MFC r1.3 r1.13 r1.8 (HEAD):
[dragonfly.git] / sys / vm / vnode_pager.c
blob7f2f67e4ed7739acf477a4b3c57fcb5e31484b59
1 /*
2 * Copyright (c) 1990 University of Utah.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 * Copyright (c) 1993, 1994 John S. Dyson
6 * Copyright (c) 1995, David Greenman
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91
41 * $FreeBSD: src/sys/vm/vnode_pager.c,v 1.116.2.7 2002/12/31 09:34:51 dillon Exp $
42 * $DragonFly: src/sys/vm/vnode_pager.c,v 1.43 2008/06/19 23:27:39 dillon Exp $
46 * Page to/from files (vnodes).
50 * TODO:
51 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
52 * greatly re-simplify the vnode_pager.
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/vnode.h>
60 #include <sys/mount.h>
61 #include <sys/buf.h>
62 #include <sys/vmmeter.h>
63 #include <sys/conf.h>
64 #include <sys/sfbuf.h>
65 #include <sys/thread2.h>
67 #include <vm/vm.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_page.h>
70 #include <vm/vm_pager.h>
71 #include <vm/vm_map.h>
72 #include <vm/vnode_pager.h>
73 #include <vm/vm_extern.h>
75 static void vnode_pager_dealloc (vm_object_t);
76 static int vnode_pager_getpages (vm_object_t, vm_page_t *, int, int);
77 static void vnode_pager_putpages (vm_object_t, vm_page_t *, int, boolean_t, int *);
78 static boolean_t vnode_pager_haspage (vm_object_t, vm_pindex_t, int *, int *);
80 struct pagerops vnodepagerops = {
81 NULL,
82 vnode_pager_alloc,
83 vnode_pager_dealloc,
84 vnode_pager_getpages,
85 vnode_pager_putpages,
86 vnode_pager_haspage,
87 NULL
90 static struct krate vbadrate = { 1 };
91 static struct krate vresrate = { 1 };
93 int vnode_pbuf_freecnt = -1; /* start out unlimited */
96 * Allocate (or lookup) pager for a vnode.
97 * Handle is a vnode pointer.
99 vm_object_t
100 vnode_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
102 vm_object_t object;
103 struct vnode *vp;
106 * Pageout to vnode, no can do yet.
108 if (handle == NULL)
109 return (NULL);
112 * XXX hack - This initialization should be put somewhere else.
114 if (vnode_pbuf_freecnt < 0) {
115 vnode_pbuf_freecnt = nswbuf / 2 + 1;
118 vp = (struct vnode *) handle;
121 * Prevent race condition when allocating the object. This
122 * can happen with NFS vnodes since the nfsnode isn't locked.
124 while (vp->v_flag & VOLOCK) {
125 vp->v_flag |= VOWANT;
126 tsleep(vp, 0, "vnpobj", 0);
128 vp->v_flag |= VOLOCK;
131 * If the object is being terminated, wait for it to
132 * go away.
134 while (((object = vp->v_object) != NULL) &&
135 (object->flags & OBJ_DEAD)) {
136 vm_object_dead_sleep(object, "vadead");
139 if (vp->v_sysref.refcnt <= 0)
140 panic("vnode_pager_alloc: no vnode reference");
142 if (object == NULL) {
144 * And an object of the appropriate size
146 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
147 object->flags = 0;
148 object->handle = handle;
149 vp->v_object = object;
150 vp->v_filesize = size;
151 } else {
152 object->ref_count++;
153 if (vp->v_filesize != size)
154 kprintf("vnode_pager_alloc: Warning, filesize mismatch %lld/%lld\n", vp->v_filesize, size);
156 vref(vp);
158 vp->v_flag &= ~VOLOCK;
159 if (vp->v_flag & VOWANT) {
160 vp->v_flag &= ~VOWANT;
161 wakeup(vp);
163 return (object);
166 static void
167 vnode_pager_dealloc(vm_object_t object)
169 struct vnode *vp = object->handle;
171 if (vp == NULL)
172 panic("vnode_pager_dealloc: pager already dealloced");
174 vm_object_pip_wait(object, "vnpdea");
176 object->handle = NULL;
177 object->type = OBJT_DEAD;
178 vp->v_object = NULL;
179 vp->v_filesize = NOOFFSET;
180 vp->v_flag &= ~(VTEXT | VOBJBUF);
184 * Return whether the vnode pager has the requested page. Return the
185 * number of disk-contiguous pages before and after the requested page,
186 * not including the requested page.
