **q;
672 * Grow ifindex2ifnet
674 if_indexlim <<= 1;
675 n = if_indexlim * sizeof(*q);
676 q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
677 if (ifindex2ifnet != NULL) {
678 bcopy(ifindex2ifnet, q, n/2);
679 /* Free old ifindex2ifnet after sync all netisrs */
680 old_ifindex2ifnet = ifindex2ifnet;
682 ifindex2ifnet = q;
684 ifindex2ifnet[ifp->if_index] = ifp;
686 * Update if_index after this ifp is installed into ifindex2ifnet,
687 * so that netisrs could get a consistent view of ifindex2ifnet.
689 cpu_sfence();
690 if_index = ifp->if_index;
693 * Install this ifp into ifnet array.
695 /* Free old ifnet array after sync all netisrs */
696 old_ifnet_array = ifnet_array;
697 ifnet_array = ifnet_array_add(ifp, old_ifnet_array);
700 * Install this ifp into ifnet queue.
702 TAILQ_INSERT_TAIL(&ifnetlist, ifp, if_link);
704 ifnet_unlock();
707 * Sync all netisrs so that the old ifindex2ifnet and ifnet array
708 * are no longer accessed and we can free them safely later on.
710 netmsg_service_sync();
711 if (old_ifindex2ifnet != NULL)
712 kfree(old_ifindex2ifnet, M_IFADDR);
713 ifnet_array_free(old_ifnet_array);
715 if (!SLIST_EMPTY(&domains))
716 if_attachdomain1(ifp);
718 /* Announce the interface. */
719 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
720 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
721 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
724 static void
725 if_attachdomain(void *dummy)
727 struct ifnet *ifp;
729 ifnet_lock();
730 TAILQ_FOREACH(ifp, &ifnetlist, if_list)
731 if_attachdomain1(ifp);
732 ifnet_unlock();
734 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
735 if_attachdomain, NULL);
737 static void
738 if_attachdomain1(struct ifnet *ifp)
740 struct domain *dp;
742 crit_enter();
744 /* address family dependent data region */
745 bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
746 SLIST_FOREACH(dp, &domains, dom_next)
747 if (dp->dom_ifattach)
748 ifp->if_afdata[dp->dom_family] =
749 (*dp->dom_ifattach)(ifp);
750 crit_exit();
754 * Purge all addresses whose type is _not_ AF_LINK
756 static void
757 if_purgeaddrs_nolink_dispatch(netmsg_t nmsg)
759 struct ifnet *ifp = nmsg->lmsg.u.ms_resultp;
760 struct ifaddr_container *ifac, *next;
762 ASSERT_NETISR0;
765 * The ifaddr processing in the following loop will block,
766 * however, this function is called in netisr0, in which
767 * ifaddr list changes happen, so we don't care about the
768 * blockness of the ifaddr processing here.
770 TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
771 ifa_link, next) {
772 struct ifaddr *ifa = ifac->ifa;
774 /* Ignore marker */
775 if (ifa->ifa_addr->sa_family == AF_UNSPEC)
776 continue;
778 /* Leave link ifaddr as it is */
779 if (ifa->ifa_addr->sa_family == AF_LINK)
780 continue;
781 #ifdef INET
782 /* XXX: Ugly!! ad hoc just for INET */
783 if (ifa->ifa_addr->sa_family == AF_INET) {
784 struct ifaliasreq ifr;
785 struct sockaddr_in saved_addr, saved_dst;
786 #ifdef IFADDR_DEBUG_VERBOSE
787 int i;
789 kprintf("purge in4 addr %p: ", ifa);
790 for (i = 0; i < ncpus; ++i) {
791 kprintf("%d ",
792 ifa->ifa_containers[i].ifa_refcnt);
794 kprintf("\n");
795 #endif
797 /* Save information for panic. */
798 memcpy(&saved_addr, ifa->ifa_addr, sizeof(saved_addr));
799 if (ifa->ifa_dstaddr != NULL) {
800 memcpy(&saved_dst, ifa->ifa_dstaddr,
801 sizeof(saved_dst));
802 } else {
803 memset(&saved_dst, 0, sizeof(saved_dst));
806 bzero(&ifr, sizeof ifr);
807 ifr.ifra_addr = *ifa->ifa_addr;
808 if (ifa->ifa_dstaddr)
809 ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
810 if (in_control(SIOCDIFADDR, (caddr_t)&ifr, ifp,
811 NULL) == 0)
812 continue;
814 /* MUST NOT HAPPEN */
815 panic("%s: in_control failed %x, dst %x", ifp->if_xname,
816 ntohl(saved_addr.sin_addr.s_addr),
817 ntohl(saved_dst.sin_addr.s_addr));
819 #endif /* INET */
820 #ifdef INET6
821 if (ifa->ifa_addr->sa_family == AF_INET6) {
822 #ifdef IFADDR_DEBUG_VERBOSE
823 int i;
825 kprintf("purge in6 addr %p: ", ifa);
826 for (i = 0; i < ncpus; ++i) {
827 kprintf("%d ",
828 ifa->ifa_containers[i].ifa_refcnt);
830 kprintf("\n");
831 #endif
833 in6_purgeaddr(ifa);
834 /* ifp_addrhead is already updated */
835 continue;
837 #endif /* INET6 */
838 if_printf(ifp, "destroy ifaddr family %d\n",
839 ifa->ifa_addr->sa_family);
840 ifa_ifunlink(ifa, ifp);
841 ifa_destroy(ifa);
844 netisr_replymsg(&nmsg->base, 0);
847 void
848 if_purgeaddrs_nolink(struct ifnet *ifp)
850 struct netmsg_base nmsg;
852 netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
853 if_purgeaddrs_nolink_dispatch);
854 nmsg.lmsg.u.ms_resultp = ifp;
855 netisr_domsg(&nmsg, 0);
858 static void
859 ifq_stage_detach_handler(netmsg_t nmsg)
861 struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
862 int q;
864 for (q = 0; q < ifq->altq_subq_cnt; ++q) {
865 struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
866 struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
868 if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
869 ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
871 lwkt_replymsg(&nmsg->lmsg, 0);
874 static void
875 ifq_stage_detach(struct ifaltq *ifq)
877 struct netmsg_base base;
878 int cpu;
880 netmsg_init(&base, NULL, &curthread->td_msgport, 0,
881 ifq_stage_detach_handler);
882 base.lmsg.u.ms_resultp = ifq;
884 /* XXX netisr_ncpus */
885 for (cpu = 0; cpu < ncpus; ++cpu)
886 lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0);
889 struct netmsg_if_rtdel {
890 struct netmsg_base base;
891 struct ifnet *ifp;
894 static void
895 if_rtdel_dispatch(netmsg_t msg)
897 struct netmsg_if_rtdel *rmsg = (void *)msg;
898 int i, cpu;
900 cpu = mycpuid;
901 ASSERT_NETISR_NCPUS(cpu);
903 for (i = 1; i <= AF_MAX; i++) {
904 struct radix_node_head *rnh;
906 if ((rnh = rt_tables[cpu][i]) == NULL)
907 continue;
908 rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp);
910 netisr_forwardmsg(&msg->base, cpu + 1);
914 * Detach an interface, removing it from the
915 * list of "active" interfaces.
917 void
918 if_detach(struct ifnet *ifp)
920 struct ifnet_array *old_ifnet_array;
921 struct netmsg_if_rtdel msg;
922 struct domain *dp;
923 int q;
925 /* Announce that the interface is gone. */
926 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
927 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
928 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
931 * Remove this ifp from ifindex2inet, ifnet queue and ifnet
932 * array before it is whacked.
934 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
935 * by ifnet lock, so that non-netisr threads could get a
936 * consistent view.
938 ifnet_lock();
941 * Remove this ifp from ifindex2ifnet and maybe decrement if_index.
943 ifindex2ifnet[ifp->if_index] = NULL;
944 while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
945 if_index--;
948 * Remove this ifp from ifnet queue.
950 TAILQ_REMOVE(&ifnetlist, ifp, if_link);
953 * Remove this ifp from ifnet array.
955 /* Free old ifnet array after sync all netisrs */
956 old_ifnet_array = ifnet_array;
957 ifnet_array = ifnet_array_del(ifp, old_ifnet_array);
959 ifnet_unlock();
962 * Sync all netisrs so that the old ifnet array is no longer
963 * accessed and we can free it safely later on.
965 netmsg_service_sync();
966 ifnet_array_free(old_ifnet_array);
969 * Remove routes and flush queues.
971 crit_enter();
972 #ifdef IFPOLL_ENABLE
973 if (ifp->if_flags & IFF_NPOLLING)
974 ifpoll_deregister(ifp);
975 #endif
976 if_down(ifp);
978 /* Decrease the mbuf clusters/jclusters limits increased by us */
979 if (ifp->if_nmbclusters > 0)
980 mcl_inclimit(-ifp->if_nmbclusters);
981 if (ifp->if_nmbjclusters > 0)
982 mjcl_inclimit(-ifp->if_nmbjclusters);
984 #ifdef ALTQ
985 if (ifq_is_enabled(&ifp->if_snd))
986 altq_disable(&ifp->if_snd);
987 if (ifq_is_attached(&ifp->if_snd))
988 altq_detach(&ifp->if_snd);
989 #endif
992 * Clean up all addresses.
994 ifp->if_lladdr = NULL;
996 if_purgeaddrs_nolink(ifp);
997 if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
998 struct ifaddr *ifa;
1000 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1001 KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
1002 ("non-link ifaddr is left on if_addrheads"));
1004 ifa_ifunlink(ifa, ifp);
1005 ifa_destroy(ifa);
1006 KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
1007 ("there are still ifaddrs left on if_addrheads"));
1010 #ifdef INET
1012 * Remove all IPv4 kernel structures related to ifp.
1014 in_ifdetach(ifp);
1015 #endif
1017 #ifdef INET6
1019 * Remove all IPv6 kernel structs related to ifp. This should be done
1020 * before removing routing entries below, since IPv6 interface direct
1021 * routes are expected to be removed by the IPv6-specific kernel API.
1022 * Otherwise, the kernel will detect some inconsistency and bark it.