188 static boolean_t
189 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
190 int *after)
192 struct vnode *vp = object->handle;
193 off_t loffset;
194 off_t doffset;
195 int voff;
196 int bsize;
197 int error;
200 * If no vp or vp is doomed or marked transparent to VM, we do not
201 * have the page.
203 if ((vp == NULL) || (vp->v_flag & VRECLAIMED))
204 return FALSE;
207 * If filesystem no longer mounted or offset beyond end of file we do
208 * not have the page.
210 loffset = IDX_TO_OFF(pindex);
212 if (vp->v_mount == NULL || loffset >= vp->v_filesize)
213 return FALSE;
215 bsize = vp->v_mount->mnt_stat.f_iosize;
216 voff = loffset % bsize;
218 error = VOP_BMAP(vp, loffset - voff, &doffset, after, before, 0);
219 if (error)
220 return TRUE;
221 if (doffset == NOOFFSET)
222 return FALSE;
224 if (before) {
225 *before = (*before + voff) >> PAGE_SHIFT;
227 if (after) {
228 *after -= voff;
229 if (loffset + *after > vp->v_filesize)
230 *after = vp->v_filesize - loffset;
231 *after >>= PAGE_SHIFT;
232 if (*after < 0)
233 *after = 0;
235 return TRUE;
239 * Lets the VM system know about a change in size for a file.
240 * We adjust our own internal size and flush any cached pages in
241 * the associated object that are affected by the size change.
243 * NOTE: This routine may be invoked as a result of a pager put
244 * operation (possibly at object termination time), so we must be careful.
246 * NOTE: vp->v_filesize is initialized to NOOFFSET (-1), be sure that
247 * we do not blow up on the case. nsize will always be >= 0, however.
249 void
250 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
252 vm_pindex_t nobjsize;
253 vm_pindex_t oobjsize;
254 vm_object_t object = vp->v_object;
256 if (object == NULL)
257 return;
260 * Hasn't changed size
262 if (nsize == vp->v_filesize)
263 return;
266 * Has changed size. Adjust the VM object's size and v_filesize
267 * before we start scanning pages to prevent new pages from being
268 * allocated during the scan.
270 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
271 oobjsize = object->size;
272 object->size = nobjsize;
275 * File has shrunk. Toss any cached pages beyond the new EOF.
277 if (nsize < vp->v_filesize) {
278 vp->v_filesize = nsize;
279 if (nobjsize < oobjsize) {
280 vm_object_page_remove(object, nobjsize, oobjsize,
281 FALSE);
284 * This gets rid of garbage at the end of a page that is now
285 * only partially backed by the vnode. Since we are setting
286 * the entire page valid & clean after we are done we have
287 * to be sure that the portion of the page within the file
288 * bounds is already valid. If it isn't then making it
289 * valid would create a corrupt block.
291 if (nsize & PAGE_MASK) {
292 vm_offset_t kva;
293 vm_page_t m;
295 do {
296 m = vm_page_lookup(object, OFF_TO_IDX(nsize));
297 } while (m && vm_page_sleep_busy(m, TRUE, "vsetsz"));
299 if (m && m->valid) {
300 int base = (int)nsize & PAGE_MASK;
301 int size = PAGE_SIZE - base;
302 struct sf_buf *sf;
305 * Clear out partial-page garbage in case
306 * the page has been mapped.
308 vm_page_busy(m);
309 sf = sf_buf_alloc(m, SFB_CPUPRIVATE);
310 kva = sf_buf_kva(sf);
311 bzero((caddr_t)kva + base, size);
312 sf_buf_free(sf);
315 * XXX work around SMP data integrity race
316 * by unmapping the page from user processes.
317 * The garbage we just cleared may be mapped
318 * to a user process running on another cpu
319 * and this code is not running through normal
320 * I/O channels which handle SMP issues for
321 * us, so unmap page to synchronize all cpus.
323 * XXX should vm_pager_unmap_page() have
324 * dealt with this?
326 vm_page_protect(m, VM_PROT_NONE);
329 * Clear out partial-page dirty bits. This
330 * has the side effect of setting the valid
331 * bits, but that is ok. There are a bunch
332 * of places in the VM system where we expected
333 * m->dirty == VM_PAGE_BITS_ALL. The file EOF
334 * case is one of them. If the page is still
335 * partially dirty, make it fully dirty.
337 * note that we do not clear out the valid
338 * bits. This would prevent bogus_page
339 * replacement from working properly.
341 vm_page_set_validclean(m, base, size);
342 if (m->dirty != 0)
343 m->dirty = VM_PAGE_BITS_ALL;
344 vm_page_wakeup(m);
347 } else {
348 vp->v_filesize = nsize;
353 * Release a page busied for a getpages operation. The page may have become
354 * wired (typically due to being used by the buffer cache) or otherwise been
355 * soft-busied and cannot be freed in that case. A held page can still be
356 * freed.
358 void
359 vnode_pager_freepage(vm_page_t m)
361 if (m->busy || m->wire_count) {
362 vm_page_activate(m);
363 vm_page_wakeup(m);
364 } else {
365 vm_page_free(m);
370 * EOPNOTSUPP is no longer legal. For local media VFS's that do not
371 * implement their own VOP_GETPAGES, their VOP_GETPAGES should call to
372 * vnode_pager_generic_getpages() to implement the previous behaviour.
374 * All other FS's should use the bypass to get to the local media
375 * backing vp's VOP_GETPAGES.
377 static int
378 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
380 int rtval;
381 struct vnode *vp;
382 int bytes = count * PAGE_SIZE;
384 vp = object->handle;
385 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
386 if (rtval == EOPNOTSUPP)
387 panic("vnode_pager: vfs's must implement vop_getpages\n");
388 return rtval;
392 * This is now called from local media FS's to operate against their
393 * own vnodes if they fail to implement VOP_GETPAGES.
395 * With all the caching local media devices do these days there is really
396 * very little point to attempting to restrict the I/O size to contiguous
397 * blocks on-disk, especially if our caller thinks we need all the specified
398 * pages. Just construct and issue a READ.
401 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int bytecount,
402 int reqpage)
404 struct iovec aiov;
405 struct uio auio;
406 off_t foff;
407 int error;
408 int count;
409 int i;
410 int ioflags;
413 * Do not do anything if the vnode is bad.
415 if (vp->v_mount == NULL)
416 return VM_PAGER_BAD;
419 * Calculate the number of pages. Since we are paging in whole
420 * pages, adjust bytecount to be an integral multiple of the page
421 * size. It will be clipped to the file EOF later on.
423 bytecount = round_page(bytecount);
424 count = bytecount / PAGE_SIZE;
427 * If we have a completely valid page available to us, we can
428 * clean up and return. Otherwise we have to re-read the
429 * media.
431 * Note that this does not work with NFS, so NFS has its own
432 * getpages routine. The problem is that NFS can have partially
433 * valid pages associated with the buffer cache due to the piecemeal
434 * write support. If we were to fall through and re-read the media
435 * as we do here, dirty data could be lost.
437 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
438 for (i = 0; i < count; i++) {
439 if (i != reqpage)
440 vnode_pager_freepage(m[i]);
442 return VM_PAGER_OK;
446 * Discard pages past the file EOF. If the requested page is past
447 * the file EOF we just leave its valid bits set to 0, the caller
448 * expects to maintain ownership of the requested page. If the
449 * entire range is past file EOF discard everything and generate
450 * a pagein error.
452 foff = IDX_TO_OFF(m[0]->pindex);
453 if (foff >= vp->v_filesize) {
454 for (i = 0; i < count; i++) {
455 if (i != reqpage)
456 vnode_pager_freepage(m[i]);
458 return VM_PAGER_ERROR;
461 if (foff + bytecount > vp->v_filesize) {
462 bytecount = vp->v_filesize - foff;
463 i = round_page(bytecount) / PAGE_SIZE;
464 while (count > i) {
465 --count;
466 if (count != reqpage)
467 vnode_pager_freepage(m[count]);
472 * The size of the transfer is bytecount. bytecount will be an
473 * integral multiple of the page size unless it has been clipped
474 * to the file EOF. The transfer cannot exceed the file EOF.
476 * When dealing with real devices we must round-up to the device
477 * sector size.