1024 in6_ifdetach(ifp);
1025 #endif
1028 * Delete all remaining routes using this interface
1030 netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
1031 if_rtdel_dispatch);
1032 msg.ifp = ifp;
1033 netisr_domsg_global(&msg.base);
1035 SLIST_FOREACH(dp, &domains, dom_next)
1036 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
1037 (*dp->dom_ifdetach)(ifp,
1038 ifp->if_afdata[dp->dom_family]);
1040 kfree(ifp->if_addrheads, M_IFADDR);
1042 lwkt_synchronize_ipiqs("if_detach");
1043 ifq_stage_detach(&ifp->if_snd);
1045 for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
1046 struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
1048 kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
1049 kfree(ifsq->ifsq_stage, M_DEVBUF);
1051 kfree(ifp->if_snd.altq_subq, M_DEVBUF);
1053 kfree(ifp->if_data_pcpu, M_DEVBUF);
1055 crit_exit();
1059 * Create interface group without members
1061 struct ifg_group *
1062 if_creategroup(const char *groupname)
1064 struct ifg_group *ifg = NULL;
1066 if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
1067 M_TEMP, M_NOWAIT)) == NULL)
1068 return (NULL);
1070 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
1071 ifg->ifg_refcnt = 0;
1072 ifg->ifg_carp_demoted = 0;
1073 TAILQ_INIT(&ifg->ifg_members);
1074 #if NPF > 0
1075 pfi_attach_ifgroup(ifg);
1076 #endif
1077 TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
1079 return (ifg);
1083 * Add a group to an interface
1086 if_addgroup(struct ifnet *ifp, const char *groupname)
1088 struct ifg_list *ifgl;
1089 struct ifg_group *ifg = NULL;
1090 struct ifg_member *ifgm;
1092 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
1093 groupname[strlen(groupname) - 1] <= '9')
1094 return (EINVAL);
1096 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1097 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1098 return (EEXIST);
1100 if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
1101 return (ENOMEM);
1103 if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
1104 kfree(ifgl, M_TEMP);
1105 return (ENOMEM);
1108 TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1109 if (!strcmp(ifg->ifg_group, groupname))
1110 break;
1112 if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
1113 kfree(ifgl, M_TEMP);
1114 kfree(ifgm, M_TEMP);
1115 return (ENOMEM);
1118 ifg->ifg_refcnt++;
1119 ifgl->ifgl_group = ifg;
1120 ifgm->ifgm_ifp = ifp;
1122 TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
1123 TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
1125 #if NPF > 0
1126 pfi_group_change(groupname);
1127 #endif
1129 return (0);
1133 * Remove a group from an interface
1136 if_delgroup(struct ifnet *ifp, const char *groupname)
1138 struct ifg_list *ifgl;
1139 struct ifg_member *ifgm;
1141 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1142 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1143 break;
1144 if (ifgl == NULL)
1145 return (ENOENT);
1147 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
1149 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
1150 if (ifgm->ifgm_ifp == ifp)
1151 break;
1153 if (ifgm != NULL) {
1154 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
1155 kfree(ifgm, M_TEMP);
1158 if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1159 TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
1160 #if NPF > 0
1161 pfi_detach_ifgroup(ifgl->ifgl_group);
1162 #endif
1163 kfree(ifgl->ifgl_group, M_TEMP);
1166 kfree(ifgl, M_TEMP);
1168 #if NPF > 0
1169 pfi_group_change(groupname);
1170 #endif
1172 return (0);
1176 * Stores all groups from an interface in memory pointed
1177 * to by data
1180 if_getgroup(caddr_t data, struct ifnet *ifp)
1182 int len, error;
1183 struct ifg_list *ifgl;
1184 struct ifg_req ifgrq, *ifgp;
1185 struct ifgroupreq *ifgr = (struct ifgroupreq *)data;
1187 if (ifgr->ifgr_len == 0) {
1188 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1189 ifgr->ifgr_len += sizeof(struct ifg_req);
1190 return (0);
1193 len = ifgr->ifgr_len;
1194 ifgp = ifgr->ifgr_groups;
1195 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1196 if (len < sizeof(ifgrq))
1197 return (EINVAL);
1198 bzero(&ifgrq, sizeof ifgrq);
1199 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1200 sizeof(ifgrq.ifgrq_group));
1201 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1202 sizeof(struct ifg_req))))
1203 return (error);
1204 len -= sizeof(ifgrq);
1205 ifgp++;
1208 return (0);
1212 * Stores all members of a group in memory pointed to by data
1215 if_getgroupmembers(caddr_t data)
1217 struct ifgroupreq *ifgr = (struct ifgroupreq *)data;
1218 struct ifg_group *ifg;
1219 struct ifg_member *ifgm;
1220 struct ifg_req ifgrq, *ifgp;
1221 int len, error;
1223 TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1224 if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1225 break;
1226 if (ifg == NULL)
1227 return (ENOENT);
1229 if (ifgr->ifgr_len == 0) {
1230 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1231 ifgr->ifgr_len += sizeof(ifgrq);
1232 return (0);
1235 len = ifgr->ifgr_len;
1236 ifgp = ifgr->ifgr_groups;
1237 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1238 if (len < sizeof(ifgrq))
1239 return (EINVAL);
1240 bzero(&ifgrq, sizeof ifgrq);
1241 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1242 sizeof(ifgrq.ifgrq_member));
1243 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1244 sizeof(struct ifg_req))))
1245 return (error);
1246 len -= sizeof(ifgrq);
1247 ifgp++;
1250 return (0);
1254 * Delete Routes for a Network Interface
1256 * Called for each routing entry via the rnh->rnh_walktree() call above
1257 * to delete all route entries referencing a detaching network interface.
1259 * Arguments:
1260 * rn pointer to node in the routing table
1261 * arg argument passed to rnh->rnh_walktree() - detaching interface
1263 * Returns:
1264 * 0 successful
1265 * errno failed - reason indicated
1268 static int
1269 if_rtdel(struct radix_node *rn, void *arg)
1271 struct rtentry *rt = (struct rtentry *)rn;
1272 struct ifnet *ifp = arg;
1273 int err;
1275 if (rt->rt_ifp == ifp) {
1278 * Protect (sorta) against walktree recursion problems
1279 * with cloned routes
1281 if (!(rt->rt_flags & RTF_UP))
1282 return (0);
1284 err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1285 rt_mask(rt), rt->rt_flags,
1286 NULL);
1287 if (err) {
1288 log(LOG_WARNING, "if_rtdel: error %d\n", err);
1292 return (0);
1295 static __inline boolean_t
1296 ifa_prefer(const struct ifaddr *cur_ifa, const struct ifaddr *old_ifa)
1298 if (old_ifa == NULL)
1299 return TRUE;
1301 if ((old_ifa->ifa_ifp->if_flags & IFF_UP) == 0 &&
1302 (cur_ifa->ifa_ifp->if_flags & IFF_UP))
1303 return TRUE;
1304 if ((old_ifa->ifa_flags & IFA_ROUTE) == 0 &&
1305 (cur_ifa->ifa_flags & IFA_ROUTE))
1306 return TRUE;
1307 return FALSE;
1311 * Locate an interface based on a complete address.
1313 struct ifaddr *
1314 ifa_ifwithaddr(struct sockaddr *addr)
1316 const struct ifnet_array *arr;
1317 int i;
1319 arr = ifnet_array_get();
1320 for (i = 0; i < arr->ifnet_count; ++i) {
1321 struct ifnet *ifp = arr->ifnet_arr[i];
1322 struct ifaddr_container *ifac;
1324 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1325 struct ifaddr *ifa = ifac->ifa;
1327 if (ifa->ifa_addr->sa_family != addr->sa_family)
1328 continue;
1329 if (sa_equal(addr, ifa->ifa_addr))
1330 return (ifa);
1331 if ((ifp->if_flags & IFF_BROADCAST) &&
1332 ifa->ifa_broadaddr &&
1333 /* IPv6 doesn't have broadcast */
1334 ifa->ifa_broadaddr->sa_len != 0 &&
1335 sa_equal(ifa->ifa_broadaddr, addr))
1336 return (ifa);
1339 return (NULL);
1343 * Locate the point to point interface with a given destination address.
1345 struct ifaddr *
1346 ifa_ifwithdstaddr(struct sockaddr *addr)
1348 const struct ifnet_array *arr;
1349 int i;
1351 arr = ifnet_array_get();
1352 for (i = 0; i < arr->ifnet_count; ++i) {
1353 struct ifnet *ifp = arr->ifnet_arr[i];
1354 struct ifaddr_container *ifac;
1356 if (!(ifp->if_flags & IFF_POINTOPOINT))
1357 continue;
1359 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1360 struct ifaddr *ifa = ifac->ifa;
1362 if (ifa->ifa_addr->sa_family != addr->sa_family)
1363 continue;
1364 if (ifa->ifa_dstaddr &&
1365 sa_equal(addr, ifa->ifa_dstaddr))
1366 return (ifa);
1369 return (NULL);
1373 * Find an interface on a specific network. If many, choice
1374 * is most specific found.
1376 struct ifaddr *
1377 ifa_ifwithnet(struct sockaddr *addr)
1379 struct ifaddr *ifa_maybe = NULL;
1380 u_int af = addr->sa_family;
1381 char *addr_data = addr->sa_data, *cplim;
1382 const struct ifnet_array *arr;
1383 int i;
1386 * AF_LINK addresses can be looked up directly by their index number,
1387 * so do that if we can.
1389 if (af == AF_LINK) {
1390 struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1392 if (sdl->sdl_index && sdl->sdl_index <= if_index)
1393 return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1397 * Scan though each interface, looking for ones that have
1398 * addresses in this address family.
1400 arr = ifnet_array_get();
1401 for (i = 0; i < arr->ifnet_count; ++i) {
1402 struct ifnet *ifp = arr->ifnet_arr[i];
1403 struct ifaddr_container *ifac;
1405 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1406 struct ifaddr *ifa = ifac->ifa;
1407 char *cp, *cp2, *cp3;
1409 if (ifa->ifa_addr->sa_family != af)
1410 next: continue;
1411 if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1413 * This is a bit broken as it doesn't
1414 * take into account that the remote end may
1415 * be a single node in the network we are
1416 * looking for.
1417 * The trouble is that we don't know the
1418 * netmask for the remote end.
1420 if (ifa->ifa_dstaddr != NULL &&
1421 sa_equal(addr, ifa->ifa_dstaddr))
1422 return (ifa);
1423 } else {
1425 * if we have a special address handler,
1426 * then use it instead of the generic one.
1428 if (ifa->ifa_claim_addr) {
1429 if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1430 return (ifa);
1431 } else {
1432 continue;
1437 * Scan all the bits in the ifa's address.
1438 * If a bit dissagrees with what we are
1439 * looking for, mask it with the netmask
1440 * to see if it really matters.
1441 * (A byte at a time)
1443 if (ifa->ifa_netmask == 0)
1444 continue;
1445 cp = addr_data;
1446 cp2 = ifa->ifa_addr->sa_data;
1447 cp3 = ifa->ifa_netmask->sa_data;
1448 cplim = ifa->ifa_netmask->sa_len +
1449 (char *)ifa->ifa_netmask;
1450 while (cp3 < cplim)
1451 if ((*cp++ ^ *cp2++) & *cp3++)
1452 goto next; /* next address! */
1454 * If the netmask of what we just found
1455 * is more specific than what we had before
1456 * (if we had one) then remember the new one
1457 * before continuing to search for an even
1458 * better one. If the netmasks are equal,
1459 * we prefer the this ifa based on the result
1460 * of ifa_prefer().
1462 if (ifa_maybe == NULL ||
1463 rn_refines((char *)ifa->ifa_netmask,
1464 (char *)ifa_maybe->ifa_netmask) ||
1465 (sa_equal(ifa_maybe->ifa_netmask,
1466 ifa->ifa_netmask) &&
1467 ifa_prefer(ifa, ifa_maybe)))
1468 ifa_maybe = ifa;
1472 return (ifa_maybe);
1476 * Find an interface address specific to an interface best matching
1477 * a given address.