479 if (vp->v_type == VBLK || vp->v_type == VCHR) {
480 int secmask = vp->v_rdev->si_bsize_phys - 1;
481 KASSERT(secmask < PAGE_SIZE, ("vnode_pager_generic_getpages: sector size %d too large\n", secmask + 1));
482 bytecount = (bytecount + secmask) & ~secmask;
486 * Severe hack to avoid deadlocks with the buffer cache
488 for (i = 0; i < count; ++i) {
489 vm_page_t mt = m[i];
491 vm_page_io_start(mt);
492 vm_page_wakeup(mt);
496 * Issue the I/O without any read-ahead
498 ioflags = IO_VMIO;
499 /*ioflags |= IO_SEQMAX << IO_SEQSHIFT;*/
501 aiov.iov_base = (caddr_t) 0;
502 aiov.iov_len = bytecount;
503 auio.uio_iov = &aiov;
504 auio.uio_iovcnt = 1;
505 auio.uio_offset = foff;
506 auio.uio_segflg = UIO_NOCOPY;
507 auio.uio_rw = UIO_READ;
508 auio.uio_resid = bytecount;
509 auio.uio_td = NULL;
510 mycpu->gd_cnt.v_vnodein++;
511 mycpu->gd_cnt.v_vnodepgsin += count;
513 error = VOP_READ(vp, &auio, ioflags, proc0.p_ucred);
516 * Severe hack to avoid deadlocks with the buffer cache
518 for (i = 0; i < count; ++i) {
519 vm_page_t mt = m[i];
521 while (vm_page_sleep_busy(mt, FALSE, "getpgs"))
523 vm_page_busy(mt);
524 vm_page_io_finish(mt);
528 * Calculate the actual number of bytes read and clean up the
529 * page list.
531 bytecount -= auio.uio_resid;
533 for (i = 0; i < count; ++i) {
534 vm_page_t mt = m[i];
536 if (i != reqpage) {
537 if (error == 0 && mt->valid) {
538 if (mt->flags & PG_WANTED)
539 vm_page_activate(mt);
540 else
541 vm_page_deactivate(mt);
542 vm_page_wakeup(mt);
543 } else {
544 vnode_pager_freepage(mt);
546 } else if (mt->valid == 0) {
547 if (error == 0) {
548 kprintf("page failed but no I/O error page %p object %p pindex %d\n", mt, mt->object, (int) mt->pindex);
549 /* whoops, something happened */
550 error = EINVAL;
552 } else if (mt->valid != VM_PAGE_BITS_ALL) {
554 * Zero-extend the requested page if necessary (if
555 * the filesystem is using a small block size).
557 vm_page_zero_invalid(mt, TRUE);
560 if (error) {
561 kprintf("vnode_pager_getpages: I/O read error\n");
563 return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
567 * EOPNOTSUPP is no longer legal. For local media VFS's that do not
568 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
569 * vnode_pager_generic_putpages() to implement the previous behaviour.
571 * All other FS's should use the bypass to get to the local media
572 * backing vp's VOP_PUTPAGES.
574 static void
575 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
576 boolean_t sync, int *rtvals)
578 int rtval;
579 struct vnode *vp;
580 int bytes = count * PAGE_SIZE;
583 * Force synchronous operation if we are extremely low on memory
584 * to prevent a low-memory deadlock. VOP operations often need to
585 * allocate more memory to initiate the I/O ( i.e. do a BMAP
586 * operation ). The swapper handles the case by limiting the amount
587 * of asynchronous I/O, but that sort of solution doesn't scale well
588 * for the vnode pager without a lot of work.
590 * Also, the backing vnode's iodone routine may not wake the pageout
591 * daemon up. This should be probably be addressed XXX.
594 if ((vmstats.v_free_count + vmstats.v_cache_count) < vmstats.v_pageout_free_min)
595 sync |= OBJPC_SYNC;
598 * Call device-specific putpages function
601 vp = object->handle;
602 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
603 if (rtval == EOPNOTSUPP) {
604 kprintf("vnode_pager: *** WARNING *** stale FS putpages\n");
605 rtval = vnode_pager_generic_putpages( vp, m, bytes, sync, rtvals);
611 * This is now called from local media FS's to operate against their
612 * own vnodes if they fail to implement VOP_PUTPAGES.
614 * This is typically called indirectly via the pageout daemon and
615 * clustering has already typically occured, so in general we ask the
616 * underlying filesystem to write the data out asynchronously rather
617 * then delayed.