1479 struct ifaddr *
1480 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1482 struct ifaddr_container *ifac;
1483 char *cp, *cp2, *cp3;
1484 char *cplim;
1485 struct ifaddr *ifa_maybe = NULL;
1486 u_int af = addr->sa_family;
1488 if (af >= AF_MAX)
1489 return (0);
1490 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1491 struct ifaddr *ifa = ifac->ifa;
1493 if (ifa->ifa_addr->sa_family != af)
1494 continue;
1495 if (ifa_maybe == NULL)
1496 ifa_maybe = ifa;
1497 if (ifa->ifa_netmask == NULL) {
1498 if (sa_equal(addr, ifa->ifa_addr) ||
1499 (ifa->ifa_dstaddr != NULL &&
1500 sa_equal(addr, ifa->ifa_dstaddr)))
1501 return (ifa);
1502 continue;
1504 if (ifp->if_flags & IFF_POINTOPOINT) {
1505 if (sa_equal(addr, ifa->ifa_dstaddr))
1506 return (ifa);
1507 } else {
1508 cp = addr->sa_data;
1509 cp2 = ifa->ifa_addr->sa_data;
1510 cp3 = ifa->ifa_netmask->sa_data;
1511 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1512 for (; cp3 < cplim; cp3++)
1513 if ((*cp++ ^ *cp2++) & *cp3)
1514 break;
1515 if (cp3 == cplim)
1516 return (ifa);
1519 return (ifa_maybe);
1523 * Default action when installing a route with a Link Level gateway.
1524 * Lookup an appropriate real ifa to point to.
1525 * This should be moved to /sys/net/link.c eventually.
1527 static void
1528 link_rtrequest(int cmd, struct rtentry *rt)
1530 struct ifaddr *ifa;
1531 struct sockaddr *dst;
1532 struct ifnet *ifp;
1534 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1535 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1536 return;
1537 ifa = ifaof_ifpforaddr(dst, ifp);
1538 if (ifa != NULL) {
1539 IFAFREE(rt->rt_ifa);
1540 IFAREF(ifa);
1541 rt->rt_ifa = ifa;
1542 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1543 ifa->ifa_rtrequest(cmd, rt);
1547 struct netmsg_ifroute {
1548 struct netmsg_base base;
1549 struct ifnet *ifp;
1550 int flag;
1551 int fam;
1555 * Mark an interface down and notify protocols of the transition.
1557 static void
1558 if_unroute_dispatch(netmsg_t nmsg)
1560 struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1561 struct ifnet *ifp = msg->ifp;
1562 int flag = msg->flag, fam = msg->fam;
1563 struct ifaddr_container *ifac;
1565 ASSERT_NETISR0;
1567 ifp->if_flags &= ~flag;
1568 getmicrotime(&ifp->if_lastchange);
1570 * The ifaddr processing in the following loop will block,
1571 * however, this function is called in netisr0, in which
1572 * ifaddr list changes happen, so we don't care about the
1573 * blockness of the ifaddr processing here.
1575 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1576 struct ifaddr *ifa = ifac->ifa;
1578 /* Ignore marker */
1579 if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1580 continue;
1582 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1583 kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1585 ifq_purge_all(&ifp->if_snd);
1586 rt_ifmsg(ifp);
1588 netisr_replymsg(&nmsg->base, 0);
1591 void
1592 if_unroute(struct ifnet *ifp, int flag, int fam)
1594 struct netmsg_ifroute msg;
1596 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1597 if_unroute_dispatch);
1598 msg.ifp = ifp;
1599 msg.flag = flag;
1600 msg.fam = fam;
1601 netisr_domsg(&msg.base, 0);
1605 * Mark an interface up and notify protocols of the transition.
1607 static void
1608 if_route_dispatch(netmsg_t nmsg)
1610 struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1611 struct ifnet *ifp = msg->ifp;
1612 int flag = msg->flag, fam = msg->fam;
1613 struct ifaddr_container *ifac;
1615 ASSERT_NETISR0;
1617 ifq_purge_all(&ifp->if_snd);
1618 ifp->if_flags |= flag;
1619 getmicrotime(&ifp->if_lastchange);
1621 * The ifaddr processing in the following loop will block,
1622 * however, this function is called in netisr0, in which
1623 * ifaddr list changes happen, so we don't care about the
1624 * blockness of the ifaddr processing here.
1626 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1627 struct ifaddr *ifa = ifac->ifa;
1629 /* Ignore marker */
1630 if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1631 continue;
1633 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1634 kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1636 rt_ifmsg(ifp);
1637 #ifdef INET6
1638 in6_if_up(ifp);
1639 #endif
1641 netisr_replymsg(&nmsg->base, 0);
1644 void
1645 if_route(struct ifnet *ifp, int flag, int fam)
1647 struct netmsg_ifroute msg;
1649 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1650 if_route_dispatch);
1651 msg.ifp = ifp;
1652 msg.flag = flag;
1653 msg.fam = fam;
1654 netisr_domsg(&msg.base, 0);
1658 * Mark an interface down and notify protocols of the transition. An
1659 * interface going down is also considered to be a synchronizing event.
1660 * We must ensure that all packet processing related to the interface
1661 * has completed before we return so e.g. the caller can free the ifnet
1662 * structure that the mbufs may be referencing.
1664 * NOTE: must be called at splnet or eqivalent.
1666 void
1667 if_down(struct ifnet *ifp)
1669 if_unroute(ifp, IFF_UP, AF_UNSPEC);
1670 netmsg_service_sync();
1674 * Mark an interface up and notify protocols of
1675 * the transition.
1676 * NOTE: must be called at splnet or eqivalent.
1678 void
1679 if_up(struct ifnet *ifp)
1681 if_route(ifp, IFF_UP, AF_UNSPEC);
1685 * Process a link state change.
1686 * NOTE: must be called at splsoftnet or equivalent.
1688 void
1689 if_link_state_change(struct ifnet *ifp)
1691 int link_state = ifp->if_link_state;
1693 rt_ifmsg(ifp);
1694 devctl_notify("IFNET", ifp->if_xname,
1695 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1699 * Handle interface watchdog timer routines. Called
1700 * from softclock, we decrement timers (if set) and
1701 * call the appropriate interface routine on expiration.
1703 static void
1704 if_slowtimo_dispatch(netmsg_t nmsg)
1706 struct globaldata *gd = mycpu;
1707 const struct ifnet_array *arr;
1708 int i;
1710 ASSERT_NETISR0;
1712 crit_enter_gd(gd);
1713 lwkt_replymsg(&nmsg->lmsg, 0); /* reply ASAP */
1714 crit_exit_gd(gd);
1716 arr = ifnet_array_get();
1717 for (i = 0; i < arr->ifnet_count; ++i) {
1718 struct ifnet *ifp = arr->ifnet_arr[i];
1720 crit_enter_gd(gd);
1722 if (if_stats_compat) {
1723 IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1724 IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1725 IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1726 IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1727 IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1728 IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1729 IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1730 IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1731 IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1732 IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1733 IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1734 IFNET_STAT_GET(ifp, oqdrops, ifp->if_oqdrops);
1737 if (ifp->if_timer == 0 || --ifp->if_timer) {
1738 crit_exit_gd(gd);
1739 continue;
1741 if (ifp->if_watchdog) {
1742 if (ifnet_tryserialize_all(ifp)) {
1743 (*ifp->if_watchdog)(ifp);
1744 ifnet_deserialize_all(ifp);
1745 } else {
1746 /* try again next timeout */
1747 ++ifp->if_timer;
1751 crit_exit_gd(gd);
1754 callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1757 static void
1758 if_slowtimo(void *arg __unused)
1760 struct lwkt_msg *lmsg = &if_slowtimo_netmsg.lmsg;
1762 KASSERT(mycpuid == 0, ("not on cpu0"));
1763 crit_enter();
1764 if (lmsg->ms_flags & MSGF_DONE)
1765 lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
1766 crit_exit();
1770 * Map interface name to
1771 * interface structure pointer.
1773 struct ifnet *
1774 ifunit(const char *name)
1776 struct ifnet *ifp;
1779 * Search all the interfaces for this name/number
1781 KASSERT(mtx_owned(&ifnet_mtx), ("ifnet is not locked"));
1783 TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
1784 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1785 break;
1787 return (ifp);
1790 struct ifnet *
1791 ifunit_netisr(const char *name)
1793 const struct ifnet_array *arr;
1794 int i;
1797 * Search all the interfaces for this name/number
1800 arr = ifnet_array_get();
1801 for (i = 0; i < arr->ifnet_count; ++i) {
1802 struct ifnet *ifp = arr->ifnet_arr[i];
1804 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1805 return ifp;
1807 return NULL;
1811 * Interface ioctls.
1814 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1816 struct ifnet *ifp;
1817 struct ifreq *ifr;
1818 struct ifstat *ifs;
1819 int error, do_ifup = 0;
1820 short oif_flags;
1821 int new_flags;
1822 size_t namelen, onamelen;
1823 char new_name[IFNAMSIZ];
1824 struct ifaddr *ifa;
1825 struct sockaddr_dl *sdl;
1827 switch (cmd) {
1828 case SIOCGIFCONF:
1829 case OSIOCGIFCONF:
1830 return (ifconf(cmd, data, cred));
1831 default:
1832 break;
1835 ifr = (struct ifreq *)data;
1837 switch (cmd) {
1838 case SIOCIFCREATE:
1839 case SIOCIFCREATE2:
1840 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1841 return (error);
1842 return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1843 cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1844 case SIOCIFDESTROY:
1845 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1846 return (error);
1847 return (if_clone_destroy(ifr->ifr_name));
1848 case SIOCIFGCLONERS:
1849 return (if_clone_list((struct if_clonereq *)data));
1850 default:
1851 break;
1855 * Nominal ioctl through interface, lookup the ifp and obtain a
1856 * lock to serialize the ifconfig ioctl operation.
1858 ifnet_lock();
1860 ifp = ifunit(ifr->ifr_name);
1861 if (ifp == NULL) {
1862 ifnet_unlock();
1863 return (ENXIO);
1865 error = 0;
1867 switch (cmd) {
1868 case SIOCGIFINDEX:
1869 ifr->ifr_index = ifp->if_index;
1870 break;
1872 case SIOCGIFFLAGS:
1873 ifr->ifr_flags = ifp->if_flags;
1874 ifr->ifr_flagshigh = ifp->if_flags >> 16;
1875 break;
1877 case SIOCGIFCAP:
1878 ifr->ifr_reqcap = ifp->if_capabilities;
1879 ifr->ifr_curcap = ifp->if_capenable;
1880 break;
1882 case SIOCGIFMETRIC:
1883 ifr->ifr_metric = ifp->if_metric;
1884 break;
1886 case SIOCGIFMTU:
1887 ifr->ifr_mtu = ifp->if_mtu;
1888 break;
1890 case SIOCGIFTSOLEN:
1891 ifr->ifr_tsolen = ifp->if_tsolen;
1892 break;
1894 case SIOCGIFDATA:
1895 error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1896 sizeof(ifp->if_data));
1897 break;
1899 case SIOCGIFPHYS:
1900 ifr->ifr_phys = ifp->if_physical;
1901 break;
1903 case SIOCGIFPOLLCPU:
1904 ifr->ifr_pollcpu = -1;
1905 break;
1907 case SIOCSIFPOLLCPU:
1908 break;
1910 case SIOCSIFFLAGS:
1911 error = priv_check_cred(cred, PRIV_ROOT, 0);
1912 if (error)
1913 break;
1914 new_flags = (ifr->ifr_flags & 0xffff) |
1915 (ifr->ifr_flagshigh << 16);
1916 if (ifp->if_flags & IFF_SMART) {
1917 /* Smart drivers twiddle their own routes */
1918 } else if (ifp->if_flags & IFF_UP &&
1919 (new_flags & IFF_UP) == 0) {
1920 if_down(ifp);
1921 } else if (new_flags & IFF_UP &&
1922 (ifp->if_flags & IFF_UP) == 0) {
1923 do_ifup = 1;
1926 #ifdef IFPOLL_ENABLE
1927 if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1928 if (new_flags & IFF_NPOLLING)
1929 ifpoll_register(ifp);
1930 else
1931 ifpoll_deregister(ifp);
1933 #endif
1935 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1936 (new_flags &~ IFF_CANTCHANGE);
1937 if (new_flags & IFF_PPROMISC) {
1938 /* Permanently promiscuous mode requested */
1939 ifp->if_flags |= IFF_PROMISC;
1940 } else if (ifp->if_pcount == 0) {
1941 ifp->if_flags &= ~IFF_PROMISC;
1943 if (ifp->if_ioctl) {
1944 ifnet_serialize_all(ifp);
1945 ifp->if_ioctl(ifp, cmd, data, cred);
1946 ifnet_deserialize_all(ifp);
1948 if (do_ifup)
1949 if_up(ifp);
1950 getmicrotime(&ifp->if_lastchange);
1951 break;
1953 case SIOCSIFCAP:
1954 error = priv_check_cred(cred, PRIV_ROOT, 0);
1955 if (error)
1956 break;
1957 if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1958 error = EINVAL;
1959 break;
1961 ifnet_serialize_all(ifp);
1962 ifp->if_ioctl(ifp, cmd, data, cred);
1963 ifnet_deserialize_all(ifp);
1964 break;
1966 case SIOCSIFNAME:
1967 error = priv_check_cred(cred, PRIV_ROOT, 0);
1968 if (error)
1969 break;
1970 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1971 if (error)
1972 break;
1973 if (new_name[0] == '\0') {
1974 error = EINVAL;
1975 break;
1977 if (ifunit(new_name) != NULL) {
1978 error = EEXIST;
1979 break;
1982 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1984 /* Announce the departure of the interface. */
1985 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1987 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1988 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1989 sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1990 namelen = strlen(new_name);
1991 onamelen = sdl->sdl_nlen;
1993 * Move the address if needed. This is safe because we
1994 * allocate space for a name of length IFNAMSIZ when we
1995 * create this in if_attach().
1997 if (namelen != onamelen) {
1998 bcopy(sdl->sdl_data + onamelen,
1999 sdl->sdl_data + namelen, sdl->sdl_alen);
2001 bcopy(new_name, sdl->sdl_data, namelen);
2002 sdl->sdl_nlen = namelen;
2003 sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
2004 bzero(sdl->sdl_data, onamelen);
2005 while (namelen != 0)
2006 sdl->sdl_data[--namelen] = 0xff;
2008 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
2010 /* Announce the return of the interface. */
2011 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
2012 break;
2014 case SIOCSIFMETRIC:
2015 error = priv_check_cred(cred, PRIV_ROOT, 0);
2016 if (error)
2017 break;
2018 ifp->if_metric = ifr->ifr_metric;
2019 getmicrotime(&ifp->if_lastchange);
2020 break;
2022 case SIOCSIFPHYS:
2023 error = priv_check_cred(cred, PRIV_ROOT, 0);
2024 if (error)
2025 break;
2026 if (ifp->if_ioctl == NULL) {
2027 error = EOPNOTSUPP;
2028 break;
2030 ifnet_serialize_all(ifp);
2031 error = ifp->if_ioctl(ifp, cmd, data, cred);
2032 ifnet_deserialize_all(ifp);
2033 if (error == 0)
2034 getmicrotime(&ifp->if_lastchange);
2035 break;
2037 case SIOCSIFMTU:
2039 u_long oldmtu = ifp->if_mtu;
2041 error = priv_check_cred(cred, PRIV_ROOT, 0);
2042 if (error)
2043 break;
2044 if (ifp->if_ioctl == NULL) {
2045 error = EOPNOTSUPP;
2046 break;
2048 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
2049 error = EINVAL;
2050 break;
2052 ifnet_serialize_all(ifp);
2053 error = ifp->if_ioctl(ifp, cmd, data, cred);
2054 ifnet_deserialize_all(ifp);
2055 if (error == 0) {
2056 getmicrotime(&ifp->if_lastchange);
2057 rt_ifmsg(ifp);
2060 * If the link MTU changed, do network layer specific procedure.
2062 if (ifp->if_mtu != oldmtu) {
2063 #ifdef INET6
2064 nd6_setmtu(ifp);
2065 #endif
2067 break;
2070 case SIOCSIFTSOLEN:
2071 error = priv_check_cred(cred, PRIV_ROOT, 0);
2072 if (error)
2073 break;
2075 /* XXX need driver supplied upper limit */
2076 if (ifr->ifr_tsolen <= 0) {
2077 error = EINVAL;
2078 break;
2080 ifp->if_tsolen = ifr->ifr_tsolen;
2081 break;
2083 case SIOCADDMULTI:
2084 case SIOCDELMULTI:
2085 error = priv_check_cred(cred, PRIV_ROOT, 0);
2086 if (error)
2087 break;
2089 /* Don't allow group membership on non-multicast interfaces. */
2090 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2091 error = EOPNOTSUPP;
2092 break;
2095 /* Don't let users screw up protocols' entries. */
2096 if (ifr->ifr_addr.sa_family != AF_LINK) {
2097 error = EINVAL;
2098 break;
2101 if (cmd == SIOCADDMULTI) {
2102 struct ifmultiaddr *ifma;
2103 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
2104 } else {
2105 error = if_delmulti(ifp, &ifr->ifr_addr);
2107 if (error == 0)
2108 getmicrotime(&ifp->if_lastchange);
2109 break;
2111 case SIOCSIFPHYADDR:
2112 case SIOCDIFPHYADDR:
2113 #ifdef INET6
2114 case SIOCSIFPHYADDR_IN6:
2115 #endif
2116 case SIOCSLIFPHYADDR:
2117 case SIOCSIFMEDIA:
2118 case SIOCSIFGENERIC:
2119 error = priv_check_cred(cred, PRIV_ROOT, 0);
2120 if (error)
2121 break;
2122 if (ifp->if_ioctl == 0) {
2123 error = EOPNOTSUPP;
2124 break;
2126 ifnet_serialize_all(ifp);
2127 error = ifp->if_ioctl(ifp, cmd, data, cred);
2128 ifnet_deserialize_all(ifp);
2129 if (error == 0)
2130 getmicrotime(&ifp->if_lastchange);
2131 break;
2133 case SIOCGIFSTATUS:
2134 ifs = (struct ifstat *)data;
2135 ifs->ascii[0] = '\0';
2136 /* fall through */
2137 case SIOCGIFPSRCADDR:
2138 case SIOCGIFPDSTADDR:
2139 case SIOCGLIFPHYADDR:
2140 case SIOCGIFMEDIA:
2141 case SIOCGIFGENERIC:
2142 if (ifp->if_ioctl == NULL) {
2143 error = EOPNOTSUPP;
2144 break;
2146 ifnet_serialize_all(ifp);
2147 error = ifp->if_ioctl(ifp, cmd, data, cred);
2148 ifnet_deserialize_all(ifp);
2149 break;
2151 case SIOCSIFLLADDR:
2152 error = priv_check_cred(cred, PRIV_ROOT, 0);
2153 if (error)
2154 break;
2155 error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
2156 ifr->ifr_addr.sa_len);
2157 EVENTHANDLER_INVOKE(iflladdr_event, ifp);
2158 break;
2160 default:
2161 oif_flags = ifp->if_flags;
2162 if (so->so_proto == 0) {
2163 error = EOPNOTSUPP;
2164 break;
2166 error = so_pru_control_direct(so, cmd, data, ifp);
2168 if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
2169 #ifdef INET6
2170 DELAY(100);/* XXX: temporary workaround for fxp issue*/
2171 if (ifp->if_flags & IFF_UP) {
2172 crit_enter();
2173 in6_if_up(ifp);
2174 crit_exit();
2176 #endif
2178 break;
2181 ifnet_unlock();
2182 return (error);
2186 * Set/clear promiscuous mode on interface ifp based on the truth value
2187 * of pswitch. The calls are reference counted so that only the first
2188 * "on" request actually has an effect, as does the final "off" request.
2189 * Results are undefined if the "off" and "on" requests are not matched.
2192 ifpromisc(struct ifnet *ifp, int pswitch)
2194 struct ifreq ifr;
2195 int error;
2196 int oldflags;
2198 oldflags = ifp->if_flags;
2199 if (ifp->if_flags & IFF_PPROMISC) {
2200 /* Do nothing if device is in permanently promiscuous mode */
2201 ifp->if_pcount += pswitch ? 1 : -1;
2202 return (0);
2204 if (pswitch) {
2206 * If the device is not configured up, we cannot put it in
2207 * promiscuous mode.
2209 if ((ifp->if_flags & IFF_UP) == 0)
2210 return (ENETDOWN);
2211 if (ifp->if_pcount++ != 0)
2212 return (0);
2213 ifp->if_flags |= IFF_PROMISC;
2214 log(LOG_INFO, "%s: promiscuous mode enabled\n",
2215 ifp->if_xname);
2216 } else {
2217 if (--ifp->if_pcount > 0)
2218 return (0);
2219 ifp->if_flags &= ~IFF_PROMISC;
2220 log(LOG_INFO, "%s: promiscuous mode disabled\n",
2221 ifp->if_xname);
2223 ifr.ifr_flags = ifp->if_flags;
2224 ifr.ifr_flagshigh = ifp->if_flags >> 16;
2225 ifnet_serialize_all(ifp);
2226 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
2227 ifnet_deserialize_all(ifp);
2228 if (error == 0)
2229 rt_ifmsg(ifp);
2230 else
2231 ifp->if_flags = oldflags;
2232 return error;
2236 * Return interface configuration
2237 * of system. List may be used
2238 * in later ioctl's (above) to get
2239 * other information.
2241 static int
2242 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2244 struct ifconf *ifc = (struct ifconf *)data;
2245 struct ifnet *ifp;
2246 struct sockaddr *sa;
2247 struct ifreq ifr, *ifrp;
2248 int space = ifc->ifc_len, error = 0;
2250 ifrp = ifc->ifc_req;
2252 ifnet_lock();
2253 TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2254 struct ifaddr_container *ifac, *ifac_mark;
2255 struct ifaddr_marker mark;
2256 struct ifaddrhead *head;
2257 int addrs;
2259 if (space <= sizeof ifr)
2260 break;
2263 * Zero the stack declared structure first to prevent
2264 * memory disclosure.
2266 bzero(&ifr, sizeof(ifr));
2267 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2268 >= sizeof(ifr.ifr_name)) {
2269 error = ENAMETOOLONG;
2270 break;
2274 * Add a marker, since copyout() could block and during that
2275 * period the list could be changed. Inserting the marker to
2276 * the header of the list will not cause trouble for the code
2277 * assuming that the first element of the list is AF_LINK; the
2278 * marker will be moved to the next position w/o blocking.