620 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *m, int bytecount,
621 int flags, int *rtvals)
623 int i;
624 vm_object_t object;
625 int count;
627 int maxsize, ncount;
628 vm_ooffset_t poffset;
629 struct uio auio;
630 struct iovec aiov;
631 int error;
632 int ioflags;
634 object = vp->v_object;
635 count = bytecount / PAGE_SIZE;
637 for (i = 0; i < count; i++)
638 rtvals[i] = VM_PAGER_AGAIN;
640 if ((int) m[0]->pindex < 0) {
641 kprintf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%x)\n",
642 (long)m[0]->pindex, m[0]->dirty);
643 rtvals[0] = VM_PAGER_BAD;
644 return VM_PAGER_BAD;
647 maxsize = count * PAGE_SIZE;
648 ncount = count;
650 poffset = IDX_TO_OFF(m[0]->pindex);
653 * If the page-aligned write is larger then the actual file we
654 * have to invalidate pages occuring beyond the file EOF. However,
655 * there is an edge case where a file may not be page-aligned where
656 * the last page is partially invalid. In this case the filesystem
657 * may not properly clear the dirty bits for the entire page (which
658 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
659 * With the page locked we are free to fix-up the dirty bits here.
661 * We do not under any circumstances truncate the valid bits, as
662 * this will screw up bogus page replacement.
664 * The caller has already read-protected the pages. The VFS must
665 * use the buffer cache to wrap the pages. The pages might not
666 * be immediately flushed by the buffer cache but once under its
667 * control the pages themselves can wind up being marked clean
668 * and their covering buffer cache buffer can be marked dirty.
670 if (maxsize + poffset > vp->v_filesize) {
671 if (vp->v_filesize > poffset) {
672 int pgoff;
674 maxsize = vp->v_filesize - poffset;
675 ncount = btoc(maxsize);
676 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
677 vm_page_clear_dirty(m[ncount - 1], pgoff,
678 PAGE_SIZE - pgoff);
680 } else {
681 maxsize = 0;
682 ncount = 0;
684 if (ncount < count) {
685 for (i = ncount; i < count; i++) {
686 rtvals[i] = VM_PAGER_BAD;
692 * pageouts are already clustered, use IO_ASYNC to force a bawrite()
693 * rather then a bdwrite() to prevent paging I/O from saturating
694 * the buffer cache. Dummy-up the sequential heuristic to cause
695 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set,
696 * the system decides how to cluster.
698 ioflags = IO_VMIO;
699 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
700 ioflags |= IO_SYNC;
701 else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
702 ioflags |= IO_ASYNC;
703 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
704 ioflags |= IO_SEQMAX << IO_SEQSHIFT;
706 aiov.iov_base = (caddr_t) 0;
707 aiov.iov_len = maxsize;
708 auio.uio_iov = &aiov;
709 auio.uio_iovcnt = 1;
710 auio.uio_offset = poffset;
711 auio.uio_segflg = UIO_NOCOPY;
712 auio.uio_rw = UIO_WRITE;
713 auio.uio_resid = maxsize;
714 auio.uio_td = NULL;
715 error = VOP_WRITE(vp, &auio, ioflags, proc0.p_ucred);
716 mycpu->gd_cnt.v_vnodeout++;
717 mycpu->gd_cnt.v_vnodepgsout += ncount;
719 if (error) {
720 krateprintf(&vbadrate,
721 "vnode_pager_putpages: I/O error %d\n", error);
723 if (auio.uio_resid) {
724 krateprintf(&vresrate,
725 "vnode_pager_putpages: residual I/O %d at %lu\n",
726 auio.uio_resid, (u_long)m[0]->pindex);
728 for (i = 0; i < ncount; i++)
729 rtvals[i] = VM_PAGER_OK;
730 return rtvals[0];
733 struct vnode *
734 vnode_pager_lock(vm_object_t object)
736 struct thread *td = curthread; /* XXX */
737 int error;
739 for (; object != NULL; object = object->backing_object) {
740 if (object->type != OBJT_VNODE)
741 continue;
742 if (object->flags & OBJ_DEAD)
743 return NULL;
745 for (;;) {
746 struct vnode *vp = object->handle;
747 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
748 if (error == 0) {
749 if (object->handle != vp) {
750 vput(vp);
751 continue;
753 return (vp);
755 if ((object->flags & OBJ_DEAD) ||
756 (object->type != OBJT_VNODE)) {
757 return NULL;
759 kprintf("vnode_pager_lock: vp %p error %d lockstatus %d, retrying\n", vp, error, lockstatus(&vp->v_lock, td));
760 tsleep(object->handle, 0, "vnpgrl", hz);
763 return NULL;