2280 ifa_marker_init(&mark, ifp);
2281 ifac_mark = &mark.ifac;
2282 head = &ifp->if_addrheads[mycpuid];
2284 addrs = 0;
2285 TAILQ_INSERT_HEAD(head, ifac_mark, ifa_link);
2286 while ((ifac = TAILQ_NEXT(ifac_mark, ifa_link)) != NULL) {
2287 struct ifaddr *ifa = ifac->ifa;
2289 TAILQ_REMOVE(head, ifac_mark, ifa_link);
2290 TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link);
2292 /* Ignore marker */
2293 if (ifa->ifa_addr->sa_family == AF_UNSPEC)
2294 continue;
2296 if (space <= sizeof ifr)
2297 break;
2298 sa = ifa->ifa_addr;
2299 if (cred->cr_prison &&
2300 prison_if(cred, sa))
2301 continue;
2302 addrs++;
2304 * Keep a reference on this ifaddr, so that it will
2305 * not be destroyed when its address is copied to
2306 * the userland, which could block.
2308 IFAREF(ifa);
2309 if (sa->sa_len <= sizeof(*sa)) {
2310 ifr.ifr_addr = *sa;
2311 error = copyout(&ifr, ifrp, sizeof ifr);
2312 ifrp++;
2313 } else {
2314 if (space < (sizeof ifr) + sa->sa_len -
2315 sizeof(*sa)) {
2316 IFAFREE(ifa);
2317 break;
2319 space -= sa->sa_len - sizeof(*sa);
2320 error = copyout(&ifr, ifrp,
2321 sizeof ifr.ifr_name);
2322 if (error == 0)
2323 error = copyout(sa, &ifrp->ifr_addr,
2324 sa->sa_len);
2325 ifrp = (struct ifreq *)
2326 (sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2328 IFAFREE(ifa);
2329 if (error)
2330 break;
2331 space -= sizeof ifr;
2333 TAILQ_REMOVE(head, ifac_mark, ifa_link);
2334 if (error)
2335 break;
2336 if (!addrs) {
2337 bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2338 error = copyout(&ifr, ifrp, sizeof ifr);
2339 if (error)
2340 break;
2341 space -= sizeof ifr;
2342 ifrp++;
2345 ifnet_unlock();
2347 ifc->ifc_len -= space;
2348 return (error);
2352 * Just like if_promisc(), but for all-multicast-reception mode.
2355 if_allmulti(struct ifnet *ifp, int onswitch)
2357 int error = 0;
2358 struct ifreq ifr;
2360 crit_enter();
2362 if (onswitch) {
2363 if (ifp->if_amcount++ == 0) {
2364 ifp->if_flags |= IFF_ALLMULTI;
2365 ifr.ifr_flags = ifp->if_flags;
2366 ifr.ifr_flagshigh = ifp->if_flags >> 16;
2367 ifnet_serialize_all(ifp);
2368 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2369 NULL);
2370 ifnet_deserialize_all(ifp);
2372 } else {
2373 if (ifp->if_amcount > 1) {
2374 ifp->if_amcount--;
2375 } else {
2376 ifp->if_amcount = 0;
2377 ifp->if_flags &= ~IFF_ALLMULTI;
2378 ifr.ifr_flags = ifp->if_flags;
2379 ifr.ifr_flagshigh = ifp->if_flags >> 16;
2380 ifnet_serialize_all(ifp);
2381 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2382 NULL);
2383 ifnet_deserialize_all(ifp);
2387 crit_exit();
2389 if (error == 0)
2390 rt_ifmsg(ifp);
2391 return error;
2395 * Add a multicast listenership to the interface in question.
2396 * The link layer provides a routine which converts
2399 if_addmulti_serialized(struct ifnet *ifp, struct sockaddr *sa,
2400 struct ifmultiaddr **retifma)
2402 struct sockaddr *llsa, *dupsa;
2403 int error;
2404 struct ifmultiaddr *ifma;
2406 ASSERT_IFNET_SERIALIZED_ALL(ifp);
2409 * If the matching multicast address already exists
2410 * then don't add a new one, just add a reference
2412 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2413 if (sa_equal(sa, ifma->ifma_addr)) {
2414 ifma->ifma_refcount++;
2415 if (retifma)
2416 *retifma = ifma;
2417 return 0;
2422 * Give the link layer a chance to accept/reject it, and also
2423 * find out which AF_LINK address this maps to, if it isn't one
2424 * already.
2426 if (ifp->if_resolvemulti) {
2427 error = ifp->if_resolvemulti(ifp, &llsa, sa);
2428 if (error)
2429 return error;
2430 } else {
2431 llsa = NULL;
2434 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2435 dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_INTWAIT);
2436 bcopy(sa, dupsa, sa->sa_len);
2438 ifma->ifma_addr = dupsa;
2439 ifma->ifma_lladdr = llsa;
2440 ifma->ifma_ifp = ifp;
2441 ifma->ifma_refcount = 1;
2442 ifma->ifma_protospec = NULL;
2443 rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2445 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2446 if (retifma)
2447 *retifma = ifma;
2449 if (llsa != NULL) {
2450 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2451 if (sa_equal(ifma->ifma_addr, llsa))
2452 break;
2454 if (ifma) {
2455 ifma->ifma_refcount++;
2456 } else {
2457 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2458 dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_INTWAIT);
2459 bcopy(llsa, dupsa, llsa->sa_len);
2460 ifma->ifma_addr = dupsa;
2461 ifma->ifma_ifp = ifp;
2462 ifma->ifma_refcount = 1;
2463 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2467 * We are certain we have added something, so call down to the
2468 * interface to let them know about it.
2470 if (ifp->if_ioctl)
2471 ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2473 return 0;
2477 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
2478 struct ifmultiaddr **retifma)
2480 int error;
2482 ifnet_serialize_all(ifp);
2483 error = if_addmulti_serialized(ifp, sa, retifma);
2484 ifnet_deserialize_all(ifp);
2486 return error;
2490 * Remove a reference to a multicast address on this interface. Yell
2491 * if the request does not match an existing membership.
2493 static int
2494 if_delmulti_serialized(struct ifnet *ifp, struct sockaddr *sa)
2496 struct ifmultiaddr *ifma;
2498 ASSERT_IFNET_SERIALIZED_ALL(ifp);
2500 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2501 if (sa_equal(sa, ifma->ifma_addr))
2502 break;
2503 if (ifma == NULL)
2504 return ENOENT;
2506 if (ifma->ifma_refcount > 1) {
2507 ifma->ifma_refcount--;
2508 return 0;
2511 rt_newmaddrmsg(RTM_DELMADDR, ifma);
2512 sa = ifma->ifma_lladdr;
2513 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2515 * Make sure the interface driver is notified
2516 * in the case of a link layer mcast group being left.
2518 if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL)
2519 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2520 kfree(ifma->ifma_addr, M_IFMADDR);
2521 kfree(ifma, M_IFMADDR);
2522 if (sa == NULL)
2523 return 0;
2526 * Now look for the link-layer address which corresponds to
2527 * this network address. It had been squirreled away in
2528 * ifma->ifma_lladdr for this purpose (so we don't have
2529 * to call ifp->if_resolvemulti() again), and we saved that
2530 * value in sa above. If some nasty deleted the
2531 * link-layer address out from underneath us, we can deal because
2532 * the address we stored was is not the same as the one which was
2533 * in the record for the link-layer address. (So we don't complain
2534 * in that case.)
2536 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2537 if (sa_equal(sa, ifma->ifma_addr))
2538 break;
2539 if (ifma == NULL)
2540 return 0;
2542 if (ifma->ifma_refcount > 1) {
2543 ifma->ifma_refcount--;
2544 return 0;
2547 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2548 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2549 kfree(ifma->ifma_addr, M_IFMADDR);
2550 kfree(sa, M_IFMADDR);
2551 kfree(ifma, M_IFMADDR);
2553 return 0;
2557 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2559 int error;
2561 ifnet_serialize_all(ifp);
2562 error = if_delmulti_serialized(ifp, sa);
2563 ifnet_deserialize_all(ifp);
2565 return error;
2569 * Delete all multicast group membership for an interface.
2570 * Should be used to quickly flush all multicast filters.
2572 void
2573 if_delallmulti_serialized(struct ifnet *ifp)
2575 struct ifmultiaddr *ifma, mark;
2576 struct sockaddr sa;
2578 ASSERT_IFNET_SERIALIZED_ALL(ifp);
2580 bzero(&sa, sizeof(sa));
2581 sa.sa_family = AF_UNSPEC;
2582 sa.sa_len = sizeof(sa);
2584 bzero(&mark, sizeof(mark));
2585 mark.ifma_addr = &sa;
2587 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, &mark, ifma_link);
2588 while ((ifma = TAILQ_NEXT(&mark, ifma_link)) != NULL) {
2589 TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2590 TAILQ_INSERT_AFTER(&ifp->if_multiaddrs, ifma, &mark,
2591 ifma_link);
2593 if (ifma->ifma_addr->sa_family == AF_UNSPEC)
2594 continue;
2596 if_delmulti_serialized(ifp, ifma->ifma_addr);
2598 TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2603 * Set the link layer address on an interface.
2605 * At this time we only support certain types of interfaces,
2606 * and we don't allow the length of the address to change.
2609 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2611 struct sockaddr_dl *sdl;
2612 struct ifreq ifr;
2614 sdl = IF_LLSOCKADDR(ifp);
2615 if (sdl == NULL)
2616 return (EINVAL);
2617 if (len != sdl->sdl_alen) /* don't allow length to change */
2618 return (EINVAL);
2619 switch (ifp->if_type) {
2620 case IFT_ETHER: /* these types use struct arpcom */
2621 case IFT_XETHER:
2622 case IFT_L2VLAN:
2623 case IFT_IEEE8023ADLAG:
2624 bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2625 bcopy(lladdr, LLADDR(sdl), len);
2626 break;
2627 default:
2628 return (ENODEV);
2631 * If the interface is already up, we need
2632 * to re-init it in order to reprogram its
2633 * address filter.
2635 ifnet_serialize_all(ifp);
2636 if ((ifp->if_flags & IFF_UP) != 0) {
2637 #ifdef INET
2638 struct ifaddr_container *ifac;
2639 #endif
2641 ifp->if_flags &= ~IFF_UP;
2642 ifr.ifr_flags = ifp->if_flags;
2643 ifr.ifr_flagshigh = ifp->if_flags >> 16;
2644 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2645 NULL);
2646 ifp->if_flags |= IFF_UP;
2647 ifr.ifr_flags = ifp->if_flags;
2648 ifr.ifr_flagshigh = ifp->if_flags >> 16;
2649 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2650 NULL);
2651 #ifdef INET
2653 * Also send gratuitous ARPs to notify other nodes about
2654 * the address change.
2656 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2657 struct ifaddr *ifa = ifac->ifa;
2659 if (ifa->ifa_addr != NULL &&
2660 ifa->ifa_addr->sa_family == AF_INET)
2661 arp_gratuitous(ifp, ifa);
2663 #endif
2665 ifnet_deserialize_all(ifp);
2666 return (0);
2669 struct ifmultiaddr *
2670 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2672 struct ifmultiaddr *ifma;
2674 /* TODO: need ifnet_serialize_main */
2675 ifnet_serialize_all(ifp);
2676 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2677 if (sa_equal(ifma->ifma_addr, sa))
2678 break;
2679 ifnet_deserialize_all(ifp);
2681 return ifma;
2685 * This function locates the first real ethernet MAC from a network
2686 * card and loads it into node, returning 0 on success or ENOENT if
2687 * no suitable interfaces were found. It is used by the uuid code to
2688 * generate a unique 6-byte number.
2691 if_getanyethermac(uint16_t *node, int minlen)
2693 struct ifnet *ifp;
2694 struct sockaddr_dl *sdl;
2696 ifnet_lock();
2697 TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2698 if (ifp->if_type != IFT_ETHER)
2699 continue;
2700 sdl = IF_LLSOCKADDR(ifp);
2701 if (sdl->sdl_alen < minlen)
2702 continue;
2703 bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2704 minlen);
2705 ifnet_unlock();
2706 return(0);
2708 ifnet_unlock();
2709 return (ENOENT);
2713 * The name argument must be a pointer to storage which will last as
2714 * long as the interface does. For physical devices, the result of
2715 * device_get_name(dev) is a good choice and for pseudo-devices a
2716 * static string works well.
2718 void
2719 if_initname(struct ifnet *ifp, const char *name, int unit)
2721 ifp->if_dname = name;
2722 ifp->if_dunit = unit;
2723 if (unit != IF_DUNIT_NONE)
2724 ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2725 else
2726 strlcpy(ifp->if_xname, name, IFNAMSIZ);
2730 if_printf(struct ifnet *ifp, const char *fmt, ...)
2732 __va_list ap;
2733 int retval;
2735 retval = kprintf("%s: ", ifp->if_xname);
2736 __va_start(ap, fmt);
2737 retval += kvprintf(fmt, ap);
2738 __va_end(ap);
2739 return (retval);
2742 struct ifnet *
2743 if_alloc(uint8_t type)
2745 struct ifnet *ifp;
2746 size_t size;
2749 * XXX temporary hack until arpcom is setup in if_l2com
2751 if (type == IFT_ETHER)
2752 size = sizeof(struct arpcom);
2753 else
2754 size = sizeof(struct ifnet);
2756 ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2758 ifp->if_type = type;
2760 if (if_com_alloc[type] != NULL) {
2761 ifp->if_l2com = if_com_alloc[type](type, ifp);
2762 if (ifp->if_l2com == NULL) {
2763 kfree(ifp, M_IFNET);
2764 return (NULL);
2767 return (ifp);
2770 void
2771 if_free(struct ifnet *ifp)
2773 kfree(ifp, M_IFNET);
2776 void
2777 ifq_set_classic(struct ifaltq *ifq)
2779 ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2780 ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2783 void
2784 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2785 ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2787 int q;
2789 KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2790 KASSERT(enqueue != NULL, ("enqueue is not specified"));
2791 KASSERT(dequeue != NULL, ("dequeue is not specified"));
2792 KASSERT(request != NULL, ("request is not specified"));
2794 ifq->altq_mapsubq = mapsubq;
2795 for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2796 struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2798 ifsq->ifsq_enqueue = enqueue;
2799 ifsq->ifsq_dequeue = dequeue;
2800 ifsq->ifsq_request = request;
2804 static void
2805 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2808 classq_add(&ifsq->ifsq_norm, m);
2809 ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2812 static void
2813 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2816 classq_add(&ifsq->ifsq_prio, m);
2817 ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2818 ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len);
2821 static struct mbuf *
2822 ifsq_norm_dequeue(struct ifaltq_subque *ifsq)
2824 struct mbuf *m;
2826 m = classq_get(&ifsq->ifsq_norm);
2827 if (m != NULL)
2828 ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2829 return (m);
2832 static struct mbuf *
2833 ifsq_prio_dequeue(struct ifaltq_subque *ifsq)
2835 struct mbuf *m;
2837 m = classq_get(&ifsq->ifsq_prio);
2838 if (m != NULL) {
2839 ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2840 ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
2842 return (m);
2846 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
2847 struct altq_pktattr *pa __unused)
2850 M_ASSERTPKTHDR(m);
2851 again:
2852 if (ifsq->ifsq_len >= ifsq->ifsq_maxlen ||
2853 ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) {
2854 struct mbuf *m_drop;
2856 if (m->m_flags & M_PRIO) {
2857 m_drop = NULL;
2858 if (ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen >> 1) &&
2859 ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt >> 1)) {
2860 /* Try dropping some from normal queue. */
2861 m_drop = ifsq_norm_dequeue(ifsq);
2863 if (m_drop == NULL)
2864 m_drop = ifsq_prio_dequeue(ifsq);
2865 } else {
2866 m_drop = ifsq_norm_dequeue(ifsq);
2868 if (m_drop != NULL) {
2869 IFNET_STAT_INC(ifsq->ifsq_ifp, oqdrops, 1);
2870 m_freem(m_drop);
2871 goto again;
2874 * No old packets could be dropped!
2875 * NOTE: Caller increases oqdrops.
2877 m_freem(m);
2878 return (ENOBUFS);
2879 } else {
2880 if (m->m_flags & M_PRIO)
2881 ifsq_prio_enqueue(ifsq, m);
2882 else
2883 ifsq_norm_enqueue(ifsq, m);
2884 return (0);
2888 struct mbuf *
2889 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op)
2891 struct mbuf *m;
2893 switch (op) {
2894 case ALTDQ_POLL:
2895 m = classq_head(&ifsq->ifsq_prio);
2896 if (m == NULL)
2897 m = classq_head(&ifsq->ifsq_norm);
2898 break;
2900 case ALTDQ_REMOVE:
2901 m = ifsq_prio_dequeue(ifsq);
2902 if (m == NULL)
2903 m = ifsq_norm_dequeue(ifsq);
2904 break;
2906 default:
2907 panic("unsupported ALTQ dequeue op: %d", op);
2909 return m;
2913 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
2915 switch (req) {
2916 case ALTRQ_PURGE:
2917 for (;;) {
2918 struct mbuf *m;
2920 m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE);
2921 if (m == NULL)
2922 break;
2923 m_freem(m);
2925 break;
2927 default:
2928 panic("unsupported ALTQ request: %d", req);
2930 return 0;
2933 static void
2934 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
2936 struct ifnet *ifp = ifsq_get_ifp(ifsq);
2937 int running = 0, need_sched;
2940 * Try to do direct ifnet.if_start on the subqueue first, if there is
2941 * contention on the subqueue hardware serializer, ifnet.if_start on
2942 * the subqueue will be scheduled on the subqueue owner CPU.
2944 if (!ifsq_tryserialize_hw(ifsq)) {
2946 * Subqueue hardware serializer contention happened,
2947 * ifnet.if_start on the subqueue is scheduled on
2948 * the subqueue owner CPU, and we keep going.
2950 ifsq_ifstart_schedule(ifsq, 1);
2951 return;
2954 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
2955 ifp->if_start(ifp, ifsq);
2956 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
2957 running = 1;
2959 need_sched = ifsq_ifstart_need_schedule(ifsq, running);
2961 ifsq_deserialize_hw(ifsq);
2963 if (need_sched) {
2965 * More data need to be transmitted, ifnet.if_start on the
2966 * subqueue is scheduled on the subqueue owner CPU, and we
2967 * keep going.
2968 * NOTE: ifnet.if_start subqueue interlock is not released.
2970 ifsq_ifstart_schedule(ifsq, force_sched);
2975 * Subqeue packets staging mechanism:
2977 * The packets enqueued into the subqueue are staged to a certain amount
2978 * before the ifnet.if_start on the subqueue is called. In this way, the
2979 * driver could avoid writing to hardware registers upon every packet,
2980 * instead, hardware registers could be written when certain amount of
2981 * packets are put onto hardware TX ring. The measurement on several modern
2982 * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware
2983 * registers writing aggregation could save ~20% CPU time when 18bytes UDP
2984 * datagrams are transmitted at 1.48Mpps. The performance improvement by
2985 * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's
2986 * netmap paper (http://info.iet.unipi.it/~luigi/netmap/).
2988 * Subqueue packets staging is performed for two entry points into drivers'
2989 * transmission function:
2990 * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try()
2991 * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule()
2993 * Subqueue packets staging will be stopped upon any of the following
2994 * conditions:
2995 * - If the count of packets enqueued on the current CPU is great than or
2996 * equal to ifsq_stage_cntmax. (XXX this should be per-interface)
2997 * - If the total length of packets enqueued on the current CPU is great
2998 * than or equal to the hardware's MTU - max_protohdr. max_protohdr is
2999 * cut from the hardware's MTU mainly bacause a full TCP segment's size
3000 * is usually less than hardware's MTU.
3001 * - ifsq_ifstart_schedule() is not pending on the current CPU and
3002 * ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not
3003 * released.
3004 * - The if_start_rollup(), which is registered as low priority netisr
3005 * rollup function, is called; probably because no more work is pending
3006 * for netisr.
3008 * NOTE:
3009 * Currently subqueue packet staging is only performed in netisr threads.
3012 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
3014 struct ifaltq *ifq = &ifp->if_snd;
3015 struct ifaltq_subque *ifsq;
3016 int error, start = 0, len, mcast = 0, avoid_start = 0;
3017 struct ifsubq_stage_head *head = NULL;
3018 struct ifsubq_stage *stage = NULL;
3019 struct globaldata *gd = mycpu;
3020 struct thread *td = gd->gd_curthread;
3022 crit_enter_quick(td);
3024 ifsq = ifq_map_subq(ifq, gd->gd_cpuid);
3025 ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
3027 len = m->m_pkthdr.len;
3028 if (m->m_flags & M_MCAST)
3029 mcast = 1;
3031 if (td->td_type == TD_TYPE_NETISR) {
3032 head = &ifsubq_stage_heads[mycpuid];
3033 stage = ifsq_get_stage(ifsq, mycpuid);
3035 stage->stg_cnt++;
3036 stage->stg_len += len;
3037 if (stage->stg_cnt < ifsq_stage_cntmax &&
3038 stage->stg_len < (ifp->if_mtu - max_protohdr))
3039 avoid_start = 1;
3042 ALTQ_SQ_LOCK(ifsq);
3043 error = ifsq_enqueue_locked(ifsq, m, pa);
3044 if (error) {
3045 IFNET_STAT_INC(ifp, oqdrops, 1);
3046 if (!ifsq_data_ready(ifsq)) {
3047 ALTQ_SQ_UNLOCK(ifsq);
3048 crit_exit_quick(td);
3049 return error;
3051 avoid_start = 0;
3053 if (!ifsq_is_started(ifsq)) {
3054 if (avoid_start) {
3055 ALTQ_SQ_UNLOCK(ifsq);
3057 KKASSERT(!error);
3058 if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
3059 ifsq_stage_insert(head, stage);
3061 IFNET_STAT_INC(ifp, obytes, len);
3062 if (mcast)
3063 IFNET_STAT_INC(ifp, omcasts, 1);
3064 crit_exit_quick(td);
3065 return error;
3069 * Hold the subqueue interlock of ifnet.if_start
3071 ifsq_set_started(ifsq);
3072 start = 1;
3074 ALTQ_SQ_UNLOCK(ifsq);
3076 if (!error) {
3077 IFNET_STAT_INC(ifp, obytes, len);
3078 if (mcast)
3079 IFNET_STAT_INC(ifp, omcasts, 1);
3082 if (stage != NULL) {
3083 if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
3084 KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
3085 if (!avoid_start) {
3086 ifsq_stage_remove(head, stage);
3087 ifsq_ifstart_schedule(ifsq, 1);
3089 crit_exit_quick(td);
3090 return error;
3093 if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
3094 ifsq_stage_remove(head, stage);
3095 } else {
3096 stage->stg_cnt = 0;
3097 stage->stg_len = 0;
3101 if (!start) {
3102 crit_exit_quick(td);
3103 return error;
3106 ifsq_ifstart_try(ifsq, 0);
3108 crit_exit_quick(td);
3109 return error;
3112 void *
3113 ifa_create(int size)
3115 struct ifaddr *ifa;
3116 int i;
3118 KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
3120 ifa = kmalloc(size, M_IFADDR, M_INTWAIT | M_ZERO);
3123 * Make ifa_container availabel on all CPUs, since they
3124 * could be accessed by any threads.
3126 ifa->ifa_containers =
3127 kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container),
3128 M_IFADDR, M_INTWAIT | M_ZERO);
3130 ifa->ifa_ncnt = ncpus;
3131 for (i = 0; i < ncpus; ++i) {
3132 struct ifaddr_container *ifac = &ifa->ifa_containers[i];
3134 ifac->ifa_magic = IFA_CONTAINER_MAGIC;
3135 ifac->ifa = ifa;
3136 ifac->ifa_refcnt = 1;
3138 #ifdef IFADDR_DEBUG
3139 kprintf("alloc ifa %p %d\n", ifa, size);
3140 #endif
3141 return ifa;
3144 void
3145 ifac_free(struct ifaddr_container *ifac, int cpu_id)
3147 struct ifaddr *ifa = ifac->ifa;
3149 KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
3150 KKASSERT(ifac->ifa_refcnt == 0);
3151 KASSERT(ifac->ifa_listmask == 0,
3152 ("ifa is still on %#x lists", ifac->ifa_listmask));
3154 ifac->ifa_magic = IFA_CONTAINER_DEAD;
3156 #ifdef IFADDR_DEBUG_VERBOSE
3157 kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
3158 #endif
3160 KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
3161 ("invalid # of ifac, %d", ifa->ifa_ncnt));
3162 if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
3163 #ifdef IFADDR_DEBUG
3164 kprintf("free ifa %p\n", ifa);
3165 #endif
3166 kfree(ifa->ifa_containers, M_IFADDR);
3167 kfree(ifa, M_IFADDR);
3171 static void
3172 ifa_iflink_dispatch(netmsg_t nmsg)
3174 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3175 struct ifaddr *ifa = msg->ifa;
3176 struct ifnet *ifp = msg->ifp;
3177 int cpu = mycpuid;
3178 struct ifaddr_container *ifac;
3180 crit_enter();
3182 ifac = &ifa->ifa_containers[cpu];
3183 ASSERT_IFAC_VALID(ifac);
3184 KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
3185 ("ifaddr is on if_addrheads"));
3187 ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
3188 if (msg->tail)
3189 TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
3190 else
3191 TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
3193 crit_exit();
3195 netisr_forwardmsg_all(&nmsg->base, cpu + 1);
3198 void
3199 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
3201 struct netmsg_ifaddr msg;
3203 netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3204 0, ifa_iflink_dispatch);
3205 msg.ifa = ifa;
3206 msg.ifp = ifp;
3207 msg.tail = tail;
3209 netisr_domsg(&msg.base, 0);
3212 static void
3213 ifa_ifunlink_dispatch(netmsg_t nmsg)
3215 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3216 struct ifaddr *ifa = msg->ifa;
3217 struct ifnet *ifp = msg->ifp;
3218 int cpu = mycpuid;
3219 struct ifaddr_container *ifac;
3221 crit_enter();
3223 ifac = &ifa->ifa_containers[cpu];
3224 ASSERT_IFAC_VALID(ifac);
3225 KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
3226 ("ifaddr is not on if_addrhead"));
3228 TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
3229 ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
3231 crit_exit();
3233 netisr_forwardmsg_all(&nmsg->base, cpu + 1);
3236 void
3237 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
3239 struct netmsg_ifaddr msg;
3241 netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3242 0, ifa_ifunlink_dispatch);
3243 msg.ifa = ifa;
3244 msg.ifp = ifp;
3246 netisr_domsg(&msg.base, 0);
3249 static void
3250 ifa_destroy_dispatch(netmsg_t nmsg)
3252 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3254 IFAFREE(msg->ifa);
3255 netisr_forwardmsg_all(&nmsg->base, mycpuid + 1);
3258 void
3259 ifa_destroy(struct ifaddr *ifa)
3261 struct netmsg_ifaddr msg;
3263 netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3264 0, ifa_destroy_dispatch);
3265 msg.ifa = ifa;
3267 netisr_domsg(&msg.base, 0);
3270 static void
3271 if_start_rollup(void)
3273 struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
3274 struct ifsubq_stage *stage;
3276 crit_enter();
3278 while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
3279 struct ifaltq_subque *ifsq = stage->stg_subq;
3280 int is_sched = 0;
3282 if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
3283 is_sched = 1;
3284 ifsq_stage_remove(head, stage);
3286 if (is_sched) {
3287 ifsq_ifstart_schedule(ifsq, 1);
3288 } else {
3289 int start = 0;
3291 ALTQ_SQ_LOCK(ifsq);
3292 if (!ifsq_is_started(ifsq)) {
3294 * Hold the subqueue interlock of
3295 * ifnet.if_start
3297 ifsq_set_started(ifsq);
3298 start = 1;
3300 ALTQ_SQ_UNLOCK(ifsq);
3302 if (start)
3303 ifsq_ifstart_try(ifsq, 1);
3305 KKASSERT((stage->stg_flags &
3306 (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
3309 crit_exit();
3312 static void
3313 ifnetinit(void *dummy __unused)
3315 int i;
3317 /* XXX netisr_ncpus */
3318 for (i = 0; i < ncpus; ++i)
3319 TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
3320 netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
3323 void
3324 if_register_com_alloc(u_char type,
3325 if_com_alloc_t *a, if_com_free_t *f)
3328 KASSERT(if_com_alloc[type] == NULL,
3329 ("if_register_com_alloc: %d already registered", type));
3330 KASSERT(if_com_free[type] == NULL,
3331 ("if_register_com_alloc: %d free already registered", type));
3333 if_com_alloc[type] = a;
3334 if_com_free[type] = f;
3337 void
3338 if_deregister_com_alloc(u_char type)
3341 KASSERT(if_com_alloc[type] != NULL,
3342 ("if_deregister_com_alloc: %d not registered", type));
3343 KASSERT(if_com_free[type] != NULL,
3344 ("if_deregister_com_alloc: %d free not registered", type));
3345 if_com_alloc[type] = NULL;
3346 if_com_free[type] = NULL;
3349 void
3350 ifq_set_maxlen(struct ifaltq *ifq, int len)
3352 ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3356 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3358 return ALTQ_SUBQ_INDEX_DEFAULT;
3362 ifq_mapsubq_modulo(struct ifaltq *ifq, int cpuid)
3365 return (cpuid % ifq->altq_subq_mappriv);
3368 static void
3369 ifsq_watchdog(void *arg)
3371 struct ifsubq_watchdog *wd = arg;
3372 struct ifnet *ifp;
3374 if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3375 goto done;
3377 ifp = ifsq_get_ifp(wd->wd_subq);
3378 if (ifnet_tryserialize_all(ifp)) {
3379 wd->wd_watchdog(wd->wd_subq);
3380 ifnet_deserialize_all(ifp);
3381 } else {
3382 /* try again next timeout */
3383 wd->wd_timer = 1;
3385 done:
3386 ifsq_watchdog_reset(wd);
3389 static void
3390 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3392 callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3393 ifsq_get_cpuid(wd->wd_subq));
3396 void
3397 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3398 ifsq_watchdog_t watchdog)
3400 callout_init_mp(&wd->wd_callout);
3401 wd->wd_timer = 0;
3402 wd->wd_subq = ifsq;
3403 wd->wd_watchdog = watchdog;
3406 void
3407 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3409 wd->wd_timer = 0;
3410 ifsq_watchdog_reset(wd);
3413 void
3414 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3416 wd->wd_timer = 0;
3417 callout_stop(&wd->wd_callout);
3420 void
3421 ifnet_lock(void)
3423 KASSERT(curthread->td_type != TD_TYPE_NETISR,
3424 ("try holding ifnet lock in netisr"));
3425 mtx_lock(&ifnet_mtx);
3428 void
3429 ifnet_unlock(void)
3431 KASSERT(curthread->td_type != TD_TYPE_NETISR,
3432 ("try holding ifnet lock in netisr"));
3433 mtx_unlock(&ifnet_mtx);
3436 static struct ifnet_array *
3437 ifnet_array_alloc(int count)
3439 struct ifnet_array *arr;
3441 arr = kmalloc(__offsetof(struct ifnet_array, ifnet_arr[count]),
3442 M_IFNET, M_WAITOK);
3443 arr->ifnet_count = count;
3445 return arr;
3448 static void
3449 ifnet_array_free(struct ifnet_array *arr)
3451 if (arr == &ifnet_array0)
3452 return;
3453 kfree(arr, M_IFNET);
3456 static struct ifnet_array *
3457 ifnet_array_add(struct ifnet *ifp, const struct ifnet_array *old_arr)
3459 struct ifnet_array *arr;
3460 int count, i;
3462 KASSERT(old_arr->ifnet_count >= 0,
3463 ("invalid ifnet array count %d", old_arr->ifnet_count));
3464 count = old_arr->ifnet_count + 1;
3465 arr = ifnet_array_alloc(count);
3468 * Save the old ifnet array and append this ifp to the end of
3469 * the new ifnet array.
3471 for (i = 0; i < old_arr->ifnet_count; ++i) {
3472 KASSERT(old_arr->ifnet_arr[i] != ifp,
3473 ("%s is already in ifnet array", ifp->if_xname));
3474 arr->ifnet_arr[i] = old_arr->ifnet_arr[i];
3476 KASSERT(i == count - 1,
3477 ("add %s, ifnet array index mismatch, should be %d, but got %d",
3478 ifp->if_xname, count - 1, i));
3479 arr->ifnet_arr[i] = ifp;
3481 return arr;
3484 static struct ifnet_array *
3485 ifnet_array_del(struct ifnet *ifp, const struct ifnet_array *old_arr)
3487 struct ifnet_array *arr;
3488 int count, i, idx, found = 0;
3490 KASSERT(old_arr->ifnet_count > 0,
3491 ("invalid ifnet array count %d", old_arr->ifnet_count));
3492 count = old_arr->ifnet_count - 1;
3493 arr = ifnet_array_alloc(count);
3496 * Save the old ifnet array, but skip this ifp.
3498 idx = 0;
3499 for (i = 0; i < old_arr->ifnet_count; ++i) {
3500 if (old_arr->ifnet_arr[i] == ifp) {
3501 KASSERT(!found,
3502 ("dup %s is in ifnet array", ifp->if_xname));
3503 found = 1;
3504 continue;
3506 KASSERT(idx < count,
3507 ("invalid ifnet array index %d, count %d", idx, count));
3508 arr->ifnet_arr[idx] = old_arr->ifnet_arr[i];
3509 ++idx;
3511 KASSERT(found, ("%s is not in ifnet array", ifp->if_xname));
3512 KASSERT(idx == count,
3513 ("del %s, ifnet array count mismatch, should be %d, but got %d ",
3514 ifp->if_xname, count, idx));
3516 return arr;
3519 const struct ifnet_array *
3520 ifnet_array_get(void)
3522 const struct ifnet_array *ret;
3524 KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3525 ret = ifnet_array;
3526 /* Make sure 'ret' is really used. */
3527 cpu_ccfence();
3528 return (ret);
3532 ifnet_array_isempty(void)
3534 KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3535 if (ifnet_array->ifnet_count == 0)
3536 return 1;
3537 else
3538 return 0;
3541 void
3542 ifa_marker_init(struct ifaddr_marker *mark, struct ifnet *ifp)
3544 struct ifaddr *ifa;
3546 memset(mark, 0, sizeof(*mark));
3547 ifa = &mark->ifa;
3549 mark->ifac.ifa = ifa;
3551 ifa->ifa_addr = &mark->addr;
3552 ifa->ifa_dstaddr = &mark->dstaddr;
3553 ifa->ifa_netmask = &mark->netmask;
3554 ifa->ifa_ifp = ifp;
3557 static int
3558 if_ringcnt_fixup(int ring_cnt, int ring_cntmax)
3561 KASSERT(ring_cntmax > 0, ("invalid ring count max %d", ring_cntmax));
3563 if (ring_cnt <= 0 || ring_cnt > ring_cntmax)
3564 ring_cnt = ring_cntmax;
3565 if (ring_cnt > netisr_ncpus)
3566 ring_cnt = netisr_ncpus;
3567 return (ring_cnt);
3570 static void
3571 if_ringmap_set_grid(device_t dev, struct if_ringmap *rm, int grid)
3573 int i, offset;
3575 KASSERT(grid > 0, ("invalid if_ringmap grid %d", grid));
3576 KASSERT(grid >= rm->rm_cnt, ("invalid if_ringmap grid %d, count %d",
3577 grid, rm->rm_cnt));
3578 rm->rm_grid = grid;
3580 offset = (rm->rm_grid * device_get_unit(dev)) % netisr_ncpus;
3581 for (i = 0; i < rm->rm_cnt; ++i) {
3582 rm->rm_cpumap[i] = offset + i;
3583 KASSERT(rm->rm_cpumap[i] < netisr_ncpus,
3584 ("invalid cpumap[%d] = %d, offset %d", i,
3585 rm->rm_cpumap[i], offset));
3589 static struct if_ringmap *
3590 if_ringmap_alloc_flags(device_t dev, int ring_cnt, int ring_cntmax,
3591 uint32_t flags)
3593 struct if_ringmap *rm;
3594 int i, grid = 0, prev_grid;
3596 ring_cnt = if_ringcnt_fixup(ring_cnt, ring_cntmax);
3597 rm = kmalloc(__offsetof(struct if_ringmap, rm_cpumap[ring_cnt]),
3598 M_DEVBUF, M_WAITOK | M_ZERO);
3600 rm->rm_cnt = ring_cnt;
3601 if (flags & RINGMAP_FLAG_POWEROF2)
3602 rm->rm_cnt = 1 << (fls(rm->rm_cnt) - 1);
3604 prev_grid = netisr_ncpus;
3605 for (i = 0; i < netisr_ncpus; ++i) {
3606 if (netisr_ncpus % (i + 1) != 0)
3607 continue;
3609 grid = netisr_ncpus / (i + 1);
3610 if (rm->rm_cnt > grid) {
3611 grid = prev_grid;
3612 break;
3615 if (rm->rm_cnt > netisr_ncpus / (i + 2))
3616 break;
3617 prev_grid = grid;
3619 if_ringmap_set_grid(dev, rm, grid);
3621 return (rm);
3624 struct if_ringmap *
3625 if_ringmap_alloc(device_t dev, int ring_cnt, int ring_cntmax)
3628 return (if_ringmap_alloc_flags(dev, ring_cnt, ring_cntmax,
3629 RINGMAP_FLAG_NONE));
3632 struct if_ringmap *
3633 if_ringmap_alloc2(device_t dev, int ring_cnt, int ring_cntmax)
3636 return (if_ringmap_alloc_flags(dev, ring_cnt, ring_cntmax,
3637 RINGMAP_FLAG_POWEROF2));
3640 void
3641 if_ringmap_free(struct if_ringmap *rm)
3644 kfree(rm, M_DEVBUF);
3648 * Align the two ringmaps.
3650 * e.g. 8 netisrs, rm0 contains 4 rings, rm1 contains 2 rings.
3652 * Before:
3654 * CPU 0 1 2 3 4 5 6 7
3655 * NIC_RX n0 n1 n2 n3
3656 * NIC_TX N0 N1
3658 * After:
3660 * CPU 0 1 2 3 4 5 6 7
3661 * NIC_RX n0 n1 n2 n3
3662 * NIC_TX N0 N1
3664 void
3665 if_ringmap_align(device_t dev, struct if_ringmap *rm0, struct if_ringmap *rm1)
3668 if (rm0->rm_grid > rm1->rm_grid)
3669 if_ringmap_set_grid(dev, rm1, rm0->rm_grid);
3670 else if (rm0->rm_grid < rm1->rm_grid)
3671 if_ringmap_set_grid(dev, rm0, rm1->rm_grid);
3674 void
3675 if_ringmap_match(device_t dev, struct if_ringmap *rm0, struct if_ringmap *rm1)
3677 int subset_grid, cnt, divisor, mod, offset, i;
3678 struct if_ringmap *subset_rm, *rm;
3679 int old_rm0_grid, old_rm1_grid;
3681 if (rm0->rm_grid == rm1->rm_grid)
3682 return;
3684 /* Save grid for later use */
3685 old_rm0_grid = rm0->rm_grid;
3686 old_rm1_grid = rm1->rm_grid;
3688 if_ringmap_align(dev, rm0, rm1);
3691 * Re-shuffle rings to get more even distribution.
3693 * e.g. 12 netisrs, rm0 contains 4 rings, rm1 contains 2 rings.
3695 * CPU 0 1 2 3 4 5 6 7 8 9 10 11
3697 * NIC_RX a0 a1 a2 a3 b0 b1 b2 b3 c0 c1 c2 c3
3698 * NIC_TX A0 A1 B0 B1 C0 C1
3700 * NIC_RX d0 d1 d2 d3 e0 e1 e2 e3 f0 f1 f2 f3
3701 * NIC_TX D0 D1 E0 E1 F0 F1
3704 if (rm0->rm_cnt >= (2 * old_rm1_grid)) {
3705 cnt = rm0->rm_cnt;
3706 subset_grid = old_rm1_grid;
3707 subset_rm = rm1;
3708 rm = rm0;
3709 } else if (rm1->rm_cnt > (2 * old_rm0_grid)) {
3710 cnt = rm1->rm_cnt;
3711 subset_grid = old_rm0_grid;
3712 subset_rm = rm0;
3713 rm = rm1;
3714 } else {
3715 /* No space to shuffle. */
3716 return;
3719 mod = cnt / subset_grid;
3720 KKASSERT(mod >= 2);
3721 divisor = netisr_ncpus / rm->rm_grid;
3722 offset = ((device_get_unit(dev) / divisor) % mod) * subset_grid;
3724 for (i = 0; i < subset_rm->rm_cnt; ++i) {
3725 subset_rm->rm_cpumap[i] += offset;
3726 KASSERT(subset_rm->rm_cpumap[i] < netisr_ncpus,
3727 ("match: invalid cpumap[%d] = %d, offset %d",
3728 i, subset_rm->rm_cpumap[i], offset));
3730 #ifdef INVARIANTS
3731 for (i = 0; i < subset_rm->rm_cnt; ++i) {
3732 int j;
3734 for (j = 0; j < rm->rm_cnt; ++j) {
3735 if (rm->rm_cpumap[j] == subset_rm->rm_cpumap[i])
3736 break;
3738 KASSERT(j < rm->rm_cnt,
3739 ("subset cpumap[%d] = %d not found in superset",
3740 i, subset_rm->rm_cpumap[i]));
3742 #endif
3746 if_ringmap_count(const struct if_ringmap *rm)
3749 return (rm->rm_cnt);
3753 if_ringmap_cpumap(const struct if_ringmap *rm, int ring)
3756 KASSERT(ring >= 0 && ring < rm->rm_cnt, ("invalid ring %d", ring));
3757 return (rm->rm_cpumap[ring]);
3760 void
3761 if_ringmap_rdrtable(const struct if_ringmap *rm, int table[], int table_nent)
3763 int i, grid_idx, grid_cnt, patch_off, patch_cnt, ncopy;
3765 KASSERT(table_nent > 0 && (table_nent & NETISR_CPUMASK) == 0,
3766 ("invalid redirect table entries %d", table_nent));
3768 grid_idx = 0;
3769 for (i = 0; i < NETISR_CPUMAX; ++i) {
3770 table[i] = grid_idx++ % rm->rm_cnt;
3772 if (grid_idx == rm->rm_grid)
3773 grid_idx = 0;
3777 * Make the ring distributed more evenly for the remainder
3778 * of each grid.
3780 * e.g. 12 netisrs, rm contains 8 rings.
3782 * Redirect table before:
3784 * 0 1 2 3 4 5 6 7 0 1 2 3 0 1 2 3
3785 * 4 5 6 7 0 1 2 3 0 1 2 3 4 5 6 7
3786 * 0 1 2 3 0 1 2 3 4 5 6 7 0 1 2 3
3787 * ....
3789 * Redirect table after being patched (pX, patched entries):
3791 * 0 1 2 3 4 5 6 7 p0 p1 p2 p3 0 1 2 3
3792 * 4 5 6 7 p4 p5 p6 p7 0 1 2 3 4 5 6 7
3793 * p0 p1 p2 p3 0 1 2 3 4 5 6 7 p4 p5 p6 p7
3794 * ....
3796 patch_cnt = rm->rm_grid % rm->rm_cnt;
3797 if (patch_cnt == 0)
3798 goto done;
3799 patch_off = rm->rm_grid - (rm->rm_grid % rm->rm_cnt);
3801 grid_cnt = roundup(NETISR_CPUMAX, rm->rm_grid) / rm->rm_grid;
3802 grid_idx = 0;
3803 for (i = 0; i < grid_cnt; ++i) {
3804 int j;
3806 for (j = 0; j < patch_cnt; ++j) {
3807 int fix_idx;
3809 fix_idx = (i * rm->rm_grid) + patch_off + j;
3810 if (fix_idx >= NETISR_CPUMAX)
3811 goto done;
3812 table[fix_idx] = grid_idx++ % rm->rm_cnt;
3815 done:
3817 * If the device supports larger redirect table, duplicate
3818 * the first NETISR_CPUMAX entries to the rest of the table,
3819 * so that it matches upper layer's expectation:
3820 * (hash & NETISR_CPUMASK) % netisr_ncpus
3822 ncopy = table_nent / NETISR_CPUMAX;
3823 for (i = 1; i < ncopy; ++i) {
3824 memcpy(&table[i * NETISR_CPUMAX], table,
3825 NETISR_CPUMAX * sizeof(table[0]));
3827 if (if_ringmap_dumprdr) {
3828 for (i = 0; i < table_nent; ++i) {
3829 if (i != 0 && i % 16 == 0)
3830 kprintf("\n");
3831 kprintf("%03d ", table[i]);
3833 kprintf("\n");
3838 if_ringmap_cpumap_sysctl(SYSCTL_HANDLER_ARGS)
3840 struct if_ringmap *rm = arg1;
3841 int i, error = 0;
3843 for (i = 0; i < rm->rm_cnt; ++i) {
3844 int cpu = rm->rm_cpumap[i];
3846 error = SYSCTL_OUT(req, &cpu, sizeof(cpu));
3847 if (error)
3848 break;
3850 return (error);